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The main contribution of this paper is to establish a link between the exponential stability of an unforced system and the Input-to-State Stability (ISS) via the Liapunov-Krasovskii methodology. It is proved that a system which is (globally, locally) exponentially stable in the unforced case is (globally, locally) input-to-state stable when it is forced by a measurable and locally essentially bounded input, provided that the functional describing the dynamics in the unforced case is (globally, on bounded sets) Lipschitz and the functional describing the dynamics in the forced case satisfies a Lipschitzlike hypothesis with respect to the input. Moreover, a new feedback control law is provided for delay-free linearizable and stabilizable time-delay systems, whose dynamics is described by locally Lipschitz functionals, by which the closed loop system is ISS with respect to disturbances adding to the control law, a typical problem due to actuator errors.

I. INTRODUCTION

For non-delayed systems, the Input-to-State Stability (ISS) property has been widely studied and its efficiency has been proved in practical applications such as networked control and robot manipulators (see for instance [START_REF] Tsinias | Control Lyapunov functions, input-to-state stability and applications to global feedback stabilization for composite systems[END_REF], [START_REF] Angeli | Input-to-state stability of PD-controlled robotic systems[END_REF], [START_REF] Angeli | A Lyapunov characterization of integral input-to-state stability[END_REF], [START_REF] Nešić | A note of input-to-state stabilization for nonlinear sampled-data systems[END_REF], [START_REF] Liberzon | Universal construction of feedback laws achieving ISS and integral-ISS disturbance attenuation[END_REF], [START_REF] Arcak | A unifying integral ISS framework for stability of nonlinear cascades[END_REF], [START_REF] Tanner | Input-to-state stability on formation graphs[END_REF], [START_REF] Tanner | ISS properties of nonholonomic mobile robots[END_REF] and for a survey [START_REF] Sontag | the ISS philosophy as a unifuing framework for stabilitylike behavior[END_REF]). The main point here is to focus on the robustness problem of nonlinear perturbed systems with possible large perturbations. ISS implies not only that the unperturbed system is asymptotically stable in the Liapunov sense but also that its behavior remains bounded when its inputs (eg. exogenous perturbations) are bounded. This is due to the contribution of Sontag in [START_REF]Smooth stabilization implies coprime factorization[END_REF], who was the first to harmonize the Liapunov state and the input-output approaches (see [START_REF]Further facts about input to state stabilization[END_REF], [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF], [START_REF]New characterizations of the input-to-state stability[END_REF], [START_REF] Sontag | Stability and stabilization: Discontinuities and the effect of disturbances[END_REF]).

Recently, some authors have attempted to address the lack of results regarding time-delay systems. Until 2003, only the work [START_REF] Teel | Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem[END_REF] by Teel had been devoted to the ISS property. In Teel's paper, a definition of the input-to-state stability for time-delay systems was given and sufficient conditions were stated using a Razumikhin-type theorem. In [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF], Pepe and Jiang extended the definition of the ISS-Liapunov function to Liapunov-Krasovskii functional and presented a sufficient condition to guarantee the ISS property. Also, a recent paper by Liberzon [START_REF] Liberzon | Quantization, time delays, and nonlinear stabilization[END_REF] is devoted to the quantized approach and ISS using Teel's propositions.

The scientific community's interest in the ISS property for time-delay systems is now rapidly increasing. In this context, we hope that this work will open even more perspectives with regard to this topic. Specifically, in this paper, we will exhibit a link between exponential stability and the ISS property. Exponential stability has proved its efficiency in networked control (see eg. [START_REF] Seuret | Robust exponential stabilization for systems with time-varying delays[END_REF]). However, the influence of disturbances on the solutions behavior have to be more deeply analyzed from both a qualitative and a quantitative point of view. For networked control systems, a first work in this direction is the paper [START_REF] Polushin | Stabilization of bilaterally controlled teleoperators with communication delay: an ISS approach[END_REF] by Polushin and Marquez relying on Teel's results, which may be somewhat conservative due to the use of Razumikhin-Liapunov functions. Characterization of ISS for nonlinear time-delay systems is still a hard task despite recent results ( [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF], [START_REF] Yeganefar | Relation between exponential stability and input-to-state stability for time-delay systems[END_REF], [START_REF] Mazenc | On input-to-state stability for nonlinear systems with delayed feedbacks[END_REF].

We show in this paper a link between ISS and exponential stability for a large class of systems. It is proved that a system which is (globally, locally) exponentially stable in the unforced case is (globally, locally) input-to-state stable when it is forced by a measurable and locally essentially bounded input, provided that the functional describing the dynamics in the unforced case is (globally, on bounded sets) Lipschitz and the functional describing the dynamics in the forced case satisfies a Lipschitz-like hypothesis with respect to the input. Moreover, a new feedback control law is provided for delay-free linearizable and stabilizable time-delay systems, whose dynamics is described by locally Lipschitz functionals, by which the closed loop system is ISS with respect to disturbances adding to the control law, a typical problem due to actuator errors.

Notations:

For y ∈ R n , |y| denotes the Euclidean norm of the vector y. The essential supremum norm of an essentially bounded function is indicated with the symbol

• ∞ . A function u is said to be essentially bounded if ess sup t≥0 |u(t)| < ∞; for given times 0 ≤ T 1 < T 2 , we indicate with u [T1,T2) : [0, +∞) → R m the function given by u [T 1 ,T 2 ) (t) = u(t) for all t ∈ [T 1 , T 2 ) and = 0 elsewhere. An input u is said to be locally essentially bounded if, for any T > 0, u [0,T ) is essentially bounded. A function w : [0, b) → R, 0 < b ≤ +∞, is said to be locally absolutely continuous if it is absolutely continuous in any interval [0, c], 0 < c < b; a continuous function ω : [0, ∞) → [0, ∞) is of class K if it is strictly increasing and ω(0) = 0, is of class K ∞ if it is of class K and is unbounded. A function β : [0, ∞) 2 → [0, ∞)
is of class KL if for each fixed t the function s → β(s, t) is of class K and for each fixed s the function t → β(s, t) is non-increasing and goes to zero as t → ∞.

For a given τ > 0, C denotes the space of continuous functions mapping the interval [-τ, 0] into R n and for ϕ ∈ C, ϕ c = sup -τ ≤θ≤0 |ϕ(θ)|. For a given positive real H, C H denotes the space of continuous functions ϕ mapping the interval [-τ, 0] into R n such that ϕ c < H.

With the symbol • a (see [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF]) we indicate any seminorm in C, such that, for some positive reals γ a , γa , the following inequalities hold

γ a |φ(0)| ≤ φ a ≤ γa φ c , ∀φ ∈ C (1)
For any continuous function x(s) defined on -τ ≤ s < A, A > 0, and any fixed t, 0 ≤ t < A, the standard symbol x t will denote the element of C defined by x t (θ) = x(t + θ), -τ ≤ θ ≤ 0.

II. PRELIMINARIES

A. Exponential stability of unforced systems

We will consider the exponential stability problem for the following equation in R n with bounded delay τ > 0:

ẋ(t) = f (x t ), t ≥ 0, f (0) = 0; x 0 = ψ, ( 2 
)
where ψ ∈ C, and f : C → R n is continuous and Lipschitz on bounded sets.

In this paper, we shall denote by x(t, ψ) (a vector of R n ) the solution at time t of system (2) with the initial condition ψ at 0. We shall, by convenient abuse of notation, consider x t (ψ) (a function of C) also a solution of (2). Observe that x 0 (ψ) = ψ. We recall here the definition of exponential stability in the case of time-delay systems.

Definition 2.1: The solution x(t) = 0 of ( 2) is exponentially stable if there exists positive reals H, A, B such that for every ψ ∈ C H the solution x t (ψ) of (2) exists ∀ t ≥ 0 and furthermore satisfies

x t (ψ) c ≤ Ae -Bt ψ c
(3) Definition 2.2: The solution x(t) = 0 of (2) is globally exponentially stable if there exists positive reals A, B such that for every ψ ∈ C the solution x t (ψ) of (2) exists ∀ t ≥ 0 and furthermore satisfies

x t (ψ) c ≤ Ae -Bt ψ c
(4) The next two theorems (here reported for the time invariant case), proved in [START_REF] Krasovskii | Stability of motion[END_REF]Lemma 33.1], will play an important role in the proof of our main theorems in the next section.

Theorem 2.3: 2) is globally exponentially stable then there exists a continuous functional V (ϕ) defined on C which satisfies the following conditions in C:

If the system (2) is exponentially stable (with initial conditions in C H , 0 < H < +∞) then there exists a continuous functional V (ϕ) defined on C H A and positive constants C i , i = 1, 2, 3, 4, such that the following conditions hold ∀ϕ, ξ ∈ C H A : C 1 ϕ c ≤ V (ϕ) ≤ C 2 ϕ c , ( 5 
)
lim sup h→0 + V (x h (ϕ)) -V (ϕ) h ≤ -C 3 ϕ c , ( 6 
)
|V (ϕ) -V (ξ)| ≤ C 4 ϕ -ξ c (7) Theorem 2.4: If the system (
C 1 ϕ c ≤ V (ϕ) ≤ C 2 ϕ c , ( 8 
)
lim sup h→0 + V (x h (ϕ)) -V (ϕ) h ≤ -C 3 ϕ c , (9) 
where C i , i = 1, 2, 3 are some positive constants. Moreover, if the functional f is globally Lipschitz, then there exists a positive real C 4 , such that the following inequality holds ∀ϕ, ξ ∈ C:

|V (ϕ) -V (ξ)| ≤ C 4 ϕ -ξ c
(10) Remark 1: In Theorems 2.3, 2.4, the coefficients C i , i = 1, 2, 3, 4 depend on the positive reals A, B and on the Lipschitz coefficient of the functional f in C H (or in C) and can be easily computed (see [START_REF] Krasovskii | Stability of motion[END_REF]).

B. Input-to-State Stability

As previously stated, a definition of input-to-state stability for time-delay systems has been given in [START_REF] Teel | Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem[END_REF] and a useful characterization has been presented in [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF]. For the reader's convenience, and to make our work self-contained, we report here the definition of ISS for time delay systems and its characterization with an ISS-Liapunov-Krasovskii functional (see [START_REF]Smooth stabilization implies coprime factorization[END_REF], [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF]).

Consider the system

ẋ(t) = f (x t , u(t)), t ≥ 0, x 0 = ψ, ( 11 
)
where f is a continuous functional defined on C × R m , Lipschitz on bounded sets. The input u is a measurable and locally essentially bounded function of t for all t ≥ 0.

Consider also the unforced system

ẋ(t) = f (x t , 0), t ≥ 0, x 0 = ψ, (12) 
For the reader's convenience Sontag's definition of ISS is reported below (see also [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF]). Definition 2.5: The system ( 11) is locally input-to-state stable if there exists two positive reals r and r u , a class KL function β and a class K function γ such that, ∀ψ ∈ C r and ∀u such that ess sup t≥0 |u(t)| < r u , the solution exists for all t ≥ 0 and furthermore satisfies

|x(t, ψ)| ≤ β( ψ c , t) + γ( u [0,t] ∞ ).
(13) Definition 2.6: The system (11) is input-to-state stable if there exist a class KL function β and a class K function γ such that, for any initial state ψ and any locally essentially bounded input u, the solution x t (ψ) exists for all t ≥ 0 and furthermore satisfies

|x(t, ψ)| ≤ β( ψ c , t) + γ( u [0,t] ∞ ).
(14) In the following, the continuity of a functional V : C → R + is intended with respect to the supremum norm.

Given a continuous functional V : C → R + , the upperright hand Dini derivative (as proposed by [START_REF] Driver | Existence and stability of solutions of a delay-differential system[END_REF] and used in [START_REF] Burton | Stability and periodic solutions of ordinary and functional differential equations[END_REF], [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF] and, in a generalized version, in [START_REF] Karafyllis | Lyapunov theorems for systems described by retarded functional differential equations[END_REF]) is given by

D + V (ϕ, v) = lim sup h→0 + 1 h (V (ϕ h,v ) -V (ϕ)), (15) 
where ϕ h,v ∈ C is given by

ϕ h,v (s) = ϕ(s + h), s ∈ [-τ, -h), ϕ(0) + (s + h)f (ϕ, v), s ∈ [-h, 0]. (16) 
It is proved in [START_REF] Pepe | On Lyapunov-Krasovskii functionals under Carathodory conditions[END_REF] that, under Caratheódory conditions, if the functional V is locally Lipschitz, then, for any ϕ ∈ C, almost everywhere in t, [START_REF]The problem of the absolute continuity for Liapunov-Krasovskii functionals[END_REF] that the problem of the absolute continuity of the function t → V (x t (ϕ)) (see the hypothesis Hp 1 in [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF]) is overcome if V is locally Lipschitz.

D + V (x t (ϕ), u(t)) = lim sup h→0 + V (x t+h (ϕ)) -V (x t (ϕ)) h (17) Moreover, it is proved in
Taking into account the above two facts, a main contribution in [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF] is here reported by the following definitions and theorems.

Definition 2.7: A locally Lipschitz continuous functional V : C → R + is a local ISS Liapunov-Krasovskii functional for system [START_REF]Further facts about input to state stabilization[END_REF] if there exist two positive reals k 1 , k 2 , K ∞functions a, b, and K-functions χ and α such that,

∀ϕ ∈ C k 1 , ∀u with |u| < k 2 , 1) a(|ϕ(0)|) ≤ V (ϕ) ≤ b( ϕ a ) 2) D + V (ϕ, u) ≤ -α( ϕ a ), ∀ ϕ a ≥ χ(|u|) Theorem 2.8: If system (11) admits a local ISS Liapunov-Krasovskii functional, then it is locally ISS with γ = a -1 • b • χ.
Definition 2.9: A locally Lipschitz continuous functional V : C → R + is an ISS Liapunov-Krasovskii functional for system [START_REF]Further facts about input to state stabilization[END_REF] if there exist K ∞ -functions a, b, and K-functions χ and α such that 

1) a(|ϕ(0)|) ≤ V (ϕ) ≤ b( ϕ a ) 2) D + V (ϕ, u) ≤ -α( ϕ a ), ∀ ϕ a ≥ χ(

III. MAIN RESULTS

A. Links between ISS and Exponential Stability

Our main results can now be stated as follows. Theorem 3.1: Let there exist positive reals H, D and and a non negative real p < 1, such that: 1) the unforced system ( 12) is exponentially stable (initial conditions in C H ); 2) for all ϕ ∈ C H , for all u ∈ R m with |u| < D, the following inequality holds

|f (ϕ, u) -f (ϕ, 0)| ≤ max { ϕ p c , 1} |u| (18)
Then, the perturbed system ( 11) is locally input-to-state stable, with r and r u in the definition 2.6 being any positive reals satisfying the inequalities

r < H A , r u < D, ( 19 
)
max 2C 4 lr u C 3 , 2C 4 lr u C 3 1 1-p C 2 C 1 + C 2 C 1 r < H A , (20) 
C i , i = 1, 2, 3, 4, being the positive constants given in Theorem 2.3 and A being the constant in (3) for the unforced system [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF]. Remark 2: A large class of systems verifies the condition [START_REF] Seuret | Robust exponential stabilization for systems with time-varying delays[END_REF]. For instance, systems ẋ(t) = f (x t ) + g(x t )u(t), with any f and |g(ϕ)| ≤ max{ ϕ p c , 1}, verify the condition [START_REF] Seuret | Robust exponential stabilization for systems with time-varying delays[END_REF]. The term max{ ϕ p c , 1} may be substituted by a positive constant (included in l), but this would reduce, in general, the region where the input-to-state stability holds (see second inequality in [START_REF] Polushin | Stabilization of bilaterally controlled teleoperators with communication delay: an ISS approach[END_REF].

Theorem 3.2: Let the system (12) be globally exponentially stable. Let there exist positive reals L, l such that 1) the following inequality holds

∀ϕ 1 , ϕ 2 ∈ C |f (ϕ 1 , 0) -f (ϕ 2 , 0)| ≤ L ϕ 1 -ϕ 2 c ; (21) 
2) for all ϕ ∈ C, for all u ∈ R m , the following inequality holds

|f (ϕ, u) -f (ϕ, 0)| ≤ max { ϕ p c , 1} |u| (22)
Then, the perturbed system ( 11) is input-to-state stable.

B. An input-to-state stabilizing feedback

In this section we consider nonlinear systems

ẋ(t) = f (x t ) + g(x t )(u(t) + d(t)), t ≥ 0, x 0 = ψ, (23) 
where f, g are locally Lipschitz continuous functionals defined on C, u(t) ∈ R m is the control input, d(t) ∈ R m is a measurable and locally essentially bounded disturbance. In recent literature (see [START_REF] Oguchi | Input-output linearization of retarded non-linear systems by using an extension of Lie derivative[END_REF] and [START_REF] Germani | Input-output linearization with delay cancellation for nonlinear delay systems: the problem of the internal stability[END_REF]), many results concerning the elementary theory of nonlinear feedback for time-delay systems have been achieved. On the basis of these results, we suppose here that there exists a feedback control law u(t) = k(x t ), where k : C → C is a continuous mapping, such that, by this feedback control law, the system ( 23) is transformed into the system

ẋ(t) = F x(t) + g(x t )d(t), t ≥ 0, x 0 = ψ, (24) 
with F a Hurwitz matrix. The feedback control k is proved to exist for instance for the class of nonlinear time-delay systems (with discrete delays, functions f , g smooth) which admit full uniform (type-III) vector relative degree with respect to some smooth output function h (a suitable change of variables may be necessary), see [START_REF] Oguchi | Input-output linearization of retarded non-linear systems by using an extension of Lie derivative[END_REF] [START_REF] Germani | Input-output linearization with delay cancellation for nonlinear delay systems: the problem of the internal stability[END_REF]. Though the feedback control law may involve longer delays then the ones involved in the system dynamics, there is no loss of generality to consider the same maximum delay in the system and in the control law (zero terms with higher delays may be added in the system equations as well as initial conditions defined on longer delay intervals may be considered, see the example in [START_REF] Oguchi | Input-output linearization of retarded non-linear systems by using an extension of Lie derivative[END_REF]).

Theorem 3.3: Consider the feedback control law

u(t) = k(x t ) -g T (x t )Qx(t)x T (t)P x(t), ( 25 
)
where P ∈ R n×n is any symmetric positive definite matrix and Q ∈ R n×n is the symmetric positive definite matrix solution of F T Q + QF = -P . Then, the closed loop system ( 23), ( 25) is input-to-state stable with respect to the measurable, locally essentially bounded disturbance d(t).

Remark 3: Note that in this case the functional g does not have to satisfy the condition [START_REF] Seuret | Robust exponential stabilization for systems with time-varying delays[END_REF] as reported in Remark 2. As well known, given the symmetric positive definite matrix P , the matrix Q is equal to +∞ 0 e F T t P e F t dt. Remark 4: Note that, for the class of systems studied in this section, the new feedback control law is the same proposed by Sontag in the celebrated paper [START_REF]Smooth stabilization implies coprime factorization[END_REF], when g is a function of x(t) and not of x t .

C. Proof of Theorem 3.1

We view system [START_REF]Further facts about input to state stabilization[END_REF] as a perturbation of the unforced system [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF]. The main idea of the proof will be to show that there exists an ISS Liapunov-Krasovskii functional for system (11); theorem 2.10 will then insure that our system is ISS. Moreover, the functional we are looking for is the same as the one for the unforced system (using Theorem 2.3). The details of the proof are reported below.

Proof: The converse Liapunov theorem 2.3 shows that the unforced system [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF] 

has a Liapunov-Krasovskii functional V (ϕ) that satisfies, in C H A , the inequalities (5- 7). Note that V is Lipschitz in C H A . Let ϕ c < H
A and |u| < D. Computing the upper right-hand Dini derivative of the functional V as in [START_REF] Teel | Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem[END_REF], we get:

D + V (ϕ, u) = lim sup h→0 1 h (V (ϕ h,u ) -V (ϕ)) = lim sup h→0 1 h (V (ϕ h,u ) -V (ϕ h,0 ) -V (ϕ) + V (ϕ h,0 )) ≤ D + V (ϕ, 0) + lim sup h→0 1 h (V (ϕ h,u ) -V (ϕ h,0 )) ≤ -C 3 ϕ c + lim sup h→0 1 h (V (ϕ h,u ) -V (ϕ h,0 )).
Taking into account the condition (18) on f , the following inequalities hold for sufficiently small h:

|V (ϕ h,u ) -V (ϕ h,0 )| ≤ C 4 ϕ h,u -ϕ h,0 c = C 4 sup s∈[-τ,0] |ϕ h,u (s) -ϕ h,0 (s)| ≤ C 4 sup s∈[-h,0] |s + h||f (ϕ, u) -f (ϕ, 0)| ≤ C 4 |h| max{ ϕ p c , 1}|u|
Let ω : R + → R + be the class K ∞ function defined as: ω(s) = θ min{s, s 1-p }, where 0 < θ < C3 C 4 . Then, if ϕ c ≥ ω -1 (|u|), the following inequalities hold:

D + V (ϕ, u) ≤ -C 3 ϕ c + C 4 θ ϕ c ≤ -δ ϕ c , where δ = C 3 -C 4 θ > 0. Let us choose θ = C3 2C4l , so that δ = C3 2 .
Hence, the conditions of theorem 2.8 are satisfied using the norm • c as a • a norm, a(s) = C 1 s, b(s) = C 2 s, α(s) = δs and χ(s) = ω -1 (s). We can conclude that the system ( 11) is locally input-to-state stable. The positive reals r < H A and r u < D can be computed by requiring that the solution x t (ϕ) corresponding to initial conditions ϕ with ϕ c < r and to input u(t) with ess sup t≥0 |u(t)| < r u satisfies the following inequality

x t (ϕ) c ≤ H A , t ≥ 0 (26) 
To prove the inequality (26), we have just to consider that, in the ISS inequality [START_REF]New characterizations of the input-to-state stability[END_REF] the functions β and γ are here given, for s, t ≥ 0, by

β(s, t) = s C2 C 1 exp - C3 2C 2 t , (27) 
γ(s) = C2 C 1 max 2C4ls C 3 , 2C4ls C 3 1 1-p (28) 
Therefore, the inequality (26) follows from the inequality [START_REF] Polushin | Stabilization of bilaterally controlled teleoperators with communication delay: an ISS approach[END_REF] and the theorem is proved.

D. Proof of Theorem 3.2

Proof: The converse Liapunov theorem 2.4 shows that the unforced system (12) has a Liapunov-Krasovskii functional V (ϕ) that satisfies, in C, the inequalities [START_REF] Tanner | ISS properties of nonholonomic mobile robots[END_REF][START_REF] Sontag | the ISS philosophy as a unifuing framework for stabilitylike behavior[END_REF][START_REF]Smooth stabilization implies coprime factorization[END_REF].

From the hypothesis 1) on the functional f it follows that V is globally Lipschitz in C. Computing the upper right-hand Dini derivative of the functional V as in [START_REF] Teel | Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem[END_REF], we get:

D + V (ϕ, u) = lim sup h→0 1 h (V (ϕ h,u ) -V (ϕ)) = lim sup h→0 1 h (V (ϕ h,u ) -V (ϕ h,0 ) -V (ϕ) + V (ϕ h,0 )) ≤ D + V (ϕ, 0) + lim sup h→0 1 h (V (ϕ h,u ) -V (ϕ h,0 )) ≤ -C 3 ϕ c + lim sup h→0 1 h (V (ϕ h,u ) -V (ϕ h,0 )).
Taking into account the hypothesis 2) on the functional f , the following inequalities hold:

|V (ϕ h,u ) -V (ϕ h,0 )| ≤ C 4 ϕ h,u -ϕ h,0 c = C 4 sup s∈[-τ,0] |ϕ h,u (s) -ϕ h,0 (s)| ≤ C 4 sup s∈[-h,0] |s + h||f (ϕ, u) -f (ϕ, 0)| ≤ C 4 |h| max{ ϕ p c , 1}|u|
Let ω : R + → R + be the class K ∞ function defined as: ω(s) = θ min{s, s 1-p }, where 0 < θ < C 3 C 4 . Then, if ϕ c ≥ ω -1 (|u|), the following inequalities hold:

D + V (ϕ, u) ≤ -C 3 ϕ c + C 4 θ ϕ c ≤ -δ ϕ c , where δ = C 3 -C 4 θ > 0.
Hence, the conditions of theorem 2.10 are satisfied using the norm • c as a • a norm, a(s) = C 1 s, b(s) = C 2 s, α(s) = δs and χ(s) = ω -1 (s). We can conclude that the system [START_REF]Further facts about input to state stabilization[END_REF] is input-to-state stable.

E. Proof of Theorem 3.3

Let us apply the theorem 2.10 to the closed loop system [START_REF] Driver | Existence and stability of solutions of a delay-differential system[END_REF], [START_REF] Karafyllis | Lyapunov theorems for systems described by retarded functional differential equations[END_REF]. Let us consider the Liapunov-Krasovskii functional V (ϕ) = ϕ T (0)Qϕ(0). The following inequalities hold for |d| ≤ ϕ(0) T P ϕ(0):

D + V (ϕ, d) = ϕ T (0)QHϕ(0) + ϕ T (0)H T Qϕ(0) -ϕ T (0)Qg(φ)g T (ϕ)Qϕ(0)ϕ T (0)P ϕ(0) -ϕ T (0)P ϕ(0)ϕ T (0)Qg(φ)g T (ϕ)Qϕ(0) + ϕ T (0)Qg(ϕ)d + d T g T (ϕ)Qϕ(0) ≤ -ϕ T (0)P ϕ(0) -2ϕ T (0)Qg(φ)g T (ϕ)Qϕ(0)ϕ T (0)P ϕ(0)+ 2ϕ T (0)Qg(φ)d ≤ -ϕ T (0)P ϕ(0) -2|ϕ T (0)Qg(φ)| 2 ϕ T (0)P ϕ(0)+ 2ϕ T (0)Qg(φ)d ≤ -ϕ T (0)P ϕ(0) -2|ϕ T (0)Qg(φ)| 2 ϕ T (0)P ϕ(0)+ 2|ϕ T (0)Qg(φ)| 2 ϕ T (0)P ϕ(0) + 1 2 ϕ T (0)P ϕ(0) ≤ - 1 2 ϕ T (0)P ϕ(0)
Therefore, by theorem 2.10, it follows that the closed loop system (23),( 25) is input-to-state stable with respect to measurable and locally essentially bounded disturbances d(t). Note that in this case the Euclidean norm |ϕ(0)| is used as a ϕ a semi-norm.

IV. EXAMPLES Theorems 3.1, 3.2 and 3.3 have nice applications in the nonlinear feedback control of time delay systems, when a disturbance adds to the control law, which usually happens because of actuator errors.

As an application of theorem 3.2, consider the following time-delay system:

     ẋ1 (t) = x 2 (t) + 0 -1 0.1θx 1 (t + θ)dθ ẋ2 (t) = x 1 (t -1)x 2 (t -1)+ 1 + |x 1 (t -1)| 1 2 (u(t) + d(t)) ( 29 
)
where u is the control input and d is an unknown measurable, locally essentially bounded disturbance. The following control law

u(t) = -x 1 (t -1)x 2 (t -1) + [ -2 -3 ] x 1 (t) x 2 (t) 1 + |x 1 (t -1)| 1 2
, is such that the closed loop system becomes

ẋ1 (t) = x 2 (t) + 0 -1 0.1θx 1 (t + θ)dθ ẋ2 (t) = -2x 1 (t) -3x 2 (t) + 1 + |x 1 (t -1)| 1 2 d(t)
(30) The closed loop system [START_REF] Gu | Stability of Time-Delay Systems[END_REF] with zero disturbance (d(t) ≡ 0) is a globally exponentially stable linear time-delay system (it can be checked by Proposition 5.15, pp. 171 in [START_REF] Gu | Stability of Time-Delay Systems[END_REF]). If the disturbance is present, then the theorem 3.2 allows to say that the closed loop system [START_REF] Gu | Stability of Time-Delay Systems[END_REF] has the important ISS property with respect to the disturbance d(t).

As an application of Theorem 3.3, consider the following time-delay system:

   ẋ1 (t) = x 2 (t) ẋ2 (t) = x 1 (t -τ )x 2 (t -τ )+ (1 + x 2 1 (t)x 2 2 (t -τ ))(u(t) + d(t)) ( 31 
)
where u is the control input and d is an unknown measurable, locally essentially bounded disturbance. The following control law ( [START_REF] Oguchi | Input-output linearization of retarded non-linear systems by using an extension of Lie derivative[END_REF], [START_REF] Germani | Input-output linearization with delay cancellation for nonlinear delay systems: the problem of the internal stability[END_REF])

u 1 (t) = -x 1 (t -τ )x 2 (t -τ ) + k T x 1 (t) x 2 (t) 1 + x 2 1 (t)x 2 2 (t -τ ) , with k ∈ R 2 , is such that the closed loop system becomes    ẋ1 (t) = x 2 (t) ẋ2 (t) = k T x 1 (t)
x 2 (t) + 1 + x 2 1 (t)x 2 2 (t -τ ) d(t) (32) By an easy choice of the vector k, the system (32) with zero disturbance (d(t) ≡ 0) is an exponentially stable linear delay-free system . But, if the disturbance is present, the time-delay closed loop system (32) is not ISS. Actually, any constant disturbance may cause the state variables to go to ∞. By theorem 3.3, the following control law u(t) = u 1 (t) -[ 0 1 + x 2 1 (t)x 2 2 (t -τ ) ]Qx(t)x T (t)x(t), (33) where Q is the symmetric positive matrix satisfying

0 k 1 1 k 2 Q + Q 0 1 k 1 k 2 = -I,
I is the identity matrix in R 2×2 , k 1 , k 2 are the components of the vector k, is such that the closed loop system (31, 33) is ISS with respect to the disturbance d(t). Note that the functional g is (only) locally Lipschitz, and that the delay τ can be arbitrarily large.

V. CONCLUSIONS

The ISS theory, recently being adapted to time-delay systems, is one of the best tools for analysis and control of nonlinear systems. In this paper, we establish a connection between ISS and exponential stability of time-delay systems. It is proved that a system which is (globally, locally) exponentially stable in the unforced case is (globally, locally) input-to-state stable when it is forced by a measurable and locally essentially bounded input, provided that the functional describing the dynamics in the unforced case is (globally, on bounded sets) Lipschitz and the functional describing the dynamics in the forced case satisfies a Lipschitz-like hypothesis with respect to the input. Moreover, a new feedback control law is provided for delay-free linearizable and stabilizable time-delay systems, whose dynamics is described by locally Lipschitz functionals, by which the closed loop system is ISS with respect to disturbances adding to the control law, a typical problem due to actuator errors.
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 210 If system (11) admits an ISS Liapunov-Krasovskii functional, then it is ISS with γ = a -1 • b • χ.