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—— Abstract

Given a nominal combinatorial optimization problem, we consider a robust two-stages variant with polyhedral cost

uncertainty, called Decision-Dependent Information Discovery (DDID). In the first stage, DDID selects a subset of
uncertain cost coefficients to be observed, and in the second-stage, DDID selects a solution to the nominal problem,
where the remaining cost coeflicients are still uncertain. Given a compact linear programming formulation for the nominal
problem, we provide a mixed-integer linear programming (MILP) formulation for DDID. The MILP is compact if the
number of constraints describing the uncertainty polytope other than lower and upper bounds is constant. The proof of
this result involves the generalization to any polyhedral uncertainty set of a classical result, showing that solving a robust
combinatorial optimization problem with cost uncertainty amounts to solving several times the nominal counterpart. We
extend this formulation to more general nominal problems through column generation and constraint generation
algorithms. We illustrate our reformulations and algorithms numerically on the selection problem, the orienteering
problem, and the spanning tree problem.

Keywords robust combinatorial optimization, compact formulations, column generation, cutting plane.

1 Introduction

Decision-dependent information discovery (DDID) tackles optimization problems under uncertainty where the
decision maker has the possibility to investigate the value of some of the uncertain parameters, thereby reducing
the total amount of uncertainty. The model has innumerous applications in urban planning, project management,
resource allocations, scheduling, among many others. The first DDID models where motivated by applications in
offshore oilfield exploitation [22] and production planning [21]. Subsequent examples have been considered in the
literature and Vayanos et al. [44] detail applications in a R&D project portfolio optimization problem, where
a company must choose how to prioritize the projects in its pipeline [38, 13]. Vayanos et al. [44] also describe
a preference elicitation with real-valued recommendations where one can investigate how much users like any
particular item. They further apply the latter model to improve the US kidney allocation system. Even more
recently, Paradiso et al. [29] consider a routing problem, which they apply to collecting medicine crates at the
Alrijne hospital.

We consider in this paper a model similar to that studied in [29] and address robust DDID where only the
costs are uncertain. We further assume that the underlying nominal optimization problem is a combinatorial
optimization problem, thus involving only 0/1 decision variables. Specifically, we define the following feasibility
and uncertainty sets.

W={we{0,1}" | Gw < g} is the set characterizing the possible information discovery;
Y={yeZ" | By>0b,0<y <1} is the feasible set of a given combinatorial optimization problem;
P={yeR" | By>b,0<y <1} is the relaxed polytope of V;

E={eR" | A{ <r,0< ¢ <d} is an uncertainty polytope.
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Observe that binary restrictions are written implicitly for ). This will make more natural the writing of the
dualization over P, the polyhedral relaxation of ). The DDID problem we consider is then defined by:

DDID . .

z = min max min max ¢ + &)y, DDID
weW fem yeY EGE(wvf)ie[n]( 7 z) i ( )

where c is a given cost vector and Z(w, &) = {¢eE | wof=wo f_}, where vow = (viwy, ..., vyw,) for any

pair of vectors v, w € R™. Observe that constraint w o & = w o & guarantees that the observed cost values are not
modified after setting the solution y to the combinatorial optimization problem.

> Remark 1. The lower bounds equal to 0 in the definition of = is without loss of generality. If the polytope
were instead defined by = = {€ € R" | A¢ <r,d <& <d}, we could change variables by setting £’ := £ — d and
obtain a new polytope =’ that satisfies d’ = 0, together with a new cost vector ¢/ and a new right-hand-side 7’
We define next the outermost objective function of (DDID), namely

®(w) = maxmin max (ci + &)yi-
EcE YV ceE(w,f) i)

Folklore complexity results in min-max robust combinatorial optimization [24] imply that computing ® for

general polytopes is N P-hard even when optimizing over Y is easy.

> Observation 1. Computing ® is A'P-hard if the number of rows of A is part of the input, even if min,cy ¢’y

can be solved in polynomial time.

Despite its many applications, solving DDID exactly even with the budget uncertainty polytope [9, 10] has so

far remained a formidable challenge.

1.1 Literature Review

We contextualize next how (DDID) fits within the robust optimization landscape. Robust combinatorial
optimization introduced in [24] originally considered min-max optimization problems of the form

MM — min max (ci +&)yi (MIN-MAX)

for discrete uncertainty sets =. They proved in particular that (MIN-MAaX) is NP-hard even when = consists of
only two points and ) is the feasibility set of polynomially solvable optimization problems, such as the selection
problem or the shortest path problem. In fact, their results apply also to polyhedrons so these problems remain
hard even when = is, for instance, the convex hull of two points.

Slightly later than [24], Ben-Tal and Nemirovski [6] considered robust optimization through a different per-
spective, focusing on convex uncertainty sets and uncertain constraints. They developed the first compact convex
reformulations for these problems. While their focus was on convex optimization, applying their reformulations
to robust combinatorial optimization problems with polyhedral uncertainty leads to compact mixed-integer linear
programming formulations. These can be readily solved numerically using state-of-the-art solvers like CPLEX or
Gurobi, despite the theoretical hardness of these problems. An important step forward arose with the introduction
of the budget uncertainty set [9, 10] and its extension to more general knapsack constraints [32] (special case of
= where A is non-negative). Extending the seminal result of [9], Poss [32] showed that if the number of rows of A
is constant, then the min-max robust counterparts of polynomial problems remains polynomial, contrasting with
the difficulty proved by [24] for arbitrary sets. These rather theoretical results have been pursued for specific
variants of the set [18, 46] and complemented by efficient algorithms that leverage the structure of the set, e.g.
for vehicle routing [19, 30], scheduling [42], lot-sizing [1] and inventory routing [11, 36], only to name a few.

After the basic robust models were introduced by [24] and [6], many extensions have been considered in
the literature. We briefly mention below two of these extensions that relate to (DDID). On the one hand,
robust optimization with decision-dependent uncertainty sets allows for the uncertainty set = to depend on the
decision variables [27, 31, 39, 4]. On the other hand, two-stage robust optimization splits the decision variables
into the here-and-now decisions, and the wait-and-see ones, which can be fixed after £ is known. Numerous
papers have been published on the topic (see the survey by [47]), providing exact [5, 48, 49] or approximate
solutions [7] in the case of fractional recourse. The case of integer recourse has remained particularly difficult and,
apart from the recent exact algorithms by [2, 23], research has mostly focused on approximate solutions based
on partitioning the uncertain set into K subsets and devising constant second-stage policies for each element
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of the partition, often referred to as K-adaptability. While most of these approaches lead to decomposition
algorithms [3, 40], Hanasusanto et al.[20] were able to provide a compact reformulation for K-adaptability when
only cost is uncertain. Different authors [8, 33] have also proposed to partition = dynamically and heuristically.
While the above references aim at solving generic problems, Goerigk et al. [16] have focused on specific problems
and proposed tailored algorithms and complexity results, see also ?7.

Problem (DDID) borrows ideas from both of the above extensions. On the one hand, its decisions happen in
multiple stages, since the observation w is to be decided before revealing anything from =, while y is chosen after
the observed coefficients w o € have been revealed. The difference with classical two-stage robust optimization
lies in the remaining uncertain parameters, &, to be revealed only after y is decided. Furthermore, the second-
stage uncertainty set E(w,f_) is decision-dependent. We mention that there exist other robust optimization
problems in the literature involving decision-dependent uncertainty sets and multiple stages, such as controllable
uncertainty [25] or explorable uncertainty [15].

1.2 Contributions and structure of the paper

Our main result is a linear programming relaxation for ®(w) that is exact whenever conv()y) = P and compact
when the number of rows of A is constant. The linear program for ®(w) is then dualized and linearized to
provide a mixed-integer linear programming relaxation for (DDID) that is exact whenever conv()) = P and
compact when the number of rows of A is constant. An ad-hoc study is carried out to strengthen significantly
the linearized MILP. Interestingly, our linear programming relaxation involves an extension of the result of [32]
to arbitrary uncertainty polytopes. Our extension essentially states that if the number of rows of A is constant,
then solving (MIN-MAX) can be done by optimizing a polynomial number of different linear functions over ).

Then, we discuss how these relaxations can be made exact for problems for which conv(Y) C P. First, we
propose a convexification approach based on a Dantzig-Wolfe reformulation of conv()), leading to column
generation and branch-and-price algorithms. Second, we propose a cutting-plane algorithm starting from P and
iteratively strengthening the outer approximation through strong valid inequalities. Both approaches can be
turned into heuristic algorithms by stopping the variable or constraint generation at any time.

The resulting exact and heuristic algorithms are assessed numerically on different problems motivated by the
literature, namely the selection, the orienteering problem, and the spanning tree problem. Results illustrate how
these approaches are able to obtain exact solutions, often for the first time, on instances inspired by the scientific
literature [29, 44]. They also illustrate the efficiency of our branch-and-price and cutting-plane algorithms.

We provide also more theoretical insights into the problem. First, we illustrate extreme cases in which (DDID)
is equal to either its min-max or max-min counterpart. The former case arises when considering linear programs
rather than discrete problems, while the latter arises when the dimension of = is too small, such as the factor
model used in the literature [44]. Second, we show that computing ®(w) can alternatively be done by optimizing
a polynomial number of linear functions over ). This leads to polynomial time algorithms for (DDID) whenever
the nominal problems are polynomially solvable and |[W] is polynomially bounded. While this result is mostly of
theoretical interest, since it relies on the ellipsoid algorithm, the underlying cutting-plane algorithm can be used
to compute ®(w) whenever conv()) C P. We note that a similar result has been found independently in [25,
Theorem 4.3] in the context of controllable uncertainty.

The rest of the paper is structured as follows. In the next section, we detail the relationship between (DDID)
and its min-max and max-min counterparts, and provide the counterpart of the result of [32] for general polytopes
(thus not assuming that A > 0). We provide in Section 3 the polynomial-time algorithm and linear programming
reformulation for ®(w). We dualize and linearize this formulation in Section 4, and discuss in Section 5 extensions
to problems for which conv())) C P. Section 6 presents our numerical experiments. The appendix contains a
comparison with the algorithm of [29], the proofs of the linearization of ®(w) and the dominance relationships
used in the column generation algorithms. It also details the reformulation proposed by [44] for K-adaptability.

1.3 Notations

We let s be the number of rows of matrix A. For any w € {0,1}", we denote by W! the set of indices over which
w is equal to 1, and WY its complementary. For any integer n, we denote the set {1,...,n} by [n]. For any real
number z, [z]T denotes the positive part of z. For any set S, we denote its convex hull by conv(S) and the set
of its extreme points by ext(S). The identity matrix is denoted Id, and 1 and 0 represent vectors of all ones and
zeros, respectively.
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2 Preliminary results and trivial cases

2.1 Relationship with robust counterparts

If no cost coefficient can be observed (i.e., W = {0}), we see that (DDID) falls down to (MIN-MAX). Going
one step further, we note that when every cost coefficient can be observed (i.e., 1 € W), (DDID) becomes the
(robust) wait-and-see problem, formally defined as

2" = max min (ci + &)y, (WAIT& SEE)
EEE yEeY -
i€[n]
where a worst-case cost vector can be inferred preliminary to the solution of the combinatorial problem. As a

consequence the optimal value of (DDID) can be bounded as follows.
max min ¢ + &)y < min maxmin max ¢ + &)y < min max ¢ + &)y
£€= yey - (ci+ &)y < wEW ¢z yEY ¢€E(w,f) i;m]( i &)y s yey te= g:[n]( i+ &y

WS < ZDDID < ZMM. (1)

We note that if 1 € W, it is trivially an optimal solution to (DDID). As considering this trivial solution raises a
technical special case in our reformulations, we rather assume it does not belong to W.

> Assumption 1. Set W does not contain the vector of all ones.

We illustrate below the above inequalities on the selection problem with budget uncertainty.

> Example 1. Consider an instance of (DDID) where Y = {y € {0,1}° ’ Zz‘e[5] Yi = 1} is the selection

feasibility set, W = {w € {0,1}° ’ Zie[s] w; = 1} amounts to choosing one item among 5 and the uncertainty
is the budget uncertainty set from [9] with nominal values ¢ = (1,2,3,4,5) and deviations d = (5,4, 3,2, 1), that
S,E:{§€R5 ‘ Yiep S <L0<E <dgie [5]}.

Let us first look at the optimal solution to (MIN-MAX). Since a unique item j is selected in any feasible
solution y € ),

-

max (CZ‘ + &)yz =maxc; + fj =c;+ d]' = 0.
£EE icn] feE

Hence, zMM = 6. In the case of (WAIT&SEE), the adversary needs to increase the value of the cheapest item 7,

thus solving maxgcz min;(c; + &;). After some linear algebra, one obtains W5 = 162/47 ~ 3.4.

Consider now (DDID), where we select one item after having observed one of the items cost. Assume that
we observe item 1 so the uncertain cost &; of item 1 is revealed. If y selects item 1, the solution cost is ¢1 + &. If,
we select instead item j # 1, the resulting solution cost is ¢; + d; (1 — %) The previous value is minimized for
Jj =2, yielding 2 4+ 4(1 — %1) The worst-case scenario for £ thus maximizes min{c; + &,,2 + 4(1 — %)}, which is
a concave piece-wise linear function with maximum value 34/9 reached at & =25 /9. Therefore, observing item 1
yields an objective value of 2PPIP = 34/9 ~ 3.8, one readily verifies by examination that this is the optimal
solution to the problem.

We detail next two situations in which one of the bounds is actually equal to zPP™P. First, consider the
linear programming counterpart of (DDID), in which the feasibility set of the optimization problem consists of
a polytope, Q. In this context, it is well-known that

min max ¢; + &)y; = max min ci + &)y 2

it may ZE[”]( §i)yi = may ye@%;}( &)Yis (2)
meaning that the robust optimization problem is equivalent to (WAIT&SEE). Combining (2) with (1) immediately
shows that (DDID) is equivalent to (MIN-MAX) in this context.
> Observation 2. If ) is a polytope instead of a set of integer points, then z"
Observation 2 illustrates the necessity to consider discrete variables for (DDID) to provide an advantage over
the min-max approach. In particular, equality (2) does not hold if one optimizes over a discrete set rather than
a polytope since in the former case the domain of variables y is no longer convex.

When we are not in one of the two extreme cases where W = {0} or 1 € W, we may still develop some
geometrical intuition on the role of information discovery. It may indeed be convenient to see the process of
observation as a reduction of the dimension of the uncertainty polytope. To be more accurate, we partition the

S _ ,DDID _ ,MM_
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uncertainty constraints as AT¢ < a™, A€ < @~ such that A6 = @™ for all £ € Z and there exists £ € = with
A*¢ < at. The dimension of polytope = is then given by dim(Z) = n — rank(A~). We also define e; the i*®
vector of the canonical basis and for I C [n], E; € RII*™ the matrix whose rows are the e} ,i € I.

> Observation 3. Let w € W, £ € Zand W' = {i € [n] | w; = 1}, then

dim (E(w,f_)) <n —rank <£‘74v;1> .

Proof. By definition, Z(w,&) = {£ € R” | AT¢<at AT <a™ By = Ewn€ }. We know that for all ¢ €
E(w,§), (EAV;I ) §= (E:v_lé)’ so dim (E(w,f)) <n —rank (Lflv:l ) <

In the literature, it is usual to consider the information discovery set

wsel =L e {0,131 Zwigq ,
i€[n]

where one can select up to ¢ cost coefficients, ¢ € Z,. This discovery set allows to provide a more specific

description of information discovery. Indeed, we see that matrix ( EA 1) corresponds to the completion of the
w

rows of A= with row vectors of the canonical basis of R™. We thus know that we may choose w € W*¢! such that
rank (Efl: ) = rank(A~) + ¢ if rank(A=) > n — ¢, and rank (;: ) = n if rank (A7) < n — q. We deduce the
wi wi

following.
> Corollary 1. There is w € W5 such that, for any £ € =, dim (E(w, £)) < max{0,dim(Z) — ¢}

Interestingly, Corollary 1 implies that picking w* € W*°! (through basic linear algebra) that most reduces
the dimension of = may substantially simplify (DDID) when the dimension of Z is not greater than g.
> Observation 4. If W = W*°! and dim(Z) < ¢, then 2PPP = ;WS

Proof. Corollary 1 implies that there exists w* € Weel such that Z(w*, &) = {€},V€ € Z. Hence, ®(w*) =
maXgez Minyey Zig[n] (ci+ &)y = 2WS P

2.2 Reformulating the robust counterpart

We generalize below a classical result from the literature [9, 32] that essentially shows that, when y is fixed,
maximizing over = in (MIN-MAX) amounts to take the minimum among O(n?®) different affine functions of y.
This result implies that solving (MIN-MAX) amounts to solve O(n®) nominal problems.

The result described in this section involves the following set. First, let A*! C R® contain the unique solution
of each linearly independent subsystem of s equations of

AT 1
AT la=10]. (3)
Id 0

We define A = A*" NRY, thus keeping only the non-negative vectors in A"
> Observation 5. | A| € O(n®).

Proof. Forming a linearly independent subsystem of s equations of (3) amounts to choose 0 < k < s rows of
matrix AT and s — k rows of matrix Id. Then, for each row of matrix AT that is chosen, we must further decide
between the right-hand-side 0 and 1. We obtain |A] < 37 (7)2F < s x n® x 2% € O(n®). <

The next result is stated in the context of this paper, thus involving the decision-dependent uncertainty set =(w, £ )
and the set WY of components that have not been observed. Nevertheless, one readily writes the counterpart
of the result in the context of (MIN-MAX), by considering instead a polytope =, together with W° = [n] and
Wt =0.

» Theorem 1. Let y € {0,1}™. We have

max_ Y (¢ +&)yi

EEE(w,E) S,

min {ﬂayo(w,ﬁ) + Z (ci + 5a,i)yz} ;

o acA
SA%
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where for each o € A,

+
(. = 3 ( S g) ot Y b |- 3w

ke(s] 2% IS 2% ke(s]

and for each i € [n],a € A,
+ +
Baji=di | |1— Z agiog | — | — Z QL
kels] kels]
Proof. Observe first that
max_ > (ci+&)yi = max Y (i + &)y, (4)
EEE(w.E) o ¢es iEWO

where

= {5/ R

is the projection of Z(w, 5_) into the subset of coordinates indexed by W°. Let us denote rj, — Y iewt ari& by T
for each k € [s]. Notice that by Assumption 1,
of the constraints of Z’ by ay and 7;, respectively. Dualizing the maximization problem in the right-hand-side
of (4) yields

Z api&i < — Z aindi, k € [s], 0§§§§di,iewo}

iEW0 ieW?

’ < n so 2 is non-empty. Let us denote the dual variables

max (ci+&)yi= Y ciyi+min Z Trog + Y dimg | Y agiag +m >y, Vi € WO, a,m >0

1eW0 1eW0 ieWo ke(s]
= Z C;Y; —+ min Z rk()ék -+ Z d Ty 3 (5)
. (a,ﬂ')EQ(’Wﬂj
1eW?o ke(s] 1eW0

where Q(w,y) is the polyhedron

Q(w,y) = { (a,m) € R N" qpian +m; > 93, ¥i € WP, @, >0
ke(s]

We show below that any extreme point (a*, 7*) of Q(w,y) satisfies

+
— > apaj (6)
ke(s]
for each i € W and o* € A. Let n® = |[WP| denote the dimension of w. The former follows immediately

from the fact that each w; appears only in the constraints m; > 0 and Zke[s] ag;o + m; > y;. Then, being
an extreme point, (a*,7*) is necessarily the unique solution of a linearly independent subsystem of n® +

0

s equalities among the constraints of Q(w,y). Among these, n” are the equalities mentioned in (6). The

remaining s equalities are taken among the non-negativity constraints {aj > 0 | k € [s] }, and the constraints of
{Zke[s] apiog + 7 >y | i€ WP } not used in (6), thus corresponding to m} = 0. Therefore, o* € A follows
from y € {0,1}".

Since the minimum of (5) is reached at least at one of the extreme point of Q(w,y), we have

+

min Z PLOg + Z dim; » > ggn Z Lo + Z di |y; — Z Qi Ok ) (7)

(@,meQ(w,y) iewo ke[s) iewWo

+
To prove the reverse inequality, we consider any o € A C R$ and define m; = [yi - ke(s] akiak] for i € [n],
so (a, ) € Q(w,y).
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Observing that y; € {0,1} for each i € W, we can reformulate the objective of the right-hand-side of (7) to
make it linear in y

+ +
(Ilneig Z Troy + Z di yi |1— Z R Oy (1 —ws) Z QR O
ieWo kEls] ke[s]
+ +
=min Z Trak + Y di |— Y amion| + Z digi | [1= ) awior| —|= D arion
ISA% ke([s) 1EW0 ke([s] ke([s]

|

Applying Theorem 1 to (MIN-MaX) (hence WY = [n] and W! = )) and switching the two minimizations
immediately leads to the following.
> Corollary 2. Problem (MIN-MAX) amounts to solve O(n*) nominal problems minyey(c+ Bq)7y

3 Computing ¢

3.1 Constraint generation
We present next an algorithm for computing ® that relies on constraint generation. The first step of the approach
described next applies an epigraphic reformulation to the outermost maximization problem

O(w) = max 7 (8a)

s.t. 7 <min max (c;i +&)yi (8b)
YEY (eB(w,€) ez[n]

£cE. (8c)
Then, we introduce dual variables a, w and v so that linear programming duality yields

T : T T AT : T T AT
max = min rat+d 7+ (wo = min ra+d m+ (wo , 9
Eea(w,é)€ Y (v, m,7)ED(Y) ( & (a,m,y)€ext(D(y)) ( O ©)

where D(y) = {(047 7,7y) € R2nts ’ ATa+ Idn +woy > y} is the dual polytope. Plugging (9) into the right-
hand side of (8b) leads to reformulating ®(w) as a linear program with many constraints

max 17 (10a)
st. n<cly+rfa+dn+ (wo §_)T’y, Yy € Y, (a,,7) € ext(D(y)) (10Db)
£ €E. (10c)

We now study the complexity of the separation problem associated with constraints (10b). Using (9) in the
reverse direction, we see that a given candidate solution (n*,£*) € R x E is feasible for (10b) if and only if

7t <min max Y (¢ + &)y (11)

YEY ¢eB(w,E*) icn]

Thus, checking whether (n*,£*) is feasible amounts to solving a problem with same form as (MIN-MAX).
Corollary 2 implies that the right-hand-side of (11) can be computed by solving min,ey {7y for at most O(n®)
vectors €. The overall approach leads to a cutting-plane algorithm for computing ®(w), the separation problem
of which is not harder than the nominal problem miny,ey &Ty. Then, using the equivalence between separation
and optimization [37], we obtain a polynomial algorithm for computing ®(w) whenever the nominal counterpart
of the problem is polynomially solvable. We observe that the above algorithm is reminiscent of the one developed
by [29] to compute ®(w), the differences between the two are detailed in Appendix A.

> Proposition 1. If the nominal counterpart is polynomially solvable and s is constant, then ®(w) can be
computed in polynomial time.
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Assuming that the nominal counterpart is polynomially solvable, Observation 1 and Proposition 1 cover
the two possible situations. If s is part of the input, computing ®(w) is in general A"P-hard. Otherwise, it can
be computed in polynomial time. Yet, the above algorithm involves the ellipsoid algorithm so it is hardly of
any practical interest. For this reason, we provide in the next subsection an alternative approach to computing
®(w), more amenable to numerical implementations. Before that, we further elaborate on the implications of
Proposition 1.
> Corollary 3. If W] is polynomially bounded, the nominal counterpart is polynomially solvable, and s is
constant, then (DDID) can be solved in polynomial time.

Proof. Enumerate all w € W and compute ®(w) for each of them, then return the minimum value. |

Corollary 3 implies, for instance, that if P is the matching polytope [34] (see also [37, Theorem 25.5]), the
resulting (DDID) is easy. We note that the case of the matching polytope is particular in the sense that, although
one can efficiently optimize over this polytope (e.g. [37, Section 25.5¢]), its description requires exponentially many
inequalities in general. Contrasting with the previous example, the polytopes of many polynomial combinatorial
optimization problems can be described by polynomially many inequalities. This is the case for the shortest path
problem, the minimum spanning tree problem (using the extended multi-commodity flow formulation [26]), or
minimizing the weighted sum of completion times (e.g. [35, Section 4.1]), to name a few. For such problems, we
provide below an alternative way to compute ® that involves solving a compact linear program.

3.2 Linear programming formulation

We focus next on an optimization problem having a feasibility set described by a known polynomial number of
linear inequalities, meaning that conv())) = P. We prove that under this additional assumption, ®(w) amounts
to solving a compact linear program.

» Theorem 2. Let w € W. If conv()) = P, then

max 7
+
s.t. n < Z (rk — Z amﬁ_z> o + Z di - Z ARk + bT>\O( - Z Ty Vae A
ke(s] IS2% IS 2% ke(s] 1€[n]
(I)(w): ) —WaiSCi—ng,VOéE.A Vier (12)

B.i)T" Ao — o < i+ BasisVa € A, Vi € WO

+ +
where for each i € [n],a € A, Bq,; = {1 - Zke[s} akiak} - [f Zke[s} akiak] )
Proof. Observe that

max > &uyi= > i+ max Z &ivi- (13)

$eE(w.8) ‘o iewt £EE(w8) jeypo
Applying (13) to the epigraphic reformulation (8b) presented previously yields

max 7 (14a)

s.t. 1 < min ( Z (c; + §z)yZ 4+ max Z (c; + fl)yz> (14b)

veY \iom EE(w.8) 500
£ €E. (14c)
The main idea of the proof that follows reformulates (14b) through two ingredients: we reformulate the
maximization over ¢ using Theorem 1 (thus minimizing y over Y to use that y is binary), and dualize the

minimization over y (thus using that conv()) = P to minimize y over P instead of }).
Let us now work out the details of the above two ideas. Applying Theorem 1 to the last term of (14b) yields

comax > (ei+ &)y = = min {5ao(w H+ Y (e +Ba,i)yi}~

€E(w), ISA% 1EW0
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Plugging the above expression into the right-hand-side of (14b) and swapping the minimizations, we obtain

(14b)@77<m1n{5a0(w €)+m1n Z C’L+§Z yz+ Z Cz+5az) z}-

zEWl 1EW0

The above may be written equivalently with n 4+ 1 independent constraints:

(14b) & 1 < Bao(w, &) + min ;W: i+ &)y +1€§Wjo ¢i 4 Bai)yi,Va € A. (15)

Thanks to the integrality of P, we can relax the integrality restrictions in ) and replace the inner minimization
over ) by the minimization over P = {y € R" | By > b,0 < y < 1} in each constraint of (15). For each constraint
a € A, we then define the dual variables A\, and 7, associated respectively with constraints By > b and y < 1.
We then dualize the minimization problem over P to get the following equivalent constraint:

- _
NS Bao(w,€) + max Ao = 3 o
1€ [n]
st. (B.) " e —mai <ci+ &, Vie W!

)
(B.o)"A _7Ta1§C1+5al,VZ€WO

Aas o

The maximization over A, and 7, is in the right-hand-side of a < inequality, so the above is equivalent to the

following set of constraints.

n S Ba,O(w f bT)\ Z 71—04 7

1€[n]

(B l)T>‘ 77T(X’L<C’L+§17 V'LEWl
)TN

)

(Bz *'/Tozzgcz‘i’ﬁauvzewo
Aas Ta
Replacing (14b) with the corresponding |.A| sets of constraints provides the result. <

4 Solving the full problem

We describe below the compact reformulations obtained for (DDID) by dualizing and linearizing the formulation

proposed in Theorem 2 using classical techniques.
> Proposition 2. If conv(Y) = P, then (DDID) is equivalent to (DDID-WIP), defined as

i
min Z r aug + Z d; |— Z Qi Ol ug,i + Z CilYa,i + Z Ba,iyg,i +d o +r"p
acA i€[n] ke(s] i€[n] i€[n]
s.t. Z Uo = 1
acA
Z Qkiftk + 0y 2 — Z Z ki QU Ua + Z Yoo — Mi(1 — wy), Vi € [n]
ke(s] kE€[s] a€ A acA
Byo > uab, Ya e A
Ya,i < Ua, Va € A, i € [n]
Yori > Yasi — Wi, Va € A,i € [n]
U s > Ua — W5, Va € A,i € [n]
weW
u,u’,y,y’, 0 >0, (DDID-WIP)

where M; = 1 + maxaeca {— Zke[s] a;ﬂ'ak}.

Proof. See Appendix B.1. <
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Formulation (DDID-WIP) includes the decision on w with the most natural linearization of the products
involving those variables. It is possible though to strengthen this formulation by projecting both y and u variables

into the two sets W' and W°.
> Proposition 3. If conv()) = P, then (DDID) is equivalent to (DDID-SIP), defined as

4
min Z r aug + Z d; |— Z Qi Ol ug,i + Z CilYa,i + Z Ba,iyg,i +d o+
acA i€[n] ke(s] i€[n] i€[n]
s.t. Z Uo = 1
acA
Z ki + 07 > — Z Z akiaku}x,i + Z ycly,n Vi € [n],
ke(s] ke[s] aeA acA
Bya > uab, Va € A,
U = U + Ui, Va € A,i € [n],
Zugﬂ- <1-—w;, Vi € [n],
acA
Z g, < wi, Vi € [n],
acA
Gul < uag Va € A,
Yoi = Yai T Yavis Ya € A,i € [n]
yg,i < U?y,n Va € A,i € [n]
yclx,i < Ui,n Va € A,i € [n]
weW
u,u’ uty, 0yt o > 0. (DDID-SIP)
Proof. See Appendix B.2. <

We show below that the formulation of Proposition 3 is in general stronger than the one provided by
Proposition 2. Numerical evidence shows that the inclusion may hold strictly.
> Proposition 4. Let SV and S%"°"¢ denote the projections on w of the formulations (DDID-WIP)

and (DDID-SIP), respectively. It holds that Sstrons C Sweak,
Proof. See Appendix B.3. <

The results from the previous section illustrate that whenever conv()) = P and |W)| is polynomially
bounded, (DDID) is polynomially solvable. The reformulations obtained above show instead that when we
assume only that [W)| can be formulated as a mixed-integer set, s is constant, and conv()) = P, then (DDID)

is in N'P.

5 Extensions to the case conv()) C P

The results presented so far rely on the fact that conv()}) = P, meaning that we know a compact description
for the convex hull of the set of all feasible solutions to the nominal optimization problem. In particular, the
nominal problem, which optimizes a linear function over ), has so far been assumed to be polynomially solvable.
We present next two possible extensions of our reformulations that can address DDID counterparts of problems
for which such a compact description is not known.

5.1 Convexification

Our first approach to handle A’P-hard problems amounts to consider a Dantzig-Wolfe reformulation of set V.
Let us enumerate this set as J = {g1, ..., 3 }. Introducing the convex multipliers Ay 1, ..., Ao, for each a € A,
we can substitute y, with Zse[t] Aa,sUs, and the constraints By, > u.b with the convexification constraints,
so (DDID-SIP) becomes

4

min = Y rToua+ Y di | =Y amor| ud,+ DD cidasdait Y Baita, | +d o+

acA i€[n] ke[s] i€[n] s€[t] i€[n]
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s.t. Z Aa,s = Uq, Yo € A, (V]
sEt]

> Naslisi = Yo+ Yhs Yo € Aji € [nl, (03]
sSEt]

Z Uy = 1
Z akifk +0i 2 — Z Z iy ; + Z Youir Vi € [1],

ke[s] ke[s] acA acA
Ug = Uy ; + up 4, Vo € Ai € [n], (DDID-CG)

Z ud s < 1—w;, Vi € [n],
acA

where the right brackets denote dual variables. Observe that (DDID-CG) is a valid formulation for (DDID).
Formulation (DDID-CG) can be used in two different ways. First, for some strongly constrained problems, it
may happen that ¢ is a moderately large integer so the formulation can be directly fed into a solver. In this case,
if all costs are positive, one may further reduce the value of ¢ by observing that only minimal ¢, with respect to
inclusion, need to be considered.
>> Observation 6. Suppose ¢+ & > 0 for each ¢ € = and consider §s,,¥s, € Y such that §,, < g, and let
Y =Y\ {fs,} Let 2PPP denote the optimal value of (DDID-CG) associated to . We have zPPIP = zDDPID,

Proof. See Appendix C.1. |

We can filter Y similarly by relying on bounds.
>> Observation 7. Consider s € ) such that

. _ MM
i+ &i)Ysyi > ; 16
gggg[;](c +6)jei > 2 (16)

and let Y = Y\ {#s} and 2PP™P denote the optimal value of (DDID) associated to ). We have zPPIP = zDPID,
Proof. See Appendix C.2. <

Despite Observations 6 and 7, one cannot expect, in general, to be able to handle the entire problem at once.
This leads to considering column-generation based algorithms which, essentially, generate appropriate subsets
T* C [t],a € A, on the fly by exploiting dual information (see for instance [45]). Let us describe this idea more
precisely in what follows, denoting by DLR(T') the dual of the linear relaxation of (DDID-CG) associated to
subsets T*, a € A, while DLR denotes the dual of the full linear relaxation of (DDID-CG). Let v denote the
vector of all dual variables and consider an optimal dual solution v* of DLR(T'). Notice that DLR has the same
variables as DLR(T") but contains additional constraints. Hence, solution v* is feasible for DLR as soon as it
satisfies these additional constraints. In fact, the only constraints of DLR that are missing in DLR(T') are those
associated with the primal variables A, s for each o € A and s € [t] \ T®, namely

D ciisi = > P Gei — v > 0. (17)
i€[n] i€[n]

Therefore, all constraints (17) are satisfied by v* if and only if for each o € A, the optimal solution of the
following optimization problem is not smaller than v**

yey

min Z cili — Z P8y p . (18)
i€[n] i€[n]
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If, on the contrary, there exists a € A for which we are able to identify s € ) such that the corresponding
dual constraint (17) is violated by v*, we add the corresponding index s’ to T* and solve the resulting linear
program DLR(T') again.

The above procedure generates all required variables of (DDID-CGQG) at the root node of the branch-and-
bound tree solving the problem. However, these do not cover all the variables that may be generated in the
subsequent linear programs that result from adding the branching constraints. Repeating the above procedure
at each node of the branch-and-bound tree leads to a branch-and-price algorithm. We underline that this is a
rather easy branch-and-price algorithm in the sense the branching is not done on the dynamically generated
variables. Another direct consequence of the above discussion is that the above column generation algorithm
provides yet another way to compute ®(w).
> Observation 8. ®(w) can be computed by fixing w in (DDID-CG) and solving the resulting linear program
with column generation.

5.2 Cutting-plane algorithm

The second approach to handling conv()) C P involves the iterative generation of conv()) through valid
inequalities, essentially cycling between the solution of a sequence of problems of type (DDID-SIP) and the
separation of solutions y from conv(}). The first ingredient of this algorithm is thus a separation oracle for
conv()) as detailed next.
> Assumption 2. Given y € R™, we have a separation oracle that returns either true if y € conv()) or a
hyperplane separating y from conv(}).

The second ingredient of the algorithm is the extension of (DDID-SIP) to any polytope

P ={yeR"| By>bt,0<y<1}.

Specifically, we introduce the concatenated decision vector 6 = (w, u,u®, ut,y,3°,y*, o) and define ©(P’) as the
feasible set defined by all constraints of (DDID-SIP), using (B’,b’) instead of (B, b). Introducing further f for
the objective function of (DDID-SIP), we can formulate the following MILP

DDID .
’ - 0 19
zp ool f(6), (19)
Observe that when P’ = conv()), the condition of Proposition 3 is satisfied and (19) coincides with the exact
reformulation (DDID-SIP), so zBP'P = 2PPID i this case.

> Observation 9. If conv()) C P’, then mingce(p+) f(f) is a relaxation of the exact formulation mingee (conv(y)) f(6).
Proof. We see that conv(Yy) C P’ implies O(conv(Y)) C ©(P’), proving the statement. <

The algorithm starts with P° = P and solves (19), yielding the optimal solution 6* and its cost Z%PID. Then,
observe that 6* € ©(conv(})) if and only if for each a € A, either u, = 0 and y% = 0 or ¥ € conv()). Hence,
we can use Assumption 2 to check whether 0* € ©(conv())). If this is the case, Observation 9 implies that 0* is
optimal for the exact formulation mingceconv(y)) f(€) so zg?ID = zPPID_ Otherwise, we rely on the oracle from

Assumption 2 to obtain a separating hyperplane h7y < h°, define
Plzpom{yERn } hTy§h0}7

and repeat the procedure.

We note that an alternative stopping criterion involves the computation of ®(w*) at each iteration, which
can be computed by using one of the algorithms proposed in Section 3 or the column-generation algorithm
described in Section 5.1.
> Observation 10. Let 6% = (w*, u*, u®, u'*, y*, 4% y'*, 0%, u*) be the solution returned at the i-th iteration of

the algorithm. If ®(w*) < ngID, then ngID = ,DDID

Proof. For any w € W, we have that ®(w) > »PPID > ngID, where the second inequality follows from
Observation 9. Combining the above with ®(w*) < ngID proves the result. |

The resulting algorithm is finitely convergent if the oracle returns facet-defining inequalities. In practice, one may
interrupt the algorithm at any time and consider the solution w* returned after a certain number of iterations.
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uncertainty P q r

n n/2 n n/10 n/5 n/10 n/5 n/10 n/5

WS MM | WS MM ||WS MM | WS MM| WS MM| WS MM| WS MM| WS MM
10 9 8 8 9 9 8 9 9 10 7 7 10 9 13 8 4
20 8 5 5 8 5 4 9 8 8 5 6 7 8 11 5 2
30 7 5 5 8 4 5 8 8 6 5 5 7 8 10 4 2
40 8 6 6 10 5 6 9 10 8 7 6 10 9 13 5 3
50 9 6 6 9 5 5 10 9 9 6 6 9 9 12 5 3

_DDID __WS

Table 1 Average relative gaps in %. Left and right values are 100 x *—p5p5— (denoted WS) and

ZMM_ DDID

100 X *—p5gm— (denoted MM), respectively.

6 Numerical experiments

We next describe the numerical assessment of the different formulations and algorithms presented thus far. All
our experiments have been realized in Julia language [12], using JuMP [14] to interface the mixed integer linear
programming (MILP) solver CPLEX 20.01. We ran our experiments on a processor Intel Xeon E312xx (Sandy
Bridge) using 1 cpu at 2.3Ghz and reporting the total CPU times in seconds or centiseconds, depending on the
problem. We set the same time limit to two hours in all our experiments. The source code of every algorithm is
publicly available at https://plmlab.math.cnrs.fr/mposs/ddid/.

6.1 A further simplification when s =1

All the numerical experiments reported in the following consider variants of the budget uncertainty set, so s = 1.
It so happens that in this case, writing down the complementarity conditions between (12) and its dual, we are
always able to construct an optimal solution where p = 0.

> Proposition 5.  When s = 1, there is an optimal solution (w*,u*,u
formulation (DDID-WIP) such that p* = 0.

0wt y* y0* yt* u*, o) to the compact

Proof. See Appendix D. <

6.2 Selection problem

We first experiment the reformulation from Proposition 2 with the selection problem, where the decision maker
wishes to choose p out of n items, so Y% = {y e {0,1}"

Zie[n] Y = p} . The selection problem has been

used in numerous papers addressing complex robust variants [17, 16, 18], including DDID itself under the name
of two-stage robust best box selection [44], in which p = 1.
We use the budget uncertainty set of [9, 10], defined as

EF:{geRn

Z'Le[n] LEL<I0<e<1 }, largely used in the scientific literature on robust combinatorial opti-

mization. We further consider the selection set for information discovery, W' = < w € {0,1}" ‘ Zie[n] w; < q }7

where one can investigate up to ¢ items. We consider n € {10, 20, 30,40, 50}, p,q,T € {n/10,n/5} and generate
randomly 10 instances (meaning the generation of vectors ¢, d and f in [0, 1]™) for each quadruplet of parameters.
For each instance, we further consider a variant where only n/2 parameters are uncertain, the other being fixed
to their nominal values.

We first illustrate in Table 1 the distance between zPP™P and the bounds zWS and zMM. These results
illustrate that for our instances, the average gaps are mostly below 10%. As expected, looking at column g we
see how investigating more parameters moves zPP™P towards zWS. We also see that larger values of I' lead to
smaller gaps, often significantly.

Table 2 reports the solution times in centiseconds and root gaps in % for the two formulations presented in
Section 4. We see immediately the importance of strengthening the formulation as described in (DDID-SIP).
This reduces the root gaps to close to 0% on average, thereby reducing the solving times by more than one order
of magnitude. Looking more precisely at Table 2b, we see that only p and the proportion of uncertain items
have a significant impact on the solution times. Unreported results show that (DDID-SIP) scales well for larger
instances, solving problems with up to 200 items in a couple of minutes.
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uncertainty P q r
n n/2 n n/10 n/5 n/10 n/5 n/10 n/5
T gap T gap T gap T gap T gap T gap T gap T gap
10 2 35 2 39 2 45 2 29 2 37 2 37 2 34 3 40

20 8 31 14 46 8 43 14 34 10 39 11 38 9 36 12 41

30 26 33 74 46 31 42 68 37 41 40 58 39 35 36 64 43

40 74 34 716 50| 218 47 572 38| 259 43 531 42| 166 39 624 46

501|679 4217883 55| 5377 5313184 43||2344 4916217 481165 45|17396 51
(a) Weak formulation (DDID-WIP)

uncertainty p q r

n n/2 n n/10 n/5 n/10 n/5 n/10 n/5

T gap| T gap|| T gap| T gap|| T gap| T gap|| T gap| T gap
10{| 2 0.02] 2 0.05|| 2 0.0] 2 0.08/| 2 0.0] 2 0.08/| 2 0.01| 2 0.06
20| 5 0.02| 7 0.16|| 5 0.04| 7 0.15|] 6 0.1| 7 0.09|| 7 0.14| 6 0.05
30(/12 0.05|17 0.06|/12 0.08| 17 0.04|/14 0.08 |16 0.04|/16 0.1|13 0.01
40123 0.01 |44 0.16(/26 0.12| 41 0.05([30 0.12]37 0.05(|39 0.15|28 0.02
50(/59 0.08 |88 0.12/46 0.02|102 0.18 |61 0.06 |87 0.14|/86 0.16 |61 0.04

(b) Strong formulation (DDID-SIP)

Table 2 Average solution times in centiseconds (T) and root gaps in % (gap).

uncertainty P q r
n K [n/2] n [n/10] n/5 [n/10] n/5 [n/10] n/5
T gap T gap T gap T gap T gap T gap T gap T gap
10 2 6 6 7 7 3 6 20 5 7 6 44 6 7 10 36 6
3 65 7 74 7 8 7 550 6 76 6 | 3474 7 63 10 | 2122 7
15 2 79 4 82 6 20 5 132 7 44 6 80 6 36 6 97 3
3 || 6147 5 | 5994 8 || 550 6| 11172 9 || 3474 7 | 5257 8 || 2122 7| 7974 4

Table 3 Average solution times in centiseconds (T) and root gaps in % (gap) for the K-adaptability
reformulation presented in Section E.

We compared the above results with our own implementation of the K-adaptability reformulation proposed
in [44], see Section E for details of the resulting formulation. The solution times are presented in Table 3 for
n € {10, 15}; larger values of n are not presented as many instances could not be solved be solved in one hour for
n = 20. These results illustrate that the reformulations for K-adaptability are several orders of magnitude slower
than the exact reformulations proposed in this paper. The results of Table 3 might seem contradictory with the
results presented in [44, Table 1], which report instances of up to 50 items being solved in a few seconds for
K € [10]. However, notice that Vayanos et al. [44] model uncertainty by projecting a 4-dimensional box into R™,
specifically,

Zfactor _ {g cR™ ’ ¢ e [—17 1]L 1= 1/%(() } )

for given affine mappings 1;, and L = 4 risk factors. As stated in Observation 4, (DDID) is then equivalent
to (WAIT&SEE) as soon as 4 items or more can be investigated, probably explaining the relative simplicity of the
instances tested in [44]. In fact, a preliminary version of their work used instead L € {20, 30} factors, reporting
solution times more aligned with those presented in Table 3, see [43, Figure 3]. Another source of simplification
in [44] is that they consider p = 1, while we consider larger values of this parameter here, which appears to have
a significant impact on the solution times.

6.3 Orienteering problem

Our second set of experiments focuses on a particular routing problem considered by [29]: the orienteering
problem. That problem is most naturally stated as the maximization problem

max min max min e+ &)y,
WEWOP £eEOP yeYOP ¢€20F (w,€) iez:m( i &)y
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name U T
TSIN15 | 0.10 {5,10,...,70}
TS2N10 | 0.20 {15, 20, 23, 25, 27, 30, 32, 35, 38}
TS3N16 | 0.10 {5,10,...,80}
TSIN30 | 0.05 {5,10,...,70,73,80,85}
TS2N19 | 0.15  {15,20,23, 25,27, 30, 32, 35, 38,40, 45}
TS3N31 | 0.05 {15,20,...,120}

Table 4 Instances taken from [29], N being equal to n.

which we specify next by defining Y°F , Z°P and WOP. Consider a complete and undirected graph with n + 2
nodes, numbered from 0 to n + 1, where nodes 0 and n + 1 denote the start and destination nodes, respectively,
so [n] indexes all nodes different from the depot. We denote by t;; the travel time of edge {i,j} and by T the
maximum travel time. Any feasible element in Y°F is an elementary path from 0 to n + 1 having a total weight
that does not exceed T'. Introducing binary variable z, to model the use of edge e in the path, and denoting the
star of node i as E(i) = {e € E | i € e}, we formulate YOF as

ye{0,1}": Jze {0, 1}l st. T2 < T,
YOP — D oecB(0) %o = 2aceB(nt1) % = 1y Z ze = 2y;, Vi € [n],
ecE(i)
subtour elimination constraints

where “subtour elimination constraints” denotes any set of constraints preventing cycles in y (e.g. [41]). Polytope
POP is obtained from Y°F by removing the integrality restrictions on 3 and z and projecting the resulting
polytope on variables y. Furthermore, we follow [29], and define ¢ = 0, WOF = {w e {0,1}" ’ Dicm Wi <4q }7
and

B =QCeR" | ) &§2>1,0<6<UVieh] y,

i€[n]

for some given U > 0 and ¢ = [dn] for some given & € (0,1). We observe that conv(Y°F) = POF does not hold
in general, so we cannot apply Proposition 2 to this problem.

Therefore, we consider instead the convex hull formulation described in Section 5.1 and test the two exact
approaches described in that section. First, we consider algorithm based on the full enumeration of the elements
in YOP. We consider the counterpart of Observation 6 for non-positive costs, thus enumerating only the maximal
paths in YOF. However, Observation 7 could not be leveraged. Indeed, the maximization counterpart of (16)
becomes max,czor Zie[n] (¢i +&i)¥s,i < max,cyor mingczor Zie[n] (¢i + &)ys,i- With the above definitions of ¢
and Z°F, the condition becomes min(1, U|g,|) < max (0,1 — U(n — max,eyor |y|)) , which is never satisfied for
the values of n and U provided in Table 4, even when |§,| = 1 and max,cyor |y| = 1. Second, we consider the
branch-and-price algorithm described in the section. We test the two algorithms on a subset of the instances
from [29], consisting of complete graphs with 10 to 31 nodes (excluding the depots), and further described in
Table 4.

The results are presented in Table 5. Columns CB, conv and B&P respectively denote the combinatorial
Benders algorithm from [29], the exact convexification and the branch-and-price algorithm from Section 5.1. The
columns “Time” report average solution times over the subset of instances solved by all methods. The reported
times are rounded to the second apart from the smallest instances for which we keep one more digit. The column
“solved at root” reports the numbers of instances that have been solved at the root node of B&P. Notice that the
results reported for CB have been carried out using a different configuration (processor and version of CPLEX
used), so the comparison between the respective columns should be made carefully.

Overall, our results indicate that B&P is the most efficient algorithm, solving nearly all instances to optimality
within the time limit, many of them at the root node already. They also show that conv, despite its exhaustive
enumeration, is somewhat competitive, altough it solves less instances to optimality thant the other algorithms.
The reported times show that B&P is typically faster than conv on the instances that are solved by both algorithms,
apart from the smallest instances, and the largest ones. In the latter case, either conv is very quick because the
low value of T' limits the number of elements of YOF or it takes a very long time. Solution times of CB are not
included as they are run on a different configuration, making them hard to interpret.
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instance ¢ Opt (#) time (s) (solved) | solved at root
CB conv B&P | conv B&P B&P

025| 9/9| 9/9 9/9] 013 0.71 7/9

TS2N10 05 | 9/9| 9/9  9/9| 0.14 0.82 8/9
075 | 9/9| 9/9  9/9| 0.13 0.44 9/9

0.25 | 14/14 | 14/14 14/14 82 3.6 12/14

TSINI5 0.5 | 14/14 | 14/14 14/14 | 82 43 13/14
075 | 14/14 | 14/14 14/14 | 81 46 13/14

025 | 14/14 | 13/14 14/14 | 528 19 12/14

TS3N16 0.5 | 14/14 | 13/14 14/14 | 520 48 12/14
0.75 | 14/14 | 13/14 14/14 518 20 11/14

025 | 6/11 ] 7/11 11/11| 891 147 7/11

TS2N19 0.5 | 8/11 | 7/11 11/11| 876 29 8/11
0.75 | 11/11 7/11  11/11 877 291 9/11

0.25 | 6/18 | 6/18 17/18 | 1443 225 11/18

TSIN30 0.5 | 6/18 | 6/18 17/18 | 1183 1008 11/18
0.75 | 10/18 | 6/18 18/18 | 1110 193 11/18

025 | 6/20 | 3/20 18/20 | 99 568 16,20

TS3N31 0.5 6/20 3/20 18/20 100 534 16/20
0.75 8/20 3/20 18/20 98 728 16,/20

Table 5 Numerical results on the orienteering problem. Italicized results have been provided by [28]
and have been run on a configuration different than ours (4.0GHz Intel i7-600K processor, using CPLEX
12.10).

6.4 Minimum spanning tree

Our last benchmark focuses on the DDID counterpart of the minimum spanning tree problem (MST), on which
we illustrate and compare the three solution methods presented in Sections 4 and 5. As a first approach, we
solve the compact MILP given by (DDID-SIP) for the directed multicommodity flow formulation of the MST,
see [26], denoted compact. This formulation is compact and known to be exact, so Proposition 3 applies. The
second approach, CG, relies on the column generation heuristic (not combined with the exact generation of
columns at each node of the branch-and-bound tree as for the orienteering). Each column added corresponds
to an optimal tree returned by the Kruskal algorithm. The third approach, CP, is a cutting plane algorithm
following the scheme described in Section 5.2. We consider the subtour formulation of the MST, see [26]. For
a given solution #* of the current relaxation, we separate constraints of the subtour formulation by following
the algorithm described by [26]. Given that the multi-commodity flow formulation is exact, for each u* > 0 the
maximum flow from one arbitrary root to any other vertex must be equal to u}, if y; € conv(Y). Otherwise, the
minimum cut provides a subtour constraint to be added to the relaxed formulation. To speed-up the cutting
plane generation, the initial relaxation of CP includes one set of aggregated multicommodity flow constraints
(instead of one set of constraints for each o € A in compact).

The three methods are compared on a benchmark similar to that used by [15]. Each instance corresponds to
an instance of the TSPLib, where each vertex has a given position and the nominal costs of the edges are given
by the distances separating their two endpoints. The deviation are then set as 50% of the nominal values. We
limit the density of the graphs by considering only the 6 closest neighbors of each vertex.

Table 6 presents solution times and statistics for the three algorithms. In the last two “gap” columns, “root”
shows the relative difference between the optimal value found by CP or compact and that of the linear relaxation
of compact and “CG” shows the relative difference between the best value obtained by CG and the optimal value
found by CP or compact. The results indicate that compact is one to two orders of magnitude slower than CP.
The good performance of CP is partly due to the strong initial relaxation since few subtour inequalities are
generated, sometimes even 0. The results also indicate that CG returns near-optimal solutions for all instances,
providing even exact solutions for the smallest two. Again, this good performance of CG is due to the excellent
root gap, equal to 0 on one instance.
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name nodes edges T ¢ time (s) cols cuts | gap (%)
compact CG CP CG CP | root CG
43 3.3 5.2 29 104 | 0.11 0.0
923 23 67 | 196 516 0.0 0.0
bays29.tsp 29 105 4850 29 316 42 530 | 0.15 0.24
swiss42.tsp 42 159 7110 132 100 | 276 0 0.2 0.21
eil51.tsp 51 186 10 10 93 080 1434 7920 | 769 1122 | 0.21 0.14

Table 6 Results for the MST presenting solution times, numbers of cuts and columns generated,
root gaps and optimality gaps for CG.

burmal4.tsp 14 51
ulysses22.tsp 22 85

o O = W
o O = W

7| Conclusion

Decision-Dependent Information Discovery is a recent approach to situations where the decision maker can
investigate some of the parameters before taking her actual decision. While the applications for the model
are countless, the resulting optimization problems have remained very difficult to solve, even for the budget
uncertainty polytope.

We have provided in this paper new efficient solution algorithms for the problem assuming that only the costs
are uncertain, and that they belong to a polytope defined by a small number of constraints other than individual
bounds. We have proposed a compact MILP formulation for the DDID counterpart of a nominal optimization
problem that has a compact linear description. We have illustrated the reformulation on the selection problem,
solving exactly instances with 50 items in one second on average, significantly improving over the literature.
We have extended our reformulations to problems for which no compact linear formulation is available (such
as N P-hard problems) through column generation, branch-and-pprice, and row generation algorithms. Our
experiments have again illustrated the interest of these algorithms. On the one hand, the branch-and-price
algorithm applied to the orienteering instances considered by [29] has successfully solved nearly all instances to
optimality. On the other hand, the cutting plane algorithm applied to the minimum-spanning tree problem has
proved successful in solving exactly larger problem than possible with the compact reformulation alone.

In addition to these numerically-oriented results and formulations, we have also improved the theoretical
understanding of DDID, showing that the problem is easy as soon as the nominal problem is polynomially
solvable and the number of possible investigations is polynomially bounded. We have also clarified the link
between DDID, the usual min-max counterpart, and the max-min wait-and-see counterpart, showing how DDID
falls down to the latter when the number of components being investigated is not smaller than than the dimension
of the uncertainty set.

This work leads to several interesting open questions for future works. On the numerical side, the excellent
results obtained by the exact branch-and-price algorithm call for generalizing the latter to other applications,
hopefully leading to an efficient way to solve exactly DDID even when the nominal problem is N'P-hard. On
the theoretical side, DDID inherits the A/ P-hardness of the min-max problem for arbitrary uncertainty sets.
However, its complexity is still unknown for a constant number of constraints, even in situations as simple as the
selection problem with budget uncertainty.
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Comparison with the algorithm of [29]

First, the dualized formulation (10a)—(10c) requires only constraint generation, while the approach from [29]

relies on the linearization

max 7 (20)

st. n< Z (ci +&i(y) vi, Yy €Y (21)
1€[n]

£(y) € E(w,§), Vy ey (22)

£€E, (23)

where £(y) plays the role of adjustable variables depending on y. Hence, Paradiso et al. [29] generate con-

straints (21) and (22) as well as variables £(y) in the course of their algorithm. Second, we leverage Corollary 2
to reduce the separation to solving O(n®) nominal problems, while Paradiso et al. [29] address the problem
though MILP formulations.

These two differences have a theoretical impact, since the running time of the algorithm from [29] cannot be

polynomially bounded in general under the assumptions of Proposition 1. From the numerical viewpoint, the
supremacy of one algorithm over the other will depend on the sets ) and =.

B

Proofs of Section 4

B.1 Proof of Proposition 2

Consider the linear program introduced in Theorem 2, and let us introduce dual variables u, and yq,; for the
first three groups of constraints, together with © and o; for the constraints defining =. Dualizing the linear
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program yields (with the primal variables indicated into brackets)

Jr

min Z o+ Z d; |— Z AR Ug + Z CilYYa,i T Z (¢i + Bayi)Yasi | +dTo+1"p
acA 1eW?O ke(s] S 4% S4%

sty ug =1 ]
acA
> akipw + 00 > — Z > akiogua + Y Yo Vi €W [&:]
kels] €ls]acA acA
Z agipb +0; >0, Vi € wo [gz}
ke(s]
By, > uob, Va e A [Aa]
Ya,i S Uqy Vo S sz S [’I’L] [71'@]
u,y, o > 0.

Notice that the constraints corresponding to & for i € W are redundant and can be relaxed. Then, we
introduce variables w € W to represent W' and W9, so the above problem is rewritten as

+
min Y rToug+ Y (1 - wi)d; Zamak Uo + Y Cifai+ Y Baitai(l—wi) | +d"o+r"p
acA i€[n] i€[n] i€[n]
(24)
st ua=1 (25)
acA
S aripk o= wi | = > ariogua+ Y Yai | 5 Vi €[] (26)
ke[s] kels] acA acA
By, > uab, Va € A (27)
weW (28)
u,y, p, 0 > 0. (29)

Next, we linearize the product by w; in (26) with a big-M term which yields:

D aripk+0i == > Y ariktia + Y Yaui — —w;), Vi € [n].

kels] ke[s] acA acA

Given that ya; < ua,Vi € [n], we have Y c 4 ¥ai < D pcata = 1,Vi € [n]. As a consequence, M can be
set to 1 4+ maxq,eq {— Zke[s} akiak}. We conclude by introducing variables ygﬂ- and ugyi to represent the
products yq (1 — w;) and uq (1 — w;), respectively, and adding the linearization constraints ygl > Yo, — w; and

alzua_wz

u

B.2 Proof of Proposition 3

We show that the model is a valid linearization of the intermediary model (24)—(29) of the proof of Proposition 2,
having removed variable i in accordance with Proposition 5. For this, we introduce u}’a = (1—w;) U,
yll o = Willa,iy yg o = (1 —w;)yq,;. Variables u' and y' stand for the decisions whose cost coefficients have been
investigated whereas u” and 3° stand for the others. The definitions of u' and u® may then be enforced in the
model by adding the constraints uo = u, ; +u}, ;, ud; <1—w; and ul,; < w;, for all @ € A and i € [n]. Similar
constraints could be added to linearize y° and 3, but we instead leverage constraints y,,; < uq, @ € A,i € [n], to
add the tighter constraints ya; = y3 ; + Y i Yo; < ud,; and yg, ; <wl ; for all @ € A and i € [n]. The objective
function (24) and constraints (26) are then naturally linearized using the definitions of 3°, u' and y'. Finally,
constraints Gul, < u,g are not necessary, but they are valid inequalities obtained by multiplying Gw < g by uq

for each o € A.

— 0
= Willa, Uy o
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B.3 Proof of Proposition 4

We consider a feasible solution to the linear relaxation of (DDID-SIP) given by vectors w, u, 4", u', 7,
7%, 4%, 7, i and we consider its projection on the variables of (DDID-WIP), w, u, u°,,%°, 7, ji. The satisfaction
of most constraints is immediate, but some verifications need to be carried out for constraints yg’i > Ya,i — Wi,

2” > Uy — wi, and Zke[s] agipy + 05 > — Zke[s] ZaeA ApiCkUa + D oea Ya,i — Mi(1 — w;). For the first, we
use that § = ¢° + %' and ' < 4! to show that Yoi = Yayi — Ui = Ya,i — w; for all a € A,i € [n]. We show
similarly for the the second that @2 ; > @4,; — (“ 2 Ug,i — W; for all o € A, i € [n].

To show that the last constralnts are satisfied, we infer the following sequence of inequalities from the linear

constraints of (DDID-SIP).

_Zzakzakua+zyaz_ l_wz)

s]acA acA

== Z D Ot D B = D D G0kl + Y Toa — | LHmax = > akiar o | (11— @)
c[s] acA aEA ke[s] A acA ¢ kels)

<- Z D amiOnii D B = D D Gkiklig+ Y g — |1 max = Y akon o | Y g,
5] aEA acA ke[s] ac A acA “ kels] acA

S - Z Za’klakuaz_‘_ Zyaz
€[s] acA acA

S Z Qi bk + 0;.

ke([s]

C Proofs of Section 5.1
C.1 Proof of Observation 6

To prove inequality zPPIP > ZPPID et (4% 4,0 1*,y0*, yl* *,,u* A*) be an optimal solution to (DDID-CGQG)
associated to ). We construct a solution (u*, uo* ul*, 0 o*, u*, ') to the formulation associated to Y by
setting A\, = A} for s € [t] \ {s1,s2}, A, = A5, + A%, (notlce varlable A, does not exist in the new model) and
vy = ZGE[ g )\’a Tsi — Yor, @ € Ayi € [n]. Observe that g, < s, implies that Y 1 NasTsi < Dse) NaysTsii
and y(lx'Z * for all & € A, i € [n]. A a consequence, one readlly Verlﬁes that (u*, uo* ul* y0 YV o* p N is
feasible and 1ts cost is not larger than that of (u*,u®*, u!*, y®* o*, u*, A*). The reverse inequality is even

more direct, plugging the solution obtained for Y into the formulatlon associated to ).

C.2 Proof of Observation 7

Let (w*,&*,y*, &) be an optimal solution to (DDID). If y* # 4, the result is immediate. Otherwise, we
detail next the resulting contradiction. Notice first that (16) implies maxeez D -;cp, (i + &) ¥s,i > MM and
therefore min, . maxees Zie[n] (¢i + &)yi = mingey maxees Zie[n] (¢i + &)yi. On the one hand, Y C Y implies
ZPPID < zDDID "y the other hand, we have that

2PPID _ () = Z (€i +&)Ts,i

i€[n]

> mi . N
2 min g{%(cl + &) s.i

> min max (ci + &)yi

yeY EEE
i€[n]
=minmax » (¢ +&)y;
yey £e= i€[n]

= minmax max z (ci +&)yi
yEY EEE E€E(w*§) ie[n)

> maxmin max Z(Cz +&i)yi
£EE yeY EEB(wr §) | €l
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> min max min max (i + &)ys = 2°P1P
WEW EcE yeY £€5(w,f)

)

1€[n]

where the third inequality arises from (16).

D Proof of Proposition 5

We consider in this proof the case s = 1. In that case, we see that we can assume a; > 0 for each i € [n] otherwise
& = d; in any optimal solution to the adversarial problem. We obtain the uncertainty polytope

{¢eR" | a"¢<r0<¢<d},

where r is now a scalar. In this case, we see that any A = 0U {1/a; | i € [n]}, so we use throughout the
proof the notations ay = 1/ay for each ¢ € [n], and for each i,¢ € [n], B, = d; [1 — a;/ag)" , while ap = 0 and
Bi,0 = d;, Vi € [n]. We further note [n] U {0} as [n]o.

Referring to the counterparts of Theorem 2 and to the proof of Proposition 2 to the above setting, we will
consider the pair of primal-dual adversary formulations given by

max 7
st. n< (r — Z aigi) oy + bT)\e — Z To,is Ve € [n]o [W]
iew!t i€[n]
P(w) (B.))"\e — mpi < i+ &,V € [n]o, Vi € W [e,q]
w
B.))" N\ — mpi < ci+ Boi, VL € [n]o, Vi € WO [Ye.q)
an_ <r (]
£<d (o]
52 Oa )‘lvﬂ-l Z 07 Ve [n]Oa
min Z o + Z CiYei + Z Beiyes | + Z dioi +rp
£enlo i€[n] iEWo i€[n]
st > up=1 1]
lG[’n]o
D(w) apto; > —a; Y apgt Yy, Vi€ W &
L€[n]o L€n]o
By > ugh, VL € [n]o [Ad]
Yei < Uy, NZAS [n]07i € [n] [ﬂ-d
U, Y, 0 > 0.

and let (€*,\*,7*) and (u*,y*, u*,0*) be a pair of optimal solutions to P(w) and D(w).
Assume now that p* > 0. We show next that it means that for each ¢ € [n] and i' € WO, By iy}, ;» = 0. Let
¢’ € [n] such that uj, >0 and i € W° such that yj, ;, > 0. By complementarity, we have (B. ;)"\, — 7}, ,, =
/
¢+ ﬁg/’i/. If

Be i > 0, (30)

we build a new solution of P(w*), (n*,£*, X', 7’), by slightly modifying A* and 7*. We set Ay = A} and ), =7
while keeping the other components of 7* and A\* unchanged. Observe that p* > 0 implies par complementarity
that >, \1 ai§f = r, so the constraints dual to u, can be simplified to

nt <IN = Y e [n)o. (31)

i€[n]

Observing further that (30) is equivalent to ag > a; and using (31), one can verify that (n*, £*, X, ') is feasible for
P(w*) and (B. ;)T\, — Ty i < ¢+ PBe . However, by complementarity, we also get (B )TN, — T = Cir+Bo s

)
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+
2" = 0) for all € WO and ¢ € [n]o such that yj; , > 0.
Transposing the above reasoning to ¢ = 0, we have fo » > 0 so that y;;, = 0 for each i € WP.

Using the above, we get that the objective value of D(w*) is given by

T M+Zaw[ —|—Z d;o} +C7,Zyéz . (32)

1€[n] Len]

a contradiction. Therefore, B+ = 0 (and thus {

The rest of the proof constructs an algorithm that iteratively modifies the dual solution without changing the
variables ¢* and the values of the sums p* + Zle[n] aypuy and Zee[n} y;; Thanks to (32), the algorithm does
therefore not modify the cost of the solution.

The dual constraint of &,7 € W' may be rewritten as:

w za% —o7 D uka | Y e,

Le(n] Le(n]

which must be active for at least one element of W, which we denote j. Recalling 1/ a; = o, this means in

particular that
SRR SUAES SUED W OR
Le[n] Le[n]

As a consequence, there is ¢ € [n]y such that uj > O and ay < aj. Using the above, we build another optimal
solution of D(w*), (', v/, i, c*), where u’ = 0, by iteratively decreasing the values of nonzero variables uy, and
increasing the value of u; while keeping constant the value of * + Zle[n] ayuy. The iterative construction is
formalized in Algorithm 1. At each step, one index ¢ such that u; > 0 and oy < o is considered. The first
computed value, 0, is the largest decrease of u). such that ), > 0 and p' > 0 at the end of the algorithm. The
update of y; and y then guarantee that y, < uj, V¢ € [n], By, > w;b, V¢ € [n], and Zze[n] Yy = Zze[n] vy
Finally, the update of p’ is such that p’ + Zze[n} apuy = p* + EZG[H] aguy. It is then straightforward to verify
that each step keeps (v, v/, i/, 0*) feasible and leaves its objective value unchanged. Moreover, we can verify
that either i/ = 0 at the end of an iteration or 6 = uj. At the end of the algorithm, we thus have

Pt = (= an)uf

keK

<Y (aj—agui— Y (aj—a)ui <0.

Le[n] L€[n]:ar>a;

initialization:y = y*, v’ :==u*, 0/ = p* K ={k e [n] | uf > 0,00 < ; }.
1 for k€ K do

2 0= min{u,’;,%%/ak}

3 uj, < up, — 0

a uj < uj+ 0

5| Uk < Uk~ wxi

6 | Yyt i

7| W =6 (ay — o)
8 if 4/ =0 then
9 ‘ break

10 return (y',u/, ')

Algorithm 1: Construction of an optimal solution where u’ = 0

E Compact reformulation for selection problem with K-adaptability

The K-adaptability approximation amounts to pre-select K recourse policies and choose the best of them upon
realization of the uncertain parameters. Applied to (DDID), one obtains

ZKadapt — i pax min max (ci + &)y (K-ADAPT)
kégje;:\é 56"‘ kG[K]§€ (w,&) E[n]
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Consider the sets Y1, Wl and the budget uncertainty polytope

G P
1€ [n]

Applying [44, Corollary 1] to (K-ADAPT) together with the symmetry breaking constraints detailed in

Section EC.3.1. of [44], leads to the formulation presented below. For readability, we subdivide the dual variables

B into BT, B4 (for the upper bounds on ¢) and B% (for the lower bounds on &) and similarly for *. We model

the constraints 7% = w;y¥ with indicator constraints to avoid the burden of computing tight big M. Furthermore,

we define I'" ="'+ 3, ¢/ di.
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