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Abstract

Given a nominal combinatorial optimization problem, we consider a robust two-stages variant

with cost uncertainty, called DDID. In the first stage, DDID selects a subset of uncertain cost

coefficients to be observed, and in the second-stage, DDID selects a solution to the nominal

problem, where the remaining cost coefficients are still uncertain. We further assume that the

uncertainty set is a polytope defined by upper bounds and a constant number of knapsack

constraints. Given a compact linear programming formulation for the nominal problem, we

provide a compact mixed-integer linear programming formulation for DDID. The formulation

leads to polynomial-time algorithms for DDID when the number of possible observations is

polynomially bounded. We extend this formulation to more general nominal problems through

column generation and constraint generation algorithms. We illustrate our reformulations and

algorithms numerically on the selection problem, the orienteering problem, and the spanning

tree problem.

keywords: robust combinatorial optimization, compact formulations, column generation, cut-

ting plane.

1. Introduction

Decision-dependent information discovery (DDID) tackles optimization problems under uncertainty

where the decision maker has the possibility to investigate the value of some of the uncertain param-
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eters, thereby reducing the total amount of uncertainty. The model has innumerous applications in

urban planning, project management, resource allocations, scheduling, among many others. The

first DDID models where motivated by applications in offshore oilfield exploitation [Jonsbr̊aten,

1998] and production planning [Jonsbr̊aten et al., 1998]. Subsequent examples have been considered

in the literature and Vayanos et al. [2022] detail applications in a R&D project portfolio optimiza-

tion problem, where a company must choose how to prioritize the projects in its pipeline [Solak

et al., 2010, Colvin and Maravelias, 2008]. Vayanos et al. [2022] also describe a preference elicitation

with real-valued recommendations where one can investigate how much users like any particular

item. Vayanos et al. [2022] further apply the latter model to improve the US kidney allocation

system. Even more recently, Paradiso et al. [2022] consider a routing problem, which they apply

to collecting medicine crates at the Alrijne hospital.

We consider in this paper a model similar to that studied by Paradiso et al. [2022] and address

robust DDID where only the costs are uncertain. We further assume that the underlying nominal

optimization problem is a combinatorial optimization problem, thus involving only 0/1 decision

variables. Specifically, we define the following feasibility and uncertainty sets.

• W = {w ∈ {0, 1}n | Gw ≤ g} is the set characterizing the possible information discovery;

• Ξ = {ξ ∈ Rn | Aξ ≤ f } is an uncertainty polytope defined by a given matrix A and right-

hand-side f ;

• Y = {y ∈ Zn | By ≥ b, 0 ≤ y ≤ 1} is the feasible set of a given combinatorial optimization

problem, defined by matrix B and right-hand-side b;

• P = {y ∈ Rn | By ≥ b, 0 ≤ y ≤ 1} is the relaxed polytope of Y.

The DDID problem we consider is then defined by:

zDDID = min
w∈W

max
ξ̄∈Ξ

min
y∈Y

max
ξ∈Ξ(w,ξ̄)

∑
i∈[n]

(ci + ξi)yi, (DDID)

where c is a given cost vector and Ξ(w, ξ̄) =
{
ξ ∈ Ξ

∣∣ w ◦ ξ = w ◦ ξ̄
}

, where v◦w = (v1w1, . . . , vnwn)

for any pair of vectors v, w ∈ Rn. Observe that constraint w◦ξ = w◦ ξ̄ guarantees that the observed

cost values are not modified after setting the solution y to the combinatorial optimization problem.
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We further denote Φ(w) the outermost objective function, namely

Φ(w) = max
ξ̄∈Ξ

min
y∈Y

max
ξ∈Ξ(w,ξ̄)

∑
i∈[n]

(ci + ξi)yi.

If it is possible to observe every cost coefficient, i.e., if (1, . . . , 1) ∈ W, it is trivially the optimal

solution to (DDID). As considering this trivial solution raises a technical special case in our

reformulations, we rather assume it does not belong to W.

Assumption 1. Set W does not contain the vector of all ones, denoted 1.

Well-known complexity results in robust combinatorial optimization [Kouvelis and Yu, 1997]

imply that computing Φ is NP-hard even when optimizing over Y is easy. Therefore, we focus

in this paper on knapsack uncertainty polytopes, which model Ξ with non-negativity constraints,

upper bounds, and a small number of additional “knapsack” constraints (defined by non-negative

coefficients). To simplify the presentation that follows, we assume throughout the presence of a

single such constraint, represented by the coefficient vector a > 0 and right-hand-side r > 0. Notice

that for a single knapsack constraint, we can assume a > 0 without loss of generality, because ξi is

equal to its upper bound if ai = 0.

Assumption 2. We assume that Ξ is a knapsack polytope such that A =

(
aT
Id
−Id

)
where ai > 0,∀i ∈

[n] and Id is the identity matrix. We further denote the right-hand-sides by
(
r
d
0

)
, with r > 0 and

d > 0.

Knapsack uncertainty is a relevant choice for addressing complex robust problems as it provides

a good trade-off between its modelling capability and the computational complexity of the resulting

optimization problems. On the one hand, the polytope is easy to apprehend by decision makers,

and they can adapt the uncertainty budget r to their risk aversion, as illustrated by Pessoa et al.

[2021]. On the other hand, the polytope often leads to more tractable optimization problems

than arbitrary polytopes, both from the theoretical and numerical viewpoints (see more details in

Section 1.1). Last, knapsack uncertainty is also motivated by probabilistic reasons, since it leads

to safe approximations of otherwise hard probabilistic constraints, see [Bertsimas and Sim, 2004]

and the extension to decision-dependent uncertainty by Poss [2013].

3



We detail next the important role of c in the objective function when using knapsack uncertainty

sets, which complements the discussion on down-monotone completion by Poss [2018]. In fact, the

following remark has implications beyond (DDID), and one should bear it in mind when addressing

min-max robust problems.

Remark 1. It is well-known (e.g. Poss [2018]) that one can replace Ξ by its down-monotone

completion dm(Ξ) = {ζ ∈ Rn+ : ∃ξ ∈ Ξ such that ζ ≤ ξ} without affecting the optimal solu-

tion of a min-max robust problem, and the same applies to (DDID). This might suggest that we

could remove the constant term c from the objective of the optimization problems without loss of

generality. The difficulty with this removal is that the resulting down-monotone completion may

require many more knapsack constraints. Let us illustrate this in the 3-dimensional example where

c = (1, 1, 1), and Ξ = {ξ ∈ [0, 1]n | ξ1 + ξ2 + ξ3 ≤ 1} is the 3-dimensional simplex. Removing the

constant term in the objective would lead to considering the uncertainty set Ξ′ = c+ Ξ, defined as

{ξ ∈ [1, 2]n | (ξ1 − 1) + (ξ2 − 1) + (ξ3 − 1) ≤ 1}. While Ξ′ is not a knapsack uncertainty set, its

down-monotone completion is, and is given by

dm(Ξ′) = {ζ ∈ Rn | ζ1 + ζ2 + ζ3 ≤ 4, ζ1 + ζ2 ≤ 3, ζ1 + ζ3 ≤ 3, ζ2 + ζ3 ≤ 3, 0 ≤ ζ ≤ 2} ,

having 4 knapsack constraints instead of 1 in the original description.

1.1 Literature Review

We contextualize next how (DDID) fits within the robust optimization landscape. Robust com-

binatorial optimization introduced by Kouvelis and Yu [1997] originally considered min-max opti-

mization problems of the form

zMM = min
y∈Y

max
ξ∈Ξ

∑
i∈[n]

(ci + ξi)yi (Min-Max)

for discrete uncertainty sets Ξ. They proved in particular that (Min-Max) is NP-hard even when

Ξ consists of two points only and Y is the feasibility set of polynomially solvable optimization

problems, such as the selection problem or the shortest path problem. In fact, their results apply

also to polyhedrons so these problems remain hard even when Ξ is, for instance, the convex hull of
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two points.

Slightly later than Kouvelis and Yu [1997], Ben-Tal and Nemirovski [1998] considered robust

optimization through a different perspective, focusing on convex uncertainty sets and uncertain

constraints. They developed the first compact convex reformulations for these problems. While

their focus was on convex optimization, applying their reformulations to robust combinatorial opti-

mization problems with polyhedral uncertainty leads to compact mixed-integer linear programming

formulations. These can be readily solved numerically using state-of-the-art solvers like CPLEX or

Gurobi, despite the theoretical hardness of these problems. An important step forward arose with

the introduction of the budget uncertainty set [Bertsimas and Sim, 2003, 2004] and its extension

to more general knapsack constraints [Poss, 2018]. Extending the seminal result of Bertsimas and

Sim [2003], Poss [2018] showed that if the number of knapsack constraints (constraints different

than upper bounds on ξ) characterizing Ξ is constant, then the min-max robust counterparts of

polynomial problems remains polynomial, contrasting with the difficulty proved by Kouvelis and Yu

[1997] for arbitrary sets. These rather theoretical results have been pursued for specific variants of

the set [Goerigk et al., 2022b] and complemented by efficient algorithms that leverage the structure

of the set, e.g. for vehicle routing [Gounaris et al., 2013, Pessoa et al., 2021], scheduling [Tadayon

and Smith, 2015], lot-sizing [Agra et al., 2016] and inventory routing [Bertsimas and Thiele, 2006,

Rodrigues et al., 2021], only to name a few.

After the basic robust models were introduced by Kouvelis and Yu [1997] and Ben-Tal and

Nemirovski [1998], many extensions have been considered in the literature. We briefly mention

below two of these extensions that relate to (DDID). On the one hand, robust optimization with

decision-dependent uncertainty sets allows for the uncertainty set Ξ to depend on the decision

variables [Nohadani and Sharma, 2018, Poss, 2013, Spacey et al., 2012]. On the other hand, two-

stage robust optimization splits the decision variables into the here-and-now decisions, and the

wait-and-see ones, which can be fixed after ξ is known. Numerous papers have been published

on the topic (see the survey by Yanikoglu et al. [2019]), providing exact [Ayoub and Poss, 2016,

Zeng and Zhao, 2013, Zhen et al., 2018] or approximate solutions [Ben-Tal et al., 2004] in the case

of fractional recourse. The case of integer recourse is particularly difficult and, apart from the

recent exact algorithms by Arslan and Detienne [2022], Kämmerling and Kurtz [2020], research has

mostly focused on approximate solutions based on partitioning the uncertain set into K subsets
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and devising constant second-stage policies for each element of the partition, often referred to as K-

adaptability. While most of these approaches lead to decomposition algorithms [Arslan et al., 2022,

Subramanyam et al., 2020], Hanasusanto et al. [2015] were able to provide a compact reformulation

for K-adaptability when only cost is uncertain. Bertsimas and Dunning [2016], Postek and den

Hertog [2016] have also proposed to partition Ξ dynamically and heuristically. While the above

references aim at solving generic problems, Goerigk et al. [2022a] have focused on specific problems

and proposed tailored algorithms and complexity results.

Problem (DDID) borrows ideas from both of the above extensions. On the one hand, its

decisions happen in multiple stages, since the observation w is to be decided before revealing

anything from Ξ, while y is chosen after the observed coefficients w ◦ ξ̄ have been revealed. The

difference with classical two-stage robust optimization lies in the remaining uncertain parameters,

ξ, to be revealed only after y is decided. Furthermore, the second-stage uncertainty set Ξ(w, ξ̄) is

decision-dependent.

1.2 Contributions and structure of the paper

Our main result is a compact linear relaxations for Φ(w) that is exact whenever conv(Y) = P,

where conv(S) denotes the convex hull of any set S. The linear programming formulation is then

dualized and linearized to provide a compact mixed-integer linear programming reformulations

for (DDID). An ad-hoc study is carried out to strengthen significantly the linearized MILP. Our

results extend to a polytope Ξ described by a larger number of knapsack constraints. However,

similarly to min-max robust combinatorial optimization [Poss, 2018], one should bear in mind that

the dimensions of the resulting formulations will increase exponentially in that number.

Then, we discuss how these reformulations can be extended to problems for which conv(Y) ⊂ P.

First, we propose a convexification approach based on a Dantzig-Wolfe reformulation of conv(Y),

leading to column generation and branch-and-price algorithms. Second, we propose a cutting-plane

algorithm starting from P and iteratively strengthening the outer approximation through strong

valid inequalities. Both approaches can be turned into heuristic algorithms by stopping the variable

or constraint generation at any time.

The resulting exact and heuristic algorithms are assessed numerically on different problems

motivated by the literature, namely the selection, the orienteering problem, and the spanning tree
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problem. Results illustrate how these approaches are able to obtain exact solutions, often for the

first time, on instances inspired by the scientific literature. They also illustrate the efficiency of our

heuristic column generation-based algorithm and exact cutting-plane algorithm.

We provide also more theoretical insights into the problem. First, we illustrate extreme cases

in which (DDID) is equal to either its min-max or max-min counterpart. The former case arises

when considering linear programs rather than discrete problems, while the latter arises when the

dimension of Ξ is too small, such as the factor model used in the literature [Vayanos et al., 2022].

Second, we show that computing Φ(w) can alternatively be done by optimizing a polynomial number

of linear functions over Y. This leads to polynomial time algorithms for (DDID) whenever the

nominal problems are polynomially solvable and |W| is polynomially bounded. While this result is

mostly of theoretical interest, since it relies on the ellipsoid algorithm, the underlying cutting-plane

algorithm can be used to compute Φ(w) whenever conv(Y) ⊂ P.

The rest of the paper is structured as follows. We detail in the next section the relation-

ship between (DDID) and its min-max and max-min counterparts. We provide in Section 3 the

polynomial-time algorithm and linear programming reformulation for Φ(w). We dualize and lin-

earize this formulation in Section 4, and discuss in Section 5 extensions to problems for which

conv(Y) ⊂ P. Section 6 presents our numerical experiments. The appendix contains the proofs

of the linearization of Φ(w) and the dominance relationships used in the column generation al-

gorithms. It provides also the counterpart of our reformulations for maximization problems, the

reformulation proposed by Vayanos et al. [2022] for K-adaptability, and additional statistics on the

algorithms applied to the orienteering problem.

2. Preliminary observations and trivial cases

If no cost coefficient can be observed (i.e.,W = {0}), we see that (DDID) falls down to (Min-Max).

Going one step further, we note that when every cost coefficient can be observed (i.e., 1 ∈

W), (DDID) becomes the (robust) wait-and-see problem, formally defined as

zWS = max
ξ∈Ξ

min
y∈Y

∑
i∈[n]

(ci + ξi)yi, (Wait&See)
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where a worst-case cost vector can be inferred preliminary to the solution of the combinatorial

problem. As a consequence the optimal value of the (DDID) can be bounded as follows.

max
ξ∈Ξ

min
y∈Y

∑
i∈[n]

(ci + ξi)yi ≤ min
w∈W

max
ξ̄∈Ξ

min
y∈Y

max
ξ∈Ξ(w,ξ̄)

∑
i∈[n]

(ci + ξi)yi ≤ min
y∈Y

max
ξ∈Ξ

∑
i∈[n]

(ci + ξi)yi

⇔ zWS ≤ zDDID ≤ zMM. (1)

We illustrate below the above inequalities on the selection problem with budget uncertainty.

Example 1. Consider an instance of (DDID) where Y =
{
y ∈ {0, 1}5

∣∣∣ ∑i∈[5] yi = 1
}

is the se-

lection feasibility set,W =
{
w ∈ {0, 1}5

∣∣∣ ∑i∈[5]wi = 1
}

amounts to choose one item among 5 and

the uncertainty is the budget uncertainty set from Bertsimas and Sim [2003] with nominal values c =

(1, 2, 3, 4, 5) and deviations d = (5, 4, 3, 2, 1), that is, Ξ =
{
ξ ∈ R5

∣∣∣ ∑i∈[5]
ξi
di
≤ 1, 0 ≤ ξi ≤ di, i ∈ [5]

}
.

Let us first look at the optimal solution to (Min-Max). Since a unique item j is selected in any

feasible solution y ∈ Y,

max
ξ∈Ξ

∑
i∈[n]

(ci + ξi)yi = max
ξ∈Ξ

cj + ξj = cj + dj = 6.

Hence, zMM = 6. In the case of (Wait&See), the adversary needs to increase the value of

the cheapest item j, thus solving maxξ∈Ξ minj(cj + ξj). After some linear algebra, one obtains

zWS = 162/47 ≈ 3.4.

Consider now (DDID), where we can decide whether to select an item after having observed

one of the items cost. Assume that we observe item 1 so the uncertain cost ξ1 of item 1 is revealed.

If y selects item 1, the solution cost is c1 + ξ̄1. If, we select instead item j 6= 1, the resulting solution

cost is cj + dj(1 − ξ̄1
d1

). The previous value is minimized for j = 2, yielding 2 + 4(1 − ξ̄1
5 ). The

worst-case scenario for ξ̄ thus maximizes min{c1 + ξ̄1, 2 + 4(1− ξ̄1
5 }, which is a concave piece-wise

linear function with maximum value 34/9 reached at ξ̄1 = 25/9. Therefore, observing item 1 yields

an objective value of zDDID = 34/9 ≈ 3.8, and one readily verifies by examination that this is the

optimal solution to the problem.

We detail next two situations in which one of the bounds is actually equal to zDDID. First, con-

sider the linear programming counterpart of (DDID), in which the feasibility set of the optimization
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problem consists of a polyhedron, P. In this context, it is well-known that

min
y∈P

max
ξ∈Ξ

∑
i∈[n]

(ci + ξi)yi = max
ξ∈Ξ

min
y∈P

∑
i∈[n]

(ci + ξi)yi, (2)

meaning that the robust optimization problem is equivalent to (Wait&See). Combining (2)

with (1) immediately shows that (DDID) is equivalent to (Min-Max) in this context.

Observation 1. If Y = P, then zWS = zDDID = zMM.

Observation 1 illustrates the necessity to consider discrete variables for (DDID) to provide an

advantage over the min-max approach. In particular, equality (2) does not hold if one optimizes

over Y rather than P since in the former case the domain of variables y is no longer convex.

When we are not in one of the two extreme cases whereW = {0} or 1 ∈ W, we may still develop

some geometrical intuition on the role of information discovery. It may indeed be convenient to see

the process of observation as a reduction of the dimension of the uncertainty polytope. To be more

accurate, we partition the uncertainty constraints as A+ξ ≤ a+, A=ξ ≤ a= such that A=ξ = a=

for all ξ ∈ Ξ and there exists ξ ∈ Ξ with A+ξ < a+. The dimension of polytope Ξ is then given

by dim(Ξ) = n− rank(A=). We also define ei the ith vector of the canonical basis and for I ⊂ [n],

EI ∈ R|I|×n the matrix whose rows are the eTi , i ∈ I.

Observation 2. Let w ∈ W, ξ̄ ∈ Ξ and W1 = {i ∈ [n] | wi = 1}, then

dim
(
Ξ(w, ξ̄)

)
≤ n− rank

(
A=

EW1

)
.

Proof. By definition, Ξ(w, ξ̄) =
{
ξ ∈ Rn

∣∣ A+ξ ≤ a+, A=ξ ≤ a=, EW1ξ = EW1 ξ̄
}

. We know that

for all ξ ∈ Ξ(w, ξ̄),
(
A=

EW1

)
ξ =

(
a=

EW1 ξ̄

)
, so dim

(
Ξ(w, ξ̄)

)
≤ n− rank

(
A=

EW1

)
.

In the literature, it is usual to consider the information discovery set

Wsel =

w ∈ {0, 1}n
∣∣∣∣∣∣
∑
i∈[n]

wi ≤ q

 ,

where one can select up to q cost coefficients, q ∈ Z+. This discovery set allows to provide a more

specific description of information discovery. Indeed, we see that matrix
(
A=

EW1

)
corresponds to
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the completion of the rows of A= with row vectors of the canonical basis of Rn. We thus know

that we may choose w ∈ Wsel such that rank
(
A=

EW1

)
= rank(A=) + q if rank(A=) > n − q, and

rank
(
A=

EW1

)
= n if rank (A=) ≤ n− q. We deduce the following.

Corollary 1. There is w ∈ Wsel such that, for any ξ̄ ∈ Ξ, dim
(
Ξ(w, ξ̄)

)
≤ max{0,dim(Ξ)− q}.

Interestingly, Corollary 1 implies that picking w∗ ∈ Wsel (through basic linear algebra) that

most reduces the dimension of Ξ may substantially simplify (DDID) when the dimension of Ξ is

not greater than q.

Observation 3. If W =Wsel and dim(Ξ) ≤ q, then zDDID = zWS.

Proof. Corollary 1 implies that there exists w∗ ∈ Wsel such that Ξ(w∗, ξ̄) = {ξ̄},∀ξ̄ ∈ Ξ. Hence,

Φ(w∗) = maxξ̄∈Ξ miny∈Y
∑

i∈[n](ci + ξ̄i)yi = zWS

We conclude the section by discussing how to solve (Wait&See). First, if conv(Y) = P,

then one can dualize the minimization problem, yielding a compact linear program. Interestingly,

swapping the minimization and maximization in this case also shows that zWS is actually equal to

the optimal value of the linear relaxation of (Min-Max). Second, the case conv(Y) ⊂ P can be

handled by constraint generation, using the epigraphic reformulation

max

ω
∣∣∣∣∣∣ ξ ∈ Ξ, ω ≤

∑
i∈[n]

(ci + ξi)yi, ∀y ∈ Y

 , (3)

and separating the constraints indexed by Y.

3. Computing Φ

3.1 Constraint generation

We present next an algorithm for computing Φ that relies on constraint generation. The first step

of the approach described next applies an epigraphic reformulation to the outermost maximization
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problem

Φ(w) = max ω (4)

s.t. ω ≤ min
y∈Y

max
ξ∈Ξ(w,ξ̄)

∑
i∈[n]

(ci + ξi)yi (5)

ξ̄ ∈ Ξ. (6)

Then, we introduce dual variables ν, π and γ so that linear programming duality yields

max
ξ∈Ξ(w,ξ̄)

ξT y = min
(ν,π,γ)∈D(y)

rν + dTπ + (w ◦ ξ̄)Tγ = min
(ν,π,γ)∈ext(D(y))

rν + dTπ + (w ◦ ξ̄)Tγ, (7)

where D(y) =
{

(ν, π, γ) ∈ R2n+1 | aiν + πi + wiγi ≥ yi, i ∈ [n]
}

is the dual polytope and ext(D(y))

the set of its extreme points. Plugging (7) into the right-hand side of (5) leads to reformulating

Φ(w) as a linear program with many constraints

max ω (8)

s.t. ω ≤ rν + dTπ + (w ◦ ξ̄)Tγ, ∀y ∈ Y, (ν, π, γ) ∈ ext(D(y)) (9)

ξ̄ ∈ Ξ. (10)

We now study the complexity of the separation problem associated with constraints (9). Us-

ing (7) in the reverse direction, we see that a given candidate solution (ω∗, ξ̄∗) ∈ R× Ξ is feasible

for (9) if and only if

ω∗ ≤ min
y∈Y

max
ξ∈Ξ(w,ξ̄∗)

∑
i∈[n]

(ci + ξi)yi. (11)

Thus, checking whether (ω∗, ξ̄∗) is feasible amounts to solving a problem with same form as

(Min-Max). Observing that Ξ(w, ξ̄∗) is also a knapsack uncertainty set, Theorem 3 from Poss

[2018] implies that the right-hand-side of (11) can be computed by solving miny∈Y ξ
T y for at most

n + 1 vectors ξ. The overall approach leads to a cutting-plane algorithm for computing Φ(w),

the separation problem of which is not harder than the nominal problem miny∈Y ξ
T y. Then, us-

ing the equivalence between separation and optimization [Schrijver, 2003], we obtain a polynomial
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algorithm for computing Φ(w) whenever the nominal counterpart of the problem is polynomially

solvable.

Proposition 1. If the nominal counterpart is polynomially solvable, then Φ(w) can be computed

in polynomial time.

Corollary 2. If |W| is polynomially bounded and the nominal counterpart is polynomially solvable,

then (DDID) can be solved in polynomial time.

Proof. Enumerate all w ∈ W and compute Φ(w) for each of them, then return the minimum

value.

We observe that the above algorithm is reminiscent of the one developed by Paradiso et al.

[2022] to compute Φ(w), with two notable differences. First, the dualized formulation (8)–(10)

requires only constraint generation, while the approach from Paradiso et al. [2022] relies on the

linearization

max ω (12)

s.t. ω ≤
∑
i∈[n]

(ci + ξi(y)) yi, ∀y ∈ Y (13)

ξ(y) ∈ Ξ(w, ξ̄), ∀y ∈ Y (14)

ξ̄ ∈ Ξ, (15)

where ξ(y) plays the role of adjustable variables depending on y. Hence, Paradiso et al. [2022]

generate constraints (13) and (14) as well as variables ξ(y) in the course of their algorithm.

Second, we leverage the knapsack structure of Ξ(w, ξ̄∗) to reduce the separation to solving n+1

nominal problems, while Paradiso et al. [2022] address the problem though MILP formulations.

These two differences have a theoretical impact, since the running time of the algorithm from Par-

adiso et al. [2022] cannot be polynomially bounded in general under the assumptions of Corollary 2.

From the numerical viewpoint, the supremacy of one algorithm over the other will depend on the

sets Y and Ξ.

Corollary 2 implies, for instance, that if P is the matching polytope [Pulleyblank, William R.,

1973] (see also [Schrijver, 2003, Theorem 25.5]), the resulting (DDID) is easy. We note that the
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case of the matching polytope is particular in the sense that, although one can efficiently optimize

over this polytope (e.g. [Schrijver, 2003, Section 25.5c]), its description requires exponentially many

inequalities in general. Contrasting with the previous example, the polytopes of many polynomial

combinatorial optimization problems can be described by polynomially many inequalities. This is

the case for the shortest path problem, the minimum spanning tree problem (using the extended

multi-commodity flow formulation Magnanti and Wolsey [1995]), or minimizing the weighted sum

of completion times (e.g. [Queyranne and Schulz, 1994, Section 4.1]), to name a few. For such

problems, we provide below an alternative way to compute Φ that involves solving a compact

linear program.

3.2 Linear programming formulation

We focus next on an optimization problem having a feasibility set described by a known polynomial

number of linear inequalities, meaning that conv(Y) = P. We prove that under this additional

assumption, Φ(w) amounts to solve a compact linear program.

In what follows, we let W1 denote the set of indices over which w is equal to 1, and W0 its

complementary. We also define [n]0 = [n] ∪ {0}. We first introduce an adaptation of a classical

result from the literature [Bertsimas and Sim, 2003, Poss, 2018] that essentially shows how solving

the maximization problem in (Min-Max) amounts to take the best out of n+ 1 different objective

functions. We underline that, while the number n + 1 could be reduced to
∣∣W0

∣∣ + 1, carrying

W0 throughout would lead to additional non-linearities in the next section. This contrasts with

classical results that focus on reducing the number of subproblems as much as possible [Lee and

Kwon, 2014].

Proposition 2. Let y ∈ {0, 1}n. We have

max
ξ∈Ξ(w,ξ̄)

∑
i∈W0

(ci + ξi)yi = min
`∈[n]0


r − ∑

i∈W1

aiξ̄i

α` +
∑
i∈W0

(ci + β`,i)yi

 ,

where for each ` ∈ [n], α` = 1/a`, and for each i, ` ∈ [n], β`,i = di [1− ai/a`]+ , while α0 = 0 and

β0 = d.
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Proof. Observe first that

max
ξ∈Ξ(w,ξ̄)

∑
i∈W0

(ci + ξi)yi = max
ξ′∈Ξ′

∑
i∈W0

(ci + ξ′i)yi, (16)

where

Ξ′ =

ξ′ ∈ R|W0|
∣∣∣∣∣∣
∑
i∈W0

aiξ
′
i ≤ r −

∑
i∈W1

aiξ̄i, 0 ≤ ξ′i ≤ di, i ∈ W0


is the projection of Ξ(w, ξ̄) into the subset of coordinates indexed by W0. Let us denote r −∑

i∈W1 aiξ̄i by r̄. Notice that ξ̄ ∈ Ξ, implying that r̄ ≥ 0, and by Assumption 1,
∣∣W1

∣∣ < n. Hence,

Ξ′ is non-empty. Let us denote the dual variables of the constraints of Ξ′ by α and π, respectively.

Dualizing the maximization problem in the right-hand-side of (16) and substituting πi yields

max
ξ′∈Ξ′

∑
i∈W0

(ci + ξi)yi =
∑
i∈W0

ciyi + min

r̄α+
∑
i∈W0

diπi
∣∣ aiα+ πi ≥ yi, ∀i ∈ W0, α, π ≥ 0

 (17)

=
∑
i∈W0

ciyi + min

r̄α+
∑
i∈W0

di [yi − aiα]+ | α ≥ 0

 . (18)

Notice next that yi ∈ {0, 1} for each i ∈ W0, so we can reformulate the objective of the minimization

problem to make it linear in variables y

∑
i∈W0

ciyi + min

r̄α+
∑
i∈W0

yidi [1− aiα]+ | α ≥ 0

 (19)

The objective function to be minimized in (19) is a piece-wise linear function of α, whose knickpoints

are included in 0∪{1/ai, i ∈ [n]}, yielding the result. Notice that unlike Bertsimas and Sim [2003],

Poss [2018], we take here a superset of the knickpoints as this leads to more efficient formulations

in the next section.

We are now ready to prove the main result of this section.
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Theorem 1. Let w ∈ W. If conv(Y) = P, then

Φ(w) =



max ω

s.t. ω ≤

r − ∑
i∈W1

aiξ̄i

α` + bTλ` −
∑
i∈[n]

π`,i, ∀` ∈ [n]0

(B·,i)
Tλ` − π`,i ≤ ci + ξ̄i,∀` ∈ [n]0, ∀i ∈ W1

(B·,i)
Tλ` − π`,i ≤ ci + β`,i, ∀` ∈ [n]0, ∀i ∈ W0

λ`, π` ≥ 0, ∀` ∈ [n]0

ξ̄ ∈ Ξ

(20)

where for each ` ∈ [n], α` = 1/a`, and for each i, ` ∈ [n], β`,i = di [1− ai/a`]+ , while α0 = 0 and

βi,0 = di,∀i ∈ [n].

Proof. Observe that

max
ξ∈Ξ(w,ξ̄)

∑
i∈[n]

ξiyi =
∑
i∈W1

ξ̄iyi + max
ξ∈Ξ(w,ξ̄)

∑
i∈W0

ξiyi. (21)

Applying (21) to the epigraphic reformulation (4)–(6) presented previously yields

max ω (22)

s.t. ω ≤ min
y∈Y

∑
i∈W1

(ci + ξ̄i)yi + max
ξ∈Ξ(w,ξ̄)

∑
i∈W0

(ci + ξi)yi (23)

ξ̄ ∈ Ξ. (24)

The main idea of the proof that follows reformulates (23) through two ingredients: we reformulate

the maximization over ξ using Proposition 2 (thus minimizing y over Y to use that y is binary),

and dualize the minimization over y (thus using that conv(Y) = P to minimize y over P instead of

Y).

Let us now work out the details of the above two ideas. Applying Proposition 2 to the last term

of (23) yields

min
`∈[n]0


r − ∑

i∈W1

aiξ̄i

α` +
∑
i∈W0

(ci + β`,i)yi

 .

Plugging the above expression into the right-hand-side of (23) and swapping the minimizations, we
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obtain

(23)⇔ ω ≤ min
`∈[n]0


r − ∑

i∈W1

aiξ̄i

α` + min
y∈Y

∑
i∈W1

(ci + ξ̄i)yi +
∑
i∈W0

(ci + β`,i)yi

 .

The above may be written equivalently with n+ 1 independent constraints:

(23)⇔ ω ≤

r − ∑
i∈W1

aiξ̄i

α` + min
y∈Y

∑
i∈W1

(ci + ξ̄i)yi +
∑
i∈W0

(ci + β`,i)yi,∀l ∈ [n]0. (25)

Thanks to the integrality of P, we can relax the integrality restrictions in Y and replace the

inner minimization over Y by the minimization over P = {y ∈ Rn | By ≥ b, 0 ≤ y ≤ 1} in each

constraint of (25). For each constraint ` ∈ [n]0, we then define the dual variables λ` and π`

associated respectively with constraints By ≥ b and y ≤ 1. We then dualize the minimization

problem over P to get the following equivalent constraint:

ω ≤

r − ∑
i∈W1

aiξ̄i

α` + max
λ`

bTλ` −
∑
i∈[n]

π`,i

s.t. (B·,i)
Tλ` − π`,i ≤ ci + ξ̄i, ∀i ∈ W1

(B·,i)
Tλ` − π`,i ≤ ci + β`,i, ∀i ∈ W0

λ`, π` ≥ 0

The maximization over λ` and π` is in the right-hand-side of a ≤ inequality, so the above is

equivalent to the following set of constraints.

ω ≤

r − ∑
i∈W1

aiξ̄i

α` + bTλ` −
∑
i∈[n]

π`,i

(B·,i)
Tλ` − π`,i ≤ ci + ξ̄i, ∀i ∈ W1

(B·,i)
Tλ` − π`,i ≤ ci + β`,i, ∀i ∈ W0

λ`, π` ≥ 0

Replacing (23) with the corresponding n+ 1 sets of constraints provides the result.
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4. Solving the full problem

We describe below the compact reformulations obtained for (DDID) by dualizing and linearizing

the formulation proposed in Theorem 1 using classical techniques.

Proposition 3. If conv(Y) = P, then (DDID) is equivalent to

min
∑

`∈[n]0

rα`u` +
∑
i∈[n]

ciy`,i +
∑
i∈[n]

β`,iy
0
`,i

+
∑
i∈[n]

diσi + rµ

s.t.
∑

`∈[n]0

u` = 1

aiµ+ σi ≥ −ai
∑

`∈[n]0

α`u` +
∑

`∈[n]0

y`,i − (1− wi), ∀i ∈ [n]

By` ≥ u`b, ∀` ∈ [n]0

y`,i ≤ u`, ∀` ∈ [n]0, i ∈ [n]

y0
`,i ≥ y`,i − wi, ∀` ∈ [n]0, i ∈ [n]

w ∈ W

u, y, y0, µ, σ ≥ 0.

(DDID-WIP)

Proof. See Appendix A.1.

We explain next how to improve formulation (DDID-WIP) in two aspects. First, writing down

the complementarity conditions between (20) and its dual shows that µ > 0 corresponds to the

consumption of all r on the investigated costs, leaving no possible deviation after the decisions on

y. Stated otherwise, µ > 0 leads to a suboptimal dual solution since the uncertainty is completely

unveiled before the solution of the combinatorial optimization problem, which means that the

optimal value is that of (Wait&See).

Proposition 4. There is an optimal solution (w∗, u∗, y∗, µ∗, σ∗) to the compact formulation (DDID-WIP)

such that µ∗ = 0.

Proof. See Appendix A.2.

Second, formulation (DDID-WIP) includes the decision on w with the most natural lineariza-

tion of the products involving those variables. It is possible though to strengthen this formulation

by projecting both y and u variables on the two sets W1 and W0.
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Proposition 5. If conv(Y) = P, then (DDID) is equivalent to

min
∑

`∈[n]0

rα`u` +
∑
i∈[n]

ciy`,i +
∑
i∈[n]

β`,iy
0
`,i

+
∑
i∈[n]

diσi

s.t.
∑

`∈[n]0

u` = 1

σi ≥ −ai
∑

`∈[n]0

α`u
1
`,i +

∑
`∈[n]0

y1
`,i, ∀i ∈ [n],

By` ≥ u`b, ∀` ∈ [n]0,

y`,i ≤ u`, ∀` ∈ [n]0, i ∈ [n]

u` = u0
`,i + u1

`,i, ∀` ∈ [n]0, i ∈ [n],∑
`∈[n]0

u0
`,i ≤ 1− wi, ∀i ∈ [n],

∑
`∈[n]0

u1
`,i ≤ wi, ∀i ∈ [n],

Gu1
` ≤ u`g ∀` ∈ [n]0,

y`,i = y0
`,i + y1

`,i, ∀` ∈ [n]0, i ∈ [n]

y0
`,i ≤ u0

`,i, ∀` ∈ [n]0, i ∈ [n]

y1
`,i ≤ u1

`,i, ∀` ∈ [n]0, i ∈ [n]

w ∈ W

u, u0, u1, y, y0, y1, σ ≥ 0.

(DDID-SIP)

Proof. See Appendix A.3.

We show below that the formulation of Proposition 5 is in general stronger than the one provided

by Proposition 3. Numerical evidence shows that the inclusion may hold strictly.

Proposition 6. Let Sweak and Sstrong denote the projections on w of the formulations (DDID-WIP)

and (DDID-SIP), respectively. It holds that Sstrong ⊆ Sweak.

Proof. See Appendix A.4.

5. Extensions to the case conv(Y) ⊂ P

The results presented so far rely on the fact that conv(Y) = P, meaning that we know a compact

description for the convex hull of the set of all feasible solutions to the nominal optimization prob-

lem. In particular, the nominal problem, which optimizes a linear function over Y, has so far been
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assumed to be polynomially solvable. We present next two possible extensions of our reformula-

tions that can address DDID counterparts of problems for which such a compact description is not

known.

5.1 Convexification

Our first approach to handleNP-hard problems amounts to consider a Dantzig-Wolfe reformulation

of set Y. Let us enumerate this set as Y = {ỹ1, . . . , ỹt}. Introducing the convex multipliers λ`1, . . . , λ
`
t

for each ` ∈ [n]0, we can substitute y` with
∑

s∈[t] λ`,sỹs, and the constraints By` ≥ u`b with the

convexification constraints, so (DDID-SIP) becomes

min
∑
`∈[n]0

rα`u` +
∑
i∈[n]

∑
s∈[t]

ciλ`,sỹs,i +
∑
i∈[n]

β`,iy
0
`,i

+
∑
i∈[n]

diσi

s.t.
∑
s∈[t]

λ`,s = u`, ∀` ∈ [n]0, [ν`]

∑
s∈[t]

λ`,sỹs,i = y0
`,i + y1

`,i, ∀` ∈ [n]0, i ∈ [n], [ρ`i ]

∑
`∈[n]0

u` = 1

σi ≥ −ai
∑
`∈[n]0

α`u
1
`,i +

∑
`∈[n]0

y1
`,i, ∀i ∈ [n],

u` ≤ 1− w`, ∀` ∈ [n],

u` = u0
`,i + u1

`,i, ∀` ∈ [n]0, i ∈ [n],∑
`∈[n]0

u0
`,i ≤ 1− wi, ∀i ∈ [n],

∑
`∈[n]0

u1
`,i ≤ wi, ∀i ∈ [n],

Gu1
` ≤ u`g, ∀` ∈ [n]0,

y0
`,i ≤ u0

`,i, ∀` ∈ [n]0, i ∈ [n]

y1
`,i ≤ u1

`,i, ∀` ∈ [n]0, i ∈ [n]

w ∈ W

u, u0, u1, y0, y1, σ, λ ≥ 0.

(DDID-CG)
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where the right brackets denote the dual variables. Formulation (DDID-CG) can be used in two

different ways. First, for some strongly constrained problems, it may happen that t is a moderately

large integer so the formulation can be directly fed into a solver. In this case, one may further reduce

the value of t by observing that only minimal ỹ, with respect to inclusion, need to be considered.

Observation 4. Consider ỹs1 , ỹs2 ∈ Y such that ỹs1 ≤ ỹs2 and let Ỹ = Y \{ỹs2}. Let z̃DDID denote

the optimal value of (DDID-CG) associated to Ỹ. We have zDDID = z̃DDID.

Proof. See Appendix B.1.

We can filter Y similarly by relying on bounds.

Observation 5. Consider ỹs ∈ Y such that

min
ξ∈Ξ

∑
i∈[n]

(ci + ξi)ỹs,i > zMM, (26)

and let Ỹ = Y \ {ỹs} and z̃DDID denote the optimal value of (DDID) associated to Ỹ. We have

zDDID = z̃DDID.

Proof. See Appendix B.2.

Despite Observations 4 and 5, one cannot expect, in general, to be able to handle the entire

problem at once. This leads to considering column-generation based algorithms which, essentially,

generate appropriate subsets T ` ⊆ [t], ` ∈ [n]0, on the fly by exploiting dual information (see for

instance Wolsey [2020]). Let us describe this idea more precisely in what follows, denoting by

DLR(T ) the dual of the linear relaxation of (DDID-CG) associated to subsets T 0, . . . , Tn, while

DLR denotes the dual of the full linear relaxation of (DDID-CG). Let υ denote the vector of

all dual variables and consider an optimal dual solution υ∗ of DLR(T ). Notice that DLR has the

same variables as DLR(T ) but contains additional constraints. Hence, solution υ∗ is feasible for

DLR as soon as it satisfies these additional constraints. In fact, the only constraints of DLR that

are missing in DLR(T ) are those associated with the primal variables λ`,s for each ` ∈ [n]0 and

s ∈ [t] \ T `, namely ∑
i∈[n]

ciỹs,i −
∑
i∈[n]

ρ`∗i ỹs,i − ν`∗ ≥ 0. (27)
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Therefore, all constraints (27) are satisfied by υ∗ if and only if for each ` ∈ [n]0, the optimal solution

of the following optimization problem is not smaller than ν`∗

min
y∈Y

∑
i∈[n]

ciyi −
∑
i∈[n]

ρ`∗i yi

 . (28)

If, on the contrary, there exists ` ∈ [n]0 for which we are able to identify ỹs′ ∈ Y such that the

corresponding dual constraint (27) is violated by υ∗, we add the corresponding index s′ to T ` and

solve the resulting linear program DLR(T ) again.

The above procedure generates all required variables of (DDID-CG) at the root node of the

branch-and-bound tree solving the problem. However, these do not cover all the variables that may

be generated in the subsequent linear programs that result from adding the branching constraints.

Repeating the above procedure at each node of the branch-and-bound tree leads to a branch-and-

price algorithm. While this particular type of branch-and-price algorithm is of a rather simple

type, as it involves no branching on the set of dynamic variables, λ, its efficient implementation

involves clever engineering techniques, such as node selection, heuristic, and stabilization, which is

beyond the scope of the current work. Instead, we limit ourselves to the column generation at the

root node only, and then feed the resulting MILP to a solver. Doing so, we end up with a heuristic

algorithm for (DDID), because the returned observation w∗ will have considered only a subset of

conv(Y). Another direct consequence of the above discussion is that the above column generation

algorithm provides yet another way to compute Φ(w).

Observation 6. Φ(w) can be computed by fixing w in (DDID-CG) and solving the resulting linear

program with column generation.

5.2 Cutting-plane algorithm

The second approach to handling conv(Y) ⊂ P involves the iterative generation of conv(Y)

through valid inequalities, essentially cycling between the solution of a sequence of problems of

type (DDID-SIP) and the separation of solutions y from conv(Y). The first ingredient of this

algorithm is thus a separation oracle for conv(Y) as detailed next.

Assumption 3. Given y ∈ Rn, we have a separation oracle that returns either true if y ∈ conv(Y)
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or a hyperplane separating y from conv(Y).

The second ingredient of the algorithm is the extension of (DDID-SIP) to any polytope

P ′ = {y ∈ Rn | B′y ≥ b′, 0 ≤ y ≤ 1}. Specifically, we introduce the concatenated decision vec-

tor θ = (w, u, u0, u1, y, y0, y1, σ) and define Θ(P ′) as the feasible set defined by all constraints

of (DDID-SIP), using (B′, b′) instead of (B, b). Introducing further f for the objective function

of (DDID-SIP), we can formulate the following MILP

zDDID
P ′ = min

θ∈Θ(P ′)
f(θ), (29)

Observe that when P ′ = conv(Y), the condition of Proposition 5 is satisfied and (29) coincides with

the exact reformulation (DDID-SIP), so zDDID
P ′ = zDDID in this case.

Observation 7. If conv(Y) ⊂ P ′, then minθ∈Θ(P ′) f(θ) is a relaxation of the exact formulation

minθ∈Θ(conv(Y)) f(θ).

Proof. We see that conv(Y) ⊆ P ′ implies Θ(conv(Y)) ⊆ Θ(P ′), proving the statement.

The algorithm starts with P0 = P and solves (29), yielding the optimal solution θ∗ and its cost

zDDID
P0 . Then, observe that θ∗ ∈ Θ(conv(Y)) if and only if for each ` ∈ [n]0, either u` = 0 and y∗` = 0

or y∗` ∈ conv(Y). Hence, we can use Assumption 3 to check whether θ∗ ∈ Θ(conv(Y)). If this is

the case, Observation 7 implies that θ∗ is optimal for the exact formulation minθ∈Θ(conv(Y)) f(θ)

so zDDID
P0 = zDDID. Otherwise, we rely on the oracle from Assumption 3 to obtain a separating

hyperplane hT y ≤ h0, define

P1 = P0 ∩
{
y ∈ Rn

∣∣ hT y ≤ h0
}
,

and repeat the procedure.

We note that an alternative stopping criterion involves the computation of Φ(w∗) at each it-

eration, which can be computed by using one of the algorithms proposed in Section 3 or the

column-generation algorithm described in Section 5.1.

Observation 8. Let θ∗ = (w∗, u∗, u0∗, u1∗, y∗, y0∗, y1∗, σ∗) be the solution returned at the i-th iter-

ation of the algorithm. If Φ(w∗) ≤ zDDID
Pi , then zDDID

Pi = zDDID.
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Proof. For any w ∈ W, we have that Φ(w) ≥ zDDID ≥ zDDID
Pi , where the second inequality follows

from Observation 7. Combining the above with Φ(w∗) ≤ zDDID
Pi proves the result.

The resulting algorithm is finitely convergent if the oracle returns facet-defining inequalities. In

practice, one may interrupt the algorithm at any time and consider the solution w∗ returned after

a certain number of iterations.

6. Numerical experiments

We next describe the numerical assessment of the different formulations and algorithms presented

thus far. All our experiments have been realized in Julia language [Bezanson et al., 2017], using

JuMP [Dunning et al., 2017] to interface the mixed integer linear programming (MILP) solver

CPLEX 20.01. We ran our experiments on a processor Intel(R) Core(TM) i7-10510U CPU @

1.80GHz, letting CPLEX handle the parallelism and reporting the total CPU times. We set the

same time limit to two hours in all our experiments. The source code of every algorithm is publicly

available at https://plmlab.math.cnrs.fr/mposs/ddid/.

6.1 Selection problem

We first experiment the reformulation from Proposition 3 with the selection problem, where the

decision maker wishes to choose p out of n items, so Ysel =
{
y ∈ {0, 1}n

∣∣∣ ∑i∈[n] yi = p
}
. The

selection problem has been used in numerous papers addressing complex robust variants [Goerigk

and Lendl, 2021, Goerigk et al., 2022a,b], including DDID itself under the name of two-stage robust

best box selection [Vayanos et al., 2022], in which p = 1.

We use the budget uncertainty set of Bertsimas and Sim [2003, 2004], defined as

ΞΓ =
{
ξ ∈ Rn

∣∣∣ ∑i∈[n] ξi ≤ Γ, 0 ≤ ξ ≤ 1
}

, largely used in the scientific literature on robust com-

binatorial optimization. We further consider the selection set for information discovery, Wsel ={
w ∈ {0, 1}n

∣∣∣ ∑i∈[n]wi ≤ q
}

, where one can investigate up to q items. We consider n ∈ {10, 20, 30, 40, 50},

p, q,Γ ∈ {n/10, n/5} and generate randomly 10 instances (meaning the generation of vectors c, d

and f in [0, 1]n) for each quadruplet of parameters. For each instance, we further consider a variant

where only n/2 parameters are uncertain, the other being fixed to their nominal values.
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uncertainty p q Γ
n n/2 n n/10 n/5 n/10 n/5 n/10 n/5

10 8.3 11 7.2 12 6.6 11 8.9 13 8.9 10 6.6 13 9.0 19 6.5 4.4
20 8.4 10 6.5 13 7.0 11 7.8 12 9.7 8.5 5.2 15 7.6 19 7.2 4.4
30 11 6.5 7.7 10 8.4 7.7 9.9 9.2 11 6.3 7.6 11 11 14 7.6 2.9
40 8.2 6.2 6.7 8.1 5.4 5.4 9.6 8.9 8.6 5.7 6.4 8.6 9.5 11 5.4 3.0
50 8.6 6.8 6.6 9.3 6.1 6.1 9.1 10 9.1 6.1 6.1 10 9.7 13 5.5 2.7

Table 1: Average relative gaps in %. Left and right values are 100× zDDID−zWS

zDDID and 100× zMM−zDDID

zDDID ,
respectively.

uncertainty p q Γ
n n/2 n n/10 n/5 n/10 n/5 n/10 n/5

10 0.05 28 0.05 36 0.05 39 0.05 26 0.05 33 0.05 32 0.05 28 0.05 37
20 0.12 45 0.13 61 0.1 60 0.15 45 0.12 54 0.13 52 0.12 50 0.13 55
30 0.26 37 0.69 56 0.39 54 0.57 39 0.32 47 0.64 46 0.35 43 0.6 50
40 0.66 39 2.8 48 0.92 48 2.6 39 1.3 44 2.2 43 0.75 40 2.7 47
50 4.3 47 62 58 13 59 53 47 14 53 53 52 6.8 50 59 55

(a) Weak formulation (DDID-WIP)

uncertainty p q Γ
n n/2 n n/10 n/5 n/10 n/5 n/10 n/5

10 0.05 0.01 0.06 0.14 0.05 0.0 0.06 0.15 0.05 0.0 0.06 0.15 0.05 0.09 0.06 0.06
20 0.06 0.26 0.1 0.26 0.08 0.29 0.09 0.24 0.08 0.39 0.08 0.14 0.09 0.48 0.08 0.05
30 0.16 0.08 0.26 0.39 0.18 0.16 0.24 0.3 0.18 0.16 0.24 0.3 0.22 0.35 0.2 0.11
40 0.31 0.06 0.49 0.16 0.27 0.11 0.53 0.11 0.37 0.14 0.44 0.09 0.41 0.19 0.39 0.04
50 0.75 0.14 1.6 0.22 0.79 0.14 1.5 0.22 1.0 0.21 1.3 0.15 1.1 0.25 1.2 0.11

(b) Strong formulation (DDID-SIP)

Table 2: Average solution times in seconds and root gaps in %.

We first illustrate in Table 1 the distance between zDDID and the bounds zWS and zMM. These

results illustrate that for our instances, the average gaps are often below 10%, and hardly higher

than 20%. As expected, looking at column q wee see how investigating more parameters moves

zDDID towards zWS. We also see that larger values of Γ leads to smaller gaps, often significantly.

Table 2 reports the solution times in seconds and root gaps in % for the two formulations

presented in Section 4. We see immediately the importance of strengthening the formulation as

described in (DDID-SIP). This reduces the root gaps to close to 0% on average, thereby reducing

the solving times by more than one order of magnitude. Looking more precisely at Table 2b, we see

that only p and the proportion of uncertain items have a significant impact on the solution times.

Unreported results show that (DDID-SIP) scales well for larger instances, solving problems with

up to 200 items in a couple of minutes.
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uncertainty p q Γ
n K dn/2e n dn/10e n/5 dn/10e n/5 dn/10e n/5

10
2 0.06 0.08 0.06 0.17 0.07 0.32 0.07 0.32
3 0.21 0.27 0.12 1.8 0.26 17 0.19 14

15
2 0.57 0.62 0.17 0.91 0.32 0.6 0.32 0.61
3 27 33 1.8 56 17 25 14 31

Table 3: Average solution times in seconds for the K-adaptability reformulation presented in
Section D.

We compared the above results with our own implementation of the K-adaptability reformu-

lation proposed Vayanos et al. [2022], see Section D for details of the resulting formulation. The

solution times are presented in Table 3 for n ∈ {10, 15}; larger values of n are not presented as

many instances could not be solved be solved in one hour for n = 20. These results illustrate

that the reformulations for K-adaptability are several orders of magnitude slower than the exact

reformulations proposed in this paper. The results of Table 3 might seem contradictory with the

results presented in [Vayanos et al., 2022, Table 1], which report instances of up to 50 items being

solved in a few seconds for K ∈ [10]. However, notice that Vayanos et al. [2022] model uncertainty

by projecting a 4-dimensional box into Rn, specifically,

Ξfactor =
{
ξ ∈ Rn

∣∣ ∃ζ ∈ [−1, 1]L : ξi = ψi(ζ)
}
,

for given affine mappings ψi, and L = 4 risk factors. As stated in Observation 3, (DDID) is then

equivalent to (Wait&See) as soon as 4 items or more can be investigated, probably explaining the

relative simplicity of the instances tested in Vayanos et al. [2022]. In fact, a preliminary version

of their work used instead L ∈ {20, 30} factors, reporting solution times more aligned with those

presented in Table 3, see [Vayanos et al., 2020, Figure 3]. Another source of simplification in Vayanos

et al. [2022] is that they consider p = 1, while we consider larger values of this parameter here,

which appears to have a significant impact on the solution times.

6.2 Orienteering problem

Our second set of experiments focuses on a particular routing problem considered by Paradiso et al.

[2022]: the orienteering problem. That problem is a special case of the maximization counterpart

detailed in Section C, which we specify next by defining Ymax and Ξmax (the maximization coun-
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terparts of Y and Ξ). Consider a complete and undirected graph with n+ 2 nodes, numbered from

0 to n + 1, where nodes 0 and n + 1 denote the start and destination nodes, respectively, so [n]

indexes all nodes different from the depot. We denote by tij the travel time of edge {i, j} and by

T the maximum travel time. Any feasible element in Ymax is an elementary path from 0 to n+ 1

having a total weight that does not exceed T . Introducing binary variable xe to model the use of

edge e in the path, and denoting the star of node i as E(i) = {e ∈ E | i ∈ e}, we formulate Y as

Ymax =


y ∈ {0, 1}n : ∃z ∈ {0, 1}|E| s.t. tT z ≤ T,∑

e∈E(0) ze =
∑

e∈E(n+1) ze = 1,
∑
e∈E(i)

ze = 2yi, ∀i ∈ [n],

subtour elimination constraints


,

where “subtour elimination constraints” denotes any set of constraints preventing cycles in y

(e.g. Taccari [2016]). Polytope Pmax is obtained from Ymax by removing the integrality restrictions

on y and z and projecting the resulting polytope on variables y. Furthermore, we follow Paradiso

et al. [2022], and define c = 0, W =
{
w ∈ {0, 1}n

∣∣∣ ∑i∈[n]wi ≤ q
}

, and

Ξmax =

ξ ∈ Rn
∣∣∣∣∣∣
∑
i∈[n]

ξi ≥ 1, 0 ≤ ξi ≤ U,∀i ∈ [n]

 ,

for some given U > 0 and q = dδne for some given δ ∈ (0, 1). Clearly, conv(Ymax) ⊂ Pmax, so we

cannot apply the results from Section C to this problem.

Therefore, we consider instead the convex hull formulation described in Section 5.1 and test

the two approaches described in that section. First, we consider the exact algorithm, based on

the full enumeration of the elements in Y. We use a maximization counterpart of Observa-

tion 4, thus enumerating only the maximal paths in Y. However, Observation 5 could not be

leveraged. Indeed, the maximization counterpart of (26) becomes maxξ∈Ξmax

∑
i∈[n](ci + ξi)ỹs,i <

maxy∈Ymax minξ∈Ξmax

∑
i∈[n](ci + ξi)ỹs,i. With the above definitions of c and Ξmax, the condition

becomes min(1, U |ỹs|) < max (0, 1− U(n−maxy∈Ymax |y|)) , which is never satisfied for the values

of n and U provided in Table 6, even when |ỹs| = 1 and maxy∈Ymax |y| = 1. Second, we consider

the heuristic based on the column-generation at the root node. The “subtour elimination con-

straints” used in our experiments are the classical Dantzig-Fulkerson-Johnson subtour elimination
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constraints, separated exactly at the integer node of the branch-and-cut-tree, together with the

generalized cutset inequalities, separated heuristically at fractional nodes using Tarjan’s algorithm

as detailed in Taccari [2016]. We test the algorithms on a subset of the instances from Paradiso

et al. [2022], consisting of complete graphs with 10 to 31 nodes (excluding the depots), and further

described in the appendix.

instance δ Opt (#) time (s) (solved) time (s) (all) gap (%) w.r.to
CB conv CB conv CG CG CB max(CB, conv)

TS2N10
0.25 9/9 9/9 5.4 0.1 0.41 0.41 0.0 0.0
0.5 9/9 9/9 3.5 0.1 0.64 0.64 0.0 0.0
0.75 9/9 9/9 2.3 0.11 0.69 0.69 0.0 0.0

TS1N15
0.25 14/14 14/14 122 72 0.74 0.74 0.0 0.0
0.5 14/14 14/14 69 71 1.6 1.6 0.2 0.2
0.75 14/14 14/14 13 70 3.1 3.1 0.0 0.0

TS3N16
0.25 14/14 13/14 66 463 2.1 2.0 0.0 0.0
0.5 14/14 13/14 94 464 5.9 5.5 0.2 0.2
0.75 14/14 13/14 18 464 6.5 6.1 0.0 0.0

TS2N19
0.25 6/11 7/11 2534 101 1.8 2.1 0.5 0.5
0.5 8/11 7/11 3122 612 29 24 0.2 0.2
0.75 11/11 7/11 602 718 33 30 0.0 0.0

TS1N30
0.25 6/18 6/18 0.36 0.02 2.1 16 -4.1 -0.3
0.5 6/18 6/18 0.33 0.02 2.1 81 -2.7 -1.1
0.75 10/18 6/18 233 707 63 260 -0.3 -0.3

TS3N31
0.25 6/20 4/20 – – – 42 -5.4 -0.8
0.5 6/20 4/20 – – – 225 -3.3 -0.6
0.75 8/20 4/20 2994 4.0 65 409 -0.6 -0.3

Table 4: Numerical results on the orienteering problem. Italicized results have been provided
by Paradiso [2023] and have been run on a configuration different than ours. Entries “–” indicate
no subset of instances solved by all methods.

The results are presented in Table 4. Columns CB, conv and CG respectively denote the combi-

natorial Benders algorithm from Paradiso et al. [2022], the exact convexification and the column-

generation algorithm from Section 5.1. The columns “Time” report the average solution times over

the subset of instances solved by all methods, which may be empty, leading to the entry “–”. The

additional column “Time (all)” reports the average solution times on all instances. The columns

“gap” report the cost difference between Φ(w) for the solution w returned by CG and (i) the best

solution returned by CB, and (ii) the best known solution. Notice that the results reported for

CB have been carried out using a different configuration (processor, CPLEX, parallelism), so the

comparison between the respective columns should be made with care.
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Overall, our results indicate that conv, despite its exhaustive enumeration, is somewhat compet-

itive, solving nearly as many instances as CB, some of them faster (e.g. TS2N19). More importantly,

its heuristic variant CG scales well with the dimensions of the instances, solving them in a few min-

utes for the largest. The results also indicate that the best solution returned by CG is almost

always optimal, often beating the best solutions returned by CB for the most difficult instances

(corresponding to the negative gaps). We report additional statistics on algorithms conv and CG

in Appendix E, including the excellent root gap of the MILP reformulation.

6.3 Minimum spanning tree

Our last benchmark focuses on the DDID counterpart of the minimum spanning tree problem

(MST), on which we illustrate and compare the three solution methods presented in Sections 4

and 5. As a first approach we solve the compact MILP given by (DDID-SIP) for the directed

multicommodity flow formulation of the MST, see Magnanti and Wolsey [1995], denoted compact.

This formulation is compact and known to be exact, so Proposition 5 applies. The second approach,

CG, relies on the column generation heuristic, already illustrated for the orienteering problem. Each

column added corresponds to an optimal tree returned by the Kruskal algorithm. The third ap-

proach, CP, is a cutting plane algorithm following the scheme described in Section 5.2. We consider

the subtour formulation of the MST, see Magnanti and Wolsey [1995]. For a given solution θ∗ of

the current relaxation, we separate constraints of the subtour formulation by following the algo-

rithm described by Magnanti and Wolsey [1995]. Given that the multi-commodity flow formulation

is exact, for each u∗` > 0 the maximum flow from one arbitrary root to any other vertex must be

equal to u∗` if y∗l ∈ conv(Y). Otherwise, the minimum cut provides a subtour constraint to be added

to the relaxed formulation. To speed-up the cutting plane generation, the initial relaxation of CP

includes one set of aggregated multicommodity flow constraints (instead of one set of constraints

for each ` ∈ [n]0 in compact).

The three methods are compared on a benchmark similar to that used by Focke et al. [2020].

Each instance corresponds to an instance of the TSPLib, where each vertex has a given position

and the nominal costs of the edges are given by the distances separating their two endpoints.

The deviation are then set as 50% of the nominal values. We limit the density of the graphs by

considering only the 6 closest neighbors of each vertex.
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name nodes edges Γ q time (s) cols cuts gap (%)
compact CG CP CG CP root CG

burma14.tsp 14 51 3 3 19 2.8 4.0 42 104 0.11 1.7
ulysses22.tsp 22 85 4 4 148 16 25 114 430 0.0 6.6
bays29.tsp 29 105 6 6 – 34 200 53 636 0.15 0.49
swiss42.tsp 42 159 8 8 – 118 102 249 0 0.2 2.4

eil51.tsp 51 186 10 10 – 906 3478 572 561 0.21 0.95

Table 5: Results for the MST presenting solution times, numbers of cuts and columns generated,
root gaps and optimality gaps for CG.

Table 5 presents solution times and statistics for the three algorithms. In the last two “gap”

columns, “root” shows the relative difference between the optimal value found by CP or compact

and that of the linear relaxation of compact and “CG” shows the relative difference between the

best value obtained by CG and the optimal value found by CP or compact. The results indicate that

compact could not solve the three largest instances because of memory issues. In addition to the

good root gaps and the good optimality gaps of CG, the table illustrates the solving capability of

CP, which is able to solve exactly larger instances than compact. The good performance of CP is

partly due to the strong initial relaxation since few subtour inequalities are generated, sometimes

even 0.

7. Conclusion

Decision-Dependent Information Discovery is a recent approach to situations where the decision

maker can investigate some of the parameters before taking her actual decision. While the applica-

tions for the model are countless, the resulting optimization problems have remained very difficult

to solve.

We have provided in this paper new efficient solution algorithms for the problem assuming

that only the costs are uncertain, and that they belong to a knapsack uncertainty polytope. We

have proposed a compact MILP formulation for the DDID counterpart of a nominal optimization

problem that has a compact linear description. We have illustrated the reformulation on the

selection problem, solving exactly instances with 50 items in one second on average, significantly

improving over the literature. We have extended our reformulations to problems for which no

compact linear formulation is available (such asNP-hard problems) through column generation and

29



row generation algorithms. Our experiments have again illustrated the interest of these algorithms.

On the one hand, the heuristic based on column generation has provided good results on the

orienteering instances considered by Paradiso et al. [2022], providing better primal bounds than

previously known for some of them. On the other hand, the cutting plane algorithm has proved

successful in solving exactly larger problem than possible with the compact reformulation alone.

In addition to these numerically-oriented results and formulations, we have also improved the

theoretical understanding of DDID, showing that the problem is easy as soon as the nominal

problem is polynomially solvable and the number of possible investigations is polynomially bounded.

We have also clarified the link between DDID, the usual min-max counterpart, and the max-

min wait-and-see counterpart, showing how DDID falls down to the latter when the number of

components being investigated is not smaller than than the dimension of the uncertainty set.

This work leads to several interesting open questions for future works. On the numerical side, the

excellent dual bound provided by the column generation algorithm calls for extending the latter

into an exact branch-and-price algorithm, hopefully leading to an efficient way to solve exactly

DDID even when the nominal problem is NP-hard. On the theoretical side, DDID inherits the

NP-hardness of the min-max problem for arbitrary uncertainty sets. However, its complexity is

still unknown for knapsack uncertainty sets, even in situations as simple as the selection problem

with budget uncertainty.
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A. Proof of Section 4

A.1 Proof of Proposition 3

Consider the linear program introduced in Theorem 1, and let us introduce dual variables u` and

y`,i for the first three groups of constraints, together with µ and σi for the constraints defining Ξ.

Dualizing the linear program yields (with the primal variables indicated into brackets)

min
∑
`∈[n]0

rα`u` +
∑
i∈W1

ciy`,i +
∑
i∈W0

(ci + β`,i)y`,i

+
∑
i∈[n]

diσi + rµ

s.t.
∑
`∈[n]0

u` = 1 [ω]

aiµ+ σi ≥ −ai
∑
`∈[n]0

α`u` +
∑
`∈[n]0

y`,i, ∀i ∈ W1 [ξ̄i]

aiµ+ σi ≥ 0, ∀i ∈ W0 [ξ̄i]

By` ≥ u`b, ∀` ∈ [n]0 [λ`]

y`,i ≤ u`, ∀` ∈ [n]0, i ∈ [n] [π`]

u, y, µ, σ ≥ 0.

Notice that the constraints corresponding to ξ̄i for i ∈ W0 are redundant and can be relaxed.

Then, we introduce variables w ∈ W to represent W1 and W0, so the above problem is rewritten

as

min
∑
`∈[n]0

rα`u` +
∑
i∈[n]

ciy`,i +
∑
i∈[n]

β`,iy`,i(1− wi)

+
∑
i∈[n]

diσi + rµ (30)

s.t.
∑
`∈[n]0

u` = 1 (31)

aiµ+ σi ≥ wi

−ai ∑
`∈[n]0

α`u` +
∑
`∈[n]0

y`,i

 , ∀i ∈ [n] (32)

By` ≥ u`b, ∀` ∈ [n]0 (33)

w ∈W (34)

u, y, µ, σ ≥ 0. (35)
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Next, we linearize the product by wi in (32) with a big-M term which yields:

aiµ+ σi ≥ −ai
∑
`∈[n]0

α`u` +
∑
`∈[n]0

y`,i −M(1− wi), ∀i ∈ [n].

Given that y`,i ≤ u`,∀i ∈ [n], we have
∑

`∈[n]0
y`,i ≤

∑
`∈[n]0

u` = 1,∀i ∈ [n]. As a consequence,

M can be set to 1 in (32). We conclude by introducing variables y0
`,i to represent the products

y`,i(1− wi), and adding the linearization constraints y0
`,i ≥ y`,i − wi.

A.2 Proof of Proposition 4

Referring to Theorem 1 and to the proof of Proposition 3, we will consider the pair of primal-dual

adversary formulations given by

P(w)



max ω

s.t. ω ≤

r − ∑
i∈W1

aiξ̄i

α` + bTλ` −
∑
i∈[n]

π`,i, ∀` ∈ [n]0 [u`]

(B·,i)
Tλ` − π`,i ≤ ci + ξ̄i,∀` ∈ [n]0, ∀i ∈ W1 [y`,i]

(B·,i)
Tλ` − π`,i ≤ ci + β`,i,∀` ∈ [n]0, ∀i ∈ W0 [y`,i]

aT ξ̄ ≤ r [µ]

ξ̄ ≤ d [σ]

ξ̄ ≥ 0, λ`, π` ≥ 0, ∀` ∈ [n]0,

D(w) :



min
∑
`∈[n]0

rα`u` +
∑
i∈[n]

ciy`,i +
∑
i∈W0

β`,iy`,i

+
∑
i∈[n]

diσi + rµ

s.t.
∑
`∈[n]0

u` = 1 [ω]

aiµ+ σi ≥ −ai
∑
`∈[n]0

α`u` +
∑
`∈[n]0

y`,i, ∀i ∈ W1 [ξ̄i]

By` ≥ u`b, ∀` ∈ [n]0 [λ`]

y`,i ≤ u`, ∀` ∈ [n]0, i ∈ [n] [π`]

u, y, µ, σ ≥ 0.
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Let (ξ̄∗, λ∗, π∗) and (u∗, y∗, µ∗, σ∗) be a pair of optimal solutions to P(w) and D(w). Further-

more, recall the notations α` = 1/a` for each ` ∈ [n], and for each i, ` ∈ [n], β`,i = di [1− ai/a`]+ ,

while α0 = 0 and βi,0 = di,∀i ∈ [n].

Assume now that µ∗ > 0. By complementarity, this means that
∑

i∈W1
∗
aiξ̄
∗
i = r. As a conse-

quence, ω∗ ≤ bTλ∗` −
∑

i∈[n] π
∗
`,i, ∀` ∈ [n]0. Now, let ˜̀∈ [n] such that u∗˜̀ > 0 and i ∈ W0 such that

y∗˜̀,i > 0. By complementarity, we have (B·,i)
Tλ∗˜̀− π∗˜̀,i = ci + β`,i. If

β˜̀,i > 0, (36)

we build a new solution, (ω∗, ξ̄∗, λ′, π′), of P(w∗) by slightly modifying λ∗ and π∗. We set λ′˜̀ := λ∗i

and π′˜̀ := π∗i while keeping the other components of π∗ and λ∗ unchanged. Observing that (36) is

equivalent to a˜̀> ai, one can verify that (ω∗, ξ̄∗, λ′, π′) is feasible for P(w∗) and (B·,i)
Tλ′˜̀− π′˜̀,i <

ci + β`,i. However, by complementarity, we also get (B·,i)
Tλ′˜̀− π′˜̀,i = ci + β`,i, a contradiction.

Therefore, β˜̀,i = 0 (and thus
[
1− ai

a`

]+
= 0) for all i ∈ W0 and ` ∈ [n]0 such that y∗`,i > 0.

Transposing the above reasoning to ˜̀= 0, we have β0,i > 0 so that y∗0,i = 0 for each i ∈ W0.

Using the above, we get that the objective value of D(w∗) is given by

r

µ∗ +
∑
`∈[n]

α`u
∗
`

+
∑
i∈[n]

diσ∗i + ci
∑
`∈[n]

y∗`,i

 .

The dual constraint of ξ̄i, i ∈ W1 may then be rewritten as:

µ∗ ≥ 1

ai

−σ∗i +
∑
`∈[n]

y∗`,i

−∑
`∈[n]

α`u
∗
` ,

which must be active for at least one element of W1, which we denote j. Recalling 1/aj = αj , this

means in particular that

µ∗ ≤ αj
∑
`∈[n]

y∗`,j −
∑
`∈[n]

α`u
∗
` ≤

∑
`∈[n]

(αj − α`)u∗` .

As a consequence, there is ` ∈ [n]0 such that u∗` > 0 and α` < αj . Using the above, we build

another optimal solution of D(w∗), (y′, u′, µ′, σ∗), where µ′ = 0, by iteratively decreasing the
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values of nonzero variables u`, and increasing the value of uj while keeping constant the value of

µ∗ +
∑

`∈[n] α`u
∗
` . The iterative construction is formalized in Algorithm 1. At each step, one index

` such that u∗` > 0 and α` < αj is considered. The first computed value, δ, is the largest decrease

of u′k such that u′k ≥ 0 and µ′ ≥ 0 at the end of the algorithm. The update of y′k and y′j then

guarantee that y′` ≤ u′`, ∀` ∈ [n], By′` ≥ u′`b,∀` ∈ [n], and
∑

`∈[n] y
′
` =

∑
`∈[n] y

∗
` . Finally, the update

of µ′ is such that µ′+
∑

`∈[n] α`u
′
` = µ∗+

∑
`∈[n] α`u

∗
` . It is then straightforward to verify that each

step keeps (y′, u′, µ′, σ∗) feasible and leaves its objective value unchanged. Moreover, we can verify

that either µ′ = 0 at the end of an iteration or δ = u∗k. At the end of the algorithm, we thus have

µ′ ≤ µ∗ −
∑
k∈K

(αj − αk)u∗k

≤
∑
`∈[n]

(αj − α`)u∗` −
∑

`∈[n]:a`>aj

(αj − αk)u∗k ≤ 0.

initialization: y′ := y∗, u′ := u∗, µ′ := µ∗,K = {k ∈ [n] | u∗k > 0, αk < αj }.
1 for k ∈ K do

2 δ := min
{
u∗k,

µ′

αj−αk

}
3 u′k ← u′k − δ
4 u′j ← u′j + δ

5 y′k ← y′k −
δ
u∗k
y∗k

6 y′j ← y′j + δ
u∗k
y∗k

7 µ′ ← µ′ − δ (αj − αk)
8 if µ′ = 0 then
9 break

10 return (y′, u′, µ′)

Algorithm 1: Construction of an solution optimal solution where µ′ = 0

A.3 Proof of Proposition 5

We show that the model is a valid linearization of the intermediary model (30)–(35) of the proof of

Proposition 3, having removed variable µ in accordance with Proposition 4. For this, we introduce

u1
i,` := wiu`, u

0
i,` := (1− wi)u`, y1

i,` := wiy`,i, y
0
i,` := (1− wi)y`,i. Variables u1 and y1 stand for the

decisions whose cost coefficients have been investigated whereas u0 and y0 stand for the others. The

definitions of u1 and u0 may then be enforced in the model by adding the constraints u` = u0
`,i+u

1
`,i,

u0
`,i ≤ 1 − wi and u1

`,i ≤ wi, for all ` ∈ [n]0 and i ∈ [n]. Similar constraints could be added to
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linearize y0 and y1, but we instead leverage constraints y`,i ≤ u`, ` ∈ [n]0, i ∈ [n], to add the tighter

constraints y`,i = y0
`,i + y1

`,i, y
0
`,i ≤ u0

`,i and y1
`,i ≤ u1

`,i for all ` ∈ [n]0 and i ∈ [n]. The objective

function (30) and constraints (32) are then naturally linearized using the definitions of y0, u1 and

y1. Finally, constraints Gu1
` ≤ u`g are not necessary, but they are valid inequalities obtained by

multiplying Gw ≤ g by u` for each ` ∈ [n]0.

A.4 Proof of Proposition 6

We consider a feasible solution to the linear relaxation of (DDID-SIP) given by vectors w̄, ū, ū0, ū1, ȳ, ȳ0, ȳ1, σ̄

and we consider its projection on the variables of (DDID-WIP), w̄, ū, ȳ, ȳ0, σ̄, µ̄ where µ̄ = 0. The

satisfaction of most constraints is immediate, but some verifications need to be carried out for

constraints y0
l,i ≥ y`,i − wi and σi ≥ −ai

∑
`∈[n]0

α`u` +
∑

`∈[n]0
y`,i − (1 − wi). For the former, we

use that ȳ = ȳ0 + ȳ1 and ȳ1 ≤ ū1 to show that ȳ0
`,i ≥ ȳ`,i− ū1

`,i ≥ ȳ`,i− w̄i for all ` ∈ [n]0, i ∈ [n]. To

show that the latter constraints are satisfied, we infer the following sequence of inequalities from

the linear constraints of (DDID-SIP).

− ai
∑
`∈[n]0

α`ū` +
∑
`∈[n]0

ȳ`,i − (1− w̄i)

= −ai
∑
`∈[n]0

α`ū
1
`,i +

∑
`∈[n]0

ȳ1
`,i − ai

∑
`∈[n]0

α`ū
0
`,i +

∑
`∈[n]0

ȳ0
`,i − (1− w̄i)

≤ −ai
∑
`∈[n]0

α`ū
1
`,i +

∑
`∈[n]0

ȳ1
`,i − ai

∑
`∈[n]0

α`ū
0
`,i +

∑
`∈[n]0

ū0
`,i −

∑
`∈[n]0

ū0
`,i

≤ −ai
∑
`∈[n]0

α`ū
1
`,i +

∑
`∈[n]0

ȳ1
`,i

≤ σi.

B. Proofs of Section 5.1

B.1 Proof of Observation 4

To prove inequality zDDID ≥ z̃DDID, let (u∗, u0∗, u1∗, y0∗, y1∗, σ∗, λ∗) be an optimal solution to (DDID-CG)

associated to Y. We construct a solution (u∗, u0∗, u1∗, y0∗, y′1, σ∗, λ′) to the formulation associated

to Ỹ by setting λ′s = λ∗s for s ∈ [t] \ {s1, s2}, λ′s1 = λ∗s1 + λ∗s2 (notice variable λ′s2 does not exist
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in the new model) and y′1`,i =
∑

s∈[t] λ
′
`,sỹs,i − y∗0`,i, ` ∈ [n]0, i ∈ [n]. Observe that ỹs1 ≤ ỹs2 im-

plies that
∑

s∈[t] λ
′
`,sỹs,i ≤

∑
s∈[t] λ

′
`,sỹs,i and y′1`,i ≤ y∗1`,i for all ` ∈ [n]0, i ∈ [n]. A a consequence,

one readily verifies that (u∗, u0∗, u1∗, y0∗, y1′, σ∗, λ′) is feasible and its cost is not larger than that

of (u∗, u0∗, u1∗, y0∗, y1∗, σ∗, λ∗). The reverse inequality is even more direct, plugging the solution

obtained for Ỹ into the formulation associated to Y.

B.2 Proof of Observation 5

Let (w∗, ξ̄∗, y∗, ξ∗) be an optimal solution to (DDID). If y∗ 6= ỹs, the result is immediate. Other-

wise, we detail next the resulting contradiction. Notice first that (26) implies maxξ∈Ξ
∑

i∈[n](ci +

ξi)ỹs,i > zMM, and therefore miny∈Ỹ maxξ∈Ξ
∑

i∈[n](ci + ξi)yi = miny∈Y maxξ∈Ξ
∑

i∈[n](ci + ξi)yi.

On the one hand, Ỹ ⊂ Y implies zDDID ≤ z̃DDID. On the other hand, we have that

zDDID = Φ(w∗) =
∑
i∈[n]

(ci + ξ∗i )ỹs,i

≥ min
ξ∈Ξ

∑
i∈[n]

(ci + ξi)ỹs,i

> min
y∈Y

max
ξ∈Ξ

∑
i∈[n]

(ci + ξi)yi

= min
y∈Ỹ

max
ξ∈Ξ

∑
i∈[n]

(ci + ξi)yi

= min
y∈Ỹ

max
ξ̄∈Ξ

max
ξ∈Ξ(w∗,ξ̄)

∑
i∈[n]

(ci + ξi)yi

≥ max
ξ̄∈Ξ

min
y∈Ỹ

max
ξ∈Ξ(w∗,ξ̄)

∑
i∈[n]

(ci + ξi)yi

≥ min
w∈W

max
ξ̄∈Ξ

min
y∈Ỹ

max
ξ∈Ξ(w,ξ̄)

∑
i∈[n]

(ci + ξi)yi = z̃DDID,

where the third inequality arises from (26).
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C. Maximization counterpart

C.1 Context

We mention next two natural ways to define a maximization counterpart to (DDID). To obtain

more symmetry between minimization and maximization results, we define the maximization feasi-

bility set as Ymax = {y ∈ Zn | By ≤ b, 0 ≤ y ≤ 1} ⊆ {0, 1}n and Pmax = {y ∈ Rn | By ≤ b, 0 ≤ y ≤ 1} ⊆

{0, 1}n (we have replaced By ≥ b with By ≤ b when compared to the minimization problem). The

first natural maximization counterpart (studied for instance by Goetzmann et al. [2012]) considers

that ξ characterizes the amount of deviation the adversary may subtract from c and thus limits

that total amount using knapsack constraints, leading to the model defined as

max
w∈W

min
ξ̄∈Ξ

max
y∈Ymax

min
ξ∈Ξ(w,ξ̄)

∑
i∈[n]

(ci − ξi)yi. (37)

It so happens that all our results for (DDID) extend immediately to the case (37). Hence, we do

not further mention (37) in what follows. However, following Paradiso et al. [2022], one can come

up with an alternative model, which considers instead that ξ is a value that is added to c, thus

bounded from below by knapsack constraints with reverse directions. In that context, we say that

Ξmax is a knapsack uncertainty polytope if it is of the form

Ξmax =
{
ξ ∈ Rn

∣∣ A′ξ ≥ e′, 0 ≤ ξ ≤ d} ,
and we consider the robust counterpart

max
w∈W

min
ξ̄∈Ξmax

max
y∈Ymax

min
ξ∈Ξmax(w,ξ̄)

∑
i∈[n]

(ci + ξi)yi. (DDIDmax)

denoting by Φmax(w) the outermost objective function

Φmax(w) = min
ξ̄∈Ξmax

max
y∈Ymax

min
ξ∈Ξmax(w,ξ̄)

∑
i∈[n]

(ci + ξi)yi.

Following Assumption 2, we will again consider a unique constraint in the system A′ξ ≥ e′. We

detail in what follows the reformulations obtained for (DDIDmax), which are quite similar to those
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obtained for (DDID).

C.2 Reformulations

We present first the counterpart of Proposition 2 for the maximization counterpart of (Min-Max),

max
y∈Y

min
ξ∈Ξmax

∑
i∈[n]

(ci + ξi)yi.

Proposition 7. We have

min
ξ∈Ξmax

∑
i∈[n]

(ci + ξi)yi = max
`∈[n]0


r −∑

i∈[n]

aidi

α` +
∑
i∈[n]

(ci + β`i )yi

 ,

where for each ` ∈ [n], α` = 1/a`, and for each i, ` ∈ [n], β`,i = −di([ai/a` − 1]+ − ai/a`), while

α0 = 0 and β0 = 0.

Proof. Similar to the proof of Proposition 2.

We follow with the reformulation of Φmax(w).

Proposition 8. If conv(Ymax) = Pmax, then

Φmax(w) =



min ω

s.t. ω ≥

r − ∑
i∈W0

aidi −
∑
i∈W1

aiξ̄i

α` +
∑
i∈[n]

bi(w)λ`,i, ∀` ∈ [n]0

(B·,i)
Tλ` ≥ ci + ξ̄i, ∀` ∈ [n]0, ∀i ∈ W1

(B·,i)
Tλ` ≥ ci + β`,i, ∀` ∈ [n]0, ∀i ∈ W0

ξ̄ ∈ Ξmax

λ ≥ 0,

where for each ` ∈ [n], α` = 1/a`, and for each i, ` ∈ [n], β`,i = −di([ai/a` − 1]+ − ai/a`), while

α0 = 0 and β0 = 0.

Proof. The proof follows the exact same lines as the proofs of Theorem 1, where only Proposition 2

is replaced by Proposition 7.
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We end up with the compact reformulation for (DDIDmax).

Proposition 9. If conv(Ymax) = Pmax, then (DDIDmax) is equivalent to

max
∑
`∈[n]0

ru` −∑
i∈[n]

aidiu
0
`,i

α` +
∑
i∈[n]

ciy`,i +
∑
i∈[n]

β`,iy
0
`,i

−∑
i∈[n]

diσi

s.t.
∑
`∈[n]0

u` = 1

− σi ≤ −ai
∑
`∈[n]0

α`u
1
`,i +

∑
`∈[n]0

y1
`,i, ∀i ∈ [n]

By` ≤ u`b, ∀` ∈ [n]0

u` ≤ 1− w`, ∀` ∈ [n]

u` = u0
`,i + u1

`,i, ∀` ∈ [n]0, i ∈ [n],∑
`∈[n]0

u0
`,i ≤ 1− wi, ∀i ∈ [n],

∑
`∈[n]0

u1
`,i ≤ wi, ∀i ∈ [n],

Gu1
` ≤ u`g, ∀` ∈ [n]0,

y`,i = y0
`,i + y1

`,i, ∀` ∈ [n]0, i ∈ [n]

y0
`,i ≤ u0

`,i, ∀` ∈ [n]0, i ∈ [n]

y1
`,i ≤ u1

`,i, ∀` ∈ [n]0, i ∈ [n]

w ∈W

u, v, x, y, y0, y1, σ ≥ 0,

(38)

Proof. The proof follows the exact same lines as the proofs of Proposition 3, 4 and 5.

D. Compact reformulation for selection problem with K-adaptability

The K-adaptability approximation amounts to pre-select K recourse policies and choose the best

of them upon realization of the uncertain parameters. Applied to (DDID), one obtains

zKadapt = min
w∈W

yk∈Y,k∈[K]

max
ξ̄∈Ξ

min
k∈[K]

max
ξ∈Ξ(w,ξ̄)

∑
i∈[n]

(ci + ξi)yi. (K-ADAPT)
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Consider the sets Ysel, Wsel and the budget uncertainty polytope

Ξ =

ξ ∈ Rn
∣∣∣∣∣∣
∑
i∈[n]

ξi − ci
di

≤ Γ, ξ ≤ c+ d,−ξ ≤ −c

 .

Applying [Vayanos et al., 2022, Corollary 1] to (K-ADAPT) together with the symmetry breaking

constraints detailed in Section EC.3.1. of Vayanos et al. [2022], leads to the formulation presented

below. For readability, we subdivide the dual variables β into βΓ, βub (for the upper bounds on

ξ) and βlb (for the lower bounds on ξ) and similarly for βk. We model the constraints γki = wiγ
k
i

with indicator constraints to avoid the burden of computing tight big M . Furthermore, we define

Γ′ = Γ +
∑

i∈[n] ci/di.

min Γ′

βΓ +
∑

k∈[K]

βk,Γ

+
∑
i∈[n]

(ci + di)

βub
i +

∑
k∈[K]

βk,ub
i

−∑
i∈[n]

ci

βlb
i +

∑
k∈[K]

βk,lb
i


s.t.

∑
i∈[n]

wi = q

∑
i∈[n]

yki = p, ∀k ∈ [K]

∑
k∈[K]

αk = 1

βk,Γ

di
+ βk,ub

i − βk,lb
i + γki = yki , ∀i ∈ [n], k ∈ [K]

βΓ

di
+ βub

i − βlb
i =

∑
k∈[K]

γki , ∀i ∈ [n]

wi = 1 =⇒ γki = γki , ∀i ∈ [n], k ∈ [K]

wi = 0 =⇒ γki = 0, ∀i ∈ [n], k ∈ [K]

yki ≤ yki , yki ≤ αk, yki ≥ αk − 1 + yki ∀i ∈ [n], k ∈ [K]

zk,k+1
i ≤ yki + yk+1

i , zk,k+1
i ≤ 2− yki − yk+1

i ∀i ∈ [n], k ∈ [K − 1]

zk,k+1
i ≥ yki − yk+1

i , zk,k+1
i ≥ yk+1

i − yki ∀i ∈ [n], k ∈ [K − 1]

yki ≥ yk+1
i −

i−1∑
j=1

zk,k+1
j ∀i ∈ [n], k ∈ [K − 1]

β ≥ 0, βk ≥ 0, α ≥ 0, y, z binary
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name U T

TS1N15 0.10 {5, 10, . . . , 70}
TS2N10 0.20 {15, 20, 23, 25, 27, 30, 32, 35, 38}
TS3N16 0.10 {5, 10, . . . , 80}
TS1N30 0.05 {5, 10, . . . , 85}
TS2N19 0.15 {15, 20, 23, 25, 27, 30, 32, 35, 38, 40, 45}
TS3N31 0.05 {15, 20, . . . , 120}

Table 6: Instances taken from Paradiso et al. [2022], N being equal to n.

instance δ root gap |Ymax| % time generating Ymax
conv CG conv CG

TS2N10
0.25 2.2 12 6.6 36 3.3
0.5 1.8 12 9.2 35 2.5
0.75 0.0 12 10 38 1.6

TS1N15
0.25 1.4 80 8.6 12 5.6
0.5 0.73 80 15 16 6.2
0.75 0.0 80 24 16 5.7

TS3N16
0.25 4.0 121* 19 15* 1.2
0.5 1.0 121* 33 20* 0.98
0.75 0.03 121* 34 16* 0.64

TS2N19
0.25 2.6 898* 13 0.37* 1.5
0.5 2.6 898* 49 2.1* 0.23
0.75 0.04 898* 55 2.1* 0.15

TS1N30
0.25 0.5 2132* 36 29* 1.0
0.5 0.62 2132* 86 35* 0.69
0.75 0.01 2132* 190 26* 0.64

TS3N31
0.25 1.7 3088* 66 4.4* 0.17
0.5 0.58 3088* 154 5.4* 0.16
0.75 0.0 3088* 237 6.6* 0.04

Table 7: Additional average statistics on conv and CG on solved instances, mark “*” indicates
there are unsolved instances in the group.

E. Additional details for the orienteering problem

The details of the instances used in our experiments are displayed in Table 6.

Table 7, displaying the root gap of CG, the number of paths generated by both algorithms and the

average fraction of time spent generating these paths. The table illustrates again the excellent root

gap of the MILP reformulation, which decreases as the amount of possible observation increases. It

also shows how small instances lead on average to sets Y of small cardinality, explaining the very

quick solution times of conv for the small instances.
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