Supplementary Material for

Goethite affects phytolith dissolution through clay particle aggregation and pH regulation

Zimin Li^a, Jean-Dominique Meunier^b, Bruno Delvaux^a

^a Earth and Life Institute, Soil Science, Université catholique de Louvain (UCLouvain), Croix du Sud 2, L7.05.10, 1348 Louvain-La-Neuve, Belgium

^b CNRS, CEREGE, Aix Marseille Université, IRD, INRAE,13545 Aix-en-Provence Cedex 04, France

*Corresponding author: <u>zimin.li@uclouvain.be</u> (Zimin Li)

Address: Earth and Life Institute, Soil sciences, Université catholique de Louvain (UCLouvain), Croix du Sud 2 / L7.05.10, 1348 Louvain-la-Neuve, Belgium.

Submitted to the journal of Geochimica et Cosmochimica Acta

Contents of this file:

Figures S1 to S3

Tables S1 and S2

S-References

Figure S1. Time evolution of Si and Al concentrations in 0.1 M Na₂CO₃ extracts (Na₂CO₃–Si, Na₂CO₃–Al) and Al/Si molar ratio from unaggregated mixtures (left: a, c, e) and aggregates (right: b, d, f) with various goethite concentrations: Na₂CO₃–Si evolution in (a) unaggregated mixtures, (b) aggregates, Na₂CO₃–Al evolution in (c) unaggregated mixtures, (d) aggregates; Al/Si molar ratio in (e) unaggregated mixtures, (f) aggregates.

Figure S2. Time evolution, in the 0.01 M CaCl₂ extract, of (a-b) Si concentration (CaCl₂–Si), (c) pH (pH_{CaCl2}) for individual constituents (quartz, *Charentes* kaolinite, and rice phytolith). Time evolution of (d) Al concentration (CaCl₂–Al), and (e) Al/Si ratio for Charentes kaolinite.

Note that the experimental data were similar to those reported by Li et al. (2022), though they have been acquired in a new experimental design, as notified in the section *Materials and methods*.

Figure S3. Time evolution of Al concentrations in 0.01 M CaCl₂ extracts (CaCl₂–Al) from unaggregated mixtures (a) and aggregates (b) with various goethite proportion.

Table S1. Soil organic C budget in unaggregated mixtures and aggregates at each goethite concentration. A different lowercase letter (a, b) resulting from the independent samples *t*-separation test, indicates a significant difference between unaggregated mixtures and aggregates at a given goethite content (p < 0.05); a different uppercase letter (A, B, C) resulting from *LSD's* multiple comparison test, indicates a significant difference in either unaggregated mixtures or aggregates with various goethite contents (p < 0.05).

Treatment	Total initial C (TC)	DOC	DOC contribution to TC	C release rate*	
	$g C kg^{-1}$	g C kg ⁻¹	%	mg C kg ^{-1} TC hour ^{-1}	
mixture-0	21.90	3.92 Aa	17.88 Aa	11.18Aa	
mixture-10	21.90	3.74 Aa	17.07 Aa	10.67Aa	
mixture-20	21.90	3.71 Aa	16.95 Aa	10.60Aa	
mixture-40	21.90	3.30 Ba	15.05 Ba	9.40B7a	
mixture-60	21.90	3.40 Ba	15.53 Ba	9.70Ba	
mixture-80	21.90	3.44 Ba	15.70 Ba	9.81Ba	
aggregate-0	21.90	2.40 Ab	10.96 Ab	6.85Ab	
aggregate-10	21.90	1.58 Bb	7.23 Bb	4.52Bb	
aggregate-20	21.90	1.54 Bb	7.03 Bb	4.39Bb	
aggregate-40	21.90	1.32 Bb	6.04 Bb	3.78Bb	
aggregate-60	21.90	1.03 Cb	4.71 Cb	2.94Cb	
aggregate-80	21.90	1.04 Cb	4.77 Cb	2.98Cb	

*Hourly release rate of DOC in 0.01 M CaCl₂

	days	16h	2d	4d	8d	16d	32d	64d
phytolith	log ₁₀ (H ₄ SiO ₄)	-3.14	-2.45	-2.33	-2.26	-2.01	-1.74	-1.72
	pH	3.6	4.3	3.6	3.7	3.7	3.9	3.6
	\log_{10} (Ge)	-2.66	-	-2.58	-2.50	-2.51	-2.38	-2.30
quartz	log_{10} (H ₄ SiO ₄)	-5.20	-4.44	-4.39	-4.19	-4.20	-4.21	-4.16
	pH	5.9	5.8	4.5	4.6	4.7	4.5	4.4
	log ₁₀ (Ge)	nd						
kaolinite	log ₁₀ (H ₄ SiO ₄)	-4.39	-4.13	-3.96	-3.78	-3.57	-3.35	-3.28
	$\log_{10}(Al^{3+})$	-6.31	-6.24	-6.22	-6.21	-6.23	-6.20	-6.06
	\log_{10} (Ge)	-3.09	-	-3.01	-2.98	-3.04	-2.98	-3.04
	pН	3.7	3.5	3.6	3.7	3.7	3.9	3.8
	log_{10} (H ₄ SiO ₄)	-4.02	-3.63	-3.44	-3.21	-3.06	-3.05	-2.93
minturaç	$\log_{10}(Al^{3+})$	-4.25	-4.15	-4.16	-3.89	-3.99	-4.57	-4.45
mixtures-0	\log_{10} (Ge)	-3.04	-	-2.96	-2.95	-3.03	-3.99	-4.09
	pН	4.9	4.8	5.0	5.0	5.3	5.2	5.5
	log_{10} (H ₄ SiO ₄)	-3.90	-3.62	-3.39	-3.20	-2.98	-2.96	-2.82
mixtures 10	$\log_{10}(Al^{3+})$	-4.22	-4.35	-4.30	-4.05	-3.79	-4.90	-4.03
mixtures-10	\log_{10} (Ge)	-3.07	-	-2.99	-2.98	-3.06	-3.59	-3.39
	pH	4.9	5.0	5.0	5.7	5.7	5.8	6.3
minture 20	$log_{10}(H_4SiO_4)$	-3.87	-3.39	-3.33	-3.06	-2.95	-2.86	-2.82
	$\log_{10}(Al^{3+})$	-4.27	-4.24	-5.36	-5.64	-5.29	-5.32	-4.47
IIIIXtures-20	log ₁₀ (Ge)	-3.17	-	-3.09	-3.08	-3.16	-2.92	-3.27
	pH	4.9	5.4	5.7	6.6	5.8	5.9	6.6
	$log_{10}(H_4SiO_4)$	-3.84	-3.41	-3.14	-3.05	-2.90	-2.84	-2.75
mintures 10	$\log_{10}(Al^{3+})$	-4.38	-4.36	-4.37	-5.85	-5.23	-5.58	-4.15
mixtures-40	\log_{10} (Ge)	-2.94	-	-2.86	-2.85	-2.93	-2.84	-2.97
	pH	5.0	5.5	5.1	6.6	5.9	5.6	6.6
mixtures-60	$log_{10}(H_4SiO_4)$	-3.67	-3.26	-3.09	-2.96	-2.89	-2.80	-2.76
	$\log_{10}(Al^{3+})$	-4.45	-4.37	-5.75	-5.76	-5.69	-5.78	-4.17
	log ₁₀ (Ge)	-2.90	-	-2.82	-2.81	-2.89	-2.53	-2.69
	pH	5.1	5.5	5.7	5.7	6.0	6.8	7.3
mixtures-80	$\log_{10}(H_4SiO_4)$	-3.63	-3.25	-3.12	-2.95	-2.87	-2.81	-2.70
	$\log_{10}(Al^{3+})$	-4.34	-4.47	-5.68	-5.82	-5.45	-5.76	-3.71
	\log_{10} (Ge)	-2.86	-	-2.78	-2.77	-2.85	-2.63	-2.57
	pH	5.1	5.8	5.6	6.4	6.4	6.7	7.5
	$\log_{10}(H_4SiO_4)$	-3.78	-3.40	-3.29	-3.16	-3.07	-2.88	-2.82
aggregate-0	$\log_{10}(Al^{3+})$	-4.06	-3.99	-4.50	-4.89	-5.16	-5.18	-4.15
	\log_{10} (Ge)	-3.03	-	-2.96	-2.95	-3.02	-3.46	-3.66
	pH	5.2	5.3	5.9	6.6	6.2	6.5	7.0
aggregate-10	log ₁₀ (H ₄ SiO ₄)	-3.68	-3.37	-3.21	-3.12	-2.98	-2.85	-2.82
	$\log_{10}(Al^{3+})$	-4.38	-4.69	-5.43	-5.53	-5.45	-5.55	-4.36
	\log_{10} (Ge)	-3.34	-	-3.26	-3.24	-3.31	-3.29	-3.79
	pH	5.5	6.8	6.6	6.8	7.2	7.2	7.7
aggregate-20	$log_{10}(H_4SiO_4)$	-3.65	-3.28	-3.15	-3.07	-2.98	-2.84	-2.81

Table S2. pH, concentrations (mol l⁻¹) of H₄SiO₄ and Al, and Ge (µmol l⁻¹) in 0.01 M CaCl₂ extractsfrom 16 h to 64 d for phytolith, quartz, kaolinite, and mixtures and aggregates.

	$\log_{10}(Al^{3+})$	-4.51	-4.40	-5.24	-4.78	-5.92	-5.90	-4.52
	\log_{10} (Ge)	-3.32	-	-3.24	-3.22	-3.30	-3.33	-3.61
	pН	5.6	6.3	6.6	6.2	6.9	7.5	7.9
aggregate-40	log ₁₀ (H ₄ SiO ₄)	-3.46	-3.05	-3.02	-2.98	-2.90	-2.82	-2.80
	$\log_{10}(Al^{3+})$	-5.50	-5.81	-6.07	-5.77	-6.01	-5.69	-5.04
	\log_{10} (Ge)	-3.38	-	-3.30	-3.22	-3.23	-2.87	-3.25
	pН	6.3	6.9	6.9	6.7	6.1	6.5	7.9
aggregate-60	$log_{10}(H_4SiO_4)$	-3.40	-3.15	-3.04	-3.03	-2.87	-2.82	-2.86
	$\log_{10}(Al^{3+})$	-5.98	-5.87	-5.87	-5.87	-5.87	-5.75	-4.51
	\log_{10} (Ge)	-3.42	-	-3.34	-3.22	-3.20	-3.07	-3.22
	pН	6.8	7.1	6.9	6.9	6.4	7.2	7.8
aggregate-80	$log_{10}(H_4SiO_4)$	-3.44	-3.11	-3.06	-3.03	-2.91	-2.83	-2.83
	$\log_{10}(Al^{3+})$	-5.68	-5.87	-5.90	-5.90	-5.90	-5.85	-4.53
	\log_{10} (Ge)	-3.20	-	-3.12	-3.07	-3.10	-2.99	-3.11
	pH	7.2	6.7	6.8	7.2	7.0	7.1	7.2

S-References

Li, Z., Meunier, J.-D., Delvaux, B., 2022. Aggregation reduces the release of bioavailable silicon from allophane and phytolith. Geochim. Cosmochim. Acta. 325, 87-105.