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Abstract
When departure from the ideal gas equation of state is considered, the Noble-
Abel stiffened gas model is an appealing and versatile candidate due to its
simple form. The Linear Interaction Approximation formalism is extended to
consider non-ideal gas effects introduced by this equation of state. Kovásznay
decomposition and adequate definition of the energy of disturbances are pro-
vided in the context of this equation of state. Changes with respect to ideal
gas are investigated on transfer functions, critical angle and compression factor.
Those differences yield concrete effects on the damping and transfer of fluctu-
ations across shock waves. Those changes are further illustrated by considering
the interaction of an entropy spot with a Mach 3 stationary shock wave.
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1 Introduction
This is a preprint version. The published version is available at https:
//doi.org/10.1007/s00193-023-01131-8

The Linear Interaction Approximation (LIA) for shock/disturbance analysis has
been proved to be a very powerful and accurate tool to investigate the physics of the
interaction between a shock wave and both laminar and turbulent fluctuating fields
[1]. Based on the pioneering works carried out in the 1950s [2, 3], LIA has been pro-
gressively extended to more and more complex cases, e.g. mixture of ideal gas [4]
and reactive flows [5–8]. A unified framework was recently proposed by [9], along
with a mathematically consistent definition of disturbance energy. The extension to
non-ideal gas was recently investigated by [10, 11] who proposed fully general rela-
tionships for arbitrary equations of state (EOS), with some emphasis put on the BZT
dense gas case. For such a complex EOS, some terms can not be computed analyti-
cally and must be evaluated numerically. The goal of the present paper is to further
work on the extension of LIA for non-ideal gas, by providing a fully explicit the-
ory for the Noble-Abel Stiffened Gas (NASG) model in which all Jacobians are
analytically computed.

The paper is organized as follows. Governing equations for an inviscid NASG-
type fluid are given in Section 2 along with analytical solution of the 2D Rankine-
Hugoniot jump relations for a planar normal shock. Then, the decomposition of both
upstream and downstream fluctuating fields for the NASG EOS are discussed in
Section 3, followed by the formulation of the LIA problem and Chu’s fluctuation
energy extension to NASG EOS in Section 4. The physics for the shock/disturbance
interaction is investigated considering an upstream Gaussian entropy spot in Section
5. Conclusion is presented in Section 6.

2 Governing equations for the NASG model
We consider here an inviscid fluid, with associated Euler conservation laws supple-
mented by the NASG EOS proposed by [12], linking the pressure p, mass volume ρ

and temperature T as

p =
ρ(γ −1)CvT

1−bρ
− p∞, (1)

with Cv the mass heat capacity and γ = Cp/Cv, the heat capacity ratio. In this
EOS, two empirical constants are meant to account for departure from ideal gases,
they are b the covolume and p∞ a reference pressure, respectively accounting for
repulsive and attractive effects between molecules. For such a fluid, one has

e =
p+ γ p∞

p+ p∞

CvT, (2)

for the internal energy, h =CpT +bp for the enthalpy, s =Cv lnT γ/(p+ p∞)
γ−1

for entropy, while the sound velocity c is defined by
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Fig. 1 Compression factor m as function of the upstream shock Mach numer M1 and the parameter bρ1.

c2 = γ
p+ p∞

ρ(1−bρ)
. (3)

Note that the NASG formulation allows to encompass at once the Clausius-
Clapeyron (with p∞ = 0), Stiffened-gas (with b = 0) and ideal gas (with b = p∞ = 0)
equations of states, thus covering a wide range of applications from gas to liquid and
even solid materials, see e.g. [13–17].

The closed form analytical framework for modeling compressible flow in a
medium approximated by the NASG EOS is given by [18, 19]. In what follows, we
briefly recall necessary equations for our purpose. The two-dimensional Rankine-
Hugoniot jump conditions for a planar normal shock wave have the following
analytical solution :

M2
2 =

2+(γ −1)M2
1

1+ γ(2M2
1 −1)

,
p2 + p∞

p1 + p∞

= 1+
2γ

γ +1
(M2

1 −1), (4)

where subscripts 1 and 2 are related to upstream and downstream states,
respectively, while the compression factor m = ρ2/ρ1 = u1/u2 is given by

m =
(γ +1)M2

1

2bρ1(M2
1 −1)+ [2+(γ −1)M2

1 ]
, (5)

with M1/2 the upstream/downstream Mach number. The compression factor m is
plotted in Figures 1 in the (M1,bρ1) plane to illustrate the specific features of the
NASG fluids with respect to the ideal gas case. We see here that the compression
factor m becomes more sensitive to b as the upstream shock Mach number M1 is
increased. This is physically consistent because the molecular repulsive effects mod-
eled by b should be more important for highly compressed materials corresponding
to large shock Mach numbers.



For other quantities like temperature and enthalpy, the classical solutions
expressed as a function of m hold using the new expression (5). Note that 0≤ bρ1 < 1
automatically ensures that 0 ≤ bρ2 < 1.

3 Kovásznay modal decomposition
The linearized Euler equations for small disturbances about a uniform base flow
approximated by the NASG model are

∂ρ ′

∂ t
+ ū

∂ρ ′

∂x
+ ρ̄

∂u′j
∂x j

= 0, (6)

∂u′i
∂ t

+ ū
∂u′i
∂x

+
1
ρ̄

∂ p′

∂xi
= 0, i = 1,2 (7)

∂T ′

∂ t
+ ū

∂T ′

∂x
+

p̄+ p∞

ρ̄Cv

∂u′j
∂x j

= 0, (8)

T ′

T̄
− p′

p̄+ p∞

+
1

1−bρ̄

ρ ′

ρ̄
= 0, (9)

s′

Cp
− 1

γ

p′

p̄+ p∞

+
1

1−bρ̄

ρ ′

ρ̄
= 0, (10)

which allow to identify evolution equations for fluctuating entropy, vorticity and
pressure as

∂ s′

∂ t
+ ū

∂ s′

∂x
= 0, (11)

∂ω ′

∂ t
+ ū

∂ω ′

∂x
= 0, (12)(

∂

∂ t
+ ū

∂

∂x

)2
p′ = c̄2

∇
2 p′. (13)

These equations lead to a straight-forward identification of Kovásznay’s modes,
namely the entropy mode, the vorticity mode and the fast and slow acoustic modes
as in the ideal gas case [20, 21].

Now considering plane wave solutions like φ ′ = Ai(k)exp [i(k · x−Ω t)] (where
φ is a dummy variable and subscripts s,v,a are related to entropy mode, vorticity
mode and acoustic mode, respectively), the expression given in [9] for the upstream
and downstream fluctuating fields are extended as



Fig. 2 Critical angle αc as function of the upstream shock Mach numer M1 and the parameter bρ1
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τ ′1/(τ̄1 −b)

u′1/ū1
v′1/ū1

p′1/[γ(p̄1 + p∞)]
T ′

1/T̄1
s′1/Cp1
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δis
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 , (14)

with τ = 1/ρ and α the incident angle. Formal expressions of the wave numbers
of the emitted non-acoustic and acoustic modes, ks and ka, and the critical angle
αc, and the angles of emitted non-acoustic and acoustic modes, αs and αa, and the
damping coefficient for emitted evanescent acoustic waves η are identical to those
given by [9], but the modified expression of the speed of sound in NASG fluids must
be taken into account in the present case.

The critical angle αc responsible for evanescent waves in the emitted field (see
[9] for a detailed definition) can be seen on Figures 2.

It is observed that increasing bρ1 always results in a decrease of the critical angle,
and therefore a decrease in the intensity of emitted fields compared to the ideal gas
case. These emitted fluctuating fields are,


τ ′2/(τ̄2 −b)

u′2/ū2
v′2/ū2

p′2/[γ(p̄2 + p∞)]
T ′

2/T̄2
s′2/Cp2

=


−Zia

ZiaD2(cosαa + iη)/(M2ζ )
ZiaD2 sinαa/(M2ζ )

Zia
(γ −1)Zia

0





×Ai(k)e−ka ηxei(ka·x−Ω t)+


Zis

Ziv sinαs
−Ziv cosαs

0
Zis
Zis

Ai(k)ei(ks·x−Ω t), (15)

where ζ =
√

1−η2 +2iη cosαa and Di = 1 − bρ̄i. Ai denotes the complex
amplitude of the upstream mode i and Zi denotes the transfer function between the
upstream mode i and the downstream mode j.

4 Formulation of the normal-mode-based LIA
The LIA problem for the evaluation of the complex transfer functions is found in
the usual way [1, 22], i.e. considering an upstream-fluctuation-enslaved shock corru-
gation of the form xs(y, t) = Axei(k sinβy−Ω t) that yields the following linearized
jump relation in the base-shock reference frame, which can be expressed as the
following linear system for complex transfer functions [1, 9, 22]:

MZi = Bi. (16)

In this system we identify the generic matrix M,

M =


sinαs −D2 D2(1+

cosαa+iη
M2ζ

) i(m−1)cosα

2sinαs −D2 D2(
M2

2+1
M2

2
+2 cosαa+iη

M2ζ
) 0

−cosαs 0 D2(
sinαa
M2ζ

) i(1−m)sinα

sinαs
D2

2
(γ−1)M2

2
D2(

1
M2

2
+ cosαa+iη

M2ζ
) im(1−m)cosα

 , (17)

the unknown transfer function vector,

Zi = (Ziv,Zis,Zia,Zix)
T (18)

and the right-hand term, which is dependent on the incident wave’s nature,

Bs =


−D1
−mD1

0
m2D2

1
(γ−1)M2

1

 , Bv =


sinα

2msinα

−mcosα

m2 sinα

 . (19)

Differences in the transfer functions between the ideal gas and the NASG EOS
for the case (M1 = 3,bρ1 = 0.1) are illustrated in Figure 3. Some striking differences
are observed. They mainly occur near the critical angle, where we can see that the
sharp extrema observed for an ideal gas are highly smoothed by a non-zero covolume



Fig. 3 bρ1 = 0.1 : real part (solid line), imaginary part (dashed) and bρ1 = 0 : real part (dotted-dashed),
imaginary part (dotted) of Zi as a function of the incident wave angle α ∈ [0,π/2], for γ = 1.4 and M1 = 3.

parameter b. A similar tendency is found for other values of M1 and bρ1. On the other
hand, the reference pressure does not appears in the LIA system (16) and therefore
transfer functions remain independent from p∞.

The associated definition of the energy of the fluctuating fields derived by [9, 23]
based on Chu’s seminal work [24] is extended for a NASG EOS as follows:

Ẽtot(t) =
1
2

∫
V

{
M̄2 u′2 + v′2

ū
+ D̄2

(
p′

γ(p̄+ p∞)

)2

+
D̄2

γ −1

(
s′

Cp

)2}
dV. (20)

5 Gaussian entropy spot/shock interaction
To illustrate qualitative effects introduced by the NASG EOS compared to an ideal
gas, a parametric study is presented hereafter by considering the interaction between
a shock wave and a Gaussian entropy spot at M1 = 3. The upstream disturbance is

defined as in [9, 22], i.e. s′ = Ase−r2
in a spot-centered frame of reference.

The emitted entropy, vorticity and acoustic pressure field are displayed for bρ̄1 =
0 (ideal gas) and bρ̄1 = 0.1 in Fig. 4.

The observed reduction of the compression factor m and critical angle αc in the
NASG gas results here in a less anisotropic and more dispersed emitted field with a
similar topology when compared to the ideal gas case. Additionally, the normalized
emitted modal and total energies are investigated in the (M1,bρ̄1) plane in Fig. 5, the
case M1 = 3 being further illustrated in Fig. 6.

As deduced from the variations of the compression factor, the energy of all emit-
ted modes is a decreasing function of bρ̄1 and an increasing function of M1. The
emitted entropy mode carries almost all the radiated energy, and the damping of the



Fig. 4 Incident entropy spot, M1 = 3. From left to right : emitted entropy field, emitted vorticity field,
emitted acoustic pressure field. Top sublots : bρ1 = 0, bottom subplots : bρ1 = 0.1.

vorticity mode by real gas effects is seen to be more important than for the entropy
and acoustic modes.

6 Concluding remarks
The Linear Interaction Approximation has been extended to account for non-ideal
thermodynamic effects introduced by the Noble-Abel Stiffened gas EOS [12, 25].
This model encompasses both the Clausius-Clapeyron EOS – valid for high-pressure
gases, and the Stiffened gas EOS – commonly adopted when considering high-
pressure liquids or solids, allowing to extend the Linear Interaction Approximation
theory over a wide range of conditions.

Kovásznay modal decomposition and Chu’s energy accounting for the extra
parameters introduced by the NASG EOS were proposed. Similar modifications were
found in the definition of the orthogonal basis through which the energy of the fluc-
tuating fields [24] is defined. The main non-ideal gas effects found are a decrease of
both the critical angle related to evanescent waves and amplitude of the emitted fields
when the covolume b is increased.

When considering the NASG EOS p =
ρ(γ −1)CvT

1−bρ
− p∞, we found that the p∞

parameter accounting for attraction forces in high-pressure liquids and solids has a
limited effect: only the pressure scaling and the propagation velocity are affected.
Using the proper non-dimensional quantities, emitted entropy, vorticity and acoustic
pressure fields remain unchanged for incident gaussian spots with varying p∞.

The covolume b, however, was found to modify the critical and compression
factors dependence on the upstream Mach number, and consequently the transfer



Fig. 5 Energy of the emitted disturbances for an incident Gaussian entropy spot in the (M1,bρ1) plane.
Total energy Ẽtot and the part associated to each Kovásznay mode are displayed, with Ẽv: energy of the
vorticity mode; Ẽa: energy of the acoustic mode; Ẽs: energy of the entropy mode.

Fig. 6 Energy of the emitted disturbances for a Gaussian entropy spot versus bρ1 for M1 = 3. Total energy
and the part associated to each Kovásznay mode are displayed. Ẽtot (solid thick line), Ẽv (dotted), Ẽa
(dashed), Ẽs (dotted-dashed).



functions through the shock. As a result, entropy incident gaussian spots generate
more damped and dispersed emitted fluctuations.

Besides extending our understanding of shock perturbation theory, this work pro-
vides interesting test cases for the development of compressible flow solvers with
real gas EOS.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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