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Abstract—The effect of the relative entropy asymmetry is
analyzed in the empirical risk minimization with relative entropy
regularization (ERM-RER) problem. A novel regularization is
introduced, coined Type-II regularization, that allows for solu-
tions to the ERM-RER problem with a support that extends
outside the support of the reference measure. The solution to the
new ERM-RER Type-II problem is analytically characterized in
terms of the Radon-Nikodym derivative of the reference measure
with respect to the solution. The analysis of the solution unveils
the following properties of relative entropy when it acts as a
regularizer in the ERM-RER problem: i) relative entropy forces
the support of the Type-II solution to collapse into the support
of the reference measure, which introduces a strong inductive
bias that dominates the evidence provided by the training
data; ii) Type-II regularization is equivalent to classical relative
entropy regularization with an appropriate transformation of the
empirical risk function. Closed-form expressions of the expected
empirical risk as a function of the regularization parameters are
provided.

Index Terms—Empirical risk minimization; relative entropy;
regularization; reference measure; inductive bias

I. INTRODUCTION

Empirical risk minimization (ERM) is a central tool in
supervised machine learning that enables the characterization,
among others, of sample complexity and probably approxi-
mately correct (PAC) learning in a wide range of settings [1].
The application of ERM in the study of theoretical guaran-
tees spans related disciplines such as machine learning [2],
information theory [3], [4] and statistics [5], [6]. Classical
problems such as classification [7], [8], pattern recognition
[9], [10], regression [11], [12], and density estimation [9], [13]
can be posed as special cases of the ERM problem [13], [14].
Unfortunately, ERM is prone to training data memorization,
a phenomenon also known as overfitting [15]–[17]. For that
reason, regularization is used to bound the sensitivity of the
solution model to training data and provide generalization
guarantees [18]–[20]. Regularization establishes a preference
over the models by encoding features of interest that conform
to prior knowledge.

In different statistical learning frameworks, such as
Bayesian learning [21], [22] and PAC learning [23]–[25], the
prior knowledge over the set of models can be described by
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a reference probability measure. Nonetheless, more general
references can be adapted as proved in [26] for the case of
σ-finite measures. In either case, the solution to the ERM
problem can be cast as a probability distribution over all
the candidate models. A common regularizer is the relative
entropy of the solution with respect to the reference over the
set of models [13], [27]–[29]. The resulting problem formula-
tion, termed ERM with relative entropy regularization (ERM-
RER) has been extensively studied and its unique solution
is the Gibbs probability measure, for which the most salient
properties are well understood [26]–[31]. Despite the many
merits of the ERM-RER formulation, it has some significant
limitations. Firstly, the definition of the relative entropy in
terms of the Radon-Nikodym derivative of the solution with
respect to the reference probability measure, sets a hard
barrier to the exploration of models outside the support of the
reference. These models are not given any consideration by the
resulting Gibbs probability measure regardless of the evidence
provided by the training dataset. Secondly, the choice of
relative entropy over the alternatives often follows arguments
based on upper bounds on the performance, which are hard
to obtain and are not always informative when evaluated in
practical settings [32]–[34]. For these reasons, exploring the
asymmetry of the relative entropy is of particular interest to
advancing the understanding of entropy regularization and its
role in generalization.

Interestingly, there is no literature discussing the asymmetry
of relative entropy in the context of ERM regularization.
Hence, the issue of regularizing the ERM problem with the
relative entropy of the reference with respect to the solution
is an open problem. To differentiate between the two cases,
we denote by Type-I the use of the relative entropy of the
solution with respect to the reference; and by Type-II the use
of the relative entropy of the reference with respect to the
solution. This paper presents the solution to the Type-II ERM-
RER problem and establishes a link to the Type-I ERM-RER
problem via a transformation of the risk that can be cast as a
tunable loss function [35]–[37].

The remainder of the paper is organized as follows. Sec-
tion II presents the standard ERM problem. Section III de-
scribes the Type-I regularization. The main contribution of the
paper is the solution to the Type-II ERM-RER presented in
Section IV. Section V studies the equivalence between Type-I



and Type-II regularization. The conclusions are summarized
in Section VI.

II. EMPIRICAL RISK MINIMIZATION PROBLEM

The elements of the learning problem of interest are the
sets models, patterns, and labels denoted by M ⊆ Rd with
d ∈ N, X , and Y , respectively. A pair (x, y) ∈ X × Y
is referred to as a labeled pattern or data point. Several
data points denoted by (x1, y1), (x2, y2), . . ., (xn, yn) with
n ∈ N, form a dataset, which is represented by the tuple
((x1, y1), (x2, y2), . . . , (xn, yn)) ∈ (X × Y)

n.
Let the function f : M × X → Y be such that the label

assigned to a pattern x according to the model θ ∈ M is
f(θ, x). Then, given a dataset, the objective is to obtain a
model θ ∈ M, such that, for all patterns x ∈ X , the assigned
label f(θ, x) minimizes a notion of loss or risk. Let the
function

ℓ : Y × Y → [0,+∞), (1)

be such that given a data point (x, y) ∈ X × Y , the loss or
risk induced by choosing the model θ ∈ M is ℓ(f(θ, x), y).
The risk function ℓ is assumed to be nonnegative and satisfy
ℓ(y, y) = 0 for all y ∈ Y . Nonetheless, there might exist other
models θ ∈ M such that ℓ(f(θ, x′), y′) = 0 for the labelled
data point (x′, y′), revealing the need for a large number of
labeled patterns for model selection.

The empirical risk induced by a model θ with respect to
the dataset

z = ((x1, y1), (x2, y2), . . . , (xn, yn)) ∈ (X × Y)
n
, (2)

with n ∈ N, is determined by the function Lz :M → [0,+∞),
which satisfies

Lz(θ)≜
1

n

n∑
i=1

ℓ(f(θ, xi), yi). (3)

The ERM problem is given by the optimization problem

min
θ∈M

Lz(θ), (4)

and the set of solutions to the problem is denoted by

T (z) ≜ arg min
θ∈M

Lz(θ). (5)

Note that if the set M is finite, the ERM problem in (4) has a
solution, and therefore, it holds that |T (z)| > 0. Nevertheless,
in general, the ERM problem does not always have a solution;
that is, there exist choices of the loss function ℓ and the dataset
z that yield |T (z)| = 0.

A. Statistical Learning

The Bayesian and PAC frameworks in [24] and [22] solve
the problem by constructing probability measures PΘ|Z=z

conditioned on the dataset z, from which models are randomly
sampled. In this context, finding probability measures that
are minimizers of the ERM problem in (4) over the set
△(M,F ) of all probability measures that can be defined on
the measurable space (M,F ), requires a metric that enables

assessing the goodness of the probability measure. A common
metric is the notion of expected empirical risk.

Definition 1 (Expected Empirical Risk): Given a dataset
z ∈ (X × Y)

n, let the function Rz : △(M,F ) → [0,+∞) be
such that for all probability measures Q ∈ △(M,F ),

Rz(Q) ≜
∫

Lz(θ) dQ(θ), (6)

where the dataset z is defined in (2); and the function Lz is
defined in (3).

The expected empirical risk is an important performance
indicator of learning algorithms. However, it only gives an
indication of the risk induced over the training dataset, while
the performance of the ERM solutions is characterized by
their generalization capability and sensitivity [26], [28], [29],
[31]. In the following, we review the Type-I relative entropy
regularization that serves as the basis for the analysis of the
regularization asymmetry.

III. THE TYPE-I ERM-RER PROBLEM

The Type-I ERM-RER problem is parametrized by a proba-
bility measure Q ∈ △(M,F ) and a positive real λ, where the
measure Q is the reference measure and λ is the regularization
factor. The Type-I ERM-RER problem, with parameters Q
and λ, consists of the following optimization problem:

min
P∈△Q(M,F)

Rz(P ) + λD(P∥Q), (7)

where the dataset z is defined in (3), the function Rz is defined
in (6), and the optimization domain is

△Q(M,F ) ≜ {P ∈ △(M,F ) : P ≪ Q}, (8)

where the notation P ≪ Q stands for P being absolutely
continuous with respect to Q.

The solution to the Type-I ERM-RER problem in (7) is the
Gibbs probability measure [26]–[28], which is presented by
the following lemma.

Lemma 1 ( [26, Lemma 1]): Given a probability measure
Q ∈ △(M,F ) and a dataset z ∈ (X × Y)

n, let the function
KQ,z : R→ R be such that for all t ∈ R,

KQ,z(t) = log

(∫
exp(tLz(θ)) dQ(θ)

)
, (9)

where the dataset z is defined in (2). Let also the set KQ,z ⊆ R
be

KQ,z ≜

{
s > 0 : KQ,z

(
−1

s

)
< +∞

}
. (10)

Then, for all θ ∈ suppQ and for all λ ∈ KQ,z , the
solution of the Type-I ERM-RER problem in (7), is the unique
probability measure P

(Q,λ)
Θ|Z=z ∈ △Q(M,F ), whose Radon-

Nikodym derivative with respect to Q satisfies that

dP
(Q,λ)
Θ|Z=z

dQ
(θ) = exp

(
−KQ,z

(
− 1

λ

)
− 1

λ
Lz(θ)

)
. (11)



IV. THE TYPE-II ERM-RER PROBLEM

The Type-II ERM-RER problem is parametrized by a pro-
bability measure Q ∈ △(M,F ) and a positive real λ. The
measure Q is referred to as the reference measure and λ as the
regularization factor. Given the dataset z ∈ (X × Y)

n in (2),
the Type-II ERM-RER problem, with parameters Q and λ,
consists of the following optimization problem:

min
P∈▽Q(M,F)

Rz(P ) + λD(Q∥P ), (12)

where z is defined in (3), the function Rz is defined in (6),
and the optimization domain is

▽Q(M,F ) ≜ {P ∈ △(M,F ) : Q ≪ P}. (13)

A. The Solution to the Type-II ERM-RER Problem

The asymmetry of the relative entropy poses a distinct chal-
lenge when tackling the optimization problem given in (12).
The approach that leads to the solution of the Type-I in (7)
needs to be adapted to accommodate the challenges posed by
the absolute continuity requirement in (13). The solution of
the Type-II ERM-RER problem in (12) is presented in the
following theorem.

Theorem 1: Given a measure Q ∈ △(M,F ) and a dataset
z ∈ (X × Y)

n, let the function K̄Q,z : R → R be such that
for all t ∈ (0,∞) it holds that

K̄Q,z(t) = β, (14)

where ∫
t

β + Lz(θ)
dQ(θ) = 1, (15)

with Lz being the function defined in (3). The function K̄Q,z

in (14) is well defined for a subset of (0,∞), which is denoted
by K̄Q,z , and satisfies

K̄Q,z ≜

{
t ∈ (0,∞) :

∫
t

K̄Q,z(t) + Lz(θ)
dQ(θ) = 1

}
.

(16)
Then, for all θ ∈ suppQ and for all λ ∈ K̄Q,z , the solution

to the optimization problem in (12) is the unique probability
measure P̄

(Q,λ)
Θ|Z=z , whose Radon-Nikodym derivative with re-

spect to the probability measure Q satisfies

dP̄
(Q,λ)
Θ|Z=z

dQ
(θ) =

λ

K̄Q,z(λ) + Lz(θ)
, (17)

where the functions Lz and K̄Q,z are defined in (3) and (14),
respectively.

Proof: The proof is divided into two parts. In the first
part, an ancillary optimization problem is solved in a subset
of the optimization domain of the Type-II ERM-RER problem.
In the second part, it is shown that the solution obtained in
this subset is, in fact, the solution of the Type-II ERM-RER
problem.

The first part is as follows. Given the dataset z ∈ (X × Y)
n

in (2), the ancillary optimization problem is given by:

min
P∈⃝Q(M,F)

Rz(P ) + λD(Q∥P ), (18)

where the optimization domain is

⃝Q(M,F ) ≜ ▽Q(M,F ) ∩△Q(M,F ), (19)

and the sets △Q(M,F ) and ▽Q(M,F ) are respectively de-
fined in (8) and (13). The solution to the ancillary optimization
problem in (18) is presented by the following lemma.

Lemma 2: For all λ ∈ K̄Q,z with K̄Q,z in (14), the solution
to the optimization problem in (18) is the unique probability
measure P̄

(Q,λ)
Θ|Z=z in (17).

Proof: From the fact that, for all P ∈ ⃝Q(M,F ), the
measure Q is mutually absolute continuous with respect to P ,
the ancillary optimization problem in (18) can be written as
follows:

min
P∈⃝Q(M,F)

[ ∫
Lz(θ)

dP

dQ
(θ) dQ(θ)

− λ

∫
log

(
dP

dQ
(θ)

)
dQ(θ)

]
, (20)

s.t.
∫

dP

dQ
(θ) dQ(θ) = 1. (21)

The Lagrangian of the optimization problem in (20) can be
constructed in terms of a function in the set M of nonnegative
measurable functions with respect to the measurable spaces
⃝Q(M,F ) and (R,F ). Let L : M × R → R be the
Langragian

L

(
dP

dQ
, β

)
=

∫ (
Lz(θ)

dP

dQ
(θ)− λ log

(
dP

dQ
(θ)

)
+ β

(
dP

dQ
(θ)− 1

))
dQ(θ), (22)

where β is a real value that acts as a Lagrange multiplier
due to (21). The Gateaux differential [38] of the functional L
in (22) at

(
dP
dQ , β

)
∈ M ×R in the direction of h ∈ M is

∂L

(
dP

dQ
, β;h

)
=

∫
h(θ)

(
Lz(θ) + β

−λ

(
dP

dQ
(θ)

)−1
)

dQ(θ). (23)

The relevance of the Gateaux differential in (23) stems from
[38, Theorem 1, page 178], which unveils the fact that a
necessary condition for the functional L in (22) to have a

stationary point at
(

dP̄
(Q,λ)

Θ|Z=z

dQ , β

)
∈ M × R is that for all

functions h ∈ M , the following holds:

∂L

dP̄
(Q,λ)
Θ|Z=z

dQ
, β;h

 = 0. (24)

From the fact that h is nonnegative, for all θ ∈ M it follows
that

Lz(θ)− λ

dP̄
(Q,λ)
Θ|Z=z

dQ
(θ)

−1

+ β = 0, (25)



and thus,

dP̄
(Q,λ)
Θ|Z=z

dQ
(θ) =

λ

K̄Q,z(λ) + Lz(θ)
, (26)

where the function K̄Q,z is defined in (14).
Finally, note that the objective function in (20) is the sum of

two terms. The first one, i.e.,
∫
Lz(θ)

dP
dQ (θ) dQ(θ), is linear

in dP
dQ . The second, i.e., −

∫
log

(
dP
dQ (θ)

)
dQ(θ), is strictly

convex with dP
dQ . Hence, given that λ > 0, the sum of both

terms is strictly convex with dP
dQ . This implies the uniqueness

of P̄ (Q,λ)
Θ|Z=z .

This completes the first part of the proof of Theorem 1. The
second part rests in the following lemma.

Lemma 3: For all λ ∈ K̄Q,z , with K̄Q,z in (16), it holds
that

min
P∈▽Q\⃝Q

Rz(P ) + λD(Q∥P ) > min
P∈▽Q

Rz(P ) + λD(Q∥P ).

(27)
Proof: The proof is presented in [39].

More specifically, Lemma 3 conveys the fact that the relative
entropy regularization penalty for considering models outside
of the support is always greater than the reduction in the
expected empirical risk induced by including these models.
This includes the case in which the set T (z) in (5) lies outside
of the support of Q.

From (19), it holds that

⃝Q(M,F ) ⊆ ▽Q(M,F ). (28)

Hence, from (28), it follows that

min
P∈▽Q

Rz(P )+λD(Q∥P ) ≤ min
P∈⃝Q

Rz(P )+λD(Q∥P ). (29)

From Lemma 3, it holds that

min
P∈▽Q

Rz(P )+λD(Q∥P ) ≥ min
P∈⃝Q

Rz(P )+λD(Q∥P ). (30)

Thus, the measure P̄
(Q,λ)
Θ|Z=z in (17) is the solution of the

optimization problem in (12), which completes the proof of
Theorem 1.

B. Properties of the Solution

The properties of the function K̄Q,z in (14) and the set
K̄Q,z in (16) can be studied using the following mathematical
objects. Given a positive real δ and the dataset z in (2),
consider the set

Lz(δ) ≜ {θ ∈ M : Lz(θ) ≤ δ}, (31)

where the function Lz is defined in (3) and δ ∈ [0,∞).
Consider also the nonnegative real

δ⋆Q,z ≜ inf{δ ∈ [0,∞) : Q(Lz(δ)) > 0}, (32)

with Q in (12). Let also L⋆
Q,z be the following level set of the

empirical risk function Lz in (3):

L⋆
Q,z ≜

{
θ ∈ M : Lz(θ) = δ⋆Q,z

}
. (33)

The following lemma introduces the properties of the func-
tion K̄Q,z in (14).

Lemma 4: The function K̄Q,z in (14), for fixed Q and z,
is strictly increasing, continuous, and differentiable infinitely
many times.

Proof: The proof is presented in [39].
Note that from Lemma 4, the value K̄Q,z(λ) in (14)

increases as the regularization factor λ increases, which is
consistent with the notion that it acts as a scaling factor in (17).
This highlights its dependence with the dataset z in (2) and
the reference measure Q in (12).

Similarly, the set K̄Q,z in (16) also depends on the dataset z
in (2) and the probability measure Q in (12). The following
lemma presents the properties of the set K̄Q,z in (16).

Lemma 5: The set K̄Q,z in (16) is either the empty set or
the set

K̄Q,z = (0,∞). (34a)

Moreover, for all λ ∈ K̄Q,z it holds that

K̄Q,z(λ) ∈
(
−δ⋆Q,z,∞

)
, (34b)

with K̄Q,z defined in (14) and δ⋆Q,z in (32).
Proof: The proof is presented in [39].

Lemma 6 below shows that the expected empirical risk
induced by the Type-II ERM-RER solution can be computed
in terms of the regularization factor λ and the function K̄Q,z

defined in (16). The relation of the expected empirical risk
induced by P̄

(Q,λ)
Θ|Z=z in (17) is presented by the following

lemma.
Lemma 6: For all λ ∈ K̄Q,z , with K̄Q,z in (16), it holds

that
Rz

(
P̄

(Q,λ)
Θ|Z=z

)
= λ− K̄Q,z(λ), (35)

where the functions Rz and K̄Q,z are respectively defined
in (6) and (14); and the measure P̄

(Q,λ)
Θ|Z=z is defined in (17).

Proof: The proof is presented in [39].
The equality in (35) provides an upper bound to the ex-

pected empirical risk Rz

(
P̄

(Q,λ)
Θ|Z=z

)
. The following corollary

of Lemma 6 formalizes this observation.
Corollary 7: For all λ ∈ K̄Q,z , with K̄Q,z in (16), it holds

that

Rz

(
P̄

(Q,λ)
Θ|Z=z

)
< λ+ δ⋆Q,z, (36)

where P̄
(Q,λ)
Θ|Z=z is the probability measure in (17) and δ⋆Q,z is

defined in (32).
The upper bound presented in Corollary 7 is useful as it
gives operational meaning to the regularization factor. Indeed,
this bound shows that the regularization factor governs the
expected empirical risk increase with respect to the infimum
of the empirical risk over the support.

C. Discussion on Regularization Properties

The Type-II relative entropy regularizer for the ERM prob-
lem in (12) allows for an exploratory minimization, i.e. models
outside the support of the reference measure are given con-
sideration. However, Theorem 1 shows that the support of the



probability measure P̄
(Q,λ)
Θ|Z=z in (17) collapses into the support

of the reference. A parallel can be established between Type-I
and Type-II, as in both cases the support of the solution is
the support of the reference measure. In a nutshell, the use of
relative entropy regularization inadvertently forces the solution
to coincide with the support of the reference regardless of the
training data.

V. INTERPLAY BETWEEN THE RELATIVE ENTROPY
ASYMMETRY AND THE RISK

This section presents a connection between the Type-I
ERM-RER in (7) and Type-II ERM-RER problems in (12).
The log empirical risk is the function Vz,λ : M → R, which
satisfies

Vz,λ(θ) ≜ log
(
K̄Q,z(λ) + Lz(θ)

)
, (37)

where the functions Lz and K̄Q,z are defined in (3) and (14),
respectively. For the case in which K̄Q,z ̸= ∅, replacing the
empirical risk in (4) by the notion of log empirical risk in (37)
leads to the expected log empirical risk, as shown hereunder.

Definition 2 (Expected Log Empirical Risk): Given a dataset
z ∈ (X × Y)

n, let the function R̄z : △(M,F ) → R be such
that for all probability measures P ∈ △(M,F ) and for all
λ ∈ (0,+∞) it holds that

R̄z,λ(P ) ≜
∫

Vz,λ(θ) dP (θ), (38)

where the function Vz,λ is defined in (37).
By considering the expected log empirical risk, an alternative
formulation of the Type-I ERM-RER problem is presented.
This formulation, also parametrized by Q and λ, consists in
the following optimization problem:

min
P∈△Q(M,F)

R̄z,λ(P ) + D(P∥Q). (39)

Using the elements above, the main result of this section is
presented in the following theorem.

Theorem 2: The solution to the optimization problem in (39)
is the unique probability measure P̄

(Q,λ)
Θ|Z=z in (17).

Proof: Denote by P̂
(Q,λ)
Θ|Z=z the solution to the optimiza-

tion problem in (39). Then, from Lemma 1, for all θ ∈ suppQ,
it follows that

dP̂
(Q,λ)
Θ|Z=z

dQ
(θ)=

exp(−Vz,λ(θ))∫
exp(−Vz,λ(ν)) dQ(ν)

(40a)

=
exp

(
log

(
1

Lz(θ)+K̄Q,z(λ)

))
∫
exp

(
log

(
1

Lz(ν)+K̄Q,z(λ)

))
dQ(ν)

(40b)

=

(∫
1

Lz(ν)+K̄Q,z(λ)
dQ(ν)

)−1

Lz(θ)+K̄Q,z(λ)
(40c)

=
λ

Lz(θ) + K̄Q,z(λ)
(40d)

=
dP̄

(Q,λ)
Θ|Z=z

dQ
(θ), (40e)

where equality (40b) follows from the definition of log em-
pirical risk in (37); equality (40d) follows from (14) and (15);
and equality (40e) follows from Theorem 1, which completes
the proof.
Theorem 2 establishes an equivalence between Type-I and
Type-II regularization. It is shown therein that the direction of
the relative entropy regularizer can be switched by appropri-
ately transforming the risk function as shown in (37). Indeed,
solving the Type-I ERM-RER problem with the expected log
empirical risk defined in (38) yields the probability measure
P̄

(Q,λ)
Θ|Z=z that is the solution to the Type-II ERM-RER problem.

In view of this, it is not surprising that the support for the
probability measure that is the solution to the Type-II ERM-
RER collapses into the support of the reference measure.
In fact, the mutual absolute continuity between the solution
and the reference probability measures is a consequence of
the relative entropy regularization, regardless of its direction.
Type-I regularization forces the support of the solution to
include all the models in the support of the reference measure;
on the other hand, Type-II regularization constrains the models
in the support of the solution to the models in the support of
the reference measure.

VI. FINAL REMARKS

This work has introduced the Type-II ERM-RER problem
and has presented its solution through Theorem 1. The solution
highlights that regardless of the direction in which relative en-
tropy is used as a regularizer, the models that are considered by
the solution are necessarily in the support of the reference mea-
sure. In that sense, the restriction over the models introduced
by the reference measure cannot be bypassed by the training
data when relative entropy is used as the regularizer. We
have shown that this is a consequence of the equivalence that
can be established between Type-I and Type-II regularization.
Remarkably, the direction of the relative entropy regularizer
can be switched by a logarithmic transformation of the risk.
The mutual absolute continuity of both Type-I and Type-II
ERM-RER solutions relative to the reference measure can be
understood in the light of the equivalence between both types
of regularization. The analytical results have also enabled us
to provide an operationally meaningful characterization of the
expected empirical risk induced by the Type-II solution in
terms of the regularization parameters. This is turn reduces the
computational burden of bounding the expected empirical risk.
Moreover, the insight provided by the bounds on the expected
empirical risk can be distilled into guidelines for the selection
of the regularization parameter.
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