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The semismooth Newton method is a very efficient approach for computing a zero
of a large class of nonsmooth equations. When the initial iterate is sufficiently close
to a regular zero and the function is strongly semismooth, the generated sequence
converges quadratically to that zero, while the iteration only requires to solve a linear
system. If the first iterate is far away from a zero, however, it is difficult to force its
convergence using linesearch or trust regions because a semismooth Newton direction
may not be a descent direction of the associated least-square merit function, unlike
when the function is differentiable. We explore this question in the particular case
of a nonsmooth equation reformulation of the nonlinear complementarity problem,
using the minimum function. We propose a globally convergent algorithm using a
modification of a semismooth Newton direction that makes it a descent direction of
the least-square function. Instead of requiring that the direction satisfies a linear
system, it must be a feasible point of a convex polyhedron; hence, it can be computed
in polynomial time. This polyhedron is defined by the often very few inequalities,
obtained by linearizing pairs of functions that have close negative values at the current
iterate; hence, somehow, the algorithm feels the proximity of a “negative kink” of the
minimum function and acts accordingly. In order to avoid as often as possible the
extra cost of having to find a feasible point of a polyhedron, a hybrid algorithm is also
proposed, in which the Newton-min direction is accepted if a sufficient-descent-like
criterion is satisfied, which is often the case in practice. Global convergence to regular
points is proved.
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1 Introduction

1.1 The complementarity problem

Let be given a positive integer n and two smooth functions F : Ω → R
n and G : Ω → R

n

defined on an open subset Ω of R
n. This paper considers, with an algorithmic point of

view, the standard (nonlinear) complementarity problem. This problem consists in finding
a vector x ∈ Ω such that

F (x) > 0, G(x) > 0, and F (x)TG(x) = 0, (1.1a)

where vector inequalities must be taken in a componentwise fashion and (u, v) ∈ R
n ×R

n

7→ uTv =
∑n

i=1 uivi is the Euclidean scalar product of Rn (the sign “T” is used to denote
transposition of vectors and matrices). We denote by [1 :n] := {1, . . . , n} the set of the
first n positive integers. Below, the system (1.1a) is written compactly as follows:

0 6 F (x) ⊥ G(x) > 0, (1.1b)

where the sign “⊥” refers to the required orthogonality of the vectors F (x) and G(x).
In many contributions [84], the map G is supposed to be the identity ; like in [39, 40],
we have preferred the balanced model (1.1), not only for its higher generality, but also
because it presents the technical advantage of avoiding repeating reasoning, thanks to the
possibility to switch F and G. The term “complementarity” comes from the fact that, due
to the nonnegativity of F (x) and G(x) in (1.1), for all i ∈ [1 : n], either Fi(x) or Gi(x)
must vanish and determining which of them is zero is part of the difficulty of the problem.
The fact that these last conditions can be realized in 2n different ways is at the origin of
the complexity of the problem. It can be shown indeed that, even when the functions F
and G are affine, finding a solution to (1.1) is NP-hard [24, 68; 1989-1991]. The algorithms
considered in this paper can be easily adapted to the mixed nonlinear complementarity

problem, in which the number p of complementarity conditions is less than the number n
of unknowns and there are n − p additional nonlinear equality constraints. Less or more
recent states of the art on the analysis of complementarity problems and numerical methods
to solve them, in finite dimension, can be found in [80, 61, 84, 42, 28, 29, 63].

Occasionally, we shall make reference to the linear complementarity problem (LCP) in
its standard form, which reads

0 6 (Mx+ q) ⊥ x > 0, (1.2)

where the unknown is x ∈ R
n, while q ∈ R

n and M ∈ R
n×n are data. In that case, we

shall consider that it corresponds to the nonlinear complementarity problem (1.1) with the
affine map F : x 7→ Mx+ q and the identity operator G : x 7→ x.

Complementarity conditions arise spontaneously in the first order optimality conditions
of an optimization problem with inequality constraints and these conditions can be written
as a mixed nonlinear complementarity problem. The complementarity system (1.1) is also
often used to model in part problems in which several systems of equations are, to some
extend, in competition. The one that is active in a given place and at a given time, corre-
sponding to a common index of F (x) and G(x), depends on threshold effects; if the thresh-
old Fi(x) = 0 is not reached, i.e., Fi(x) > 0, then the equation Gi(x) = 0 is active, and
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vice versa. Examples include problems in nonsmooth mechanics and dynamics [5, 1, 18],
the phase transition problem in multiphase flows [78, 79, 14, 7, 10, 20, 30, 9], precipitation-
dissolution problems in chemistry [19, 70], portfolio management in finance [52], computer
graphics [41], discrete Hamilton–Jacobi–Bellman equation solvers [94], meteorology simu-
lation, economic equilibrium, to mention a few. Surveys on examples of applications of the
complementarity problem can be found in [58, 61, 84, 45, 42].

1.2 A few linearization algorithms

Many techniques have been proposed to solve (1.1) since the problem was introduced by
Cottle in his PhD thesis, dated 1964 [26, 27]. It is beyond the scope of this paper to review
all of them and we refer instead the interested reader to the recent monographs [42, 63].
Below, we limit our account to the algorithms in close connection with the numerical
methods proposed and analyzed in this paper. The motivation is to put in perspective the
proposed algorithms, essentially within the Newton-min family of methods. On the way,
we introduce notation and concepts used throughout the paper.

The adjacent numerical methods are related to the Newton algorithm to solve the
nonsmooth system of equations

H(x) = 0, (1.3a)

in which H : Ω → R
n is the function defined at x ∈ Ω by

H(x) := min(F (x), G(x)), (1.3b)

where the minimum is taken componentwise [2, 83]. It is clear that problems (1.1) and
(1.3) have the same solutions, since, for two real numbers a and b, min(a, b) = 0 if and only
if a > 0, b > 0 and ab = 0 (for other functions having that property, see [76, 51, 4] and the
references therein). The term “Newton-min” was coined in [11, 12, 13] to name this solution
strategy and we adopt it in this paper. The proposed methods are globalized by using the
classical merit function associated with H [81, 36, 16, 17], which is the least-square function
θ : Ω → R defined at x ∈ Ω by

θ(x) :=
1

2
‖H(x)‖2 =

1

2
‖min(F (x), G(x))‖2 , (1.4)

where ‖ · ‖ denotes the Euclidean norm. The goal of this paper is to focus on the refor-
mulation (1.3) and its globalization, using linesearch on the natural merit function (1.4).
More is said on the proposed approaches in section 1.3 below, after the presentation of
some related linearization methods.

Many other equation reformulations of the complementarity problem have been pro-
posed, see [76, 32, 66, 65, 91, 21, 33, 47, 43, 85, 60] and the references therein. Our choice
of a reformulation by the minimum function is not only motivated by an intellectual cu-
riosity (as we shall see, there are still holes in its implementation and its analysis), but also
by its observed efficiency. This one is sometimes explained by the piecewise affine nature
of the minimum function, which provides no additional nonlinearity besides its nondiffer-
entiability. From a theoretical point of view, the required regularity at the solution to
guarantee fast local convergence of a Newton-like algorithm on (1.3) is also less restrictive
than with the Fischer reformulation [46], for instance; in addition, this algorithm has finite
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termination for the linear complementarity problem (1.2) [48], which cannot be expected
when the reformulation is more nonlinear [42; § 9.2].

A first linearization method to solve (1.1) consists in applying Josephy-Newton (JN)
iterations [64] on a functional inclusion reformulation of the problem [67] (see [42; § 7.3] for
a reformulation using the normal map). This results in linearizing the functions in (1.1b)
while keeping its complementarity problem structure: the new iterate x + d, following
the current one x, is determined by taking for d an appropriate solution to the linear
complementarity problem in d (if this solution exists)

0 6
(
F (x) + F ′(x)d

)
⊥
(
G(x) +G′(x)d

)
> 0. (1.5)

The SQP algorithm in nonlinear optimization can also be derived from this technique [64],
so that the two methods have common features. The local quadratic convergence of this
algorithm can be deduced from the one of the JN iterations for a functional inclusion (Jose-
phy [64] assumes that the sought solution is strongly regular in the sense of Robinson [88],
while Bonnans [15] only assumes the weaker so-called semistability and hemistability; see
also [42; § 7.3] for related results). The globalization of this linearization approach for
complementarity problems uses adapted merit functions (see [75] for an entry point). The
JN approach has many attractive features, but, with respect to the methods proposed in
section 1.3, the system (1.5) has the inconvenient of requiring the computation of a solution
to a linear complementarity problem of dimension n at each iteration and we have already
mentioned that such a problem is NP-hard. We also point out that this approach is not
relevant in the case when the original problem (1.1) is a linear complementarity problem,
since then (1.5) is exactly the same problem as the original one.

Another linearization approach to solve (1.1) consists in applying a Newton-like method
to solve directly the equivalent nonsmooth system (1.3). Among these methods, one finds
the B-Newton algorithm [82], which is adapted to B-differentiable maps [35, 89, 90]. For
a locally Lipschitz function defined on a space of finite dimension, like H in (1.3b), the
B-derivative is identical to the directional derivative [89, 90], so that the direction d giving
the new iterate x + d in the B-Newton algorithm is taken as a solution (if any) to the
(usually nonlinear) system

H(x) +H ′(x; d) = 0, (1.6)

where H ′(x; d) := limt↓0[H(x + td) −H(x)]/t is the usual one-side directional derivative.
It is easy to see that the function H given by (1.3b) is directionally differentiable (recall
that F and G are supposed to be smooth) and that its directional derivative is given by

H ′
i(x; d) =







F ′
i (x)d if i ∈ F(x),

G′
i(x)d if i ∈ G(x),

min(F ′
i (x)d,G

′
i(x)d) if i ∈ E(x),

(1.7)

where we have used the following mnemonic notation for index sets, which will be frequently
encountered below:

E(x) := {i ∈ [1 :n] : Fi(x) = Gi(x)},
F(x) := {i ∈ [1 :n] : Fi(x) < Gi(x)},
G(x) := {i ∈ [1 :n] : Fi(x) > Gi(x)}.

(1.8)
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Combining (1.6), (1.3b) and (1.7), we see that the search direction d of the B-Newton-min

algorithm is determined as a solution (if any) to the system







(F (x) + F ′(x)d)F (x) = 0,

(G(x) +G′(x)d)G(x) = 0,

0 6 (F (x) + F ′(x)d)E(x) ⊥ (G(x) +G′(x)d)E(x) > 0.

(1.9)

Note that a solution to (1.5) may not be a solution to (1.9) (because (1.9)1 and (1.9)2 may
not hold) and vice versa (because (F (x) + F ′(x)d)G(x) > 0 and (G(x) + G′(x)d)F(x) > 0
may not hold). An interesting asset of the B-Newton-min approach, compared to the
JN algorithm, is that the system (1.9) can be much easier to solve than (1.5), since its
number |E(x)| of complementarity conditions is reduced to the number of indices i giving
the equality Fi(x) = Gi(x) at the current x and that this number can be very small.
The convergence properties of this algorithm based on (1.9) derive from the one of the
B-Newton algorithm (1.6) for solving the equation H(x) = 0, with a B-differentiable
function H. According to [82; theorem 3], the algorithm converges when the first iterate is
in some neighborhood of a zero x∗ of H at which H is strongly Fréchet differentiable with
a nonsingular H ′(x∗); this required smoothness assumption on H is awkward and rather
restrictive when one aims at solving a nonsmooth system. Another interesting asset of
the B-Newton direction d is that it is a descent direction of θ at x [82; lemma 1], which
gives rise to a linesearch algorithm, generating sequences whose accumulation points x∗
are solutions to (1.3a), provided H is strongly Fréchet differentiable at x∗ and H ′(x∗) is
injective [82; theorem 4(iii)]; these are again rather restrictive assumptions. In terms of
the data of problem (1.1), when G is the identity, these conditions are guaranteed if the
accumulation point x∗ is regular in the sense of [82; definition 2] and (x∗)i = Fi(x∗) = 0 for
i ∈ E(x∗) [82; theorem 6]. Finally, we point out that the B-Newton-min is not appropriate
to solve the linear complementarity problem (1.2), since (1.9) is identical to the original
problem when E(x) = [1 : n].

The B-Newton-min algorithm is modified in [83] in order to obtain convergence results
with less demanding assumptions and the modification is shown in [57] to be part of a
larger family of globally convergent algorithms for solving a nonsmooth system H(x) = 0.
In the case of problem (1.1), the modified B-Newton-min algorithm consists in computing
the new iterate x + d, from the current one x, by determining d as a solution (if any) to
the nonlinear system [57; (4)]

H(x) +D(x, d) = 0, (1.10)

where D : Rn×R
n → R

n is no longer the directional derivative of H like in (1.6)-(1.7) but
is defined by [57; (12)]

Di(x, d) =







F ′
i (x)d if Fi(x) < Gi(x), Gi(x) > 0,

G′
i(x)d if Fi(x) > Gi(x), Fi(x) > 0,

min(F ′
i (x)d,G

′
i(x)d) otherwise.

(1.11)

In comparison with (1.6), we see that some indices of F(x) and G(x) are now handled like
those of E(x). Rewriting (1.10), with the form of H from (1.3b) and that of D from (1.11),
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we see that d has to solve the system







Fi(x) + F ′
i (x)d = 0 if Fi(x) < Gi(x), Gi(x) > 0,

Gi(x) +G′
i(x)d = 0 if Fi(x) > Gi(x), Fi(x) > 0,

0 6 (Fi(x) + F ′
i (x)d) ⊥ (Fi(x) +G′

i(x)d) > 0 if Fi(x) < Gi(x) < 0,
0 6 (Gi(x) + F ′

i (x)d) ⊥ (Gi(x) +G′
i(x)d) > 0 if 0 > Fi(x) > Gi(x),

0 6 (Fi(x) + F ′
i (x)d) ⊥ (Gi(x) +G′

i(x)d) > 0 otherwise.

(1.12)

This heterogeneous system has therefore more complementarity conditions than (1.9), but
has also better convergence results. Conditions ensuring the existence and uniqueness
of the solution to the mixed linear complementarity problem (1.12) can be obtained [83;
§ 5]. Furthermore, it can be shown that this direction d is a descent direction of θ at x,
which gives rise to a linesearch algorithm whose global convergence (without the previously
required smoothness of H) and the admissibility of the unit stepsize are studied in [83;
§§ 6-8]. For the same reason as for the B-Newton-min algorithm, the present modification
is not appropriate for linear complementarity problem (LCP), since the system (1.12) is
identical to the original problem when E(x) = [1 :n].

A more drastic approach to solve a nonsmooth system H(x) = 0 is to use the semis-
mooth Newton method [87, 86], provided H is semismooth, which is the case of the function
defined by (1.3b) when F and G are smooth. This method only requires to solve a lin-
ear system per iteration: one chooses a Jacobian Jx in the generalized Clarke differential
∂CH(x) of H at x [25] and defines the displacement d at x as a solution (if any) to

H(x) + Jxd = 0. (1.13)

Despite its poor description of the function H at a point of nondifferentiability, this method
has the remarkable property of having a superlinear speed of convergence (or quadratic,
if H is strongly semismooth), when the first iterate is close enough to a regular point x∗
of H, which means here that all the Jacobians of ∂CH(x∗) are nonsingular [42, 63]. A
drawback of this method is that it is often difficult to compute an element of ∂CH(x),
for a particular function H, because this generalized Jacobian is not known or evaluating
one of its elements is computationally expensive. Nevertheless, one can sometimes use a
surrogate of the generalized Jacobian Jx in (1.13), while keeping the fast local convergence
property of the pure approach (see [56, 72] for the projection on a convex polyhedron) and
for the function H given by (1.3), one can use the inexpensive central Jacobian of Xiang
and Chen [93; theorem 2.2]. A drawback of the semismooth Newton direction, however,
is that it is not necessarily a descent direction of the natural least-square merit function
θ (see counter-example 2.3 below, for a linear complementarity problem), which explains
why it is difficult to define a globally convergent algorithm based on this direction and the
merit function (1.4).

A method inspired from the semismooth Newton algorithm or from [69], applied to
(1.3), computes the displacement d from x to the next iterate x+ d by solving (if possible)
the linear system

{
Fi(x) + F ′

i (x)d = 0 if i ∈ F̃(x),

Gi(x) +G′
i(x)d = 0 if i ∈ G̃(x),

(1.14)

where the pair (F̃(x), G̃(x)) forms a partition of [1 :n] and satisfies F̃(x) ⊇ F(x) and
G̃(x) ⊇ G(x). This method differs from the semismooth Newton approach in that the
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matrix used in the system (1.14), namely

(
F ′
F̃(x)

(x)

G′
G̃(x)

(x)

)

,

may not be in the C-differential ∂CH(x) = co ∂BH(x) (or convex hull of the B-differential)
of H at x [40]. This economical approach has the same drawback as the semismooth
Newton direction (1.13), which is that its directions are not necessarily descent directions
of the natural least-square merit function θ, because of an inappropriate choice of the
indices of E(x) going into F̃(x) and G̃(x) (see again counter-example 2.3 below).

Finally, we quote the algorithm of [50], which uses the merit function (1.4) and com-
putes its directions by solving a piecewise quadratic convex function subject to linear
constraints, for a complementarity problem of the form 0 6 F (x) ⊥ x > 0. Note also
that there are other approaches, which use the least-square merit function and the Fischer
complementarity function [44, 73, 33, 85].

1.3 A foretaste of the proposed algorithms

The methods proposed and analyzed in this paper are progressively introduced in sec-
tion 2, but we can already give here a foretaste of their nature. They find their place
in the panorama of linearization methods of the minimum function (1.3b) presented in
the previous section, in the sense that their directions can be viewed as intermediates be-
tween the B-Newton direction d given by (1.9), or its modification given by (1.12), and the
semismooth-like direction computed by (1.14), called the plain Newton-min direction in
section 2.1. Their main advantage is to avoid the need of solving an LCP at each iteration,
hence unlike in (1.9) or (1.12), and to guarantee global convergence, hence unlike (1.14).

Instead of having to solve an LCP, the direction must satisfy a system, made of affine
equalities and (generally very few) inequalities, in order to guarantee the descent of the
least-square merit function θ, defined in (1.4); see section 2.2. A least-norm displacement
of this system can, for example, be obtained by solving a convex quadratic optimization
problem, which can be done in polynomial time. An improvement of this direction is
needed, however, to guarantee convergence in the sense and with the technique of proof
presented in section 3.2: the set of inequalities defining the direction must be slightly
enlarged when the iterate is near a “negative kink” of H (we call a kink a locus of points
of nondifferentiability); see section 2.3. Finally, to avoid these more expensive directions,
due to the presence of inequalities in their definition, a hybrid algorithm is proposed in
section 2.4, in which the descent property of the plain Newton-min direction (1.14) is first
tested: if a sufficient decrease along that direction is guaranteed, this one is adopted by
the algorithm.

Like any linearization algorithm with linesearch, convergence is restricted by a regu-
larity assumption of the limit point. This notion of regularity depends on the computed
direction. This issue is analyzed with care in section 3.1. Finally, a global convergence
result is given in section 3.2. The paper ends with the conclusion section 4.

The design of the algorithms presented in this paper has been oriented by an inten-
sive numerical exploration, which has shown that the proposed method is competitive
with other solvers on various applications, on some reference academic examples, and on
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randomly generated problems. These experiments are reported in [49] for the linear com-
plementarity problem (1.2).

An abridged version of this report can be found in [38].

1.4 Notation and definition

We denote by ‖ · ‖ the Euclidean norm and by ||| · ||| an arbitrary norm, both on R
n. The

cardinality of a set S (i.e., its number of elements, which will be always finite) is denoted
by |S|. The set of partitions of [1 : n] is denoted by P([1 : n]).

We say that a function is continuously differentiable at x if it is differentiable near (i.e.,
in a neighborhood of) x and its derivative is continuous at x.

2 Polyhedral Newton-min directions

This section introduces the directions of the proposed algorithms. It proceeds gradually,
insisting on the motivation, which is to obtain descent directions of θ and to guarantee
some global convergence property. We first observe that the plain Newton-min (NM)
direction of section 2.1, already presented in (1.14) and obtained by solving a single linear
system, is not necessarily a descent direction of θ (counter-example 2.3). We then examine
in section 2.2 the reason of this descent property failure and propose a descent direction
(proposition 2.4), which must satisfy a similar system as the one of the plain NM direction,
but whose equations corresponding to the indices in {i ∈ [1 : n] : Fi(x) = Gi(x) < 0} are
transformed into pairs of inequalities. This yields what we call a polyhedral Newton-min

(PNM) direction since this one must be a feasible point of a certain polyhedron. This plain

PNM direction is always a descent direction of θ. Nevertheless, it did not allowed us to
prove the global convergence result of theorem 3.8 for a reason discussed in section 2.3. It
seems important, indeed, that, when the current iterate is near “negative kinks” of H, the
direction is built by picking information on the behavior of the function H on both sides
of the kink. This leads us to propose in section 2.3.1 the secure PNM direction (2.13),
whose definition depends on the proximity of the current iterate to these special kinks
of H. Its descent property is viewed in section 2.3.2 as a consequence of proposition 2.6,
which analyzes the potential descent property of a direction by averaging its effect on each
term Hi(x)

2 defining the merit function θ. Section 2.3.2 also introduces the very permissive
inexact secure PNM direction (2.22), for which descent property and global convergence
hold, which is expensive to compute, but the inequalities in its definition can be used
as stopping test. We conclude with section 2.4, which presents the hybrid Newton-min

direction and the associated hybrid Newton-min algorithm. This algorithm takes the plain
NM direction (1.14) (because it is cheap to compute) if this one can ensure a sufficient
decrease of the merit function θ (this is not guaranteed) or, otherwise, it computes a more
expensive secure PNM direction. Both the secure PNM algorithm and the hybrid PNM
algorithm have their global convergence analyzed in section 3.2.

2.1 Plain Newton-min direction

The plain Newton-min (NM) algorithm is a semismooth Newton-like method on the refor-
mulation (1.3) of the nonlinear complementarity problem (1.1), which uses the minimum
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function (algorithm 7.2.17 in [42]). It computes its direction d at x ∈ Ω by solving the
linear system (1.14), which is reproduced here for the reader’s convenience:

{
Fi(x) + F ′

i (x)d = 0 if i ∈ F̃(x),

Gi(x) +G′
i(x)d = 0 if i ∈ G̃(x).

(2.1)

In this system, (F̃(x), G̃(x)) ∈ P([1 : n]) and satisfies F̃(x) ⊇ F(x) and G̃(x) ⊇ G(x). By
the “symmetry” in F and G of the complementarity problem (1.1), there is no natural reason
to put all the indices of E(x) in F̃(x) or G̃(x), which motivates the flexibility admitted in
the direction definition (2.1). We see that, at a point x on a possible kink of H, due to
one of its components i ∈ E(x), a pseudo-derivative of Hi at x is chosen in {F ′

i (x), G
′
i(x)}.

To identify the points x at which the linear system (2.1) is guaranteed to have a
solution, we introduce the notion of NM-regularity. This notion is linked to the plain NM
algorithm (hence the prefix NM), like the nonsingularity of the Jacobian of a nonlinear
system is a regularity assumption linked to Newton’s method. In the following definition,
we do not assume that the considered point x is a solution to the complementarity problem
(1.1), which is motivated by the fact that this regularity assumption will be required at
accumulation points that are not known a priori to be solutions to the problem (see the
proof of theorem 3.8).

Definition 2.1 (NM-regularity) A point x ∈ R
n is said to be NM-regular (we also

say that the complementarity problem (1.1) is NM-regular at x ∈ R
n) if F and G are

differentiable at x and if, for any (F̃ , G̃) ∈ P([1 : n]) satisfying F̃ ⊇ F(x) and G̃ ⊇ G(x),
the Jacobian (

F ′
F̃
(x)

G′
G̃
(x)

)

(2.2)

is nonsingular. ✷

When G is the identity and x is nonnegative, this is a notion slightly weaker than the
b-regularity of [50; definition 2] (any set F̃ lying between {i ∈ F(x) : Gi(x) ≡ xi > 0},
which is smaller than F(x), and G(x) can be chosen in [50]); moreover, when x is also
a solution to the complementarity problem (1.1), this is the notion of b-regularity of [42;
definition 3.3.10].

The next proposition gives some consequences of the NM-regularity. The first property
claims that the NM-regularity diffuses to the neighboring points. The second property will
be useful for establishing the global convergence result of theorem 3.8 (see [50; lemma 3]
for a similar property).

Proposition 2.2 (NM-regularity properties) Suppose that F and G are continu-

ously differentiable at x̄ ∈ R
n and that x̄ is NM-regular. Then, there is a neighbor-

hood V of x̄ and a constant C, such that, for all x ∈ V :

1) x is NM-regular,

2) the system (2.1) has a unique solution d and the norm of d is bounded by C.
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Proof. By their differentiability property, F and G are continuous at x̄. Furthermore,
F(x̄) and G(x̄) are finite sets. Then, it follows that there is a neighborhood V1 of x̄ such
that

∀x ∈ V1 : F(x̄) ⊆ F(x) and G(x̄) ⊆ G(x). (2.3)

Indeed, for i ∈ F(x̄), one has Fi(x̄) < Gi(x̄), by definition of F(x̄). By the continuity of
Fi−Gi at x̄, there is a neighborhood V1,i of x̄, such that, for all x ∈ V1,i, Fi(x) < Gi(x) or
i ∈ F(x). Similarly, if i ∈ G(x̄), there is a neighborhood V ′

1,i of x̄, such that, for all x ∈ V ′
1,i,

i ∈ G(x). Then, one takes V1 := (∩i∈F(x̄)V1,i)∩ (∩i∈G(x̄)V
′
1,i), which is a neighborhood of x̄,

since F(x̄) ∪ G(x̄) is finite.
1) Let (F̃ , G̃) ∈ P([1 : n]) satisfying F̃ ⊇ F(x̄) and G̃ ⊇ G(x̄). By the NM-regularity

at x̄, (

F ′
F̃
(x̄)

G′
G̃
(x̄)

)

is nonsingular.

By the Banach perturbation lemma, there is a neighborhood VF̃ ,G̃ ⊆ V1 of x̄ and a con-
stant CF̃ ,G̃, such that for all x ∈ VF̃ ,G̃ ,

(

F ′
F̃
(x)

G′
G̃
(x)

)

is nonsingular and

∥
∥
∥
∥
∥
∥

(

F ′
F̃
(x)

G′
G̃
(x)

)−1
∥
∥
∥
∥
∥
∥

6 CF̃ ,G̃

Define
V2 :=

⋂

(F̃ ,G̃)∈P([1 :n])

F̃⊇F(x̄)

G̃⊇G(x̄)

VF̃ ,G̃ ⊆ V1 and C1 := sup
(F̃ ,G̃)∈P([1 :n])

F̃⊇F(x̄)

G̃⊇G(x̄)

CF̃ ,G̃

Since the number of partitions (F̃ , G̃) ∈ P([1 : n]) is finite, V2 is a neighborhood of x̄ and
C1 < ∞. Therefore,

∀x ∈ V2, ∀ (F̃ , G̃) ∈ P([1 : n]) satisfying F̃ ⊇ F(x̄) and G̃ ⊇ G(x̄) :
(

F ′
F̃
(x)

G′
G̃
(x)

)

is nonsingular and

∥
∥
∥
∥
∥
∥

(

F ′
F̃
(x)

G′
G̃
(x)

)−1
∥
∥
∥
∥
∥
∥

6 C1.
(2.4)

Suppose now that x ∈ V2 and that (F̃ , G̃) ∈ P([1 : n]) satisfies F̃ ⊇ F(x) and G̃ ⊇ G(x).
By (2.3) and V2 ⊆ V1, (F̃ , G̃) satisfies F̃ ⊇ F(x̄) and G̃ ⊇ G(x̄). By (2.4), the matrix (2.2)
is nonsingular. Hence x is NM-regular.

2) By restricting the neighborhood V2 to a neighborhood V of x̄, in order to have F (x)
and G(x) bounded in norm by C2 on V (this is possible by the continuity of F and G
at x̄), we see that, using the bound C1 on the matrix inverse in (2.4), for any x ∈ V , the
direction d is uniquely defined by (2.1) and is also bounded by C := C1C2. ✷

The plain NM direction is very attractive since it can be computed by solving a single
linear system and because it guarantees a local quadratic convergence [69, 71]. Unfortu-
nately, this direction may not be a descent direction of the least-square merit function θ
defined in (1.4), although this one is naturally associated with the system (1.3). Here is a
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counter-example of this phenomenon in the case of a linear complementarity problem (1.2)
with a P-matrix M (recall that a square matrix M is a P-matrix if its principal minors are
positive; a property that is denoted by “M ∈ P”). This fact was already observed during
the preparation of the PhD thesis of I. Ben Gharbia [8; example 5.8].

Counter-example 2.3 (no descent direction from (2.1)) Consider the linear comple-
mentarity problem (1.2) in dimension n = 2 and the point x given by

M =

(
1 µ
0 1

)

, q =

(
−µ
−2

)

and x =

(
−2
1

)

, (2.5)

where µ > 0 is a positive parameter. Note that M ∈ P. Since F (x) ≡ Mx+ q = (−2,−1)
and G(x) ≡ x = (−2, 1), the index sets (1.8) read E(x) = {1}, F(x) = {2} and G(x) = ∅.
If one computes the NM direction d by (2.1) with F̃(x) = {1, 2} and G̃(x) = ∅, one gets
d = −x−M−1q = (2− µ, 1). Then, for t > 0:

θ(x+ td) =
(5− 4µ+ µ2)t2 + 2(2µ − 5)t+ 5

2
and θ′(x; d) = 2µ − 5,

which shows that the chosen NM direction d is an ascent direction of θ at x, provided
µ > 5/2. The figure 2.1 below gives the level curves of θ, which highlight the nonsmoothness

-4 -3 -2 -1 0 1 2

0

0.5

1

1.5

2

2.5

3

d

x

x̄

Figure 2.1: The level curves of θ in counter-example 2.3 with µ = 3 (and the dotted level
curves of x 7→ 1

2‖Mx + q‖2), the solution x̄ to the LCP, the current point x and the
unfortunate NM direction d, which is an ascent direction of θ.

and nonconvexity of the least-square merit function, as well as the chosen NM direction d,
along which θ clearly increases. The increase of θ along the chosen NM direction is due
to an unfortunate choice of F̃(x) and G̃(x). If one chooses the index sets F̃(x) = {2} and
G̃(x) = {1}, the solution to (2.1) becomes d = (2, 1), which is also the solution to the linear
complementarity problem (1.9), and x+ d = (0, 2) is the solution to the LCP.

Note also that the matrices used in (2.1) to compute the directions d = (2− µ, 1) and
d = (2, 1) above, namely M and I, are both in the B-differential ∂BH(x) of H at x. It is
known indeed that

∂BH(x) ⊆ ∂BH1(x)× ∂BH2(x) = {(1 µ), (1 0)} × {(0 1)} = {M, I}.
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The above inclusion is actually an equality since (M − I)1, : = (0 µ) is surjective when
µ > 0 [40; proposition 4.2] (one can also argue that since ∂BH1(x) × ∂BH2(x) has only
two elements and since ∂BH(x) is symmetric [40; proposition 4.1], one must have equality
in the above inclusion). It follows that both M and I are in ∂BH(x). Therefore, the
belonging of the Jacobian (2.2) to ∂BH(x) is not a guarantee to get the descent property.
To put it more synthetically, a semismooth Newton direction of the form (1.13) may not
be a descent direction of the least-square merit function θ.

To conclude, note that the semismooth Newton direction (1.13) with the Xiang-Chen
central Jacobian [93; (2.4)], which is in the C-differential of H at x and reads here

J1/2 :=
1

2
(M + I) =

(
1 µ/2
0 1

)

,

is also not a descent direction of θ, when µ > 5. Indeed, the semismooth Newton direction d
defined by (1.13) with the Jacobian J1/2 verifies here

(
−2
−1

)

+

(
1 µ/2
0 1

)

d = 0.

This yields d = (2− µ/2, 1). Next, for t > 0, one has

H(x+ td) = min(F (x) + tMd, x+ td)

= min

((
−2 + (2 + µ/2)t

−1 + t

)

,

(
−2 + (2− µ/2)t

1 + t

))

=

(
−2 + (2− µ/2)t

−1 + t

)

.

It follows that θ(x + td) and θ′(x; d) are the previous values with µ replaced by µ/2.
Therefore, θ′(x; d) > 0 when µ > 5. ✷

To the best of our knowledge, this intrinsic difficulty of the plain NM algorithm has not
been considered with full attention (we quote, however, algorithm 9.2.2 in [42], which re-
quires to solve a convex piecewise quadratic optimization problem at each iteration with n
bound constraints and is therefore more expensive than the algorithms proposed below).
In sections 2.2 and 2.3, we propose to overcome the difficulty by imposing the direction
to be a feasible point of a particular polyhedron, defined by a very small number of linear
inequalities, instead of being the solution to a linear system. The computation of these
directions is therefore more expensive than for the plain NM direction, but remains poly-
nomial. In addition, in sections 2.4, a heuristics is proposed to avoid as much as possible
the need to find a point in a polyhedron.

2.2 Plain polyhedral Newton-min direction

The direction proposed in this section is based on the following computation, which high-
lights the reason why a plain NM direction may not be a descent direction of the least-
square merit function θ defined in (1.4).
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First, observe that the map θ is directionally differentiable as a composition of H,
which is directionally differentiable, and 1

2‖ · ‖
2 which is locally Lipschitz continuous and

smooth. In this case, the chain rule applies (see [17; lemma 11.1] for example):

θ′(x; d) = H(x)TH ′(x; d).

From (1.3b) and (1.7), one gets

θ′(x; d) = FF(x)(x)
TF ′

F(x)(x)d+GG(x)(x)
TG′

G(x)(x)d

+ FE(x)(x)
T min(F ′

E(x)(x)d,G
′
E(x)(x)d). (2.6)

Since, for x̃ near x, HF(x)(x̃) ≡ FF(x)(x̃) and HG(x)(x̃) ≡ GG(x)(x̃), it is natural to
impose to a Newton-like direction d to verify

(F (x) + F ′(x)d)F(x) = 0 and (G(x) +G′(x)d)G(x) = 0. (2.7)

Note, however, that it will be necessary to infringe this rule below, in order to approach
the “negative kinks” of H with caution. Using (2.6), (2.7), and FE(x)(x) = GE(x)(x), the
directional derivative θ′(x; d) becomes

θ′(x; d) = −‖FF(x)(x)‖
2 − ‖GG(x)(x)‖

2 − ‖FE(x)(x)‖
2

+ FE(x)(x)
T min

(

FE(x)(x) + F ′
E(x)(x)d,GE(x)(x) +G′

E(x)(x)d
)

= −2 θ(x) + FE(x)(x)
T min

(

FE(x)(x) + F ′
E(x)(x)d,GE(x)(x) +G′

E(x)(x)d
)

.

The first term in the right-hand side is satisfactory since it corresponds to the formula
of the directional derivative of the least-square function when H is smooth, while the
second term is at the origin of the positive directional derivative observed in counter-
example 2.3. Let us dissect this last term in order to see what conditions the direction
must verify to make it nonpositive (we take up again an observation already made during
the preparation of the PhD thesis of I. Ben Gharbia [8; 2012] for the LCP (1.2)). For this,
we introduce the following partition (E−(x), E0(x), E+(x)) of E(x), as well as the index set
E0+(x) := E0(x) ∪ E+(x):

E−(x) := {i ∈ [1 :n] : Fi(x) = Gi(x) < 0},
E0(x) := {i ∈ [1 :n] : Fi(x) = Gi(x) = 0},
E+(x) := {i ∈ [1 :n] : Fi(x) = Gi(x) > 0},
E0+(x) := {i ∈ [1 :n] : Fi(x) = Gi(x) > 0}.

(2.8)

Let i ∈ E(x) = E0+(x) ∪ E−(x).

r If i ∈ E0+(x), then Fi(x) > 0. If one of the linearized functions Fi(x) + F ′
i (x)d or

Gi(x) + G′
i(x)d vanishes, their minimum is nonpositive, yielding Fi(x)min(Fi(x) +

F ′
i (x)d,Gi(x) +G′

i(x)d) 6 0.

r If i ∈ E−(x), then Fi(x) < 0. To get Fi(x)min(Fi(x) + F ′
i (x)d,Gi(x) + G′

i(x)d) 6 0,
it is now necessary to have min(Fi(x) + F ′

i (x)d,Gi(x) +G′
i(x)d) > 0, meaning that the

following inequalities must hold:

Fi(x) + F ′
i (x)d > 0 and Gi(x) +G′

i(x)d > 0. (2.9)
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Therefore, the decrease of θ is ensured along a direction d if this one satisfies (2.7), either
Fi(x) + F ′

i (x)d = 0 or Gi(x) +G′
i(x)d = 0 when i ∈ E0+(x), and both inequalities in (2.9)

for i ∈ E−(x).
The above discussion leads us to the definition of the following direction. Let us denote

by (E0+
F (x), E0+

G (x)) an arbitrary partition of E0+(x), meaning that

E0+(x) = E0+
F (x) ∪ E0+

G (x) and E0+
F (x) ∩ E0+

G (x) = ∅. (2.10)

A plain polyhedral Newton-min (PNM) direction is a direction d that satisfies the following
system







Fi(x) + F ′
i (x)d = 0 if i ∈ F(x) ∪ E0+

F (x)

Gi(x) +G′
i(x)d = 0 if i ∈ G(x) ∪ E0+

G (x)

Fi(x) + F ′
i (x)d > 0 if i ∈ E−(x)

Gi(x) +G′
i(x)d > 0 if i ∈ E−(x).

(2.11)

Therefore, we have imposed inequality constraints on the linearized functions Fi(x)+F ′
i (x)d

and Gi(x) + G′
i(x)d for the indices in i ∈ E−(x), like suggested by (2.9), rather than

arbitrarily forcing one of them to vanish, like in the plain NM algorithm (2.1).
The computation of a plain PNM direction is more expensive than the computation of

the plain NM direction (2.1), since a feasible point of a convex polyhedron must be found
instead of the solution to a linear system. Nevertheless, a direction satisfying (2.11) can be
computed in polynomial time using linear or quadratic optimization (see [34, 22] and the
references therein) or other approaches (see [23] for a polynomially convergent algorithm
and [3, 54, 55, 31] for the linearly convergent relaxation method). Such an extra cost is
acceptable, even when one solves a linear complementarity problem. In the next section,
we continue to explore this vein and in section 2.4, we introduce a way of reducing the cost
of the direction computation that is very successful in practice.

We summarize the discussion of this section in the following proposition.

Proposition 2.4 (descent property with (2.11)) For any direction d satisfying

(2.11), one has θ′(x; d) 6 −2 θ(x).

2.3 Secure polyhedral Newton-min direction

Although a vector d satisfying (2.11) is a descent direction of θ, we were not able to get
a global convergence result like those of section 3.2 below with that direction. Our first
attempt in [49] to get global convergence involved adding all indices from {i ∈ [1 : n] :
Fi(x) < Gi(x) < 0} and {i ∈ [1 :n] : Gi(x) < Fi(x) < 0} in the inequalities in (2.11),
which corresponds to the index set E−

∞(x) in (2.12c) below. This is clearly very costly,
which motivates us to develop the more economic strengthening which we present now
under the name secure PNM direction.

In the approach followed in the proof of theorem 3.6, on which theorems 3.7 and 3.8
rest, a difficulty may arise with a limit point x̄ for which E−(x̄) 6= ∅, which is likely to
be on a kink of H, then called a negative kink. When an iterate xk is close to such an x̄
and i ∈ F(xk) say (by symmetry, the reasoning is the same if i ∈ G(xk)), the system
(2.11) gives an information on the variation of Fi at xk along dk (through the equation
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Fi(xk)+F ′
i (xk)dk = 0) but nothing is said on the variation of Gi along the same direction

(since Gi(xk)+G′
i(xk)dk may take any value), while an information on G′

i(xk)dk may also be
necessary when the linesearch at xk explores the two sides of the kink. It happens, actually,
that relaxing the equality Fi(xk)+F ′

i (xk)dk = 0 into the inequality Fi(xk)+F ′
i (xk)dk > 0

and adding the inequality Gi(xk) + G′
i(xk)dk > 0 suffice to complete the proof (see its

point 4.1.2), while keeping the descent property (see corollary 2.7).
We first present in section 2.3.1 the exact version (2.13) of the direction described in the

previous paragraph and discuss its links with directions proposed in other contributions.
Next, we analyze its descent property in section 2.3.2 and exhibit the inexact version (2.22)
of the direction, which also enjoys the descent property.

2.3.1 Direction

Based on the previous discussion, we introduce a device that is able to measure the prox-
imity to a point x̄ with a nonempty index set E−(x̄) (rather mysteriously, the proximity
to a point x̄ on a kink of H due to an index in E0+(x̄) is not troublesome). Let τ ∈ (0,∞)
be the kink tolerance, used to detect such a proximity (normally τ should be small, but we
want to be rather general at this stage of the presentation) and define the index set

E−
τ (x) := {i ∈ [1 :n] : Fi(x) < 0, Gi(x) < 0, |Fi(x)−Gi(x)| < τ}. (2.12a)

We also define

E−
0 (x) := ∩τ>0E

−
τ (x) = {i ∈ [1 :n] : Fi(x) = Gi(x) < 0} = E−(x), (2.12b)

E−
∞(x) := ∪τ>0E

−
τ (x) = {i ∈ [1 :n] : Fi(x) < 0, Gi(x) < 0}. (2.12c)

Note that the set E−
τ (x) is expanding with τ , meaning that E−

τ1(x) ⊆ E−
τ2(x) when 0 6 τ1 6

τ2 6 ∞.
A direction d is said to be a secure PNM direction if it satisfies







Fi(x) + F ′
i (x)d = 0 if i ∈ EF (x)

Gi(x) +G′
i(x)d = 0 if i ∈ EG(x)

Fi(x) + F ′
i (x)d > 0 if i ∈ I(x)

Gi(x) +G′
i(x)d > 0 if i ∈ I(x),

(2.13)

where we have used the following index sets:

EF (x) :=
[
F(x) \ E−

τ (x)
]
∪ E0+

F (x), (2.14a)

EG(x) :=
[
G(x) \ E−

τ (x)
]
∪ E0+

G (x), (2.14b)

I(x) := E−
τ (x), (2.14c)

in which τ ∈ [0,∞] and (E0+
F (x), E0+

G (x)) is a partition of E0+(x). In some proofs and
discussions below, we have found convenient to detect the index set to which a particular
index i ∈ [1 :n] belongs by looking at the position of (Fi(x), Gi(x)) in the graph of figure 2.2.
The index sets EF (x), EG(x), and I(x) will be continually used in the sequel and it is
important to observe that they form a partition of [1 :n], which is claimed in the next
lemma.
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i ∈ EF (x)
i ∈ E

0+(x) = E
0+

F
(x) ∪ E

0+

G
(x)

i ∈ EG(x)

−τ

−τ

Fi(x)

Gi(x)

i ∈ I(x) ≡ E
−
τ (x)

Figure 2.2: The pair (Fi(x), Gi(x)) determines which index sets EF (x), EG(x), or I(x), i
belongs to; see (2.14) for the definition of these index sets. The nondifferentiability of Hi

can only occur on the main diagonal, at points x for which Fi(x) = Gi(x). Nevertheless
the secure PNM direction (2.13) carefully deals with points that are near an x such that
Fi(x) = Gi(x) < 0, those with a pair (Fi(x), Gi(x)) inside the fork in the left-bottom part
of the picture (it then replaces one equality defining the plain NM direction (2.1) by a pair
of inequalities). The width of this fork is controlled by the kink tolerance τ > 0, which can
be taken very small in practice, in order to avoid having too many inequalities in (2.13).

Lemma 2.5 ((EF , EG, I) partition) One has
(
EF (x), EG(x), I(x)

)
∈ P([1 : n]).

Proof. Observe first that the triplet (EF (x), EG(x), I(x)) covers [1 :n]:

EF (x) ∪EG(x) ∪ I(x)

=
(
F(x) ∪ E0+

F (x)
)
∪
(
G(x) ∪ E0+

G (x)
)
∪ E−

τ (x) [(2.14)]

⊇ F(x) ∪ G(x) ∪ E0+(x) ∪ E−(x) [E0+
F (x) ∪ E0+

G (x) = E0+(x), E−
τ (x) ⊇ E−(x)]

= [1 :n] [E0+(x) ∪ E−(x) = E(x) and E(x) ∪ F(x) ∪ G(x) = [1 :n]].

To conclude, it suffices to show that the sets of the triplet are two by two disjoint:

r EF (x) ∩ EG(x) = ∅, since EF (x) ⊆ F(x) ∪ E0+
F (x), EG(x) ⊆ G(x) ∪ E0+

G (x) and

(F(x) ∪ E0+
F (x)) ∩ (G(x) ∪ E0+

G (x)) = ∅;
r EF (x) ∩ I(x) = ∅, since (F(x) \ E−

τ (x)) ∩ E−
τ (x) = ∅ and E0+

G (x) ∩ E−
τ (x) = ∅;

r EG(x) ∩ I(x) = ∅ for a similar reason as in the previous case (switch F and G). ✷

As a consequence of this lemma, the system (2.13) has |EF (x)|+ |EG(x)| = n− |I(x)|
equalities and 2|I(x)| inequalities.

By taking a value of τ close to zero, the number of inequalities in (2.13) should be
small and the computation of the direction should be inexpensive. Our proof of global
convergence (theorems 3.6, 3.7 and 3.8) requires to have τ > 0, however. Then, the set
E−
τ (x) is stable with respect to (or unchanged by) a small perturbation of x, which makes

it adapted to floating point calculation.
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By setting τ = 0, at the left bound of the interval [0,∞], one has E−
0 (x) = E−(x),

F(x) \ E−
0 (x) = F(x), and G(x) \ E−

0 (x) = G(x), so that the system (2.13) becomes







Fi(x) + F ′
i (x)d = 0 if i ∈ F(x) ∪ E0+

F (x)

Gi(x) +G′
i(x)d = 0 if i ∈ G(x) ∪ E0+

G (x)

Fi(x) + F ′
i (x)d > 0 if i ∈ E−(x)

Gi(x) +G′
i(x)d > 0 if i ∈ E−(x).

(2.15)

This is the system (2.11) defining the plain PNM direction.
By setting τ = ∞, at the right bound of the interval [0,∞], one has F(x) \ E−

∞(x) =
{i : Fi(x) < Gi(x), Gi(x) > 0}, G(x) \ E−

∞(x) = {i : Gi(x) < Fi(x), Fi(x) > 0}, so that the
system (2.13) becomes







Fi(x) + F ′
i (x)d = 0 if [Fi(x) < Gi(x) and Gi(x) > 0] or i ∈ E0+

F (x)

Gi(x) +G′
i(x)d = 0 if [Gi(x) < Fi(x) and Fi(x) > 0] or i ∈ E0+

G (x)

Fi(x) + F ′
i (x)d > 0 if Fi(x) < 0 and Gi(x) < 0

Gi(x) +G′
i(x)d > 0 if Fi(x) < 0 and Gi(x) < 0.

(2.16)

This system can be viewed as a relaxation of the following mixed LCP







Fi(x) + F ′
i (x)d = 0, if [Fi(x) < Gi(x) and Gi(x) > 0] or i ∈ E0+

F (x)

Gi(x) +G′
i(x)d = 0, if [Gi(x) < Fi(x) and Fi(x) > 0] or i ∈ E0+

G (x)

0 6 (F (x) + F ′(x)d)E−
∞(x) ⊥ (G(x) +G′(x)d)E−

∞(x) > 0,

which has an orthogonality condition that is not present in (2.16). This last system has
some similarities with the system (1.12), obtained in [83] using other considerations.

2.3.2 Descent property

The computation of a secure PNM direction satisfying (2.13), can be more time consuming
than solving the linear system (2.1) defining the plain Newton-min direction. This is due
to the presence of inequalities in the system (2.13). It is therefore tempting to see whether
it is possible to design a criterion allowing an algorithm to take as often as possible the
plain NM direction. This is the idea supporting the hybrid algorithm defined in section 2.4
(algorithm 2.11) and the first steps towards that algorithm are done in the present section:
we focus on the design of such a criterion and on its validation.

Around a solution, the plain NM direction is known to be appropriate because it yields
fast convergence [69, 71], while this might not be the case far from a solution because it
may fail to be a descent direction of the least-square merit function θ defined in (1.4);
see counter-example 2.3. This observation speaks for a criterion based on the directional
derivative of θ. Taking some safeguard, there is a temptation to accept the plain NM
direction d when it satisfies the inequality

θ′(x; d) 6 −2(1− η) θ(x) (2.17)

where η is some constant in [0, 1). This inequality is natural since it is satisfied with η = 0
when d is the Newton direction on a smooth function H and θ is the map x 7→ 1

2‖H(x)‖2.
We have not been able to prove a global convergence result in the style of theorem 3.8
below with such a simple criterion, so that we design below a more robust one.
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For an arbitrary direction d ∈ R
n, proposition 2.6 below will show that

θ′(x; d) 6 −
∑

i∈[1 :n]

(1− ρi(x, d))Hi(x)
2, (2.18)

provided the ρi(x, d)’s are the unsigned values defined by formula (2.20) below (note that
these values depend on τ through the index sets EF (x), EG(x), and I(x)). We shall see in
corollary 2.7 that ρi(x, d) 6 0 for the secure PNM direction (2.13), so that the inequality
(2.17) with η = 0 follows from (2.18) for that direction. As a result, the secure PNM
direction is a descent direction of θ at x (corollary 2.7).

The criterion for accepting an arbitrary direction d in the linesearch will be that the
right-hand side of (2.18) is less than the right-hand side of (2.17), namely

−
∑

i∈[1 :n]

(1− ρi(x, d))Hi(x)
2
6 −2(1− η) θ(x), (2.19a)

where η is some constant in [0, 1). From the expression (1.4) of θ, we see that this criterion
simplifies into

1

2

∑

i∈[1 :n]

ρi(x, d)Hi(x)
2
6 η θ(x), (2.19b)

where, again, the ρi(x, d)’s are the unsigned values defined by formula (2.20) below. The
acceptation criterion (2.19) is more demanding than (2.17) since, thanks to (2.18), it implies
(2.17). We see that the contributions of the terms in the sum in the right-hand side of
(2.18) can be compensated by each other: the negativity of the directional derivative
θ′(x; d) can be obtained by some negative terms in this sum, despite the positivity of other
terms. This flexibility will allow the hybrid algorithm of section 2.4 to accept very often
the plain NM direction (as observed in our experiments [49]). The important point is that
the criterion (2.19) happens to be sufficient to get the global convergence of theorem 3.8,
because it is the left-hand side of the inequality (2.19a) that appears in its proof (see the
one of theorem 3.6).

In the rest of this section, we focus on the proof of the inequality (2.18) and on its
ability to detect descent directions. First, let us define the quantities ρi(x, d) appearing in
the right-hand side of (2.18). Let x ∈ R

n be an arbitrary point and d ∈ R
n be an arbitrary

direction. We define ρi(x, d) by

ρi(x, d) :=







Fi(x)+F ′
i
(x)d

Fi(x)
if i ∈ EF (x) and Fi(x) 6= 0

0 if i ∈ EF (x) and Fi(x) = 0
Gi(x)+G′

i
(x)d

Gi(x)
if i ∈ EG(x) and Gi(x) 6= 0

0 if i ∈ EG(x) and Gi(x) = 0

max
(
Fi(x)+F ′

i
(x)d

Fi(x)
,
Gi(x)+G′

i
(x)d

Gi(x)

)

if i ∈ I(x),

(2.20)

where the partition (EF (x), EG(x), I(x)) of [1 : n] has been defined in (2.14) (hence, the
five groups of indices in (2.20) also form a partition of [1 :n]). The zero value given to
ρi(x, d) when Fi(x) = 0 or Gi(x) = 0 allows us to simplify the statement of corollary 2.7
below but, as we shall see, an arbitrary value could have been given instead, since this
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one does not occur in the calculations that follow. Note that the ρi(x, d)’s depend on τ
through the index sets EF (x), EG(x), and I(x).

Let us stress the fact that the ρi(x, d)’s given by (2.20) are not necessarily less than
one and such a restriction on d is not imposed in the next proposition. Hence, the formula
(2.18) does not give an upper bound of θ′(x; d) as a sum of nonpositive terms and does
not imply the negativity of that directional derivative. This is quite normal, since d is
arbitrary in this definition.

Proposition 2.6 (overestimation of θ′(x; d)) Let x ∈ R
n, d ∈ R

n, H be the func-

tion defined by (1.3b), and the ρi(x, d)’s be defined by (2.20). Then (2.18) holds.

Proof. Let us first show that

∀ i ∈ F(x) : Fi(x)F
′
i (x)d 6 −(1−ρi)Fi(x)

2, (2.21a)

∀ i ∈ G(x) : Gi(x)G
′
i(x)d 6 −(1−ρi)Gi(x)

2, (2.21b)

where we set ρi := ρi(x, d) to alleviate notation. Consider first (2.21a). Observe that
i ∈ F(x) if and only if (i ∈ F(x) \ E−

τ (x) and Fi(x) 6= 0) or (i ∈ F(x) and Fi(x) = 0) or
(i ∈ F(x) ∩ E−

τ (x)).

r If i ∈ F(x)\E−
τ (x) ⊆ EF (x) and Fi(x) 6= 0, (2.20)1 gives F ′

i (x)d = −(1−ρi)Fi(x), hence
(2.21a) with equality follows by multiplying both sides of this identity by Fi(x).

r If i ∈ F(x) and Fi(x) = 0, (2.21a) is clearly satisfied with equality.
r If i ∈ F(x) ∩ E−

τ (x) ⊆ I(x), (2.20)5 gives −F ′
i (x)d 6 (1−ρi)Fi(x), hence (2.21a) follows

by multiplying both sides of this inequality by −Fi(x) > 0.

To get (2.21b), use the same arguments, with G instead of F and with (2.20)3 instead of
(2.20)1.

Now using (2.6), (2.21), and Fi(x) = Gi(x) for i ∈ E(x), we get

θ′(x; d) 6 −
∑

i∈F(x)

(1− ρi)Fi(x)
2 −

∑

i∈G(x)

(1− ρi)Gi(x)
2 −

∑

i∈E(x)

(1− ρi)Fi(x)
2

+
∑

i∈E(x)

Fi(x)min
(
(1− ρi)Fi(x) + F ′

i (x)d, (1 − ρi)Gi(x) +G′
i(x)d

)
.

Therefore, to get (2.18), it suffices to show that the last term in the right-hand side of the
previous inequality is nonpositive. For this, we consider the partition (E0(x), E+(x), E−(x))
of E(x).

r If i ∈ E0(x), then Fi(x) = Gi(x) = 0 and the corresponding term vanishes.

r If i ∈ E+(x) = (E0+
F (x)∪E0+

G (x))\E0(x) ⊆ EF (x)∪EG(x), then one of the arguments of
the minimum vanish by the definition of ρi in (2.20)1 and (2.20)3, so that the minimum
if nonpositive. Since Fi(x) > 0, the term of the sum corresponding to the considered
i ∈ E+(x) is also nonpositive.

r If i ∈ E−(x) = E−
0 (x) ⊆ E−

τ (x) = I(x), then, by (2.20)5 and Fi(x) = Gi(x) < 0, the
minimimum vanishes. ✷
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Corollary 2.7 (descent secure PNM direction) Suppose that d is a secure PNM

direction, hence satisfying (2.13) for some τ ∈ [0,∞]. Then, the ρi(x, d)’s defined

by (2.20) are nonpositive and, consequently, (2.17) and (2.19) hold with η = 0. In

particular, if θ(x) 6= 0, d is a descent direction of θ at x.

Proof. Suppose that d satisfies (2.13) at x ∈ R
n, for some τ ∈ [0,∞]. For i ∈ EF (x),

(2.13)1 shows that Fi(x)+F ′
i (x)d = 0, so that ρi(x, d) = 0 by (2.20)1 and (2.20)2. Similarly,

ρi(x, d) = 0 for i ∈ EG(x). For i ∈ I(x), (2.13)3 and (2.13)4 show that ρi(x, d) 6 0 by
(2.20)5. We have shown that the ρi(x, d)’s defined by (2.20) are nonpositive.

Now, the inequality θ′(x; d) 6 −2 θ(x), which is (2.17) with η = 0, follows immediately
from (2.18), which holds by proposition 2.6, since the terms with ρi(x, d) in factor in the
right-hand side are nonpositive and can be discarded. For the same reason, (2.19) holds
with η = 0.

Finally, if θ(x) 6= 0, the inequality θ′(x; d) 6 −2 θ(x) yields θ′(x; d) < 0, showing that d
is a descent direction of θ at x. ✷

As another illustration of the usefulness of proposition 2.6, consider an inexact secure

PNM direction d, which, by definition, verifies, for some η > 0, the following inequalities:

Fi(x) + F ′
i (x)d 6 ηFi(x), ∀ i ∈ F0+(x) ∪ E0+

F (x),
ηFi(x) 6 Fi(x) + F ′

i (x)d, ∀ i ∈ F−(x) ∪ E−
τ (x),

Gi(x) +G′
i(x)d 6 ηGi(x), ∀ i ∈ G0+(x) ∪ E0+

G (x),

ηGi(x) 6 Gi(x) +G′
i(x)d, ∀ i ∈ G−(x) ∪ E−

τ (x),

(2.22)

where the index sets F−(x), F0+(x), G−(x), and G0+(x) are defined by

F−(x) := {i ∈ F(x) : Fi(x) < 0}, F0+(x) := {i ∈ F(x) : Fi(x) > 0}, (2.23a)

G−(x) := {i ∈ G(x) : Gi(x) < 0}, G0+(x) := {i ∈ G(x) : Gi(x) > 0}. (2.23b)

The system (2.22) brings much flexibility regarding the realization of the equations in the
previous systems (2.1), (2.11) and (2.13).

It is not difficult to see that the four index sets used in (2.22) cover [1 :n], but they
are not two by two disjoint (like in (2.13), two inequalities must be satisfied for the indices
in I(x) = E−

τ (x)). It is also simple to verify that these conditions (2.22) are satisfied with
η = 0 by a secure PNM direction, i.e., a direction d verifying (2.13), so that corollary 2.8
below extends corollary 2.7. The conditions (2.22) are not very demanding, in particular
because there is no equality to satisfy. During our exploration of the design of a criterion
for accepting as often as possible a plain NM direction (2.1), the fact that it satisfied these
conditions (2.22) was retained for a while, because they ensure the global convergence of
section 3.2. Actually, as shown by the next corollary, an inexact secure PNM direction also
satisfies the criterion (2.19), which is an indirect way of showing that it guarantees the
global convergence results of section 3.2. Since (2.22) implies (2.19), the latter criterion
is less demanding, more often verified, than the former, which is the reason why we have
adopted the criterion (2.19) in section 2.4.
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Corollary 2.8 (descent inexact secure PNM direction) Suppose that d is an

inexact secure PNM direction, hence satisfying (2.22) for some τ ∈ [0,∞] and η > 0.
Then, the ρi(x, d)’s defined by (2.20) do not exceed η and, consequently, (2.17) and

(2.19) hold with the given η. In particular, if θ(x) 6= 0 and η ∈ [0, 1), d is a descent

direction of θ at x.

Proof. Suppose that d satisfies (2.22) at x ∈ R
n for some τ ∈ [0,∞] and η > 0.

Let us show that ρi(x, d) 6 η, for i ∈ EF (x). By (2.23a), F(x) = F0+(x) ∪ F−(x), so
that the index set EF (x) defined by (2.14a) can be written

EF (x) = {[F0+(x) ∪ F−(x)] ∩ E−
τ (x)c} ∪ E0+

F (x)

= F0+(x) ∪ [F−(x) ∩ E−
τ (x)c] ∪ E0+

F (x) [F0+(x) ∩ E−
τ (x)c = F0+(x)]

= [F0+(x) ∪ E0+
F (x)] ∪ [F−(x) \ E−

τ (x)].

If i ∈ F0+(x) ∪ E0+
F (x) and Fi(x) 6= 0, (2.20)1, (2.22)1, and the positivity of Fi(x) give

ρi(x, d) 6 η. If i ∈ F0+(x) ∪ E0+
F (x) and Fi(x) = 0, (2.20)2 and η > 0 show that

ρi(x, d) 6 η. If i ∈ F−(x) \ E−
τ (x), (2.20)1, (2.22)2, and the negativity of Fi(x) give again

ρi(x, d) 6 η.
For symmetric reasons, ρi(x, d) 6 η, for i ∈ EG(x).
Consider now the indices i ∈ I(x) = E−

τ (x). By (2.22)2, (2.22)4, and the negativity of
Fi(x) and Gi(x), we get (Fi(x) + F ′

i (x)d)/Fi(x) 6 η and (Gi(x) +G′
i(x)d)/Gi(x) 6 η, so

that ρi(x, d) 6 η by (2.20)5.
In conclusion, we have shown that

ρi(x, d) 6 η, for i ∈ [1 :n].

Therefore, the criterion (2.19) is satisfied with the given η. Next, using (2.18), which is
guaranteed by proposition 2.6, and (2.19), we get (2.17). Finally, if θ(x) 6= 0 and η ∈ [0, 1),
(2.17) yields θ′(x; d) < 0, showing that d is a descent direction of θ at x. ✷

2.4 The hybrid Newton-min algorithm

The directions presented in section 2.3 give rise to several algorithms that follow the same
principles. These are gathered in the following generic algorithm. It is the global conver-
gence of this generic algorithm that will be analyzed in section 3.2, and more particularly
in theorem 3.6, in which an additional assumption is made on the computed directions
(their boundedness). In this algorithm, the term “constant” means “independent of the
iteration”.

Algorithm 2.9 (generic NM algorithm) Let x be the current iterate. Let η ∈
[0, 1) be the constant appearing in the acceptation criterion (2.19), let τ ∈ (0,∞] be
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the constant kink tolerance used in the definition of the index sets EF (x), EG(x),
and I(x) by (2.14), and let ω ∈ (0, 1) and β ∈ (0, 1) be the two constants used in the
linesearch of step 4 below. The next iterate x+ ∈ R

n is computed as follows.

1. Stopping criterion. If θ(x) = 0, stop (then, x is a solution to (1.1)).
2. Index sets. Choose some partition (E0+

F (x), E0+
G (x)) of E0+(x) and compute the

index sets EF (x), EG(x), and I(x) defined by (2.14).
3. Direction. Compute a direction d ∈ R

n satisfying (2.19) for the ρi(x, d)’s defined
in (2.20),

4. Stepsize. Set α := βi, where i is the smallest nonnegative integer such that

θ(x+ αd) 6 (1−2ωα(1−η)) θ(x). (2.24)

5. New iterate. x+ := x+ αd.

The well-posedness of this algorithm is discussed below, after having presented two of its
instances, which only differ by their way of computing the direction d in step 3.

A first instance of the generic NM algorithm is the one that computes the direction d
as the minimum norm solution to (2.13).

Algorithm 2.10 (PNM algorithm) It is the instance of algorithm 2.9, in which the
direction d in step 3 is computed as a solution to the following problem

min {|||d||| : d satisfies (2.13)}, (2.25)

where ||| · ||| is an arbitrary norm.

The norm ||| · ||| in (2.25) may be arbitrary with regard to the convergence of the algorithm;
if the Euclidean norm is used, (2.25) is a standard strictly convex quadratic optimization
problem (with the squared norm), which has a unique solution and can be solved in poly-
nomial time. Since the solution d to (2.25) satisfies (2.13), it also satisfies (2.19) with η = 0
(corollary 2.7), which shows that algorithm 2.10 is indeed an instance of algorithm 2.9.

As already discussed at the beginning of section 2.3.2, the hybrid Newton-min (HNM)
algorithm presented below aims at reducing the cost of the computation of a descent
direction of algorithm 2.10 by accepting the plain NM direction (2.1) as soon as it satisfies
the criterion (2.19) ; if this criterion is not satisfied, a least-norm secure PNM direction is
computed by (2.25). As we shall see in section 3.2, in addition to minimizing the cost of
the iteration, this approach also ensures global convergence.

Algorithm 2.11 (HNM algorithm) It is the instance of algorithm 2.9, in which
the direction d in step 3 is computed as follows.

3.1. For some (F̃(x), G̃(x)) ∈ P([1 : n]) that satisfies F̃(x) ⊇ F(x) and G̃(x) ⊇ G(x),
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computes a plain NM direction d ∈ R
n as a solution to (2.1),

3.2. If (2.19) does not hold with that d, recompute the direction d as a solution
to (2.25).

For the same reason as for algorithm 2.10, the direction d computed in algorithm 2.11
satisfies (2.19) for the given η, which shows that algorithm 2.11 is indeed an instance of
algorithm 2.9.

The acceptation criterion (2.19) used in point 3.2 of the HNM algorithm depends on
the kink tolerance τ and on the partition (E0+

F (x), E0+
G (x)) of E0+(x) chosen to define

EF (x) and EG(x), which intervene in the definition (2.20) of the ρi’s. It is natural to make
the choice of this partition in accordance with the partition (F̃(x), G̃(x)) of [1 : n] made
in point 3.1 of the HNM algorithm, that is E0+

F (x) ⊆ F̃(x) and E0+
G (x) ⊆ G̃(x), which

implies that EF (x) ⊆ F̃(x) and EG(x) ⊆ G̃(x). Then, like at the beginning of the proof
of corollary 2.7, ρi(x, d) = 0 for i ∈ EF (x) ∪ EG(x) for the plain NM direction d, which
is satisfactory for the validity of the acceptation criterion. Now, since I(x) shrinks when
τ > 0 decreases, the acceptation criterion has more chance to be satisfied when τ > 0
decreases.

The algorithms 2.9, 2.10, and 2.11 are rather standard in their structure. Only the
computation of the direction in step 3, whose conception has been progressively introduced
above, makes exception. Let us give some more comments.

1. There are implicit assumptions in step 3, which will have to be clarified in the results
on these algorithms, namely

r algorithm 2.11 assumes that (2.1) has a solution at each iterations, which may not
be the case if the Jacobian of this linear system is singular;

r similarly, algorithms 2.10 and 2.11 assume that problem (2.25) has a solution at each
iteration (or at some iteration for algorithms 2.11), which may not be the case if the
affine system (2.13) is infeasible; a rather weak condition guaranteeing the feasibility
of (2.13), for x near a limit point x̄, is introduced and discussed in section 3.1.

2. If not empty, the polyhedron defined by (2.13) may be unbounded, which raises some
difficulty in the convergence proof of section 3.2. For this reason, in (2.25), we take
the option of taking a minimum norm direction in that polyhedron, but any other
technique guaranteeing the boundedness of the directions computed at a converging
sequence of x’s would be appropriate.

3. The directions computed in step 3 of algorithm 2.9, if any, are necessarily descent
directions of θ at x. This is because they satisfy (2.19) with η < 1, hence (2.17)
with the same η < 1, implying that θ′(x; d) < 0 when x is not a solution to the
complementarity problem (1.1) (this is guaranteed by step 1). As a result, in that
case, the linesearch in step 4 is able to compute a stepsize α > 0 in a finite number of
trials [17, 53].

4. Condition (2.24) derives from the standard Armijo inequality [6, 36, 17]

θ(x+ αd) 6 θ(x) + ωαθ′(x; d),

in which the negative upper bound −2(1−η) θ(x) of θ′(x; d) given by (2.17) has replaced
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the directional derivative.

3 Algorithm analysis

This section starts with giving a regularity condition at a point x̄ ∈ R
n that ensures several

properties (section 3.1). First, it implies that the system (2.13), defining the secure PNM
direction d, has a solution when x is near x̄ (proposition 3.2). Next, it also certifies that the
algorithm can choose a solution to (2.13) that has a continuity property (proposition 3.4).
Finally, the continuity property guarantees that the chosen directions are bounded for x
near x̄ (corollary 3.5). This boundedness property is useful for establishing global conver-
gence results (section 3.2).

3.1 Regularity

3.1.1 Regularity at a point

Let x̄ ∈ R
n be a point that is not necessarily a solution to the complementarity prob-

lem (1.1), a choice that is important in the proof of the global convergence result (the-
orem 3.6), since there the accumulation points of the generated sequence have a priori
no particular properties. Our vehicle for highlighting conditions ensuring the solvability
of the affine system (2.13), when x is near x̄, is the Mangasarian-Fromovitz constraint
qualification (MFCQ) [77], which reads

∑

i∈EF (x) αi∇Fi(x) +
∑

i∈EG(x) βi∇Gi(x) +
∑

i∈I(x)

[
αi∇Fi(x) + βi∇Gi(x)

]
= 0

and (αI(x), βI(x)) > 0 imply that (α, β) = 0.
(3.1a)

Another equivalent version reads

For all (a, a′, b, b′) ∈ R
|EF (x)|×R

|EG(x)|×R
|I(x)|×R

|I(x)|, there is a direction d ∈ R
n

such that F ′
EF (x)(x)d = a, G′

EG(x)(x)d = a′, F ′
I(x)(x)d > b and G′

I(x)(x)d > b′.
(3.1b)

Clearly, the system (2.13) has a solution d when (3.1b) holds at x (and this MFCQ condition
is almost necessary, since the independent terms in (2.13), deduced from F (x) and G(x),
can be arbitrary).

It is not sufficient to require the satisfaction of the MFCQ condition (3.1) at x = x̄ to
get it at x near x̄, like above. The reason comes from the change in the index sets EF (x),
EG(x) and I(x) with x. Suppose indeed that only (3.1a) holds at x = x̄. It is well known
that the implication in (3.1a) is insensitive to small perturbations in the gradients ∇Fi(x)
and ∇Gi(x) in its premise (see [53; exercise 4.16] for instance). Therefore, if we assume
the continuity of the derivatives F ′ and G′ at x̄ and if x is near x̄, it follows from (3.1a)
at x = x̄ that

∑

i∈EF (x̄) αi∇Fi(x) +
∑

i∈EG(x̄) βi∇Gi(x) +
∑

i∈I(x̄)

[
αi∇Fi(x) + βi∇Gi(x)

]
= 0

and (αI(x̄), βI(x̄)) > 0 imply that (α, β) = 0,

where the gradients are evaluated at x, while the index sets are evaluated in x̄. Here,
however, none of these sets EF (x̄), EG(x̄) and I(x̄) are guaranteed to be invariant when x̄
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is slightly modified. Therefore, (3.1) at x = x̄ may not imply that (3.1) holds at x near x̄.
For this reason, we adopt a stronger regularity condition.

The set of partitions (EF , EG, I) of [1 :n], such that (EF , EG, I) = (EF (x), EG(x),
I(x)) for some x in a neighborhood V of x̄ and some partition (E0+

F (x), E0+
G (x)) of E0+(x),

decreases when V gets smaller. Since the number of partition of [1 : n] is finite, one can
find a neighborhood Vpnm of x̄ for which these partitions (EF , EG, I) are minimal. Then,
denote by

Ppnm := {(EF (x), EG(x), I(x)) : x ∈ Vpnm, (E0+
F (x), E0+

G (x)) is a partition of E0+(x)}

this smallest set of partitions.

Definition 3.1 (PNM-regularity) Let be given τ ∈ (0,∞]. A point x̄ ∈ R
n is said to

be PNM-regular (we also say that PNM-regularity holds at x̄ ∈ R
n) if, for all x ∈ Vpnm, F

and G are differentiable at x and for all (EF , EG, I) ∈ Ppnm, one has
∑

i∈EF
αi∇Fi(x̄) +

∑

i∈EG
βi∇Gi(x̄) +

∑

i∈I

[
αi∇Fi(x̄) + βi∇Gi(x̄)

]
= 0

and (αI , βI) > 0 imply that (α, β) = 0,
(3.2a)

or, equivalently,

for all (a, a′, b, b′) ∈ R
|EF |×R

|EG|×R
|I|×R

|I|, there is a direction d ∈ R
n

such that F ′
EF

(x̄)d = a, G′
EG

(x̄)d = a′, F ′
I(x̄)d > b and G′

I(x̄)d > b′.
(3.2b)

✷

Proposition 3.2 ((3.1) near a PNM-regular point) Suppose that the PNM-regu-

larity condition 3.1 holds at x̄. Then, there is a neighborhood V ′
pnm

⊆ Vpnm of x̄ such

that for all x ∈ V ′
pnm

, (3.1) holds at x.

Proof. By the PNM-regularity definition 3.1, for all (EF , EG, I) ∈ Ppnm, (3.2b) holds.
This implies that there a neighborhood V of x̄ such that, for all x ∈ V :

for all (a, a′, b, b′) ∈ R
|EF |×R

|EG|×R
|I|×R

|I|, there is a direction d ∈ R
n

such that F ′
EF

(x)d = a, G′
EG

(x)d = a′, F ′
I(x)d > b and G′

I(x)d > b′.
(3.3)

Since Ppnm is finite, there is a neighborhood V ′
pnm

⊆ Vpnm of x̄ such that for all x ∈ V ′
pnm

and all (EF , EG, I) ∈ Ppnm, (3.3) holds. By definition of Ppnm, for any x ∈ Vpnm (hence
x ∈ V ′

pnm
) and any partition (E0+

F (x), E0+
G (x)) of E0+(x), (EF (x), EG(x), I(x)) ∈ Ppnm. It

follows that, for any x ∈ V ′
pnm

, one has

for all (a, a′, b, b′) ∈ R
|EF (x)|×R

|EG(x)|×R
|I(x)|×R

|I(x)|, there is a direction d ∈ R
n

such that F ′
EF (x)(x)d = a, G′

EG(x)(x)d = a′, F ′
I(x)(x)d > b and G′

I(x)(x)d > b′.

This is (3.1) at x. ✷

We conclude this section by giving a counter-example showing that the PNM-regularity
of definition 3.1 does not imply the NM-regularity of definition 2.1. Now, with the pair
of inequalities that must be satisfied for the indices in I(x) in (2.13), a priori, the NM-
regularity may not imply the PNM-regularity. Therefore, the two concepts of regularity
cannot really be compared.
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Counter-example 3.3 (PNM-regularity 6⇒ NM-regularity) Consider the LCP (1.2),
in which

n = 2, M =

(
0 1
1 0

)

and q =

(
1
−1

)

.

Let us make the correspondence between the LCP (1.2) and the general complementarity
problem (1.1) by defining F and G at x by F (x) = Mx + q and G(x) = x. Then, at
x̄ = (−1,−2), one has F(x̄) = G(x̄) = ∅ and E(x̄) = {1, 2}. Taking (F̃ , G̃) = ({2}, {1})
as partition of {1, 2} satisfying F̃ ⊇ F(x̄) and G̃ ⊇ G(x̄), the Jacobian of the system (2.1)
reads (

F ′
2(x̄)

G′
1(x̄)

)

=

(
1 0
1 0

)

.

This one is singular, showing the x̄ is not NM-regular in the sense of definition 2.1 (and
in the present case, the system (2.1) has no solution). However, the PNM-regularity in
the sense of definition 3.1 holds at x̄, since, for x near x̄, EF (x) = EG(x) = ∅ and
I(x) = {1, 2}, so that

Ppnm = {(∅,∅, {1, 2})}.

The premise in (3.2a) reads

α1

(
0
1

)

+ β1

(
1
0

)

+ α2

(
1
0

)

+ β2

(
0
1

)

= 0 and (α, β) > 0.

This one clearly implies that α = β = 0, showing the PNM-regularity holds at x̄. As
desired and proved in proposition 3.4(2) below, for x near x̄, the system (2.13), namely

(
x2 + 1
x1 − 1

)

+

(
0 1
1 0

)

d > 0 and

(
x1
x2

)

+

(
1 0
0 1

)

d > 0

has a solution, since it consists in the system of inequalities d1 > max(1−x1,−x1) = 1−x1
and d2 > max(−1− x2,−x2) = −x2, which presents no compatibility problem. ✷

3.1.2 Continuity of selected directions

We now consider the question of whether a solution d to (2.13) at x can be chosen in such
a way that these directions are bounded when x is near a given arbitrary point x̄. This
will be a consequence of the continuity property stated in the next proposition, which is
guaranteed when the PNM-regularity condition 3.1 holds at x̄. The boundedness property
is useful for establishing the global convergence result of theorems 3.7 and 3.8 below.

We say that a function ϕ : Rn → R
m is locally radially Lipschitz continuous at x̄ ∈ R

n

for the Euclidean norm ‖ · ‖ if there is a neighborhood V of x̄ in R
n and a constant L > 0,

such that for all x ∈ V , ‖ϕ(x) − ϕ(x̄)‖ 6 L‖x− x̄‖.

Proposition 3.4 (continuity of the selected directions) Suppose that F and G
are continuously differentiable at x̄ ∈ R

n, that τ ∈ (0,∞] and that the PNM-regularity

condition 3.1 holds at x̄. Then, the following properties hold.
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1) For any (EF , EF , I) ∈ Ppnm, the system

FEF
(x̄) + F ′

EF
(x̄)d = 0, GEG

(x̄) +G′
EG

(x̄)d = 0,

FI(x̄) + F ′
I(x̄)d > 0, GI(x̄) +G′

I(x̄)d > 0
(3.4)

has a solution d̄. Denote by D̄ the finite set of these selected d̄’s, each of them

being associated with one (EF , EF , I) ∈ Ppnm.

2) For any δ > 0, there is a neighborhood V of x̄ such that, for any x ∈ V and any

partition (E0+
F (x), E0+

G (x)) of E0+(x), the system (2.13) has a solution d(x) that

satisfies

min
d̄∈D̄

‖d(x)− d̄‖ < δ.

3) If, in addition, F ′ and G′ are locally radially Lipschitz continuous at x̄, then, there

is a neighborhood V ′ of x̄ and a constant L > 0 such that, for any x ∈ V ′ and any

partition (E0+
F (x), E0+

G (x)) of E0+(x), the system (2.13) has a solution d(x) that

satisfies

min
d̄∈D̄

‖d(x) − d̄‖ 6 L‖x− x̄‖.

Proof. 1) Let (EF , EF , I) ∈ Ppnm be one of the partitions of [1 : n] considered in the
PNM-regularity condition 3.1. By (3.2b), the system (3.4) has a solution d̄. Since Ppnm is
finite, the set D̄ of these selected d̄’s is finite.

2) Let V ′
pnm

be the neighborhood of x̄ given by proposition 3.2, which assumes the
PNM-regularity condition 3.1 at x̄. This proposition tells us that, for any x ∈ V ′

pnm
and

any partition (E0+
F (x), E0+

G (x)) of E0+(x), the MFCQ condition (3.1b) holds at x, so that
the convex polyhedron

P(x) := {d ∈ R
n : FEF (x)(x) + F ′

EF (x)(x)d = 0, GEG(x)(x) +G′
EG(x)(x)d = 0,

FI(x)(x) + F ′
I(x)(x)d > 0, GI(x)(x) +G′

I(x)(x)d > 0},

is nonempty (recall that the partition (EF (x), EG(x), I(x)) of [1 : n] is given by (2.14)).
For each x ∈ V ′

pnm
and each partition (E0+

F (x), E0+
G (x)) of E0+(x), one determines

an element d(x) of P(x) as follows. Let d̄(x) be the direction of D̄ associated with
(EF , EF , I) = (EF (x), EF (x), I(x)) ∈ Ppnm. Then, define d(x) as the Euclidean projection
of d̄(x) on P(x), which is written

d(x) := PP(x)(d̄(x)).

By Hoffman’s error bound for polyhedron [59; 1952], one has the following upper bound
on the distance from d̄(x) to P(x):

‖d(x)− d̄(x)‖ 6 h(x)

∥
∥
∥
∥
∥
∥
∥
∥







FEF
(x) + F ′

EF
(x)d̄(x)

GEG
(x) +G′

EG
(x)d̄(x)

[FI(x) + F ′
I(x)d̄(x)]

−

[GI(x) +G′
I(x)d̄(x)]

−







∥
∥
∥
∥
∥
∥
∥
∥

, (3.5a)
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where ‖·‖ denotes the Euclidean norm (for example), the Hoffman factor h(x) only depends
on F ′(x) and G′(x), t− := max(0,−t) for t ∈ R, and v− is defined componentwise when v
is a vector. Now, by (3.4) and the definition of d̄(x), one has







FEF
(x̄) + F ′

EF
(x̄)d̄(x)

GEG
(x̄) +G′

EG
(x̄)d̄(x)

[FI(x̄) + F ′
I(x̄)d̄(x)]

−

[GI(x̄) +G′
I(x̄)d̄(x)]

−







= 0, (3.5b)

so that (3.5a) becomes

‖d(x)− d̄(x)‖ 6 h(x)

∥
∥
∥
∥
∥
∥
∥
∥







FEF
(x) + F ′

EF
(x)d̄(x)− [FEF

(x̄) + F ′
EF

(x̄)d̄(x)]

GEG
(x) +G′

EG
(x)d̄(x)− [GEG

(x̄) +G′
EG

(x̄)d̄(x)]

[FI(x) + F ′
I(x)d̄(x)]

− − [FI(x̄) + F ′
I(x̄)d̄(x)]

−

[GI(x) +G′
I(x)d̄(x)]

− − [GI(x̄) +G′
I(x̄)d̄(x)]

−







∥
∥
∥
∥
∥
∥
∥
∥

. (3.5c)

Suppose that h(x) is bounded for x near x̄ (this will be proven below). Then, using the
1-Lipschitz continuity of t− (which means that |t−2 − t−1 | 6 |t2 − t1| for all t1 and t2 ∈ R),
the continuity of F , G, F ′ and G′ at x̄ and the fact that d̄(x) is bounded (it belongs to
the finite set D̄), we see that for any δ > 0 and for x sufficiently close to x̄, one can find
d(x) ∈ P(x) and d̄(x) ∈ D̄ such that ‖d(x) − d̄(x)‖ < δ. The inequality in conclusion of
point 2 follows.

To prove the boundedness for x near x̄ of the Hoffman factor h(x), appearing in (3.5a),
we trust the perturbation property in [74; theorem 5.5]. This property claims that if the
MFCQ holds for a system “Ad = a and Bd 6 b in d” (A and B are matrices and a and b are
vectors of appropriate dimensions), then the Hoffman constant is bounded for any convex
polyhedron {d ∈ R

n : Ãd = ã, B̃d 6 b̃} with arbitrary (ã, b̃) and with (Ã, B̃) close enough
to (A,B) (the reciprocal is also true).

The Hoffman factor h(x) was associated in (3.5a) with the convex polyhedron P(x) or,
with (EF , EF , I) := (EF (x), EF (x), I(x)),

{d ∈ R
n : FEF

(x) + F ′
EF

(x)d = 0, GEG
(x) +G′

EG
(x)d = 0,

FI(x) + F ′
I(x)d > 0, GI(x) +G′

I(x)d > 0}.

With the fixed partition (EF , EF , I) of [1 : n] in Ppnm, this one can be viewed as a pertur-
bation of the convex polyhedron

{d ∈ R
n : FEF

(x̄) + F ′
EF

(x̄)d = 0, GEG
(x̄) +G′

EG
(x̄)d = 0,

FI(x̄) + F ′
I(x̄)d > 0, GI(x̄) +G′

I(x̄)d > 0}.

By (3.2b), MFCQ holds for this polyhedron. Therefore, by [74; theorem 5.5], the Hoffman
factor is constant for x near x̄ and the chosen partition (EF , EF , I). Now, Ppnm is finite,
so that the Hoffman factor h(x) appearing in (3.5a) is bounded for x near x̄.

3) The reasoning is identical to the one presented in point 2. But now, one can use the
local radial Lipschitz property of F , G, F ′ and G′ at x̄ to deduce from (3.5c) the existence
of a neighborhood V ′ ⊆ Vpnm and a constant L > 0, such that, for x ∈ V ′, one can find
d(x) ∈ P(x) and d̄(x) ∈ D̄ such that ‖d(x)− d̄(x)‖ 6 L ‖x− x̄‖. The inequality in point 3
follows. ✷
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The next property will be useful for establishing the global convergence result of theo-
rems 3.7 and 3.8.

Corollary 3.5 (local boundedness of the directions) Suppose that F and G are

continuously differentiable at x̄ ∈ R
n, that τ ∈ (0,∞] and that the PNM-regularity

condition 3.1 holds at x̄. Then, there is a constant C, such that, for x near x̄, the

system (2.13) has a solution d that satisfies ‖d‖ 6 C.

Proof. It is a consequence of proposition 3.4(2), since D̄ is bounded by its finite cardi-
nality. ✷

3.2 Global convergence

The global convergence results of this section accept directions d such that the right-hand
side of (2.18) is sufficiently negative in the sense of (2.19a), an inequality that we reproduce
here for the reader’s convenience:

−
∑

i∈[1 :n]

(1− ρi(x, d))Hi(x)
2
6 −2(1− η) θ(x), (3.6)

where ρi(x, d) is defined by (2.20), H is the function defined by (1.3b) and η is a constant
(independent of k) such that η < 1. By proposition 2.6, this inequality implies that d is a
descent direction of θ at x, since then

θ′(x; d) 6 −2(1 − η) θ(x), (3.7)

and the right-hand side is negative when θ(x) 6= 0, that is when x is not a solution to the
NCP (1.1). It would have been less restrictive to impose the satisfaction of (3.7), instead
of that of (3.6), but the technique used in the proof of theorem 3.6 below would have then
required to have a reverse inequality in (2.18) in order to recover (3.6), since it is (3.6) that
is required in the adopted proof; the reverse inequality in (2.18) looks problematic to us.
Recall that inequality (3.6) simplifies into (2.19b).

We start the global convergence analysis with theorem 3.6, which assumes that the
generic algorithm 2.9 generates a sequence {xk}, hence is well-posed, and the boundedness
of the direction subsequence {dk}k∈K when the subsequence {xk}k∈K of {xk} converges
to some point x̄. Conditions ensuring the convergence of the algorithms 2.10 and 2.11
will be examined in theorems 3.7 and 3.8, respectively. The proof of theorem 3.6 contains
the main arguments. We have preferred presenting the convergence result in two stages
(theorem 3.6 and theorems 3.7 and 3.8), since the boundedness assumption may be due
to the structure of the problem, making the theorem useful in that circumstance. In
theorems 3.7 and 3.8, which can also be viewed as corollaries of theorem 3.6, it is the
assumed regularity of the limit point x̄ that ensures the boundedness of {dk}k∈K and
therefore the global convergence of the algorithm. These global convergence results of
theorems 3.7 and 3.8 are rather weak since they assume that the generated sequence has
a limit point (this will be certainly the case when this sequence is bounded) and that
the limit point is regular in a certain sense (a typical assumption of linesearch methods).
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It may occur, however, that the generated sequence {xk} has no regular limit points, in
which case the theorem provides no information. Nevertheless, it acts as a filter that the
algorithms must pass, which was very useful to us for the design of an acceptation test
(2.19)-(3.6) for the hybrid algorithm 2.11.

As a last remark on the assumptions, let us stress the fact that claiming that the
algorithms generate a sequence {xk} implicitly assumes that the algorithms are not stuck
at an iterate, for example because the system (2.13) has no solution in the case of the
PNM and HNM algorithms 2.10 and 2.11. If this last event will not occur close to a
point x̄ satisfying the PNM-regularity 3.1 (corollary 3.5), this is not guaranteed far from
such a point. Therefore, the global nature of the obtained convergence must be put into
perspective.

Theorem 3.6 (global convergence of the generic NM algorithm 2.9) Let F
and G : Ω → R

n be differentiable functions defined on an open set Ω of Rn. Suppose

that the generic algorithm 2.9 generates a sequence {xk} ⊆ Ω. If x̄ ∈ Ω is an

accumulation point of {xk}, at which F ′ and G′ are continuous, and if the subsequence

{dk : xk is near x̄} is bounded, then all the sequence {θ(xk)}k>1 converges to zero

and x̄ is a solution to (1.1).

Proof. By the Armijo inequality (2.24), the sequence {θ(xk)} decreases; since this se-
quence is also bounded below (by zero), it converges. By the Armijo inequality (2.24)
again and the fact that η < 1, it follows that

lim
k→∞

αk θ(xk) = 0. (3.8)

Let us examine two complementary cases.
If lim supk→∞ αk > 0 (or, equivalently, αk 6→ 0), there is a subsequence K′ ⊆ N such

that {αk}k∈K′ is bounded away from zero. Then, (3.8) implies that limk→∞, k∈K′ θ(xk) = 0
and actually limk→∞ θ(xk) = 0, since the sequence {θ(xk)} decreases. By the continuity
of θ, any accumulation point x̄ of {xk} satisfies θ(x̄) = 0, which means that x̄ solves (1.1).
We have shown the conclusions of the theorem in that case.

We now consider the more difficult case when lim supk→∞ αk = 0 (or, equivalently,
αk → 0). Let us first sketch the proof, which is inspired from that in [57]; see also [83]. Let
{xk}k∈K be a subsequence converging to the accumulation point x̄ (k → ∞ in some infinite
subset K of N). With no loss of generality, one can assume that αk < 1, which implies
that the stepsize α̂k := αk/β is rejected by the Armijo rule (2.24). Of course α̂k → 0. Let

x̂k := xk + α̂kdk

be the corresponding rejected point. Then, θ(x̂k) > θ(xk)− 2ωα̂k(1−η) θ(xk) or

4ωα̂k(1−η) θ(xk) > 2[θ(xk)− θ(x̂k)]. (3.9)

The tactic of the proof consists in writing the right-hand side of this inequality as follows

2[θ(xk)− θ(x̂k)] =
n∑

i=1

[
min(Fi(xk), Gi(xk))

2 −min(Fi(x̂k), Gi(x̂k))
2
]

(3.10)
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and to find a lower bound of each term of the sum in the right-hand side of the previous
identity. More specifically, we shall show that, since {dk}k∈K is assumed to be bounded,
for any i ∈ [1 :n] and any iterate xk sufficiently close to x̄, the following inequality holds

min(Fi(xk), Gi(xk))
2 −min(Fi(x̂k), Gi(x̂k))

2

> 2(1−ρk,i)α̂k min(Fi(xk), Gi(xk))
2 + o(α̂k), (3.11)

where ρk,i is an abbreviation for ρi(xk, dk) and the term o(α̂k) means that o(α̂k)/α̂k → 0
when k → ∞ in K. Then, the inequality (3.9), with its right-hand side bounded below
thanks to the identity (3.10) and the inequalities (3.11), yields

4ωα̂k(1−η) θ(xk)

> 2α̂k

∑

i∈[1 :n]

(1−ρk,i)min(Fi(xk), Gi(xk))
2 + o(α̂k) [(3.9), (3.10), (3.11)]

> 4α̂k(1− η) θ(xk) + o(α̂k). [(2.19)]

After division by 4α̂k(1−η), we get

ω θ(xk) > θ(xk) +
o(α̂k)

α̂k
. (3.12)

Taking the limit when k → ∞ in K shows that ω θ(x̄) > θ(x̄). Since ω ∈ (0, 1) and
θ(x̄) > 0, this implies that θ(x̄) = 0. Therefore, all the sequence {θ(xk)} tends to zero
and x̄ solves (1.1). We have also shown the conclusions of the theorem in that case.

Therefore, to conclude the proof, we only have to show (3.11), for all i ∈ [1 :n] and xk
sufficiently close to x̄.

Since {dk}k∈K is bounded by assumption and αk → 0, it follows that x̂k → x̄ when
k → ∞ in K. Now, for i ∈ [1 :n], the differentiability of Fi and the mean value theorem
provide

|Fi(x̂k)− Fi(xk)− F ′
i (xk)(x̂k − xk)| 6

(

sup
z∈(xk,x̂k)

‖F ′
i (z)− F ′

i (xk)‖

)

‖x̂k − xk‖,

where (xk, x̂k) is the open segment {(1− t)xk+ tx̂k : t ∈ (0, 1)}. A similar estimation holds
for Gi. By the continuity of F ′ at x̄, the factor in parenthesis in the right-hand side tends
to zero when k → ∞ in K. Using x̂k − xk = α̂kdk and the boundedness of {dk}, we get

Fi(x̂k) = Fi(xk) + α̂kF
′
i (xk)dk + o(α̂k),

Gi(x̂k) = Gi(xk) + α̂kG
′
i(xk)dk + o(α̂k).

Below, we shall need to give a lower bound on Fi(xk)
2 − Fi(x̂k)

2 and Gi(xk)
2 − Gi(x̂k)

2.
By the previous estimates, we have

Fi(xk)
2 − Fi(x̂k)

2 = −2α̂kFi(xk)F
′
i (xk)dk + o(α̂k), (3.13a)

Gi(xk)
2 −Gi(x̂k)

2 = −2α̂kGi(xk)G
′
i(xk)dk + o(α̂k). (3.13b)

Let us now examine each term of the sum in (3.10) for the indices i in the following
partition of [1 : n]:

(

F(x̄), G(x̄), E+(x̄), E−(x̄), E0(x̄)
)

.

Note that τ does not intervene in that partition.
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1. i ∈ F(x̄).

By the strict inequality Fi(x̄) < Gi(x̄) defining F(x̄) in (1.8), the continuity of F and G
at x̄, and the fact that xk is close to x̄ when k is large in K, we have Fi(xk) < Gi(xk)
or i ∈ F(xk) for large k in K. Let us show that

− Fi(xk)F
′
i (xk)dk > (1−ρk,i)Fi(xk)

2. (3.14)

One of the following three complementary cases must occurs.

r If Fi(xk) = 0, (3.14) is clearly verified with equality.

r If i ∈ F(xk) \ E
−
τ (xk) ⊆ EF (xk) and Fi(xk) 6= 0, (2.20)1 gives F ′

i (xk)dk = −(1−ρk,i)
Fi(xk). Multiplying both sides of this equality by −Fi(xk) yields (3.14) with equality.

r If i ∈ F−(xk)∩ E−
τ (xk) ⊆ I(xk) (in which case Fi(xk) < 0), (2.20)5 gives F ′

i (xk)dk >

−(1−ρk,i)Fi(xk). Multiplying both sides of this inequality by −Fi(xk) > 0 yields
(3.14).

Next, since x̂k → x̄ when k → ∞ in K and since Fi(x̄) < Gi(x̄) when i ∈ F(x̄), one also
has Fi(x̂k) < Gi(x̂k). Therefore,

min(Fi(xk), Gi(xk))
2 −min(Fi(x̂k), Gi(x̂k))

2

= Fi(xk)
2 − Fi(x̂k)

2 [Fi(xk) < Gi(xk) and Fi(x̂k) < Gi(x̂k)]

= −2α̂kFi(xk)F
′
i (xk)dk + o(α̂k) [(3.13a)]

> 2(1−ρk,i)α̂kFi(xk)
2 + o(α̂k) [(3.14)]

= 2(1−ρk,i)α̂k min(Fi(xk), Gi(xk))
2 + o(α̂k) [Fi(xk) < Gi(xk)].

We have obtained the desired inequality (3.11).

2. i ∈ G(x̄).

One can proceed like in case 1, by switching the roles of F and G. Indeed, for similar
reasons as in case 1, using (2.20)3 and (2.20)5, the following equality and inequalities
hold for k large in K:

Gi(xk) < Fi(xk), −Gi(xk)G
′
i(xk)dk > (1−ρk,i)Gi(xk)

2 and Gi(x̂k) < Fi(x̂k).

Therefore,

min(Fi(xk), Gi(xk))
2 −min(Fi(x̂k), Gi(x̂k))

2

= Gi(xk)
2 −Gi(x̂k)

2 [Gi(xk) < Fi(xk) and Gi(x̂k) < Fi(x̂k)]

= −2α̂kGi(xk)G
′
i(xk)dk + o(α̂k) [(3.13b)]

> 2(1−ρk,i)α̂kGi(xk)
2 + o(α̂k) [−Gi(xk)G

′
i(xk)dk > (1−ρk,i)Gi(xk)

2]

= 2(1−ρk,i)α̂k min(Fi(xk), Gi(xk))
2 + o(α̂k) [Gi(xk) < Fi(xk)].

We have obtained the desired inequality (3.11).

3. i ∈ E+(x̄).

In this case, Fi(xk), Gi(xk), Fi(x̂k) and Gi(x̂k) are positive for k large in K, which
implies that i is in one of the sets F+(xk) ∪ E0+

F (xk) or G+(xk) ∪ E0+
G (xk), where

F+(x) := {i ∈ F(x) : Fi(x) > 0} and G+(x) := {i ∈ G(x) : Gi(x) > 0}.

We now consider these sets one after the other.
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3.1. i ∈ F+(xk) ∪ E0+
F (xk).

In this case, 0 < Fi(xk) 6 Gi(xk). Because i ∈ [F(xk)\E
−
τk
(xk)]∪E

0+
F (xk) = EF (xk)

and Fi(xk) 6= 0, (2.20)1 tells us that F ′
i (xk)dk = −(1−ρk,i)Fi(xk) and finally

− Fi(xk)F
′
i (xk)dk = (1−ρk,i)Fi(xk)

2. (3.15)

Therefore, for k large in K:

min(Fi(xk), Gi(xk))
︸ ︷︷ ︸

=Fi(xk)

2 −min(Fi(x̂k), Gi(x̂k))
︸ ︷︷ ︸

06 ·6Fi(x̂k)

2

> Fi(xk)
2 − Fi(x̂k)

2

= −2α̂kFi(xk)F
′
i (xk)dk + o(α̂k) [(3.13a)]

= 2(1−ρk,i)α̂kFi(xk)
2 + o(α̂k) [(3.15)]

= 2(1−ρk,i)α̂k min(Fi(xk), Gi(xk))
2 + o(α̂k) [Fi(xk) 6 Gi(xk)].

We have obtained the desired inequality (3.11).

3.2. i ∈ G+(xk) ∪ E0+
G (xk).

One can proceed like in case 3.1, by switching the roles of F and G. Indeed, in this
case 0 < Gi(xk) 6 Fi(xk). Because i ∈ [G(xk) \ E

−
τk
(xk)] ∪ E0+

G (xk) = EG(xk) and
Gi(xk) 6= 0, (2.20)3 tells us that G′

i(xk)dk = −(1−ρk,i)Gi(xk) and finally

−Gi(xk)G
′
i(xk)dk = (1−ρk,i)Gi(xk)

2. (3.16)

Therefore, for k large in K:

min(Fi(xk), Gi(xk))
︸ ︷︷ ︸

=Gi(xk)

2 −min(Fi(x̂k), Gi(x̂k))
︸ ︷︷ ︸

06 ·6Gi(x̂k)

2

> Gi(xk)
2 −Gi(x̂k)

2

= −2α̂kGi(xk)G
′
i(xk)dk + o(α̂k) [(3.13b)]

= 2(1−ρk,i)α̂kGi(xk)
2 + o(α̂k) [(3.16)]

= 2(1−ρk,i)α̂k min(Fi(xk), Gi(xk))
2 + o(α̂k) [Gi(xk) 6 Fi(xk)].

We have obtained the desired inequality (3.11).

4. i ∈ E−(x̄).

In this case, for k large in K, Fi(xk), Gi(xk), Fi(x̂k) and Gi(x̂k) are negative and
|Fi(xk)−Gi(xk)| < τ , so that i ∈ E−

τ (xk) = I(xk). Then, by (2.20)5,

F ′
i (xk)dk > −(1−ρk,i)Fi(xk), (3.17a)

G′
i(xk)dk > −(1−ρk,i)Gi(xk), (3.17b)

so that

−Fi(xk)F
′
i (xk)dk > (1−ρk,i)Fi(xk)

2, (3.18a)

−Gi(xk)G
′
i(xk)dk > (1−ρk,i)Gi(xk)

2. (3.18b)

Now, one (or both) of the following two cases must occur.
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4.1. Fi(xk) 6 Gi(xk), which are both negative. We divide the analysis of this case into
two complementary subcases.

4.1.1. Fi(x̂k) 6 Gi(x̂k), which are both negative.

For k large in K, the following holds

min(Fi(xk), Gi(xk))
2 −min(Fi(x̂k), Gi(x̂k))

2

= Fi(xk)
2 − Fi(x̂k)

2 [Fi(xk) 6 Gi(xk) and Fi(x̂k) 6 Gi(x̂k)]

= −2α̂kFi(xk)F
′
i (xk)dk + o(α̂k) [(3.13a)]

> 2(1−ρk,i)α̂kFi(xk)
2 + o(α̂k) [(3.18a)]

= 2(1−ρk,i)α̂k min(Fi(xk), Gi(xk))
2 + o(α̂k) [Fi(xk) 6 Gi(xk)].

We have obtained the desired inequality (3.11).

4.1.2. Gi(x̂k) < Fi(x̂k), which are both negative.

Let us show that

2(1−ρk,i)α̂k 6 1, for k large in K. (3.19)

This is certainly the case when ρk,i > 0, since then, 2(1−ρk,i)α̂k 6 2α̂k 6 1
because α̂k → 0 for k → ∞ in K. When ρk,i < 0, we use (3.17a), which also
reads

ρk,i Fi(xk) 6 Fi(xk) + F ′
i (xk)dk.

Hence, for k large enough in K:

0 <
1

2
ρk,i Fi(x̄) 6 ρk,i Fi(xk) 6 Fi(xk) + F ′

i (xk)dk 6 C,

where the constant C > 0 comes for the fact that xk → x̄ for k → ∞ in K,
from the assumed continuity of F ′ at x̄, and from the assumed boundedness
of {dk}. This shows that ρk,i is bounded below, so that (3.19) also holds
when ρk,i < 0. Then, the following holds

min(Fi(xk), Gi(xk))
2 −min(Fi(x̂k), Gi(x̂k))

2

= Fi(xk)
2 −Gi(x̂k)

2 [Fi(xk) 6 Gi(xk) and Gi(x̂k) < Fi(x̂k)]

= Gi(xk)
2 −Gi(x̂k)

2 + Fi(xk)
2 −Gi(xk)

2

= −2α̂kGi(xk)G
′
i(xk)dk + Fi(xk)

2 −Gi(xk)
2 + o(α̂k) [(3.13b)]

> 2(1−ρk,i)α̂kGi(xk)
2 + Fi(xk)

2 −Gi(xk)
2 + o(α̂k) [(3.18b)]

= 2(1−ρk,i)α̂kFi(xk)
2+(1−2(1−ρk,i)α̂k)(Fi(xk)

2−Gi(xk)
2)+o(α̂k)

> 2(1−ρk,i)α̂kFi(xk)
2 + o(α̂k) [(3.19) and Fi(xk)

2 > Gi(xk)
2]

= 2(1−ρk,i)α̂k min(Fi(xk), Gi(xk))
2 + o(α̂k) [Fi(xk) 6 Gi(xk)].

We have obtained the desired inequality (3.11).

4.2. Gi(xk) 6 Fi(xk), which are both negative. One can proceed like in case 4.1, by
switching the roles of F and G. Indeed, we can divide the analysis of this case into
two complementary subcases.
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4.2.1. Gi(x̂k) 6 Fi(x̂k), which are both negative.

For k large in K, the following holds

min(Fi(xk), Gi(xk))
2 −min(Fi(x̂k), Gi(x̂k))

2

= Gi(xk)
2 −Gi(x̂k)

2 [Gi(xk) 6 Fi(xk) and Gi(x̂k) 6 Fi(x̂k)]

= −2α̂kGi(xk)G
′
i(xk)dk + o(α̂k) [(3.13b)]

> 2(1−ρk,i)α̂kGi(xk)
2 + o(α̂k) [(3.18b)]

= 2(1−ρk,i)α̂k min(Fi(xk), Gi(xk))
2 + o(α̂k) [Gi(xk) 6 Fi(xk)].

We have obtained the desired inequality (3.11).

4.2.2. Fi(x̂k) < Gi(x̂k), which are both negative.

For the same reasons as in the case 4.1.2,

2(1−ρk,i)α̂k 6 1, for k large in K. (3.20)

Then, the following holds

min(Fi(xk), Gi(xk))
2 −min(Fi(x̂k), Gi(x̂k))

2

= Gi(xk)
2 − Fi(x̂k)

2 [Gi(xk) 6 Fi(xk) and Fi(x̂k) < Gi(x̂k)]

= Fi(xk)
2 − Fi(x̂k)

2 +Gi(xk)
2 − Fi(xk)

2

= −2α̂kFi(xk)F
′
i (xk)dk +Gi(xk)

2 − Fi(xk)
2 + o(α̂k) [(3.13a)]

> 2(1−ρk,i)α̂kFi(xk)
2 +Gi(xk)

2 − Fi(xk)
2 + o(α̂k) [(3.18a)]

= 2(1−ρk,i)α̂kGi(xk)
2 + (1− 2(1−ρk,i)α̂k)(Gi(xk)

2 − Fi(xk)
2) + o(α̂k)

> 2(1−ρk,i)α̂kGi(xk)
2 + o(α̂k) [(3.20) and Gi(xk)

2 > Fi(xk)
2]

= 2(1−ρk,i)α̂k min(Fi(xk), Gi(xk))
2 + o(α̂k) [Gi(xk) 6 Fi(xk)].

We have obtained the desired inequality (3.11).

5. i ∈ E0(x̄).

In this case, we write

min(Fi(xk), Gi(xk))
2 −min(Fi(x̂k), Gi(x̂k))

2

=
(

min(Fi(xk), Gi(xk))−min(Fi(x̂k), Gi(x̂k))
)

×
(

min(Fi(xk), Gi(xk)) + min(Fi(x̂k), Gi(x̂k))
)

.

Since x 7→ min(F (x), G(x)) is Lipschitz continuous near x̄, the first factor in the right-
hand side is bounded by a constant times ‖x̂k − xk‖, which is an O(α̂k) by the bound-
edness of {dk}, while the second factor in the right-hand side converges to zero (since
in this case Fi(x̄) = Gi(x̄) = 0). Thus the whole term is o(α̂k). This is enough to get
(3.11), since the first term in the right-hand side of (3.11) is also an o(α̂k), so that the
left-hand side of (3.11) minus the first term in its right-hand side is indeed (larger than)
an o(α̂k). ✷
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Theorem 3.7 (global convergence of the PNM algorithm 2.10) Let F and

G : Ω → R
n be differentiable functions defined on an open set Ω of Rn. Suppose that

the PNM algorithm 2.10 generates a sequence {xk} ⊆ Ω. If x̄ ∈ Ω is an accumulation

point of {xk} that is PNM-regular in the sense of definition 3.1 and if F ′ and G′ are

continuous at x̄, then all the sequence {θ(xk)}k>1 converges to zero and x̄ is a solution

to (1.1).

Proof. According to theorem 3.6, we just have to prove that the subsequence {dk : xk is
near x̄} is bounded. Since the directions dk are computed by (2.25), this property is given
by corollary 3.5, which rests on the additional assumption on the PNM-regularity at x̄, in
the sense of definition 3.1. ✷

Theorem 3.8 (global convergence of the HNM algorithm 2.11) Let F and

G : Ω → R
n be differentiable functions defined on an open set Ω of R

n. Suppose

that the HNM algorithm 2.11 generates a sequence {xk} ⊆ Ω. If x̄ ∈ Ω is an accumula-

tion point of {xk} that is NM and PNM-regular in the sense of definitions 2.1 and 3.1
and if F ′ and G′ are continuous at x̄, then all the sequence {θ(xk)}k>1 converges to

zero and x̄ is a solution to (1.1).

Proof. According to theorem 3.6, we just have to prove that the subsequence {dk : xk is
near x̄} is bounded. Recall that, in the HNM algorithm 2.11, the direction is computed
either as the solution to the linear system (2.1) or as the solution to the optimization
problem (2.25).

When dk is the solution to the system (2.1), the boundedness property of dk is given
by point 2 of proposition 2.2. When dk is the solution to problem (2.25), the boundedness
property of dk is given by corollary 3.5 (like in the proof of theorem 3.7). ✷

Remark 3.9 Let us stress again the fact that the previous theorems 3.6, 3.7 and 3.8
assume that the algorithm generates a sequence {xk} ⊆ Ω, which implicitly supposes that
a direction dk can be computed at each iteration. For a linear complementarity problem
of the form (1.2), this assumption is guaranteed for the plain Newton-min direction (2.1),
when M is nondegenerate (i.e., all its principal minors do not vanish), but this assumption
on M may not be sufficient for being able to compute an inexact direction (2.22). Assume
indeed that n = 1, M = −1 (nondegeneracy but not P-matricity) and q = −1. Then,
problem (1.2) has no solution. Consider the point x̄ = −1/2, which is the minimizer of the
merit function θ defined by (1.4). One has 1 ∈ E−

τ (x̄), so that the direction in (2.22) must
satisfy

0 6 (1− η)(−1/2) − d and 0 6 (1− η)(−1/2) + d,

which forms an incompatible system when η < 1. Therefore, theorems 3.6 and 3.8 do not
apply to that problem instance. ✷
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4 Conclusion

This paper presents algorithms for solving the complementarity problem (1.1), based on
semismooth-like iterations on the nonsmooth equation (1.3), reformulating the problem
with the minimum function. In practice, this solution strategy is often more efficient than
with other reformulations but it is difficult to implement up to completeness, because the
associated least-square merit function may not decrease along the semismooth direction.
The paper proposes to overcome the difficulty by slightly modifying this direction in the
neighborhood of the negative kinks of the minimum function. A global convergence result
can be established, provided some specific regularity condition holds at the accumulation
points of the generated sequence. The algorithms can also be used to solve linear comple-
mentarity problems.

A number of issues still need to be considered to improve the robustness of the proposed
algorithms, to finalize their analysis, to estimate their complexity and to highlight their
attractiveness. Some of them are explored in [92, 37, 39, 40] and others will be considered
in subsequent contributions.
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