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Abstract
Global change ecology nowadays embraces ever- growing large observational data-
sets (big- data) and complex mathematical models that track hundreds of ecological 
processes (big- model). The rapid advancement of the big- data- big- model has reached 
its bottleneck: high computational requirements prevent further development of 
models that need to be integrated over long time- scales to simulate the distribution 
of ecosystems carbon and nutrient pools and fluxes. Here, we introduce a machine- 
learning acceleration (MLA) tool to tackle this grand challenge. We focus on the most 
resource- consuming step in terrestrial biosphere models (TBMs): the equilibration of 
biogeochemical cycles (spin- up), a prerequisite that can take up to 98% of the com-
putational time. Through three members of the ORCHIDEE TBM family part of the 
IPSL Earth System Model, including versions that describe the complex interactions 
between nitrogen, phosphorus and carbon that do not have any analytical solution for 
the spin- up, we show that an unoptimized MLA reduced the computation demand by 
77%– 80% for global studies via interpolating the equilibrated state of biogeochemi-
cal variables for a subset of model pixels. Despite small biases in the MLA- derived 
equilibrium, the resulting impact on the predicted regional carbon balance over recent 
decades is minor. We expect a one- order of magnitude lower computation demand 
by optimizing the choices of machine learning algorithms, their settings, and balancing 
the trade- off between quality of MLA predictions and need for TBM simulations for 
training data generation and bias reduction. Our tool is agnostic to gridded models 
(beyond TBMs), compatible with existing spin- up acceleration procedures, and opens 
the door to a wide variety of future applications, with complex non- linear models 
benefit most from the computational efficiency.
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1  |  INTRODUC TION

Along with the ever- growing large volumes of heterogeneous obser-
vational datasets in ecology (big- data), terrestrial biosphere models 
(TBMs) have been growing in complexity in order to model ecosys-
tems as realistic as possible (big- model; Fisher & Koven, 2020). This 
evolution comes with an increasing number of model parameters and 
computational demand. High computational cost is now the bottle-
neck in the big- data- big- model era in global change ecology. It ham-
pers the applications of model- data assimilation systems needed to 
optimize model parameters, the assessment of model uncertainties, 
the refinement of ecological processes, and model applications at 
fine spatiotemporal resolution. As a consequence, arguably little 
progress has been made regarding the reliability and robustness of 
these models (Prentice et al., 2015).

TBMs are process- based models that resolve ecological and phys-
ical processes on a wide range of intrinsic timescales (from hours to 
millenia), and their interactions. Major developments in the recent 
past have not only led to additional processes considered but also to 
a widening of the range of time- scales considered and the degree of 
non- linear interactions. An example is the refinement of soils (Wang & 
Goll, 2021). For example, phosphorus cycling links ‘slow’ chemical rock 
weathering with ‘fast’ leaf- level gas exchange (Ellsworth et al., 2022). 
This coupling increases the numerical computation time needed to 
bring the modeled biogeochemical cycles into a steady- state (spin- up), 
which is a common pre- requirement in most model applications 
and also the most time (computational resource) consuming step in 
model simulations (Thornton & Rosenbloom, 2005). In the case of the 
ORCHIDEE model, the version with nitrogen and phosphorus cycles 
requires up to 10,000 model years to reach a steady- state for carbon 
and nutrient pools and fluxes, while the version without nutrients re-
quires 2000 model years (Sun et al., 2021). Typical model projections 
span only a few 100 years (e.g. the historical period 1700– present 
day), and thus the overall computational demand is dominated by the 
spin- up (85%– 98% for models mentioned above).

Different approaches to accelerate the spin- up have been pro-
posed, but they generally have two major shortcomings. They are 
usually model specific, and they rely largely on linearity to approx-
imate analytical solutions and become inefficient with increasing 
non- linearities (e.g. Thornton & Rosenbloom, 2005; Xia et al., 2012). 
The recent development of TBMs, such as the microbial- explicit soil 
carbon modules, permafrost dynamics, individual based vegetation 
processes and nutrient relevant representations, brings in multiple 
non- linear dynamics. Earlier spin- up methodologies are inadequate 
in dealing with these increased complexities.

Here, we demonstrate the use of unsupervised and supervised 
machine learning (ML) to tackle this grand challenge through a com-
bined procedure. ML does not require underlying assumptions on lin-
earity or distributions of data, making them promising for ecological 
studies. Combining ML with TBMs to advance Earth system studies 
has been suggested as a research priority (Reichstein et al., 2019) but 
has proven challenging. Our novel study here takes the most resource 
consuming yet essential step in TBMs as an example to illustrate how 

global change ecology could advance through merging ML with the 
big- data- big- model. Specifically, we build a ML- based procedure for 
accelerating the equilibration of biogeochemical coupled C, N and P 
cycles, which is general enough to be applicable to most TBMs.

2  |  MATERIAL S AND METHODS

The ML- enabled spin- up acceleration procedure (MLA) predicts the 
steady- state of biogeochemical pools in any land pixel after train-
ing on a representative subset of pixels (Figure 1, Section 2.1). As 
the computational efficiency of current TBMs (e.g. without lateral 
transfer fluxes) scales linearly with the number of pixels and years 
simulated, MLA reduces the computation time quasi- linearly with 
the number of pixels predicted by ML.

We demonstrate the feasibility of a pragmatic implementation 
of this approach on three different versions of the ORCHIDEE 
TBM family (Section 2.2) with varying degrees of complexity and 
nonlinearity. After evaluating the accuracy of MLA by comparison 
with the conventional spin- up (Section 2.3), and reducing biases 
through a short global simulation restarting from MLA equilibrated 
state (corrected- MLA 2.4), we further illustrated the impact of using 
corrected- MLA for initialization of TBM simulations for the historic 
period (Section 2.5). Finally, we estimated how much computational 
time was saved by the whole procedure (Section 2.6). The imple-
mentation of the approach in python for ORCHIDEE TBMs is freely 
available (https://doi.org/10.5281/zenodo.7503092).

2.1  |  ML- based procedure for accelerated spin- up

The MLA procedure consists of four steps (Figure 1): (1) selecting 
a subset of representative land pixels as training samples using ML 
based on prior knowledge (Sections 2.1.1 and 2.1.2); (2) perform-
ing conventional spin- up for the selected training pixels; (3) build-
ing ML models to link biogeochemical pools at equilibrium (Response 
Y) from (2) with drivers of TBMs (Predictor X) for the training pixels 
(Section 2.1.3); (4) using built ML models to predict the biogeochem-
ical pools at equilibrium for the entire spatial domain.

2.1.1  |  Predictors

The predictors consist of up to 27 variables, 20– 25 variables de-
pending on the model version characterizing its driving data (forcing; 
Data S1) and transient states of annual net primary productivity and 
leaf area index (Table 1). We found that the latter two can substan-
tially improve the ML model performance compared to one trained 
on only the forcing data (not shown). Both variables are key vari-
ables to characterize carbon input to pools and its variation in space 
containing valuable information in their transient state to predict the 
equilibrated states. Those two variables are from a pre- run simula-
tion with an arbitrary length of 300 years. The length was chosen 
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3224  |    SUN et al.

here for demonstration purposes, but should be optimized for each 
model version based on the trade- off between ML model perfor-
mance and computation costs of running a conventional TBM simu-
lation, to minimize overall computational demand of the MLA.

2.1.2  |  ML- enabled training site selection

To ensure a balance dataset, we combine a K- mean cluster method 
aiming for balanced Predictor X (Farquad & Bose, 2012) and Synthetic 
Minority Oversampling TEchnique (SMOTE) aiming for balanced 
Response Y (see section 2.3.2; Chawla et al., 2002). A detailed de-
scription is given in the Data S2.

2.1.3  |  Building ML models to predict steady states

Bagging (known as bootstrap aggregation) decision trees is an en-
semble ML method based on Breiman (1996) to avoid overfitting 

issues through a single decision tree. In this study, we grew 100 trees 
in each ensemble for predicting the equilibrated state variables for 
each training pixel. Ninety percent of total training pixels were ran-
domly selected to train each tree. Ninety percent was chosen here 
to incorporate the randomness for training, while not involving too 
many samples for training to save the overall computation time of 
the entire procedure. The minimum number of samples of every 
tree leaf is set as 5. We increased the weights for samples falling out 
of the 10th– 75th quantiles to two to ten times of other samples to 
reduce the overestimation of high Response Y (Table S2). Different 
from the random forest which randomly selects a subset of the pre-
dictors (Breiman, 2001), we used the bagging decision trees method 
to incorporate all predictors to be in line with forcings of TBMs and 
traditional spin- up methodology.

Note that our MLA is not limited to the methodology of bagging 
decision trees. We use this method due to its adequate performance 
on our training samples and for demonstration purposes, while we 
acknowledge other ML methods (e.g. gradient boosting and multiple 
deep learning methods) also fit in our framework.

TA B L E  1  Predictors used in prediction model for ORCHIDEE- CNP. The climatic predictors, nutrient deposition predictors and LAIg and 
NPPg are yearly variables.

Abbreviations Variables Units Forcing variable

Tamp Amplitude of monthly temperature °C From 6 hourly data

Tmax Maximum monthly temperature °C From 6 hourly data

Tmin Minimum monthly temperature °C From 6 hourly data

Tmean Mean monthly temperature °C From 6 hourly data

Tstd Standard deviation of monthly temperature °C From 6 hourly data

Tgs Accumulated temperature during growing season (monthly 
temperature >−4°C)

°C From 6 hourly data

Rainf Mean annual precipitation kg m−2 year−1 From 6 hourly data

Rainf_std Standard deviation of monthly precipitation kg m−2 year−1 From 6 hourly data

Rainf_gs Precipitation during growing season (monthly T > −4°C) kg m−2 year−1 From 6 hourly data

Qair Near surface specific humidity kg kg−1 From 6 hourly data

Psurf Surface pressure Pa From 6 hourly data

SWdown Shortwave down radiation W s−1 From 6 hourly data

LWdown Longwave down radiation W s−1 From 6 hourly data

INT1 Rainf·Tmean °C kg m−2 year−1 From Rainf and Tmean

INT2 Rainf_gs·T_gs °C kg m−2 year−1 From Rainf_gs and T_gs

GSL Growing season length month From 6 hourly data (temperature)

Clay Clay fraction % From time invariant data

Silt Silt fraction % From time invariant data

SoilpH Soil pH (only ORCHIDEE- CNP) — From time invariant data

Ndep noy Nitrogen deposition (NOy; only ORCHIDEE- CNP) gN m−2 year−1 From annual data

Ndep nhx Nitrogen deposition (NHx; only ORCHIDEE- CNP) gN m−2 year−1 From annual data

Pdep Phosphorus deposition (only ORCHIDEE- CNP) gP m−2 year−1 From annual data

Soilbulk Soil bulk density g soil cm−3 From time invariant data

Soilshield Soil shield factor [0– 1] (only ORCHIDEE- CNP) — From time invariant data

Soilsuborder Soil suborders (categorical variable; only ORCHIDEE- CNP) — From time invariant data

NPPg Annual net primary productivity at the end of pre- run gC m2 year−1 From daily data

LAIg Annual leaf area index at the end of pre- run m2 m−2 From daily data
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2.2  |  Terrestrial biosphere models and 
simulation setup

2.2.1  |  TBM ORCHIDEE family

We used three versions of the ORCHIDEE model: ORCHIDEE (v2.2) the 
main version (trunk) which was used in IPSL- ESM contributing to the cou-
pled model intercomparison project Phase 6 (CMIP6); ORCHIDEE- CNP 
v1.2 a (branch) version which resolves nitrogen and phosphorus cycles (Goll 
et al., 2017), and ORCHIDEE- CNP v1.3 an update of the branch version 
which resolves non- linear microbial dynamics instead of deploying a linear 
first order decay model like the other two versions (Goll et al., 2022; Table 2). 
The three versions reflect the general tendency in the TBM community to 
refine processes operating on various timescales: for example, microbial dy-
namics on timescales of minutes to months, while soil phosphorus dynam-
ics on timescales up to thousands of years. The number of state variables 
describing the biogeochemical cycles in soil, litter and plants depends on the 
model version and ranges between 240 and 825 (Table 2; Data S3). All three 
versions deploy a tiling approach in which each model pixel contains infor-
mation on biogeochemical cycles of multiple PFTs (each PFT has a specific 
vector of parameters) irrespectively of their actual land cover.

2.2.2  |  Simulation setup

We used protocols from two model intercomparison projects 
(Table 2) to perform the TBM simulations. Both protocols aim at 

reconstruction of historic changes in the land biogeochemistry 
(Global N2O Model Intercomparison Project (NMIP) Phase 2 (Tian 
et al., 2018), and Global Carbon Budget: Land modeling protocol 
Trendy version 10 (Friedlingstein et al., 2022)) but are slightly 
different. The forcing information is described in more detail in 
Data S4.

Two general types of simulations were performed with each 
of the ORCHIDEE versions and the corresponding forcing data 
according to the abovementioned protocols (Table 3). Simulations 
prescribing constant boundary conditions for the initial year (1700 
or 1860), and simulations with varying boundary conditions reflect-
ing their changes over the historic period. The first type of simu-
lations is needed to generate the training information for the ML 
(Section 2.1), namely a short global simulation (pre- run) starting from 
scratch (low globally uniform values) to derive the transient states 
of NPPg, LAIg, as well as pixel level conventional TBM simulations 
for the selected representative model pixels starting from scratch 
to steady state (see Section 2.3) in which the biogeochemical cy-
cles were equilibrated (site- runs). The second type of simulation is 
needed for the quantification of the impact of the use of ML for 
equilibration of biogeochemical cycles on the outcome of typical 
TBM simulations which are initialized from them (Section 2.5). We 
performed two simulations with each version of ORCHIDEE for the 
historic period which either started from (1) the “true equilibrium” 
state from the conventional spin- up (production- runconv) or from (2) 
the corrected- MLA (see Section 2.4) generated equilibrated state 
(production- runMLA).

TA B L E  2  The three different versions of the ORCHIDEE model family and their key features relevant for this study.

Model version ORCHIDEE v2.2 ORCHIDEE- CNP v1.2 ORCHIDEE- CNP v1.3

References Krinner et al. (2005) Sun et al. (2021) Zhang et al. (in prep)

Nutrient cycles No Yes (nitrogen, phosphorus) Yes (nitrogen, phosphorus)

Microbial dynamics No No Yes (two microbial classes)

Number of PFTs 15 15 15

Number of state variables per pixel 240 825 915

Spatial resolution 2 × 2° 0.5 × 0.5° 2 × 2°

Spin- up acceleration procedure Yes, (quasi) analytical 
solution

No No

Number of years needed to equilibrium criteria 340 ~10,000 ~6500

Simulation setup Trendy v10 NMIP v2 Trendy v10

TA B L E  3  Specifies the different types of land surface model simulation, and the respective lengths for the different versions of the 
ORCHIDEE model family.

Acronyms pre- run site- run re- run spin- upconv production- runmla production- runconv

Domain Global Pixel Global Global Global Global

Length in model years (ORCv2.2; 
ORC- CNPv1.2; ORC- CNPv1.3)

300; 300; 
300

340; 10,000; 
6500

100; 350; 
310

340; 10,000; 
6500

320; 167; 320 320; 167; 320

Boundary conditions Constant Constant Constant Constant Variable Variable

Starting point Scratch Scratch ML Scratch re- run spin- upconv
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2.3  |  Evaluation of MLA

In order to test the accuracy of the MLA- predicted state variables of 
the TBMs, we compared them with state variables derived from a full 
spin- up simulation (spin- upconv) which reflects the ‘true equilibrium’ 
(i.e. annual changes in global land carbon storage are <0.05 Gt year−1 
when averaged over a 50 year period; Friedlingstein et al., 2022). To 
assess the accuracies of the ML- based approach in reproducing the 
pool sizes at steady state we used coefficient of determination (R2), 
relative bias (rs), normalized root mean squared error by the differ-
ence between maximum and minimum (NRMSE), and the regression 
slope between the results from “true equilibrium” and MLA- based 
one (slope). rs for a given pool is defined as

while NRMSE is defined as

RMSE is the root mean square error, defined as

where IML,j and Iequi,j are values from MLA and spin- upconv for sample j 
of a total sample size of N, respectively.

2.4  |  Re- run after ML predictions till equilibrium

ML inevitably yields biases in predictions. Thus, we use a conven-
tional TBM simulation with the same boundary conditions as used 
for the training starting from the ML- based equilibrated state to re-
duce biases (re- run), with a length such that the requirement for an 
equilibrium is reached (Section 2.3). After re- run, we redo the evalu-
ation as mentioned in Section 2.3. We refer to the equilibrium state 
after re- run as corrected- MLA.

2.5  |  Impact of bias from MLA on historical C balance

To assess the impact of bias of the corrected- MLA on the out-
come of typical TBM simulations, we compared simulation ini-
tialized from them (production- runMLA) with simulations, which 
were initialized from a conventional spin- up (production- runconv). 
Both simulations were forced by the same historical forcing (see 
Section 2.2.2), thus differences in the predicted biogeochemi-
cal cycles are solely caused by differences in the initial state. 
We focused on the global spatiotemporal pattern of net biome 
productivity (NBP), a key variable in global carbon studies (e.g. 
Friedlingstein et al., 2022).

2.6  |  Computational time savings

The computational demand of the current generation of TBMs 
scales quasi- linearly with the number of simulated model pixels and 
years. This is due to the fact that the pixels in current TBMs are rela-
tively independent from each other. Operationally, there are minor 
deviations from this, for example due to reading and writing of data, 
which requires information from multiple model pixels at a time. The 
computational demand of the site selection, training ML- models, and 
extrapolation using ML is negligible compared to global TBM simula-
tions. Based on these assumptions, we approximate the computa-
tional demand (D in %) for each type of simulation as the product of 
the number of model pixels (p) and the number of years relative to a 
spin- upconv simulation (y),

where i refers to pre- run, site- run, re- run, and production- run and 
j = spin- upconv. Note that the actual time savings depend on the ma-
chine infrastructure and software and might deviate from the theoret-
ical one (Data S5).

Based on the reported length of a spin- upconv for a precursor ver-
sion of ORCHIDEE (Krinner et al., 2005), we approximate the time 
consumption of a spin- upconv for ORCHIDEE v2.2 without the use 
of the version- specific acceleration procedure instead of performing 
such a simulation.

3  |  RESULTS AND DISCUSSION

3.1  |  Evaluation of steady states predicted by MLA

Equilibrated state of model state variables from MLA (before re- run) 
at PFT level over the whole spatial domain compares moderately 
well with the state from spin- upconv depending on the model version 
(Figures 2– 4, Figures S3– S6). The slopes are commonly lower than 
one which is a general issue with ML which tends to overestimate low 
values but underestimate high values (Belitz & Stackelberg, 2021). 
The distribution of ML- predicted size of C (N,P) in biomass, litter and 
soil organic matter on pixel level is however comparable to the one 
from spin- upconv for all three model versions (Figure 5, Figures S7 and 
S8). There is no indication of differences in the performance among 
PFT which are common to all three model versions. Among all model 
versions, pools with a small (few years and shorter) residence show 
the highest biases, namely active soil organic matter, labile, fruits 
and grass biomass pools (Figures 2– 4, Figures S3– S6). We find no 
systematic biases in the spatial pattern of soil carbon, a key pool 
that requires long spin up for equilibration (Figures S9– S11), and the 
two model versions deploying the same soil organic matter module 
(ORCHIDEE v2.2, and ORCHIDEE- CNP v1.2) show similar bias pat-
terns (Figures S9 and S10).

(1)rs =
IML − Iequi

Iequi
× 100% ,

(2)NRMSE =
RMSE

max
(

Iequi
)

−min
(

Iequi
) .

(3)
RMSE =

�

∑N

j=1

�

IML,j− Iequi,j
�2

N
,

(4)Di =
yi × pi

yj × pj
× 100% ,
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    |  3227SUN et al.

The procedure works best for the carbon only model version 
with the majority of R2 above 0.9, slopes between 0.9 and 1.0, and 
NRMSE smaller than 0.1 (Figure S6). The quality of ML predictions is 
the lowest for ORCHIDEE- CNP v1.2 with R2 as lower than 0.7 for 
46% of all C state variables at PFT- level (Figures S3– S5). This is likely 
due to the fact a larger number of model pixels has not yet reached a 

steady- state in the site- runs and spin- upconv than in other two model 
versions (not shown). This is due to the chosen equilibrium criteria 
which focus on global C stocks rather than on pixel- level ones (see 
Section 2) and is thus insufficient to ensure that (1) state variables 
of all model pixels are at equilibration, (2) the nutrient cycles are in 
equilibrium.

F I G U R E  2  The performances of machine learning models (ML) on all carbon cycle state variables, with the sum of state variables of major 
biosphere compartment ((a,d,g) soil organic carbon (SOC), (b,e,h) biomass, and (c,f,i) litter) for each plant functional type compared to the 
‘true equilibrium’ of the conventional spin- up simulation (spin- upconv). Three statistics represent the model performance: (a–c) coefficient of 
determination (R2), (d–f) normalized root mean squared error (NRMSE), and (g–i) the regression slope between the results from ML and  
 spin- upconv (slope). Shown are results from ORCHIDEE- CNP v1.3. The plant functional types are: Tropical Evergreen Broadleaf Forest (TrEBF), 
Tropical Deciduous Broadleaf Forest (TrDBF), Temperate Evergreen Needleleaf Forest (TeENF), Temperate Evergreen Broadleaf forest 
(TeEBF), Temperate Deciduous Broadleaf Forest (TeDBF), Boreal Evergreen Needleleaf Forest (BoENF), Boreal Deciduous Broadleaf Forest 
(BoDBF), Boreal Deciduous Needleleaf Forest (BoDNF), C3 grassland (C3G), C4 grassland (C4G), C3 cropland (C3C), and C4 cropland (C4C).
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3.2  |  Predictor importance and 
representativeness of training sites

Considering the biases in ML predicted state variables (Figures 2– 
4), it is necessary to understand the factors influencing the ML 
performances. To do so, we ranked the predictor importance for 
predictions at the example of the passive SOC at the PFT- level for 
ORCHIDEE- CNP v1.2 which shows the highest biases (Figure S3). 
The size of this pool is mainly affected by plant productivity (LAIg 
and NPPg) and climate predictors for all PFTs (Figure 6), whereas 
edaphic predictors are among the top predictors for some PFTs. The 
ranking of factors is in line with the theoretical understanding of 

drivers of SOC stocks of the underlying type of soil organic matter 
model (Huang et al., 2018).

To test the representativeness of training sites, we perform an 
additional ranking of predictor importance this time from a train-
ing using all pixels of the global domain (Figure S12). We found that 
top five key predictors in this ranking are generally the same as in 
the training using a subset of pixels (Figure 6) indicating a sufficient 
representativeness of the selected sites. However, for boreal for-
ests and grasslands we found differences (i.e. edaphic factors ranked 
highest), indicating a low representativeness of the selected training 
sites, which coincides with a low performance of the MLA. At the ex-
ample of BoENF PFT we show that the biases in ML- predicted SOC 

F I G U R E  3  Same as Figure 2 but for nitrogen cycle state variables.
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pools are highest for pixels with rare soil suborders (i.e. Andisols, 
Entisols, Gelisols, and Oxisols; Figure S13) in the training dataset, 
which provides additional evidence that the selected sites insuffi-
ciently cover the variation in edaphic conditions.

3.3  |  Corrected- MLA and re- run

To reduce biases in the ML- predicted states, we performed re- run simu-
lations. In order to reduce the drift in the global land carbon stock to be 
less than 0.05 Gt year−1 over five decades, 100, 350 and 310 years were 
needed for ORCHIDEE v2.2., ORCHIDEE- CNPv1.2, and ORCHIDEE 
v1.3 (Figure S14). As expected, the poorer the performance of the ML 

prediction (more information Data S6), the longer the length of the 
re- run simulations. On a pixel- level, drifts (linear trend) during the last 
50 years of the re- run simulation remain more pronounced than at the 
end of the spin- upconv in particular for soil carbon stocks (Figures S15 
and S16), illustrating the limitation of this approach.

We find that only for ORCHIDEE v2.2, biases in the ML pre-
dicted model state variables at PFT level are consistently reduced 
among all pixels (Figure S17), while for the other two versions the 
biases in biomass increase for boreal needle leaf PFTs (Figures S18 
and S19), irrespective of the area cover fraction (Figures S20 
and S21). Interestingly, the bias increase during the re- run occurs 
often at points with low initial bias (Figures S22– S25) and for PFTs 
with reduced representatives of training sites (Section 3.2). This 

F I G U R E  4  Same as Figure 2 but for phosphorus cycle state variables.
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behavior could be either caused by the issue with training sites or 
by the allocation scheme which relies on multiple nested thresh-
olds to control plant allometry (Goll et al., 2017), which might set 
targets which are different from the ones in the spin- upconv due 
to the slight deviation in the relative distribution of plant biomass 
among pools in the MLA. These thresholds may lead to a new 
steady state biomass.

3.4  |  Computational time savings

The MLA procedure as a whole consumes 78%, 80%, and 78% less 
computational time compared to a conventional spin- up without any 
additional acceleration procedure for ORCHIDEE v2.2, ORCHIDEE- 
CNP v1.2, and ORCHIDEE- CNPv1.3, respectively (Figure 7). The 
much lower computational demand of the spin- up for model ver-
sions of different structural complexity, was achieved with a com-
mon procedure and without any optimization of the lengths of the 
pre- run, re- run and site- run simulations as well as the number of 
pixels selected for the site- run simulation. Therefore, we expect a 
one- order of magnitude lower computation demand is in reach, for 
example by optimizing these parameters to specific model versions.

When deployed with an existing version- specific accelera-
tion procedure of ORCHIDEE v2.2, the computational demand of 
the spin- up is halved compared to the one when using only the 
version- specific acceleration procedure. This illustrates the ver-
satility of the MLA approach which can be combined with other 
acceleration procedures to further reduce the computational 
demand.

3.5  |  Impact of remaining biases from corrected- 
MLA on the historical TBM simulation

The use of MLA inevitably introduces errors in the predicted model 
state variables at steady- state, which affect the results of the 
production- run. The question is whether such errors will lead to sig-
nificant differences in the production- runMLA compared to production- 
runconv or not. To address this question, we assessed differences in 
the spatiotemporal patterns of net biome productivity (NBP) which is 
a key output variable of TBMs. NBP is defined as the net C exchange 
between the atmosphere and the terrestrial biosphere (a positive sign 
indicates a net land uptake) and the balance of multiple biologically 
controlled fluxes and ones caused by disturbances.

F I G U R E  5  Distribution of carbon (C), nitrogen (N) and phosphorus (P) in (a,d,g) soil organic matter, (b,e,h) biomass, and (c,f,i) litter for 
seven biomes for ORCHIDEE- CNP v1.3. Shown are results from the spin- upconv (blue) and the ML prediction (red). The biomes are tropical 
forest (TrF; consisting of PFTs 2 & 3), temperate forest (TeF; PFTs 3, 4 & 6), boreal forest (BoF; PFTs 7, 8 & 9), C3 grassland (C3G; PFT 10, 
14 & 15), C4 grassland (C4G; PFT 11), C3 cropland (C3G; PFT 12), C4 cropland (C4C; PFT 13). The thick black horizontal lines indicate the 
median values, while thin ones indicate the 25th and 75th quantiles. For PFT identifications see Table S1.
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We found that global and regional predictions for annual NBP 
during the last six decades by the three tested versions of the 
ORCHIDEE family are only marginally affected by the use of the 
MLA derived steady- state compared to the one of a conventional 
spin- up (Figure 8). The deviations in NBP between production- runMLA 
and production- runconv result in negligible or small differences in land 
carbon stock when accumulated over the period 1950– 2010 of 0.0, 
3.0, and −1.2 Gt (C) for the ORCHIDEE v2.2, ORCHIDEE- CNP v1.2 
and ORCHIDEE- CNP v1.3, respectively.

Global pixel- to- pixel comparisons in NBP for single years (1990, 
2000 and 2010) between production- runMLA and production- runconv 
show high spatial R2 (0.87– 0.99) and low RMSE (<17 g C m−2 year−1) 
for all three model versions (Figures S26– S28). The spatial patterns 
of NBP are similar between production- runMLA and production- runconv 
without large biases in any regions (Figures S29– S31) indicating the 
absence of systematic errors in NBP.

This illustrates that the accuracy of the MLA is sufficiently high for 
regional– global applications. The impact is substantially smaller than 
the differences among model versions which reflect the impact of 

uncertainties in model structure and parameterizations. There are devia-
tions at pixel level, which are due to the biases in the MLA predicted state 
of certain PFTs. The drifts in carbon stocks at PFT or pixel level during 
the re- run type simulations are indicators where such deviations can 
occur, and targeted measures should then be used to improve the MLA. 
It should be noted that the impact of the use of MLA on target variables 
depends on their sensitivities on the initial pool sizes and errors of ML.

3.6  |  Implications for the studies of global 
change biology

3.6.1  |  Towards high spatial resolution TBMs

There is an increasing demand to develop and apply TBMs with ever 
increasing spatiotemporal resolutions. The improved computation 
efficiency here is sufficient to allow predictions at a spatial resolu-
tion of 10 km globally (1 km regionally) with ORCHIDEE family mod-
els. This offers advanced ecological and biogeochemical information 

F I G U R E  6  Predictor importance for machine learning predicting model trained on a subset of all global pixels (13.5%). Exemplary results 
are shown for the predicting passive SOC pool at the level of plant functional types (PFT) in the case of ORCHIDEE- CNP v1.2. For detailed 
information on PFTs and predictors see Table 1 and Table S1 respectively.
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to satisfy societal and management needs and allows new areas of 
scientific applications. It further reduces the gap between resolu-
tions of TBM and satellite- based earth observations.

While we envision our approach to play an important role in 
promoting high spatial resolution TBMs, how to adapt our approach 
to future TBMs (or other ESM components) possibly with complex 
horizontal dynamics (e.g. water transfers among neighbouring pixels 
and soil erosion) needs further improvements. Advanced ML meth-
ods (such as recursive or graphic neural networks) might provide a 
solution, which needs future investigation.

3.6.2  |  Towards the improved assimilation of 
observations into TBMs

TBMs have been criticized regarding their reliability, primarily because 
of a large number of unconstrained model parameters. The applica-
tions of model- data fusion (or data assimilation) for TBMs are ham-
pered by the computational bottleneck, with measurements of carbon 
stocks seldom being systematically assimilated to improve parameteri-
zation (MacBean et al., 2022). Instead, parameters that control short- 
term processes are optimized assuming that long- term processes have 
limited impacts on short- term dynamics. While this assumption, im-
posed by the computational cost, facilitates specific applications, it 
is inadequate to solve the parameterization challenge for TBMs with 
multiple interactive processes with various timescales in their evolu-
tion. The elimination of the computational bottleneck through MLA is 
an essential step toward systematic model- data fusion.

F I G U R E  7  The computational demand of the historical simulation 
type (production- runMLA or production- runconv) and the MLA based 
spin- up (consisting of pre- run, site- runMLA, and re- run) as percentage 
of the demand of the conventional spin- up type (spin- upconv) for three 
versions of the ORCHIDEE family. In the case of ORCHIDEE v2.2 we 
show the computational demands when the version- specific spin- up 
acceleration procedure was activated (ORC v2.2, specific + MLA) 
or not (ORC v2.2*, MLA- only). ORC v2.2 shows computation time 
relative to the version- specific spin- up acceleration procedure.

F I G U R E  8  Changes in total yearly net biome productivity (NBP) during 1901– 2016 from and production- runconv (colored) and production- 
runMLA (black) type simulations for three different versions of ORCHIDEE family. Shown are averages over the following spatial domains: (a) 
global, (b) North Hemisphere (30°N– 90°N), (c) Tropics (30°S– 30°N) and (d) South Hemisphere (30°S– 90°S).
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3.6.3  |  Towards refined realism of TBMs

TBMs have been criticized for a lack of ecological processes or de-
tail which potentially lead to biases in the predicted response of 
the biosphere to global change drivers (Fisher et al., 2014; Fisher 
& Koven, 2020; Prentice et al., 2015). Different types of dedicated 
models were developed to incorporate fundamental ecological pro-
cesses from ecologists (e.g. Abs et al., 2020). Despite being well 
tested at site level, their global implementations were much delayed 
or assessed as impossible because the computational framework is 
inadequate to efficiently spin- up highly nonlinear models at a high 
spatial resolution for global applications. Our MLA approach over-
comes this big obstacle, and will facilitate the integration of a diver-
sity of ecological processes for global applications.

3.6.4  |  Towards machine learning enabled TBMs

Here, we creatively merge ML and a TBM for global scale studies 
to tackle the primary computational bottleneck. The rapid expan-
sion of heterogeneous big datasets and growing complexity of TBMs 
requires new methodologies to bring TBMs to the next level that 
adequately accommodates multiple theoretical breakthroughs and 
novel high dimensional real- world information. Different ML meth-
odologies have evolved to generate inputs for model simulations, 
optimize model parameters, emulate model behaviors, or substitute 
model components (Reichstein et al., 2019). The applications of ML 
for large scale TBMs are typically centered on data (inputs, evalu-
ation, and benchmarking) generation, despite the urgent needs of 
novel approaches in tackling multiple challenges for ESMs through 
integrating breakthroughs in ML. Our approach serves as a case 
study to inspire the machine learning enabled next generation TBMs.
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