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The Syndrome Bit Flipping Algorithm for LDPC
Codes

Emmanuel Boutillon, Senior Member, IEEE, Chris Winstead, Senior Member, IEEE
and Fakhreddine Ghaffari, Senior Member, IEEE

Abstract—Performance of LDPC decoders at high SNR is
dominated by trapping sets that induce an error floor in the
performance curve. We propose a new algorithm that resolves
trapping sets and lowers the error floor. The new algorithm, called
Syndrome Bit Flipping (SBF), computes the sum of adjacent par-
ity violations at each symbol node. Bits are flipped by comparing
the syndrome sum against a time-varying threshold called the
decoding key. SBF is compared to other bit-flipping decoders on
the Binary Symmetric Channel (BSC), and is demonstrated as
a post-processing step for a Noisy Gradient Descent Bit-Flipping
(NGDBF) hardware decoder. We demonstrate the post-processing
method for an LDPC code defined in the 802.3an standard, and
find that the frame error rate is improved by at least two orders
of magnitude, even as the required iterations are reduced by 33%.

Keywords—LDPC codes, bit-flipping decoders

I. INTRODUCTION

During the past two decades, Low Density Parity Check
(LDPC) codes have emerged as a crucial component of many
communication standards, and are increasingly important in
memory technologies. One of the main challenges for LDPC
decoders is to reduce or eliminate the error floor. To achieve
this, many methods of post-processing have been developed,
which can reduce the floor by up to a few orders of magnitude.
In this paper, we consider a method of post-processing that is
especially suited to bit-flipping algorithms. The new algorithm,
called Syndrome Bit Flipping (SBF), ignores channel infor-
mation and considers only the parity-check syndrome states
for the final iterations of bit flipping. Algorithm diversity
is obtained by varying a bit-flipping threshold in each post-
processing iteration.

In order to motivate the syndrome-only strategy, we first
consider an analogy to compressed sensing. We then show
that a threshold sequence, which call the decoding key, can
be chosen to resolve dominant trapping set errors that are
commonly associated with LDPC error floors. This method of
post-processing lowers the error floor in bit-flipping decoders,
and costs minimal hardware overhead since it only requires
masking part of the existing operations in bit-flipping de-
coders. There is some cost of extra iterations needed for post-
processing, however our simulations show that post-processing
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allows using fewer iterations of the primary decoder, so the
total iterations are actually decreased while still obtaining
better performance.

The remainder of the paper is organized as follows: Sec.|[I-B
describes the motivation, notation, and steps of the proposed
syndrome-only decoding algorithm. Sec. [III| presents a detailed
analysis of the algorithm for common trapping sets that are
known to be dominant contributors to error floors in standard
LDPC codes. In Sec. we present simulation results of the
algorithm as a post-processing solution for Noisy Gradient
Descent Bit Flipping (NGDBF) [1]], Probabilistic Gradient
Descent Bit Flipping (PGDBF) [2], [3] and their variant
algorithms [4] simulated on additive white Gaussian noise
(AWGN) and Binary Symmetric Channel (BSC), respectively.
Finally, Sec. |V| offers discussion and conclusions.

Notation: In the sequel, binary variables and loop indexes
are represented by lowercase letters. Integer variables are
represented by capital letters, integer algorithm parameters by
Greek letters, and matrices by bold-face capital letters.

II. SYNDROME BASED DECODING ALGORITHM
A. Compressed Sensing Analogy

In the classical theory of block codes, it is well known
that when a single error is present in a received data frame,
the location of the error corresponds to a unique syndrome
pattern that can be obtained via a simple binary calculation. For
some codes, this concept can be extended to correct multiple
errors. Such a concept is not readily available for modern
LDPC codes, where there can be a larger number of initial
errors in the received frame. We can, however, make a weaker
argument based on compressed sensing: when the number of
errors is small relative to the code’s frame length, then the
syndrome pattern most likely corresponds to a unique error
pattern. In compressed sensing, a vector ¢ of dimension n
with only a few non zero components, say ¢ with ¢ < n, can
be compressed into a vector & of size m = ¢(1 + €), with
€ < 1, by multiplying ¥ with a random matrix R of size
(m, n): @ =R

Compressed sensing is generally performed with real or
complex numbers. Nevertheless, the theory is applicable to
coding theory where operations are done over a Galois Field.
Let us consider the IEEE 802.3an LDPC code defined for the
10 Gbit/s Ethernet Standard [5]]. This LDPC code is defined
by a parity-check matrix H with size 2048 x 384. It is a
regular code with check degree d. = 32 and variable degree
d, = 6. By definition, any codeword ¢ verifies HC = 0.
Now let us assume that the codeword is received through a
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BSC. The received symbols are d=c® ¢ where €is a binary
vector of length n, with ¢ non null components (i.e. ¢ errors of
transmission). Thus, the syndrome § = Hd mod 2 is equal
to § = H(¢® &) = He and depends only on the error pattern
€.

To give a more exact example of this analogy, suppose a
given received codeword of the (2048, 1664) 802.3 LDPC code
with ¢ = 20 errors and an associated syndrome with 60 non-
null components. The number N, of possible error patterns
with ¢ = 20 is

_ 20 _ 47
Ne—<2048>—6.31><10 , (1)

while the number of syndromes Ny with 60 non-null values
among m = 384 is equal to

_ 60 _ 71
N, = (384) =1.01 x 107", )

Since N; > N, the set of error patterns is quite sparse relative
to the set of syndrome patterns. Then one can consider, as in
the case of compressed sensing, that the knowledge of s is
enough to characterize entirely the error pattern e when the
number of errors ¢ is small enough (say lower than 20 for
example).

This observation motivates us to search for new types of
decoding algorithms based only on the syndrome, ignoring
the received samples ¢ in the decoding process, except for
the initial computation of the syndrome 5. In the case of
post-processing, we suppose that a soft-information decoder,
operating in the error-floor region, is applied to the received
samples ¢/, and produces a vector d of binary decisions. In the
error floor region, the decoder’s output should have at most
a relatively small number of errors corresponding to some
absorbing set. We propose that these residual errors should
be correctable using a syndrome-only calculation.

B. The SBF Algorithm

The Syndrome Based Flipping algorithm can be defined
as a variant of the Gradient Descent Bit Flipping (GDBF)
algorithm, with two fundamental differences. First, the channel
information is no longer taken into consideration. Second, the
flipping decision is based on a predefined threshold 0(¢) that
depends on the iteration number ¢ only. In principle, SBF can
be used for post-processing with any LDPC decoding algo-
rithm; in this paper we consider SBF in relation to GDBF due
to its close similarity and straightforward hardware adaptation.

To describe the algorithm’s steps, we first briefly restate
the main points of the NGDBF algorithm [1]]. Given received
sample vector ¢/, a symbol-wise energy function is computed.
The NGDBF energy function can be expressed as

B = —adpyk + D s+ ars 3)
JEM

where %), € {+1,—1} is the bipolar decision at iteration ¢,
My, is the set of parity-checks adjacent to &, s; € {0,1}
are the corresponding binary parity syndrome values, qi is

an artificial noise perturbation, and « is a scale factor. The

decision Zy, is flipped if Fj exceeds a flipping threshold 6.
In simplest terms, the SBF algorithm modifies the energy

function by considering only the adjacent parity information:

E](CSBF) — Z 5. 4)

JEMy

E,(CSBF) is equal to the number of non-satisfied checks adjacent
to variable . The corresponding bit is flipped if Ey > 6(¢),
where 0 < 0(¢) < max (d,) (similar to the original parallel M-
GDBEF algorithm [6]). The precise steps of the SBF algorithm
are detailed in Algorithm [I] When SBF is used for post-
processing in bit-flipping algorithms, the hardware cost is
quite low. This is demonstrated in Fig. |l| for the case of
NGDBF, where a global mode-select signal is routed to mask
the channel sample and noise by forcing g := 0 and y;, = 0.

Algorithm 1 Syndrome Based algorithm

Input data: .
Noisy binary codeword d and parity check matrix H.
List of S, sequences of thresholds, {Of}r=1. .5, with
Or = {0k(0)}¢=1..n, where Ny is the length of the k'"
sequence.
Initialization: .
Compute 55 = Hd mod 2 ; Set k = 0;
Algorithm: .
while £ < S, and §# 0 do .
f=0;k=k+1;5=5);€=0;
while ¢ < N}, and §# 0 do
L=10+1;
E=HT%
fori=1to N do
if E(i) > 0;(¢) then
e(i) =1-¢e);
end if
end for
§=Heé mod 2;
end while
end while
if 57 0 then
e=0
end if

return Z=d+¢

III. TRAPPING SET ANALYSIS

It is now well known that error floors of LDPC codes
are affected by cycle subgraphs known as absorbing sets
or trapping sets, and for BP-based decoders there are many
approaches for mitigating them, e.g. [7]]. It was previously
shown that decoder diversity — dynamic algorithm rules that
change from one iteration to the next — can be exploited
to resolve trapping set errors and improve performance of
low-complexity decoding algorithms, e.g. in the framework
of Finite Alphabet Iterative Decoders (FAID) [8]], [9]. In this
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qk
Yk x
mode
Fig. 1. Modified symbol node with dual-function capability for both NGDBF

and SBF. The added “mode” input is a binary signal that selects NGDBF when
mode = 1, and SBF when mode = 0.

section, we examine decoder diversity in SBF by way of
the dynamic flipping threshold. We show that a sequence of
threshold values can be devised to incrementally resolve known
dominant error patterns due to trapping sets.

A. Isolated trapping sets

We first consider trapping sets in isolation, ignoring their
neighborhoods within a larger code. For a each particular trap-
ping set, we obtain a specific threshold sequence that corrects
all symbol nodes within the set, independent of the initial
condition. We refer to such a sequence as a decoding key for
the trapping set. We do not offer a proof that such sequences
exist for all trapping sets. Instead they are discovered through
exhaustive search, and sequences are reported in supplemental
data for 29 different trapping set topologies [10].

As a first example, a (3,3) trapping set is shown in Fig. [2| for
three different error configurations. If all bits are initially in
error (Fig. [2]a), then the local parity sum will be £ = 1 at each
of the symbol nodes in the set. If the first flipping threshold
is set to 6(1) = 0, then all erroneous bits are flipped.

If only two symbols are in error in the (3,3) trapping set (Fig.
[2]b), then all symbols will have a parity sum E = 2. If the
second threshold is §(2) = 1, then all bits are flipped, resulting
in a single-error condition where the correct symbols have £/ =
1 and the erroneous symbol has ¥ = 3. To correct this final
case (Fig. c), the third threshold is adjusted to 6(3) = 2, so
that the erroneous bit is corrected.

A more generalized analysis is obtained by analyzing the
error state transition diagram for the trapping set. One example
is shown in Fig. [3] where the states represent error patterns
within the trapping set subgraph, with 000 being the error-
free state. The edges in Fig. |3| are labeled with the value of
6(¢) that will induce a transition from one error pattern to
another. From the state transition diagram, we deduce a set
of © sequences guaranteed to reach state 000 regardless of
the initial state. In this example, there are six sequences of
length three which guarantee correction regardless of the initial
state: ©1 = {0,1,1}, ©; = {0,1,2}, ©3 = {1,1,0}, O3 =
{1,2,0}, ©5 = {2,0,1} and ©¢ = {2,0,2}.

Multiple trapping sets can be resolved if the dominant
trapping set graphs are known. For each known trapping set,
the transition analysis is performed to obtain decoding keys
that resolve each trapping set type. The keys are concatenated

to produce a complete key for the code. Since trapping sets
are small graphs, it is straightforward to enumerate all paths,
increasing the path length until the shortest decoding keys
are discovered. This method was used to find solutions for
29 trapping sets selected from a public dataset [11]], and the
resulting decoding keys are provided as supplemental data.

B. Heuristics for non-isolated trapping sets

We say that a trapping set is non-isolated if the SBF
algorithm causes error propagation in the set’s neighborhood.
Errors propagate outside the trapping set neighborhood when-
ever 0 (¢) = 0. The problem is illustrated in Fig. 4, which
shows that the neighbors of an erroneous symbol node all have
E =1, so they will be flipped to erroneous states whenever
60 = 0. If a 6 sequence contains repeated zeros, then errors
tend to propagate to a large neighborhood.

Heuristic 1: Whenever 0 (¢) = 0, §({+1) > 0 and
0 (¢+2) > 0. Rationale: Simulations indicate that in most
instances, propagated errors are corrected if the zero threshold
is followed by one or more non-zero threshold values in the
decoding key.

Heuristic 2: Error propagation is suppressed by inserting
0 =d,—1 and § = d, — 2 into the decoding key. Rationale: A
solitary error (i.e. an erroneous symbol with no adjacent errors)
may be produced as a consequence of error propagation, and
is corrected when 6 = d,, — 1. Similarly, an adjacent pair of
erroneous symbols is corrected when 0 = d,, — 2.

Heuristic 3: SBF is only applied for bits with “unreliable”
channel samples, |y| < v for some threshold +. The choice
of ~ is determined empirically by simulation. Rationale:
This heuristic bounds the neighborhood in which errors may
propagate, thereby improving the probability that all errors can
be resolved.

IV. PERFORMANCE EVALUATION
A. SBF Performance on BSC

We first evaluate the SBF algorithm on the BSC as a
standalone decoding algorithm, and evaluate its performance
in comparison to other bit-flipping algorithms for the IEEE
802.3an LDPC code. The error floor for this code is dominated
by an (8,8) trapping set pattern. The decoding key for this
simulation was prepared using Heuristics 1| and and is
provided online as a supplemental file.

The simulation results are shown in Fig. [5] At frame error
rates above 1076, standalone SBF performance is somewhat
worse than PGDBF or BP. The improvement of SBF is seen in
the error floor region, where the frame error rate approaches
10~8. In this performance domain, SBF performs better than
either PGDBF or BP, likely because of its resistance to
dominant trapping set errors that affect the other algorithms.

B. SBF as Post-Processing on AWGN

SBF was implemented as a post-processing option for the
NGDBF algorithm, and tested on two codes. Decoding keys
were generated applying Heuristics 1 and 2 as described in
Section III. The first code is the IEEE 802.3an LDPC code,
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Fig. 2.

Example of trapping set correction under dynamic threshold flipping. Erroneous symbol nodes are indicated by ®; degree-two check nodes appear

as solid boxes, and degree-one check nodes as unfilled boxes. At each symbol node, the total local parity sum E is indicated. Three states are shown: (a) the

initial state with three errors, (b) two errors, and (c) one error.

12
111 O

110

@

—

011
0y
010 0

Fig. 3. Error states of the (3,3) trapping set. The edges indicate transitions
of the SBF algorithm, and are labeled with values of #(¢) that induce the
corresponding transition.

E=1
TS subgraph
E>0 E=1
E=1

Fig. 4. For an erroneous symbol node within a trapping set subgraph, adjacent
correct symbol nodes have E = 1. These bits are flipped whenever 6 = 0,
causing error propagation.

simulated using FPGA emulation of a 5-bit quantized AWGN
channel. The results are shown in Fig. [6] The figure includes
quantized BP (5-bit) and unquantized BP, using data from
Zhang et al. [12]. NGDBF was found to reach an error floor
similar to quantized BP at an FER of 10~%. With SBF post-
processing, the error floor is lowered to about 108, similar to
unquantized BP.

The results also show that the total iterations can be sig-
nificantly reduced when using SBF, requiring a maximum of
four hundred iterations for NGDBF+SBF, whereas NGDBF in

BSC, IEEE 802.3 standard LDPC code

10° F \ \
—e— SBF (180)

—m— PGDBF (50)
102 || —e— PGDBF (300)
—a— BP (25)

1074 8
[24
&=
10—6 _
108 1
q
10710 [ ‘ ‘ C
0.002 0.004 0.01
Derr

Fig. 5. Test results obtained from simulation of the rate 0.8413 802.3an code
on the BSC, compared to the recent PGDBF algorithm and the standard belief
propagation (BP) algorithm.

isolation must allow at least 600 iterations to achieve adequate
performance on this code, up to 1000 iterations for best
performance [13]]. By lowering the maximum iterations from
600 to 400, the decoder’s worst-case throughput is improved
by 33% in addition to the improved error floor.

The final result in Fig. [6] shows results for NGDBF with SBF
post-processing where Heuristic 3 is applied. These results
were obtained by capturing error frames from the hardware
emulation. Those frames were then decoded again in software
with NGDBF+SBF applying all three heuristics.

The second code simulated was a larger code with d, =
5 and N = 10240, with results shown in Fig. [/| This code
reaches a very high error floor with NGDBF, but the floor is
suppressed below an FER of 10~% when using NGDBF+SBF.

V. CONCLUSION

We presented a new low-complexity LDPC decoding algo-
rithm suitable for post-processing to lower the error floor. The
method has a very simple implementation because it mainly
requires disabling a portion of the symbol node calculations.
Some overhead is also needed to distribute a global integer
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5-bit quantized AWGN, IEEE 802.3 standard LDPC code

10°

1073 ]
[a4
m —6 |
K 10
B BP (200)
107° BP (5-bit) (200) |
—o— NGDBF (1000,0)
—+— NGDBF+SBF(300,100)
—m— NGDBF+SBF+h3
10-12 I I | | |
3 3.5 4 4.5 5 5.5 6
Ey/No (dB)
Fig. 6.  Test results obtained from an FPGA implementation of NGDBF

with post-processing for the 802.3an code. The NGDBF+SBF results use 300
iterations of NGDBF followed by 100 iterations of SBF. The NGDBF+SBF+h3
result indicates that Heuristic 3 was applied.

5-bit quantized AWGN

10°
&
10—2 =~ ~o. -
\\
n\
172} NN
8 NN
< 10—4 [ NS |
[a7 NN
= RN N
) -
= o ~ -
83 _6 N R
10 [ \\ o~ ‘76
N
—o— FER NGDBF S
—+— FER NGDBF+SBF N
1078 [ | - ©- BER NGDBF N |
~ 4~ BER NGDBF+SBF N
\ | ki
3 3.2 3.4 3.6 3.8

Ey /Ny (dB)

Fig. 7. Simulation results of NGDBF with post-processing for a regular
(5,20) LDPC code of length N = 10240. NGDBF was used for up to 1000
iterations, followed by 11 post-processing iterations with SBF.

threshold value that changes in each iteration. A procedure
was given for optimizing the threshold sequence in order to
resolve errors on known dominant trapping sets in the code.

APPENDIX

The set of 17 decoding key sequences Si7 =
{Ok}r=1,2,..,17 used for the results in Fig. 5 are given below.
They are sorted in descending order, for clarity. In a real
application, the order of execution of each decoding key

should be modified to perform first the decoding key sequences
that correct the highest number of remaining errors. This
smart ordered reduced the average iteration before finding a
codeword.

0, = {5534324};

O, = {5454543332};

O3 = {544442543333};

04 = {544333233323323323323323323143323323};

05 = {544233242332};

O = {5433343233333};

O7 = {5435432433433333323};

(1]

(2]

(3]

(4]

(6]

(71

(8]

(91

[10]

(1]

[12]

[13]

= {534434333333};

= {53343333};

= {45433333233};

= {443433322332333};
= {44233}

= {433334233};
{354333333};

= {34433324332};

— {333332433};

= {323244423}.
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