
HAL Id: hal-04097585
https://hal.science/hal-04097585

Submitted on 3 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Improving the Efficiency of 3D Monocular Object
Detection and Tracking for Road and Railway Smart

Mobility
Alexandre Evain, Antoine Mauri, François Garnier, Messmer Kounouho,

Redouane Khemmar, Madjid Haddad, Rémi Boutteau, Sébastien Breteche,
Sofiane Ahmed Ali

To cite this version:
Alexandre Evain, Antoine Mauri, François Garnier, Messmer Kounouho, Redouane Khemmar, et al..
Improving the Efficiency of 3D Monocular Object Detection and Tracking for Road and Railway Smart
Mobility. Sensors, 2023, 23 (6), pp.3197. �10.3390/s23063197�. �hal-04097585�

https://hal.science/hal-04097585
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: Evain, A.; Mauri, A.;

Garnier, F.; Kounouho, M.;

Khemmar, R.; Haddad, M.;

Boutteau, R.; Breteche, S.;

Ahmedali, S. Improving the

Efficiency of 3D Monocular Object

Detection and Tracking for Road and

Railway Smart Mobility. Sensors 2023,

23, 3197. https://doi.org/10.3390/

s23063197

Academic Editors: Sylvain Girard

and Yitzhak Yitzhaky

Received: 20 December 2022

Revised: 9 March 2023

Accepted: 14 March 2023

Published: 16 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Improving the Efficiency of 3D Monocular Object Detection
and Tracking for Road and Railway Smart Mobility
Alexandre Evain 1 , Antoine Mauri 1 , François Garnier 1, Messmer Kounouho 1, Redouane Khemmar 1,* ,
Madjid Haddad 2 , Rémi Boutteau 3 , Sébastien Breteche 2 and Sofiane Ahmedali 4

1 Univ Rouen Normandie, Normandie Univ, ESIGELEC, IRSEEM, 76000 Rouen, France
2 SEGULA Technologies, 19 Rue d’Arras, 92000 Nanterre, France
3 Univ Rouen Normandie, INSA Rouen Normandie, Université Le Havre Normandie, Normandie Univ, LITIS

UR 4108, 76000 Rouen, France
4 IBISC, Evry-Val-d’Essonne University, Universite Paris-Saclay, 91080 Évry-Courcouronnes, France
* Correspondence: redouane.khemmar@esigelec.fr; Tel.: +33-023-291-5988

Abstract: Three-dimensional (3D) real-time object detection and tracking is an important task in the
case of autonomous vehicles and road and railway smart mobility, in order to allow them to analyze
their environment for navigation and obstacle avoidance purposes. In this paper, we improve the
efficiency of 3D monocular object detection by using dataset combination and knowledge distillation,
and by creating a lightweight model. Firstly, we combine real and synthetic datasets to increase
the diversity and richness of the training data. Then, we use knowledge distillation to transfer the
knowledge from a large, pre-trained model to a smaller, lightweight model. Finally, we create a
lightweight model by selecting the combinations of width, depth & resolution in order to reach a
target complexity and computation time. Our experiments showed that using each method improves
either the accuracy or the efficiency of our model with no significant drawbacks. Using all these
approaches is especially useful for resource-constrained environments, such as self-driving cars and
railway systems.

Keywords: monocular 3D object detection; dataset combination; knowledge distillation; 3D bounding
boxes estimation; object localization; distance estimation; 3D multi-object detection; deep learning;
smart mobility

1. Introduction

Autonomous vehicles are increasingly present in our daily lives, opening up new
perspectives in mobility and transportation. These vehicles evolve in a dynamic environ-
ment shared by many other users. The R&D work of our team is directly related to one of
the major issues of this field, which is the perception of the environment for autonomous
vehicles, namely autonomous cars, autonomous trams, and autonomous trains. In the
context of intelligent mobility applications, object detection and accurate depth estima-
tion are necessary for safe navigation. A good perception of the environment requires
understanding the following issues:

• Mapping and localization: this represents the establishment of spatial relationships
between the vehicle and static surrounding objects.

• Detection and tracking of moving objects
• Object classification (car, bus, pedestrian, cyclist. . . ): The vehicles need to be able to

detect each different class precisely, as each class has its own behavior, and properly
identifying each object is key to understanding the environment.

In the scope of our work, only the two latter issues are relevant. To solve these, Deep
learning algorithms allow the computer to analyze the shapes and objects that make up an
image, following two main methods:

Sensors 2023, 23, 3197. https://doi.org/10.3390/s23063197 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23063197
https://doi.org/10.3390/s23063197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4165-5789
https://orcid.org/0000-0002-0313-3859
https://orcid.org/0000-0002-6230-2966
https://orcid.org/0000-0002-8933-4714
https://orcid.org/0000-0003-1078-5043
https://doi.org/10.3390/s23063197
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23063197?type=check_update&version=2


Sensors 2023, 23, 3197 2 of 15

• Classification and localization algorithms draw bounding boxes around each
object detected.

• Instance segmentation associates each pixel with a class to uniquely identify it. The
segmentation trims the object and is more accurate than the bounding box detection.

Among all these approaches, in our case of autonomous cars and trains, 3-dimensional
object classification is the most relevant method.

In addition to this, additional challenges have been identified. The first one is the
availability of databases in the railway and road domains, rich enough (both in terms of
the number of images and data as ground truth) to allow the adequate training of deep
learning methods. While there are plenty of datasets covering the road domain, datasets
covering the railway domain for object detection are much less numerous. As our work
used 3D detection, what we needed was datasets with not only ground truth data about
the objects’ classes and positions on the pictures, but also their real location, dimensions,
and orientations.

The second challenge identified concerns the design of a solution for real-time detec-
tion, localization, and trajectory prediction in a complex and varied environment compatible
with limited onboard processing resources. The optimization solutions have to combine
the detection performance without altering the speed of the inference model. Embed-
ded systems present a major internal limitation for our work, this being the limitation of
computing power, while artificial intelligence algorithms present an extreme computing
costs. We, therefore, overcame this limitation by using an architecture capable of providing
a high level of parallel processing, also called embedded GPU, namely, NVIDIA Jetson
TX2. We tried to find the balance between the performance of the neural network, i.e., its
ability to perceive its environment, and the execution speed inherent to the embedded
GPU. Our aim was to provide an answer to both challenges by making full use of dataset
combination, and by developing and improving a monocular 3D object detection and
tracking system that can provide real-time performance, even on embedded systems, with
limited processing resources.

This paper is organized as follows: Section 1 introduces this paper. In Section 2, we
review the related works, YOLO-based object-detection algorithms, existing datasets for
smart mobility, methods to extract synthetic data, object tracking, and, finally, knowledge
distillation. In Section 3, we introduce the work done by our team in regard to our im-
provements on YOLOv5-3d [1] using tracking visualization, and dataset combination. The
implementation of our algorithm on an embedded system for field usage is described
in Section 4. Experimental results, whether qualitative or quantitative, are the subject of
Section 5, where we show the results of the dataset combination, the knowledge distilla-
tion, and the development of the lightweight model. Finally, the conclusions and future
directions are outlined in Section 6.

2. Related Works
2.1. Object Detection Methods

The best-performing Deep Learning-based methods for object detection are generally
based on a convolutional network separated into two modules. The first one is dedicated
to the region proposal, which returns the coordinates of the bounding boxes in which an
object is possibly present. The second module then performs the detection and returns the
class of the object present in the proposed region. Although the detection performance
of these methods is excellent, they are computationally intensive and not well suited for
real-time applications. Instead, the YOLO [2] algorithm proposes a different approach
and uses a single convolutional network to predict the position of objects (region) and
their class, while keeping consistent detection performance. It is for this reason that we
chose to focus on YOLO, rather than on other multi-stage object detection methods. The
different versions of YOLO [3–5] have brought many improvements to the original version.
Training using batch normalization pushes each layer of the network to have more or less
the same distribution at each step of the training and, thus, gains in accuracy. Replacement



Sensors 2023, 23, 3197 3 of 15

of the fully connected layers, responsible for the detection, by “anchor boxes”, similar to
the default boxes of SSD, is another improvement. In addition, the network responsible
for extracting the image features has been replaced by the Darknet network, which has
53 convolutional layers instead of 19. These new methods, therefore, offer better detection
performance than the original YOLO, while being inexpensive in terms of computing time.

In terms of its operation, YOLO divides the input image into a set of grids of varying
fineness. It then applies convolutions and predicts whether an object is located in a zone
of the grid. However, it is the agglomeration of these “anchor boxes” that allows us
to make the final detection of the object by applying the NMS function, or removal of
non-maximum anchor boxes. It is this cutting in the form of a grid that allows YOLO
to detect both small and large objects in the image, while gaining in speed compared to
other detection methods. The version of YOLO we used [1] was a 3D monocular detection
method built on YOLOv5 [5], which replaces YOLOv5’s original anchor boxes (containing
class information as well as location information within the picture) with hybrid anchor
boxes, which contain more information, such as the following: distance from the camera,
3D centers projected on the image plane as well as 3D dimensions and orientation. All
these pieces of information together allow us to precisely locate an object’s position and
orientation in a 3D environment. We made further improvements to this method, which aim
to provide monocular 3D object detection with the main focus being real-time performance.
While there are some similar methods, such as in [6–8], these methods either require stereo
or depth cameras or are more focused on precision, rather than real-time performance. In
addition, during, or soon before, our work, other versions of YOLO were released, such
as [9–12]. Among these, the most interesting one is [12], which offers gains in both time
and performance without any drawbacks. While using it has not been a possibility during
our work so far, it is our intent to port our adaptation of YOLOv5 to YOLOv7 in order to
benefit from the latter’s considerable improvements.

While we focused mostly on YOLO-based approaches, since these were methods simi-
lar to ours, there are many object detection algorithms with their own unique approaches.
Among these, [13–15] are some of the most recent monocular 3D object detection meth-
ods, while [16,17] are the 2021 SOTA in this domain. Among these monocular 3D object
detection approaches [18,19], are methods specifically aimed on achieving high real-time
capabilities like ours. However, the former was tested on two RTX 1080 GPUs, while the
latter used 2 NVIDIA Tesla V100 GPUs. This differs from our approach, which mostly
utilized embedded systems, like the NVIDIA Jetson TX2, for its real-time performance
evaluations, as shown in Table 1.

Table 1. Quantitative results of our new optimal model on a Jetson TX2. The tested models were
trained on KITTI and NuScenes.

Database
(Model) Resolution 2D Detection Distance Dimensions Centre Orientation # Parameters Time/img

AP R mAP@0.5 RE SRE RMSE log
RMSE α1 α2 α3 DS CS OS

KITTI
(Small) 672 × 224 0.722 0.520 0.500 0.069 0.163 2.27 0.094 0.978 0.997 0.999 0.863 0.942 0.879 7.3 M 70 ms

KITTI
(LW) 608 × 192 0.642 0.518 0.469 0.056 0.133 2.15 0.081 0.985 0.998 0.999 0.871 0.953 0.863 6.0 M 28 ms

NuScenes
(LW) 608 × 352 0.527 0.431 0.374 0.054 0.205 3.11 0.074 0.985 1 1 0.838 0.962 0.920 6.0 M 28 ms

2.2. Datasets

The volume and quality of data in a learning problem remain a fundamental issue,
as well as the structure of the model to be trained. The field of autonomous cars, being
in full development, has a multitude of data sets for the road domain, such as KITTI [20],
which provides images from a stereoscopic camera, with the depth of the scene measured
by a Velodyne LIDAR, as well as vehicle and pedestrian annotations for object detection,
or NuScenes [21], which has six cameras and a LIDAR with a large volume of data that
can be used for 2D and 3D detection and tracking. There are also other datasets available,



Sensors 2023, 23, 3197 4 of 15

like CityScapes [22], Pascal VOC [23], ImageNet [24] or MS-COCO [25], but they were
not used during our work because they did not contain the information we needed. We
used KITTI and NuScenes, mainly because they are both open-source datasets dedicated to
3D detection for autonomous vehicles and both contain sequences of videos from urban
environments. These datasets were especially useful for this project because they feature
most of the situations which might be encountered during real-life use of the algorithms.

In addition, there are simulators that allow automatic acquisition and annotation, such
as in CARLA [26] or SYNTHIA [27]. However, the graphical rendering of simulators is
not always up to par with reality, due to rendering quality, texture issues, dated graphics,
and domain shifts, and were not photorealistic enough for our methods once applied in
real conditions. An acquisition from Grand Theft Auto V [28] (GTA V), a video game with
a photorealistic appearance, allowed us to obtain a large virtual dataset for 3D detection
capable of being combined with our previous datasets. There are several articles explaining
how to acquire data from this specific game, such as Richter’s [28] works, which include
instructions and available code to use, and Philipp Krähenbühl’s Gamehook [29], a tool
allowing extraction of the rendering code of a video game.

In addition to the hybrid datasets used during these works, our team also developed
a rail–road real–synthetic hybrid dataset called ESRORAD [30]. To develop the hybrid
road–railway dataset, we used a combination of synthetic data generated using GTA, as
well as real image recordings. We used GTA to generate a large number of images of
roads and railways, along with their corresponding labels and ground truth data. To
augment the synthetic data with real examples, we also collected a set of real images of
roads and railways by using a car equipped with captors and driving over an existing
railway. We then manually annotated a subset of the images (approximately 2500) for use in
our algorithms, resulting in a hybrid dataset that includes both synthetic and real-life data.

For the railway domain, the number of available datasets is much lower: we have so far
only identified two datasets, RailSem19 [31], and FRSign [32]. Railsem19 offers 8500 images
for semantic segmentation, FRSign has 100,000 images for railway traffic light recognition,
but both of these datasets are not relevant in the case of 3D semantic segmentation. The
ESRORAD dataset is, as of now, the only dataset offering both road and railway data freely
available with ground truths, making it a valuable resource for researchers and developers
working on object detection and classification in the railway field.

2.3. Object Tracking

In the context of autonomous cars, knowing the position in space of the objects sur-
rounding the vehicle is not sufficient, since they are usually in motion. For this reason, we
used object tracking to anticipate their dynamic behavior and predict dangerous situations.
Object Tracking allowed us to make the detection association, that is to say, to recognize a
determined object between two images and to follow it in time. These tools use sequences
of images and, thus, make an extraction both spatial and temporal (distance, velocity,
texture, etc.). Although very useful, these methods do have limitations:

• Occlusion and truncation, when an object is totally or partially hidden by another, or
when it goes out of the camera’s field of view, cause the algorithm to forget the object,
and once it is back in the frame, the algorithm considers it to be a new object.

• Fast camera or point of view movements can cause the algorithm to predict erro-
neous trajectories, as it attributes these sudden important changes in the frame to the
objects’ movements.

Nevertheless, we consider that, in the context of a fixed camera on a vehicle following
a smooth trajectory, these problems do not prevent the tracking methods fulfilling their
obstacle avoidance function.



Sensors 2023, 23, 3197 5 of 15

There are several methods of MOT (Multiple-Object Tracking) available, some based
on the use of Kalman filters, such as SORT [33] (Simple Online and Real-time Tracking),
while others use CNNs (Convolutional Neural Networks), like DeepSORT [34] or Track-
former [35]. The advantage of Kalman-based solutions is that they are able to work directly,
by using the output of a separated object detection algorithm, to initiate the tracking and
improve it during the sequence. On the other hand, Tracking solutions using Deep Learn-
ing often perform both object detection and tracking, making them partially redundant
with our already existing object detection algorithm. Since real-time performance was an
important issue for us, we could not afford to perform two object detection in parallel, as it
would be a tremendous waste of computing resources.

2.4. Knowledge Distillation

Knowledge distillation, as defined in [36], is a neural network optimization method.
Indeed, artificial intelligence models require enormous means in terms of computing power
to be trained. Moreover, in most cases, these models are implemented in systems with
little power. Knowledge distillation allows the overcoming of this problem of model
minimization for embedded systems, smartphones, etc.

It consists of training two models in parallel: a teacher network and a student. The
teacher is a network already trained with large and complex layers, allowing it to obtain
high accuracy scores (in mAP, position accuracy, and dimensions accuracy). The student
is a light network, with thinner and less deep layers, allowing it to have a higher speed
of execution compared to the teacher model. A survey on knowledge distillation [37],
outlined the three main types of distillation schemes (offline distillation, online distillation,
and self-distillation), as well as some of the latest distillation algorithms, such as [38,39].

3. Improvements on 3D Object Detection and Tracking
3.1. Object 3D Detection & Classification: Improvements on YOLOv5-3D [1]

To create a 3D object detection algorithm from YOLOv5, we modified the network
architecture to add additional outputs for 3D information. This involved adding new layers
to the network that could predict the 3D center of the object, as well as its dimensions and
orientation, based on the 2D bounding box predicted by YOLOv5. Next, we trained the
YOLOv5-3d [1] network on a dataset of images with corresponding 3D ground-truth labels.
The resulting 3D object detection algorithm was able to accurately predict not only the class
and 2D bounding box of each object, but also its 3D center, dimensions, and orientation.
While this algorithm has already been the subject of its own article [1], we made some
improvements such as improved hyperparameters (results shown in Table 2), as well as the
use of new methods, namely the integration and modification of the SORT [33] algorithm
for tracking, the use of dataset combination, knowledge distillation and the creation of a
lightweight model (i.e., Table 1).

One of the advantages of our 3D detection algorithm is that it has a single-stage
architecture and a limited number of layers, which makes it highly efficient and allows it to
achieve good real-time performance. Our algorithm can be run on a wide range of devices,
including embedded systems with low computational capacities, such as the Jetson TX2. In
the field of autonomous vehicles, it is critical that the algorithms used for object detection
and localization can operate in real-time, because the decisions made by these algorithms
can have significant consequences, such as avoiding collisions with other objects. Table 2
shows the quantitative evaluation of YOLOv5 on the KITTI dataset.



Sensors 2023, 23, 3197 6 of 15

Table 2. Quantitative evaluation of YOLOv5-3d on KITTI after training on different databases.

Training
Database

Training
Resolution

Inference
Resolution

2D Detection Distance Dimension
DS

Centre
CS

Orientation
OSAP R mAP@0.5 RE SRE RMSE log

RMSE α1 α2 α3

KITTI
672 × 244 672 × 244 0.897 0.752 0.732 0.0483 0.0987 1.82 0.0733 0.989 0.998 0.999 0.883 0.959 0.906
672 × 244 1312 × 416 0.835 0.821 0.779 0.178 1.15 6.61 0.218 0.6 0.997 0.999 0.866 0.949 0.928

GTA
1312 × 768 1312 × 416 0.839 0.603 0.584 0.140 0.784 5.21 0.157 0.846 0.999 1.0 0.851 0.967 0.955
1312 × 768 1312 × 768 0.823 0.593 0.571 0.114 0.584 4.63 0.134 0.913 1.0 1.0 0.848 0.962 0.955

NuScenes
1312 × 768 1312 × 416 0.857 0.678 0.697 0.455 5.97 14.7 0.378 0.0766 0.945 0.999 0.651 0.965 0.977
1312 × 768 1312 × 768 0.843 0.642 0.635 0.0654 0.198 2.72 0.0776 0.994 1.0 1.0 0.654 0.964 0.986

One of the main limitations of YOLOv5-3d is that it is extremely dependent on the
resolution of the training images. If the images used during inference have a different
resolution than the images during training, this negatively affects the accuracy of the
different predictions, especially the distance prediction, as seen in Table 2. In this table, we
can see that the RE (Relative Error) and RMSE (Root Mean Square Error) are both higher
after a change in resolution between training and inference.

Additionally, the accuracy of our algorithm is also dependent on the camera’s intrinsic
parameter differences between the training and inference. These parameters include the
focal length of the camera, the size of the pixels on the camera’s sensor, and other factors that
affect the way the camera captures images. If the intrinsic parameters of the camera used
for inference are different from those used during training, the accuracy of the algorithm
may be reduced.

It is possible to easily mitigate these limitations of YOLOv5-3d by changing the
dimensions of the input images, with both resizing and cropping, as well as by us-
ing OpenCV [40]’s undistort function, that reprojects an image from one camera matrix
to another.

The only downside of this solution is that it requires the picture to be pre-processed,
which makes this fix hard to apply in embedded systems, which is why, rather than trying
to adjust the inference images to fit the training images’ resolutions and camera matrices,
the best solution is to instead pre-process the training data. Once the model is trained
with pre-processed data already fitting the inference’s resolution and camera matrix, the
inference works as intended without requiring any additional pre-processing.

In order to improve our model, we decided to create a lightweight version specifically
for use in embedded systems, such as the Jetson TX2. The goal of this model is to have
improved real-time performance and to run quickly, even on systems with limited resources.
We used the Jetson TX2 as a reference during our development, as it is a powerful embedded
system that is commonly used in a variety of applications. The NVIDIA (Santa Clara, CA,
USA) Jetson TX2 features a 256-core NVIDIA Pascal™ GPU architecture with 256 NVIDIA
CUDA cores, a Dual-Core NVIDIA Denver 2 64-Bit CPU and a Quad-Core ARM Cortex-A57
MPCore, 8GB of 128-bit LPDDR4 memory running at 1866 MHz, and 59.7 GB/s of memory
bandwidth. These specifications make the Jetson TX2 a good reference platform for our
lightweight model, as it is an embedded system that provides a balance of computational
power and energy efficiency. By designing the model to work well on the Jetson TX2, we
could ensure that it would perform well on a wide range of embedded systems with similar
specifications, rather than being limited to only high-end systems.

A network that has too many parameters has a much higher computation time while
having a greater tendency to overtrain, which degrades its accuracy considerably. On the
other hand, a model that does not have enough parameters does not learn well and has
lower accuracy. In our network, the number of parameters defining its complexity depends
largely on the number of layers and filters. The speed and accuracy of our approach also
depends on the resolution of the input images. Work has already been done to obtain an
optimal set (depth, width, image resolution) in EfficientNet [41,42]. The authors determined



Sensors 2023, 23, 3197 7 of 15

that the complexity of the model, measured in Flops, was related to its width (w) (#layers),
depth (d) (#channels), and resolution of the image (r), as described in Equation (1):

Flops ∼ w2 × r2 × d (1)

In order to create an even lighter model, we chose to take a similar approach. First, we
defined the complexity of our model with the objective of obtaining a computation time
of 33 ms/image on the Jetson TX2. The chosen complexity was approximately 10 GFlops.
Starting from an initial complexity of 550 GFlops, we then selected all the combinations
(width, depth, resolution) that would allow us to obtain the target complexity. Finally, we
trained each of these models for 20 epochs on GTA. If we define w = 1 and d = 1 as the
width and height of the “Large” model and r = 1 to define an image of resolution 1280× 720,
the model presenting the best balance between performance gain and precision we found
had the combination (w = 0.4, d = 0.5, r = 576

1280 = 0.45). Other w/d/r combinations tested
empirically had either too much of a precision decrease or not enough performance gain
when compared to this one. We later adopted the same procedure to train the other models
(Large, Medium, etc.).

3.2. Object Tracking & Visualization

In the context of autonomous cars, knowing the position in space of the objects sur-
rounding the vehicle is not enough, since other vehicles are usually in motion and collisions
must be avoided. Therefore, in order to anticipate their behavior and the trajectories to
avoid dangerous situations, we used multiple-object tracking solutions. We integrated and
modified the SORT [33] algorithm for this purpose. SORT only works for 2D detection,
and we modified its Kalman algorithm to move from 2D to 3D. The results can be seen in
Figure 1.

Figure 1. Object tracking with 3D bounding boxes and tracking numbers.

Additionally, in order to have better visibility on the trajectories of the surrounding
objects, we realized a visualization tool, seen in Figure 2, that allows easy observation of
the location and the trajectory of the tracked objects, with the libraries OpenCV [40] for
image processing and Matplotlib [43] for graphic rendering.

Once the vehicles were represented on the 2D plane, we added the estimation of their
trajectory, obtained through our modified version of SORT, to visualize whether there was
any risk of collision between the vehicles and our own car. We then modeled three zones
(yellow, orange, and red) to model different levels of danger, depending on the proximity
to the obstacle with OpenCV. The color of the bounding boxes was associated with the
danger zone for better clarity.



Sensors 2023, 23, 3197 8 of 15

Figure 2. Visualization of 2D object tracking and predicted object trajectories. The numbers corre-
spond to the tracking number of the detected vehicles, while their color corresponds to the position
of the vehicles.

3.3. Dataset Combination

Combining and expanding the training dataset has a dual purpose. Firstly, increasing
the quantity of the training data means increasing the diversity of represented situations,
allowing the model to adapt to those newly represented situations. In addition, increased
training data avoids over-fitting, and training coming from different datasets has the
additional benefit of mitigating dataset-related bias, such as specific lighting conditions or
scene over-representation.

The differences between the data provided by the KITTI and the GTA V datasets are
shown in Table 3. As we can see, GTAV provided us with about 10 times the number
of pictures provided by KITTI. As we had a majority of annotated data coming from
our custom GTA V dataset, we adjusted KITTI’s data to follow GTA V’s data formatting,
through resizing and cropping, using the OpenCV [40] library.

Table 3. Data distribution between KITTI and our GTA dataset.

Real Data Synthetic Data Combined Data

Dataset KITTI GTA V KITTI + GTA V
N° of Pictures 11,193 110,271 121,464

Resolution 1224 × 370 1280 × 720 1280 × 720
N° of classes 3 (cars, pedestrians, cyclists) 3 (cars, pedestrians, cyclists) 3 (cars, pedestrians, cyclists)

Since the original combined dataset had a large disproportion between both synthetic
and real images, and the training dataset and the test dataset, we created another combined
dataset with, this time, only 50% of synthetic data, in order to see whether the disproportion
negatively affected the precision of the trained model or not. The new dataset combinations
are shown in Table 4. All the datasets were used to train the large version of the YOLOv5-3d
algorithm [1]. For additional results, we also comparef the 50% synthetic-real dataset with
the KITTI dataset when both of them used a pre-training of 15 epochs on KITTI. Regardless
of the dataset, in order to effectively compare them we needed to use the same validation
test, which was extracted from KITTI.



Sensors 2023, 23, 3197 9 of 15

Table 4. Comparison between the KITTI dataset and datasets combining both KITTI and syn-
thetic data.

Training Split Validation Split
(KITTI) Hyper-Parameters Model/Pre-Training

Combo 114,688 3769 GTA V Large
Combo 50% synthetic 7424 synthetic + 7424 real 3769 GTA V Large/last_15

KITTI (reference) 7424 3769 KITTI Large
KITTI 7424 3769 KITTI Large/large_15

4. Field Integration

In order to carry out field testing and see how the algorithms behaved in real con-
ditions, the next step of the work carried out was the integration of the modified Yolov5
algorithm on a road vehicle, in this case, a Citroën AMI (Figure 3) belonging to the ESIG-
ELEC. We used the AMI vehicle, instrumented, and secured by ESIGELEC’s Innovation
R&D department to carry out the real-time detection tests, equipped with both a Jetson
TX2 and an RGB camera.

Figure 3. The Citroën AMI modified by the ESIGELEC for data recordings.

To use the code on the Jetson, we used RTMaps (Figure 4, a run-time environment
allowing users to record and replay data from vehicle sensors and buses. A connection
is established between the Jetson and the laptop through TCP/IP because the embedded
version of RTMaps requires it to be monitored by RTMaps studio.

Figure 4. RTMaps diagram. We used the library “Python Bridge” of RTMaps in order to integrate the
Yolov5 algorithm on the Jetson TX2.



Sensors 2023, 23, 3197 10 of 15

5. Experimental Results
5.1. Dataset Combination

To see the effect of the dataset combination, we trained our model on the different
combined and reference models described in Table 4. The results can be seen in Figure 5.

Figure 5. Inference results comparison using the previous models.

Here, we can see in green and blue the performance of the model trained on combined
models (50% synthetic-real combination with pre-training in blue and regular combination
in green), while in orange and red are the results with the original KITTI database (with
pre-training in orange, no pre-training in red). We compared these models on 4 metrics:
mAP (mean Average Precision), depth accuracy, center position accuracy, and, finally,
orientation accuracy. The combined models allowed for increased performances in mAP,
accuracy, and center position, with only the orientation not seeing any improvement. It was
the only case in which the model trained on the KITTI dataset with pre-training performed
slightly better than the models trained on the combined datasets. Nevertheless, given that
the combination resulted in an mAP, center position, and depth accuracy improvement, we
concluded that using synthetic data in addition to the real improves performances, despite
the artificial nature of this data.

5.2. Knowledge Distillation

Knowledge distillation is an optimization method, as we have seen previously. We
parallelized two networks, one in inference, the other in training, and we added a new type
of loss function to the student network from the predictions made by the teacher network, al-
lowing the student to learn from the ground truths and the teacher’s loss. We then proceeded
with the training of the student model from the teacher on the CRIANN supercomputer.

As can be seen in Table 5, our distillation model did not lead to increased real-time
performance, but it nevertheless did allow for increased precision. As we can see in Figure 6,
the model with distillation (in blue) achieved a higher mAP and a lower relative error,
while maintaining the same real-time performance (Table 5). This is a valuable trade-off,
as it enables us to improve the accuracy of our model without sacrificing speed. This
is especially useful in applications where real-time performance is critical, such as in
autonomous systems or high-speed data processing, where maintaining high accuracy,
while keeping real-time performance constant, is essential.



Sensors 2023, 23, 3197 11 of 15

Table 5. Comparison between a distilled model with a regular model, on the KITTI dataset, on a RTX
3080 GPU.

Method GTA Pre-
Training Resolution

[val] [val]
Time/img
(ms)

Memory
ConsumptionIOU 0.7 IOU 0.5

Easy Mod Hard Easy Mod Hard

Small
672 × 224 7.29 5.48 5.34 44.35 31.80 29.91 1.5 1.6 GB
1312 × 416 15.52 13.27 13.19 48.24 36.14 31.78 4.4 1.7 GB

X 1312 × 416 15.59 13.50 13.14 49.71 38.02 32.70 4.4 1.6 GB

Small (with distillation) X 672 × 224 16.60 13.49 12.01 53.62 35.97 33.32 1.5 1.7 GB

Figure 6. Comparison of the training on KITTI between a distilled and a classic model.

5.3. Field Integration

Once all the modifications and installations on the road vehicle were done, we moved
on to testing, in the urban areas of Rouen. We chose a trajectory that would allow us to meet
a maximum of vehicles, people, and bicycles and also allowed us to drive up to 40 km/h;
allowing us to test the algorithm in real working conditions, as seen in Figure 7.

Figure 7. The algorithm tested in real-time conditions on an embedded Jetson.

5.4. Lightweight Model

We first trained YOLOv5 with the same dimensions as this new model on the COCO
dataset for 300 epochs. The pre-trained weights of the first layers were then transferred to
our model for 15 epochs of training on GTA. Finally, we trained this model on the KITTI
and NuScenes datasets. This new model corresponded to the best compromise between
low computational time and accuracy, as shown in Table 1.



Sensors 2023, 23, 3197 12 of 15

The results from Table 1 are especially promising, because they allowed us to reach an
inference time of 28 ms on the Jetson TX2 (corresponding to a frame-rate of 35 Frame-Per-
Second), which is an embedded system with limited resources. In comparison to the light
model, we went from an inference time of 70 ms to 28 ms (a 60% relative improvement),
while only going from a mAP@0.5 value of 0.500 to 0.469 (a 6.2% decrease).

6. Conclusions

In conclusion, we were able to improve 3D object detection through the use of knowl-
edge distillation, dataset combination, and the creation of a lightweight model. These
techniques can effectively improve the performance of 3D object detection models without
changes in the algorithms themselves and can be applied to different models. Combining
multiple datasets allows the model to learn from a larger, more diverse set of data, which,
in turn, improves its performance by exposing it to more situations it might encounter.
The results of this study showed that combining multiple datasets improved the model’s
performance without any drawbacks. The use of knowledge distillation allowed for the
transfer of knowledge from a larger, pre-trained model to a smaller, more efficient model.
In this work, while the use of knowledge distillation did not result in direct real-time
performance improvement, it nevertheless resulted in improved accuracy of the small
model. Overall, this work demonstrated the effectiveness of these techniques for improving
the performance of 3D object detection models. Every approach separately provides some
improvements to the model, whether in performance or in accuracy, and combining them
and using them together is an essential step towards developing more efficient and effective
3D object detection systems for a variety of applications.

In this work, we focused on improving 3D object detection through the use of knowl-
edge distillation, dataset combination, and the creation of a lightweight model. While these
techniques were effective in improving the performance of our 3D object detection model,
we believe that there are further improvements that can be made to our model. Firstly, we
plan to implement vertical orientation prediction in our model. Currently, our model is
only able to predict the horizontal orientation of objects. By adding vertical orientation
prediction, we believe that our model will be able to better understand the 3D structure of
the scene and will be more robust during use in field conditions. We are also considering
changing the tracking method from SORT to a more modern method like DeepSORT [34]
or Trackformer [35]. While these methods have shown improved accuracy compared to
SORT, they are also more resource-intensive methods which would negatively affect the
real-time performance. Finally, we plan to further use transfer learning methods to improve
the performance of our model. We already had good results with transfer learning during
this work, and we believe that using new methods would allow us to further improve the
performance of our 3D object detection model. Overall, there is a lot of room for further
improvement, as every aspect and technique used in this work is still evolving, and keeping
up with the state-of-the-art allows us to keep improving our 3D detection models.

The article presents a novel approach to 3D object detection optimization by creating a
lightweight model. Although this model has reduced accuracy, it has allowed for doubling
the speed of the inference when used on the embedded Jetson TX2. Then, we adapted a
2D tracking method to the 3D field to increase the possible uses of the algorithm without
loss of performance, which is the most important aspect of our approach. The article also
discusses the knowledge distillation of a larger model into a smaller one, which did not
provide performance gain as expected but did, however, provide accuracy gains without
negative performance impact. The proposed method was implemented on an autonomous
vehicle through an embedded system and field tested, demonstrating its potential practical
applications in the field of road and railway smart mobility beyond theoretical use on
high-end GPUs. Overall, the creation of lightweight models and knowledge distillation are
both innovative approaches that show promise in improving real-time 3D object detection
and tracking in embedded systems.



Sensors 2023, 23, 3197 13 of 15

Author Contributions: Conceptualization, A.M. and R.K.; Formal analysis, A.M. and R.K.; Method-
ology, A.M. and R.K.; Software, A.M., R.K. and F.G.; Supervision, R.K., S.A., R.B., S.B., M.H. and A.M.;
Validation, A.M., R.K, R.B. and M.H.; Implementation, A.M., F.G. and M.K.; Visualization, A.M., R.K.,
A.E. and F.G.; Writing—original draft, A.E. and F.G.; Writing—review and editing, A.E. and R.K.;
project administration, R.K., S.B., S.A., M.H. and R.B.; funding acquisitions, R.K., S.B. and R.B.; All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded under SEGULA Technologies’ collaboration with IRSEEM as part of
their efforts in the field of railways’ smart mobility for future commercial applications through the
Ph.D. Thesis of Antoin Mauri and Alexandre Evain. In addition, the ANRT (Association Nationale de
la Recherche et de la Technologie)’s CIFRE program contributed to the financing of both Ph.D. Thesis.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data used for training comes from KITTI [20], NuScenes [21],
as well as data extracted from the video game GTA [28].

Acknowledgments: We acknowledge the support of SEGULA technology and the role it played
in allowing us to conduct this research. We would like to thank the engineers of the Autonomous
Navigation Laboratory (ANL) of IRSEEM for their support. We thank Anthony Deshais, Vincent
Vauchey, and Vishnu Pradeep for their precious help in the development of this work. In addition,
this work was performed, in part, on computing resources provided by CRIANN (Centre Régional
Informatique et d’Applications Numériques de Normandie, Normandy, France).

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are available from the authors.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Networks
COCO Common Objects in Context

CRIANN
Centre Régional Informatique et d’Applications Numériques de Normandie
(Regional Center for Computer Science and Digital Applications of Normandy)

ESRORAD Esigelec engineering high school and Segula technologies ROad and RAilway Dataset
FPS Frame-Per-Second
GPS Global Positioning System
GTA Grand Theft Auto
IMU Inertial Measurement Unit

KITTI
Karlsruhe Institute of Technology & Toyota Technological Institute at Chicago
vision benchmark suite

LIDAR Light Detection And Ranging
mAP mean Average Precision
MOT Multi-Object Tracking
NUScenes NuTonomy Scenes
SORT Simple Online and Realtime Tracking
SOTA State Of The Art
SYNTHIA SYNTHetic Collection of Imagery and Annotations
YOLO You Look Only Once

References
1. Mauri, A.; Khemmar, R.; Decoux, B.; Haddad, M.; Boutteau, R. Lightweight convolutional neural network for real-time 3D object

detection in road and railway environments. J.-Real-Time Image Process. 2022, 19, 499–516. [CrossRef]
2. Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
3. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
4. Bochkovskiy, A.; Wang, C.; Liao, H.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934.

http://doi.org/10.1007/s11554-022-01202-6


Sensors 2023, 23, 3197 14 of 15

5. Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; NanoCode012; Kwon, Y.; Xie, T.; Michael, K.; Fang, J.; Imyhxy; et al. Ultralyt-
ics/yolov5: v6.2—YOLOv5 Classification Models, Apple M1, Reproducibility, ClearML and Deci.ai Integrations, 2022. Available
online: https://zenodo.org/record/7002879#.ZBMIUHYo9PY (accessed on 13 March 2023). [CrossRef]

6. Liu, Y.; Wang, L.; Liu, M. YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. In Proceedings of the 2021 IEEE
International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 13018–13024.

7. Mousavian, A.; Anguelov, D.; Flynn, J.; Kosecka, J. 3D Bounding Box Estimation Using Deep Learning and Geometry. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7074–7082.

8. Liu, Y.; Yuan, Y.; Liu, M. Ground-aware Monocular 3D Object Detection for Autonomous Driving. IEEE Robot. Autom. Lett. 2021,
6, 919–926. [CrossRef]

9. Wang, C.; Yeh, I.; Liao, H.M. You Only Learn One Representation: Unified Network for Multiple Tasks. arXiv 2021,
arXiv:2105.04206.

10. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430.
11. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection

Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [CrossRef]
12. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors. arXiv 2022, arXiv:2207.02696. [CrossRef]
13. Wang, T.; Pang, J.; Lin, D. Monocular 3D Object Detection with Depth from Motion. arXiv 2022, arXiv:2207.12988. [CrossRef]
14. Qin, Z.; Li, X. MonoGround: Detecting Monocular 3D Objects from the Ground. arXiv 2022, arXiv:2206.07372. [CrossRef]
15. Huang, K.C.; Wu, T.H.; Su, H.T.; Hsu, W.H. MonoDTR: Monocular 3D Object Detection with Depth-Aware Transforme. arXiv

2022, arXiv:2203.10981. [CrossRef]
16. Zhou, Y.; He, Y.; Zhu, H.; Wang, C.; Li, H.; Jiang, Q. Monocular 3D Object Detection: An Extrinsic Parameter Free Approach.

arXiv 2021, arXiv:2106.15796. [CrossRef]
17. Zhang, Y.; Lu, J.; Zhou, J. Objects are Different: Flexible Monocular 3D Object Detection. arXiv 2021, arXiv:2104.02323. [CrossRef]
18. Li, P.; Zhao, H.; Liu, P.; Cao, F. RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving.

arXiv 2020, arXiv:2001.03343. [CrossRef]
19. Liu, Z.; Zhou, D.; Lu, F.; Fang, J.; Zhang, L. AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection. arXiv 2021,

arXiv:2108.11127. [CrossRef]
20. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings of

the Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012.
21. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes: A

multimodal dataset for autonomous driving. In Proceedings of the CVPR, Seattle, WA, USA, 13–19 June 2020.
22. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes

Dataset for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

23. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

24. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

25. Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft
COCO: Common Objects in Context. arXiv 2014, arXiv:1405.0312. [CrossRef]

26. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An Open Urban Driving Simulator. In Proceedings of the
1st Annual Conference on Robot Learning, Mountain View, CA, USA, 13–15 November 2017; pp. 1–16.

27. Ros, G.; Sellart, L.; Materzynska, J.; Vazquez, D.; Lopez, A.M. The SYNTHIA Dataset: A Large Collection of Synthetic Images for
Semantic Segmentation of Urban Scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, 27–30 June 2016.

28. Richter, S.R.; Vineet, V.; Roth, S.; Koltun, V. Playing for Data: Ground Truth from Computer Games. In Proceedings of the
European Conference on Computer Vision (ECCV); Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing:
Amsterdam, The Netherlands, 2016; Volume 9906; pp. 102–118; LNCS.

29. Krḧenbühl, P. Free Supervision from Video Games. In Proceedings of the CVPR, Salt Lake City, UT, USA, 18–23 June 2018.
30. Khemmar, R.; Mauri, A.; Dulompont, C.; Gajula, J.; Vauchey, V.; Haddad, M.; Boutteau, R. Road and railway smart mobility: A

high-definition ground truth hybrid dataset. Sensors 2022, 22, 3922. [CrossRef]
31. Zendel, O.; Murschitz, M.; Zeilinger, M.; Steininger, D.; Abbasi, S.; Beleznai, C. RailSem19: A Dataset for Semantic Rail Scene

Understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
Long Beach, CA, USA, 15–20 June 2019.

32. Harb, J.; Rébéna, N.; Chosidow, R.; Roblin, G.; Potarusov, R.; Hajri, H. FRSign: A Large-Scale Traffic Light Dataset for Autonomous
Trains. arXiv 2020, arXiv:2002.05665.

33. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple Online and Realtime Tracking. In Proceedings of the 2016 IEEE
International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016.

https://zenodo.org/record/7002879#.ZBMIUHYo9PY
http://dx.doi.org/10.5281/zenodo.7002879
http://dx.doi.org/10.1109/LRA.2021.3052442
https://doi.org/10.48550/ARXIV.2209.02976
https://doi.org/10.48550/ARXIV.2207.02696
https://doi.org/10.48550/ARXIV.2207.12988
https://doi.org/10.48550/ARXIV.2206.07372
https://doi.org/10.48550/ARXIV.2203.10981
https://doi.org/10.48550/ARXIV.2106.15796
https://doi.org/10.48550/ARXIV.2104.02323
https://doi.org/10.48550/ARXIV.2001.03343
https://doi.org/10.48550/ARXIV.2108.11127
http://dx.doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.48550/ARXIV.1405.0312
http://dx.doi.org/10.3390/s22103922


Sensors 2023, 23, 3197 15 of 15

34. Wojke, N.; Bewley, A.; Paulus, D. Simple Online and Realtime Tracking with a Deep Association Metric. In Proceedings of the
2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017.

35. Meinhardt, T.; Kirillov, A.; Leal-Taixé, L.; Feichtenhofer, C. TrackFormer: Multi-Object Tracking with Transformers. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 19–20 June 2022;
pp. 8844–8854.

36. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531. [CrossRef]
37. Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge Distillation: A Survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [CrossRef]
38. Asif, U.; Tang, J.; Harrer, S. Ensemble Knowledge Distillation for Learning Improved and Efficient Network. arXiv 2019,

arXiv:1909.08097. [CrossRef]
39. Mirzadeh, S.I.; Farajtabar, M.; Li, A.; Levine, N.; Matsukawa, A.; Ghasemzadeh, H. Improved Knowledge Distillation via Teacher

Assistant. Proc. AAAI Conf. Artif. Intell. 2020, 34. [CrossRef]
40. Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 25, 120–123.
41. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. PMLR 2019, 97, 6105–6114.
42. Koonce, B. EfficientNet. In Convolutional Neural Networks with Swift for Tensorflow; Springer: Cham, Switzerland, 2021; pp. 109–123.
43. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/ARXIV.1503.02531
http://dx.doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.48550/ARXIV.1909.08097
http://dx.doi.org/10.1609/aaai.v34i04.5963
http://dx.doi.org/10.1109/MCSE.2007.55

	Introduction
	Related Works
	Object Detection Methods
	Datasets
	Object Tracking
	Knowledge Distillation

	Improvements on 3D Object Detection and Tracking
	Object 3D Detection & Classification: Improvements on YOLOv5-3D Mauri2022
	Object Tracking & Visualization
	Dataset Combination

	Field Integration
	Experimental Results
	Dataset Combination
	Knowledge Distillation
	Field Integration
	Lightweight Model 

	Conclusions
	References

