On a recolouring version of Hadwiger's conjecture*

Marthe Bonamy ${ }^{1}$, Marc Heinrich ${ }^{2}$, Clément Legrand-Duchesne ${ }^{3}$, and Jonathan Narboni ${ }^{1}$
${ }^{1}$ CNRS, LaBRI, Université de Bordeaux, Bordeaux, France.
${ }^{2}$ University of Leeds, United Kingdom.
${ }^{3}$ Univ Rennes, F-35000 Rennes, France.

March 22, 2021

Abstract

We prove that for any $\varepsilon>0$, for any large enough t, there is a graph G that admits no K_{t}-minor but admits a $\left(\frac{3}{2}-\varepsilon\right) t$-colouring that is "frozen" with respect to Kempe changes, i.e. any two colour classes induce a connected component. This disproves three conjectures of Las Vergnas and Meyniel from 1981.

1 Introduction

In an attempt to prove the Four Colour Theorem in 1879, Kempe [Kem79] introduced an elementary operation on the colourings ${ }^{1}$ of a graph that became known as a Kempe change. Given a k-colouring α of a graph G, a Kempe chain is a maximal bichromatic component ${ }^{2}$. A Kempe change in α corresponds to swapping the two colours of a Kempe chain so as to obtain another k-colouring. Two k-colourings are Kempe equivalent if one can be obtained from the other through a series of Kempe changes.

The study of Kempe changes has a vast history, see e.g. [Moh06] for a comprehensive overview or [BBFJ19] for a recent result on general graphs. We refer the curious reader to the relevant chapter of a 2013 survey by Cereceda [vdH13]. Kempe equivalence falls within the wider setting of combinatorial reconfiguration, which [vdH13] is also an excellent introduction to. Perhaps surprisingly, Kempe equivalence has direct applications in approximate counting and applications in statistical physics (see e.g. [Sok00, MS09] for nice overviews). Closer to graph theory, Kempe equivalence can be studied with a goal of obtaining a random colouring by applying random walks and rapidly mixing Markov chains, see e.g. [Vig00].

Kempe changes were introduced as a mere tool, and are decisive in the proof of Vizing's edge colouring theorem [Viz64]. However, the equivalence class they define on the set of k colourings is itself highly interesting. In which cases is there a single equivalence class? In which cases does every equivalence class contain a colouring that uses the minimum number of colours? Vizing conjectured in 1965 [Viz68] that the second scenario should be true in every line graph, no matter the choice of k. Despite partial results [Asr09, AC16], this conjecture remains wildly open.

[^0]In the setting of planar graphs, Meyniel proved in 1977 [Mey78] that all 5-colourings form a unique Kempe equivalence class. The result was then extended to all K_{5}-minor-free graphs in 1979 by Las Vergnas and Meyniel [LVM81]. They conjectured the following, which can be seen as a reconfiguration counterpoint to Hadwiger's conjecture, though it neither implies it nor is implied by it.

Conjecture 1.1 (Conjecture A in [LVM81]). For everyt, all the t-colourings of a graph with no K_{t}-minor form a single equivalence class.

They also proposed a related conjecture that is weaker assuming Hadwiger's conjecture holds.

Conjecture 1.2 (Conjecture A' in [LVM81]). For every t and every graph with no K_{t}-minor, every equivalence class of t-colourings contains some $(t-1)$-colouring.

Here, we disprove both Conjectures 1.1 and 1.2, as follows.
Theorem 1.3. For every $\varepsilon>0$ and for any large enough t, there is a graph with no K_{t}-minor, whose $\left(\frac{3}{2}-\varepsilon\right) t$-colourings are not all Kempe equivalent.

In fact, we prove that for every $\varepsilon>0$ and for any large enough t, there is a graph G that does not admit a K_{t}-minor but admits a $\left(\frac{3}{2}-\varepsilon\right) t$-colouring that is frozen; Any pair of colours induce a connected component, so that no Kempe change can modify the colour partition. To obtain Theorem 1.3, we then argue that the graph admits a colouring with a different colour partition. The notion of frozen k-colouring is related to the notion of quasi- K_{p}-minor, introduced in [LVM81]. A graph G admits a K_{p}-minor if it admits p non-empty, pairwise disjoint and connected bags $B_{1}, \ldots, B_{p} \subset V(G)$ such that for any $i \neq j$, there is an edge between some vertex in B_{i} and some vertex in B_{j}. For the notion of quasi- K_{p}-minor, we drop the restriction that each B_{i} should induce a connected subgraph of G, and replace it with the condition that for any $i \neq j$, the set $B_{i} \cup B_{j}$ induces a connected subgraph of G. If the graph G admits a frozen p-colouring, then it trivially admits a quasi- K_{p}-minor ${ }^{3}$, while the converse may not be true. If all p-colourings of a graph form a single equivalence class, then either there is no frozen p-colouring or there is a unique p-colouring of the graph up to colour permutation. The latter situation in a graph with no K_{p}-minor would disprove Hadwiger's conjecture, so Las Vergnas and Meyniel conjectured that there is no frozen p-colouring in that case. Namely, they conjectured the following.

Conjecture 1.4 (Conjecture C in [LVM81]). For anyt, any graph that admits a quasi- K_{t}-minor admits a K_{t}-minor.

Conjecture 1.4 is known to hold for $t \leqslant 8$ [Jør94]. As discussed above, we strongly disprove Conjecture 1.4 for large t. It is unclear how large t needs to be for a counter-example.

Theorem 1.5. For every $\varepsilon>0$ and for any large enough t, there is a graph G that admits a quasi- K_{t}-minor but does not admit a $K_{\left(\frac{2}{3}+\varepsilon\right) t}$-minor.

Trivially, every graph that admits a quasi- $K_{2 t}$-minor admits a K_{t}-minor. We leave the following two open questions, noting that $\frac{2}{3} \geqslant c \geqslant \frac{1}{2}$ and $c^{\prime} \geqslant \frac{3}{2}$.
Question 1.6. What is the infimum c such that for any large enough t, there is a graph G that admits a quasi- K_{t}-minor but no $K_{c t}$-minor?
Question 1.7. Is there a constant c^{\prime} such that for every t, all the $c^{\prime} \cdot t$-colourings of a graph with no K_{t}-minor form a single equivalence class?

[^1]
2 Construction

Let $n \in \mathbb{N}$ and let $\eta>0$. We build a random graph G_{n} on vertex set $\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right\}$: for every $i \neq j$ independently, we select one pair uniformly at random among $\left\{\left(a_{i}, a_{j}\right),\left(a_{i}, b_{j}\right),\left(b_{i}, a_{j}\right),\left(b_{i}, b_{j}\right)\right\}$ and add the three other pairs as edges to the graph G_{n}.

Note that the sets $\left\{a_{i}, b_{i}\right\}_{1 \leqslant i \leqslant n}$ form a quasi- K_{n}-minor, as for every $i \neq j$, the set $\left\{a_{i}, b_{i}, a_{j}, b_{j}\right\}$ induces a path on four vertices in G_{n}, hence is connected.

Our goal is to argue that if n is sufficiently large then with high probability the graph G_{n} does not admit any $K_{\left(\frac{2}{3}+\eta\right) n}$-minor. This will yield Theorem 1.5 . To additionally obtain Theorem 1.3, we need to argue that with high probability, G_{n} admits an n-colouring with a different colour partition than the natural one, where the colour classes are of the form $\left\{a_{i}, b_{i}\right\}$. Informally, we can observe that each of $\left\{a_{1}, \ldots, a_{n}\right\}$ and $\left\{b_{1}, \ldots, b_{n}\right\}$ induces a graph behaving like a graph in $\mathcal{G}_{n, \frac{3}{4}}$ (i.e. each edge exists with probability $\frac{3}{4}$) though the two processes are not independent. This argument indicates that $\chi\left(G_{n}\right)=O\left(\frac{n}{\log n}\right)$, but we prefer a simpler, more pedestrian approach.

Assume that for some i, j, k, ℓ, none of the edges $a_{i} b_{j}, a_{j} b_{k}, a_{k} b_{\ell}$ and $a_{\ell} b_{i}$ exist. Then the graph G_{n} admits an n-colouring α where $\alpha\left(a_{p}\right)=\alpha\left(b_{p}\right)=p$ for every $p \notin\{i, j, k, \ell\}$ and $\alpha\left(a_{i}\right)=\alpha\left(b_{j}\right)=i, \alpha\left(a_{j}\right)=\alpha\left(b_{k}\right)=j, \alpha\left(a_{k}\right)=\alpha\left(b_{\ell}\right)=k$ and $\alpha\left(a_{\ell}\right)=\alpha\left(b_{i}\right)=\ell$ (see Figure 1). Since every quadruple (i, j, k, ℓ) has a positive and constant probability of satisfying this property, G_{n} contains such a quadruple with overwhelmingly high probability when n is large.

Figure 1: A different n-colouring given an appropriate quadruple.
We are now ready to prove that the probability that G_{n} admits a $K_{\left(\frac{2}{3}+\eta\right) n}$-minor tends to 0 as n grows to infinity. We consider three types of K_{p}-minors in G, depending on the size of the bags involved. If every bag is of size 1 , we say that it is a simple K_{p}-minor - in fact, it is a subgraph. If every bag is of size 2 , we say it is a double K_{p}-minor. If every bag is of size at least 3, we say it is a triple K_{p}-minor. We prove three claims, as follows.

Claim 2.1. For any $\varepsilon>0, \mathbb{P}\left(G_{n}\right.$ contains a simple $K_{\varepsilon n}$-minor $) \rightarrow 0$ as $n \rightarrow \infty$.
Claim 2.2. For any $\varepsilon>0, \mathbb{P}\left(G_{n}\right.$ contains a double $K_{\varepsilon n}$-minor $) \rightarrow 0$ as $n \rightarrow \infty$.

Claim 2.3. G_{n} does not contain a triple $K_{\frac{2}{3} n+1}$-minor.
Claims 2.1, 2.2 and 2.3 are proved in Sections 2.1, 2.2 and 2.3, respectively. If a graph admits a K_{p}-minor, then in particular it admits a simple K_{a}-minor, a double K_{b}-minor and a triple K_{c}-minor such that $a+b+c \geqslant p$. Combining Claims 2.1, 2.2 and 2.3, we derive the desired conclusion.

2.1 No large simple minor

Proof of Claim 2.1. Let S be a subset of k vertices of G_{n}. The probability that S induces a clique in G_{n} is at most $\left(\frac{3}{4} 4\right)^{\binom{k}{2}}$. Indeed, if $\left\{a_{i}, b_{i}\right\} \subseteq S$ for some i, then the probability is 0 . Otherwise, $\left|S \cap\left\{a_{i}, b_{i}\right\}\right| \leqslant 1$ for every i, so we have $G[S] \in \mathcal{G}_{k, \frac{3}{4}}$, i.e. edges exist independently with probability $\frac{3}{4}$. Therefore, the probability that S induces a clique is $\left(\frac{3}{4}\right)^{\binom{k}{2}}$.

By union-bound, the probability that some subset on k vertices induces a clique is at most $\left.\binom{2 n}{k} \cdot\left(\begin{array}{c}\frac{3}{4}\end{array}\right) \begin{array}{c}k \\ 2\end{array}\right)$. For any $\varepsilon>0$, we note that $\binom{2 n}{\varepsilon n} \leqslant 2^{2 n}$. Therefore, the probability that G_{n} contains a simple $K_{\varepsilon n}$-minor is at most $2^{2 n} \cdot\left(\frac{3}{4}\right)^{\binom{\varepsilon n}{2}}$, which tends to 0 as n grows to infinity.

2.2 No large double minor

Proof of Claim 2.2. Let S^{\prime} be a subset of k pairwise disjoint pairs of vertices in G_{n} such that for every i, at most one of $\left\{a_{i}, b_{i}\right\}$ is involved in S^{\prime}.

We consider the probability that G_{n} / S^{\prime} induces a clique, where G_{n} / S^{\prime} is defined as the graph obtained from G_{n} by considering only vertices involved in some pair of S^{\prime} and identifying the vertices in each pair.

We consider two distinct pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ of S^{\prime}. Without loss of generality, $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}=\left\{a_{i}, a_{j}, a_{k}, a_{\ell}\right\}$ for some i, j, k, ℓ. The probability that there is an edge between $\left\{x_{1}, y_{1}\right\}$ and $\left\{x_{2}, y_{2}\right\}$ is $1-\left(\frac{1}{4}\right)^{4}$. In other words, $\mathbb{P}\left(E\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\emptyset\right)=\left(\frac{1}{4}\right)^{4}$ and since at most one of $\left\{a_{i}, b_{i}\right\}$ is involved in S^{\prime} for all i, all such events are mutually independent. Therefore, the probability that S^{\prime} yields a quasi- $K_{\left|S^{\prime}\right|}-$ minor is $\left(1-\left(\frac{1}{4}\right)^{4}\right)^{\left(\left|S_{2}^{\prime}\right|\right)}$.

For any $\varepsilon^{\prime}>0$, the number of candidates for S^{\prime} is at $\operatorname{most}\binom{2 n}{2 \varepsilon^{\prime} n}$ (the number of choices for a ground set of $2 \varepsilon^{\prime} n$ vertices) times $\left(2 \varepsilon^{\prime} n\right)$! (a rough upper bound on the number of ways to pair them). Note that $\binom{2 n}{2 \varepsilon^{\prime} n} \cdot\left(2 \varepsilon^{\prime} n\right)!\leqslant(2 n)^{2 \varepsilon^{\prime} n}$. We derive that the probability that there is a set S^{\prime} of size $\varepsilon^{\prime} n$ such that $G_{n} / S^{\prime}=K_{\left|S^{\prime}\right|}$ is at most $(2 n)^{2 \varepsilon^{\prime} n} \cdot\left(1-\left(\frac{1}{4}\right)^{4}\right)^{\binom{\varepsilon_{2}^{\prime} n}{2}}$, which tends to 0 as n grows large.

Consider a double K_{k}-minor S of G_{n}. Note that no pair in S is equal to $\left\{a_{i}, b_{i}\right\}$ (for any i), as every bag induces a connected subgraph in G_{n}. We build greedily a maximal subset $S^{\prime} \subseteq S$ such that S^{\prime} involves at most one vertex out of every set of type $\left\{a_{i}, b_{i}\right\}$. Note that $\left|S^{\prime}\right| \geqslant \frac{|S|}{3}$. By taking $\varepsilon^{\prime}=\frac{\varepsilon}{3}$ in the above analysis, we obtain that the probability that there is a set S of εn pairs that induces a quasi- $K_{|S|}$-minor tends to 0 as n grows large.

2.3 No large triple minor

Proof of Claim 2.3. The graph G_{n} has $2 n$ vertices, and a triple K_{k}-minor involves at least $3 k$ vertices. It follows that if G_{n} contains a triple K_{k}-minor then $k \leqslant \frac{2 n}{3}$.

Acknowledgements

The authors thank Vincent Delecroix for helpful discussions.

References

[AC16] Armen S. Asratian and Carl Johan Casselgren. Solution of Vizing's problem on interchanges for the case of graphs with maximum degree 4 and related results. Journal of Graph Theory, 82(4):350-373, 2016.
[Asr09] Armen S. Asratian. A note on transformations of edge colorings of bipartite graphs. Journal of Combinatorial Theory, Series B, 99(5):814-818, 2009.
[BBFJ19] Marthe Bonamy, Nicolas Bousquet, Carl Feghali, and Matthew Johnson. On a conjecture of Mohar concerning Kempe equivalence of regular graphs. fournal of Combinatorial Theory, Series B, 135:179-199, 2019.
[Jør94] Leif K. Jørgensen. Contractions to K8. Fournal of Graph Theory, 18(5):431-448, 1994.
[Kem79] Alfred B. Kempe. On the geographical problem of the four colours. American journal of mathematics, 2(3):193-200, 1879.
[LVM81] Michel Las Vergnas and Henri Meyniel. Kempe classes and the Hadwiger conjecture. Journal of Combinatorial Theory, Series B, 31(1):95-104, 1981.
[Mey78] Henry Meyniel. Les 5-colorations d'un graphe planaire forment une classe de commutation unique. 7. Comb. Theory, Ser. B, 24:251-257, 1978.
[Moh06] Bojan Mohar. Kempe equivalence of colorings. In Graph Theory in Paris, pages 287-297. Springer, 2006.
[MS09] Bojan Mohar and Jesús Salas. A new Kempe invariant and the (non)-ergodicity of the Wang-Swendsen-Koteckỳ algorithm. Journal of Physics A: Mathematical and Theoretical, 42(22):225204, 2009.
[Sok00] Alan D. Sokal. A personal list of unsolved problems concerning lattice gases and antiferromagnetic Potts models. arXiv preprint cond-mat/0004231, 2000.
[vdH13] Jan van den Heuvel. The complexity of change. Surveys in combinatorics, 409(2013):127-160, 2013.
[Vig00] Eric Vigoda. Improved bounds for sampling colorings. fournal of Mathematical Physics, 41(3):1555-1569, 2000.
[Viz64] Vadim G. Vizing. On an estimate of the chromatic class of a p-graph. Discret Analiz, 3:25-30, 1964.
[Viz68] Vadim G. Vizing. Some unsolved problems in graph theory. Russian Mathematical Surveys, 23(6):125, 1968.

[^0]: *The authors are supported by ANR project GrR (ANR-18-CE40-0032).
 ${ }^{1}$ Throughout this paper, all colourings are proper, i.e. no two vertices with the same colour are adjacent.
 ${ }^{2}$ If a vertex of G is coloured 1 and has no neighbour coloured 2 in α, then it forms a Kempe chain of size 1 .

[^1]: ${ }^{3}$ One bag for each colour class.

