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Abstract

We prove that for any ε > 0, for any large enough t, there is a graph G that admits

noKt-minor but admits a (32−ε)t-colouring that is “frozen” with respect to Kempe

changes, i.e. any two colour classes induce a connected component. This disproves

three conjectures of Las Vergnas and Meyniel from 1981.

1 Introduction
In an attempt to prove the Four Colour Theorem in 1879, Kempe [Kem79] introduced an el-

ementary operation on the colourings
1

of a graph that became known as a Kempe change.

Given a k-colouring α of a graph G, a Kempe chain is a maximal bichromatic component
2
. A

Kempe change in α corresponds to swapping the two colours of a Kempe chain so as to obtain

another k-colouring. Two k-colourings are Kempe equivalent if one can be obtained from the

other through a series of Kempe changes.

The study of Kempe changes has a vast history, see e.g. [Moh06] for a comprehensive

overview or [BBFJ19] for a recent result on general graphs. We refer the curious reader to the

relevant chapter of a 2013 survey by Cereceda [vdH13]. Kempe equivalence falls within the

wider setting of combinatorial recon�guration, which [vdH13] is also an excellent introduction

to. Perhaps surprisingly, Kempe equivalence has direct applications in approximate counting

and applications in statistical physics (see e.g. [Sok00, MS09] for nice overviews). Closer to

graph theory, Kempe equivalence can be studied with a goal of obtaining a random colouring

by applying random walks and rapidly mixing Markov chains, see e.g. [Vig00].

Kempe changes were introduced as a mere tool, and are decisive in the proof of Vizing’s

edge colouring theorem [Viz64]. However, the equivalence class they de�ne on the set of k-

colourings is itself highly interesting. In which cases is there a single equivalence class? In

which cases does every equivalence class contain a colouring that uses the minimum number

of colours? Vizing conjectured in 1965 [Viz68] that the second scenario should be true in every

line graph, no matter the choice of k. Despite partial results [Asr09, AC16], this conjecture

remains wildly open.

∗
The authors are supported by ANR project GrR (ANR-18-CE40-0032).

1
Throughout this paper, all colourings are proper, i.e. no two vertices with the same colour are adjacent.

2
If a vertex of G is coloured 1 and has no neighbour coloured 2 in α, then it forms a Kempe chain of size 1.
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In the setting of planar graphs, Meyniel proved in 1977 [Mey78] that all 5-colourings form

a unique Kempe equivalence class. The result was then extended to all K5-minor-free graphs

in 1979 by Las Vergnas and Meyniel [LVM81]. They conjectured the following, which can be

seen as a recon�guration counterpoint to Hadwiger’s conjecture, though it neither implies it

nor is implied by it.

Conjecture 1.1 (Conjecture A in [LVM81]). For every t, all the t-colourings of a graph with no
Kt-minor form a single equivalence class.

They also proposed a related conjecture that is weaker assuming Hadwiger’s conjecture

holds.

Conjecture 1.2 (Conjecture A’ in [LVM81]). For every t and every graph with no Kt-minor,
every equivalence class of t-colourings contains some (t− 1)-colouring.

Here, we disprove both Conjectures 1.1 and 1.2, as follows.

Theorem 1.3. For every ε > 0 and for any large enough t, there is a graph with no Kt-minor,
whose (3

2
− ε)t-colourings are not all Kempe equivalent.

In fact, we prove that for every ε > 0 and for any large enough t, there is a graph G that

does not admit a Kt-minor but admits a (3
2
− ε)t-colouring that is frozen; Any pair of colours

induce a connected component, so that no Kempe change can modify the colour partition. To

obtain Theorem 1.3, we then argue that the graph admits a colouring with a di�erent colour

partition. The notion of frozen k-colouring is related to the notion of quasi-Kp-minor, intro-

duced in [LVM81]. A graph G admits a Kp-minor if it admits p non-empty, pairwise disjoint

and connected bagsB1, . . . , Bp ⊂ V (G) such that for any i 6= j, there is an edge between some

vertex in Bi and some vertex in Bj . For the notion of quasi-Kp-minor, we drop the restriction

that each Bi should induce a connected subgraph of G, and replace it with the condition that

for any i 6= j, the set Bi ∪ Bj induces a connected subgraph of G. If the graph G admits a

frozen p-colouring, then it trivially admits a quasi-Kp-minor
3
, while the converse may not

be true. If all p-colourings of a graph form a single equivalence class, then either there is no

frozen p-colouring or there is a unique p-colouring of the graph up to colour permutation.

The latter situation in a graph with no Kp-minor would disprove Hadwiger’s conjecture, so

Las Vergnas and Meyniel conjectured that there is no frozen p-colouring in that case. Namely,

they conjectured the following.

Conjecture 1.4 (Conjecture C in [LVM81]). For any t, any graph that admits a quasi-Kt-minor
admits a Kt-minor.

Conjecture 1.4 is known to hold for t6 8 [Jør94]. As discussed above, we strongly disprove

Conjecture 1.4 for large t. It is unclear how large t needs to be for a counter-example.

Theorem 1.5. For every ε > 0 and for any large enough t, there is a graph G that admits a
quasi-Kt-minor but does not admit a K( 2

3
+ε)t-minor.

Trivially, every graph that admits a quasi-K2t-minor admits a Kt-minor. We leave the

following two open questions, noting that
2
3
> c > 1

2
and c′ > 3

2
.

Question 1.6. What is the in�mum c such that for any large enough t, there is a graph G that

admits a quasi-Kt-minor but no Kct-minor?

Question 1.7. Is there a constant c′ such that for every t, all the c′ · t-colourings of a graph with

no Kt-minor form a single equivalence class?

3
One bag for each colour class.
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2 Construction
Let n ∈ N and let η > 0. We build a random graph Gn on vertex set {a1, . . . , an, b1, . . . , bn}:
for every i 6= j independently, we select one pair uniformly at random among

{(ai, aj), (ai, bj), (bi, aj), (bi, bj)} and add the three other pairs as edges to the graph Gn.

Note that the sets {ai, bi}16i6n form a quasi-Kn-minor, as for every i 6= j, the set

{ai, bi, aj, bj} induces a path on four vertices in Gn, hence is connected.

Our goal is to argue that if n is su�ciently large then with high probability the graph

Gn does not admit any K( 2
3
+η)n-minor. This will yield Theorem 1.5. To additionally obtain

Theorem 1.3, we need to argue that with high probability, Gn admits an n-colouring with

a di�erent colour partition than the natural one, where the colour classes are of the form

{ai, bi}. Informally, we can observe that each of {a1, . . . , an} and {b1, . . . , bn} induces a graph

behaving like a graph inGn, 3
4

(i.e. each edge exists with probability
3
4
) though the two processes

are not independent. This argument indicates that χ(Gn) = O( n
logn

), but we prefer a simpler,

more pedestrian approach.

Assume that for some i, j, k, `, none of the edges aibj , ajbk, akb` and a`bi exist. Then

the graph Gn admits an n-colouring α where α(ap) = α(bp) = p for every p 6∈ {i, j, k, `}
and α(ai) = α(bj) = i, α(aj) = α(bk) = j, α(ak) = α(b`) = k and α(a`) = α(bi) = ` (see

Figure 1). Since every quadruple (i, j, k, `) has a positive and constant probability of satisfying

this property, Gn contains such a quadruple with overwhelmingly high probability when n is

large.

Figure 1: A di�erent n-colouring given an appropriate quadruple.

We are now ready to prove that the probability that Gn admits a K( 2
3
+η)n-minor tends to

0 as n grows to in�nity. We consider three types of Kp-minors in G, depending on the size of

the bags involved. If every bag is of size 1, we say that it is a simple Kp-minor – in fact, it is

a subgraph. If every bag is of size 2, we say it is a double Kp-minor. If every bag is of size at

least 3, we say it is a triple Kp-minor. We prove three claims, as follows.

Claim 2.1. For any ε > 0, P(Gn contains a simple Kεn-minor)→ 0 as n→∞.

Claim 2.2. For any ε > 0, P(Gn contains a double Kεn-minor)→ 0 as n→∞.
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Claim 2.3. Gn does not contain a triple K 2
3
n+1-minor.

Claims 2.1, 2.2 and 2.3 are proved in Sections 2.1, 2.2 and 2.3, respectively. If a graph admits

a Kp-minor, then in particular it admits a simple Ka-minor, a double Kb-minor and a triple

Kc-minor such that a + b + c > p. Combining Claims 2.1, 2.2 and 2.3, we derive the desired

conclusion.

2.1 No large simple minor
Proof of Claim 2.1. Let S be a subset of k vertices ofGn. The probability that S induces a clique

inGn is at most

(
3
4

)(k2)
. Indeed, if {ai, bi} ⊆ S for some i, then the probability is 0. Otherwise,

|S ∩ {ai, bi}| 6 1 for every i, so we have G[S] ∈ Gk, 3
4
, i.e. edges exist independently with

probability
3
4
. Therefore, the probability that S induces a clique is

(
3
4

)(k2)
.

By union-bound, the probability that some subset on k vertices induces a clique is at most(
2n
k

)
·
(
3
4

)(k2)
. For any ε > 0, we note that

(
2n
εn

)
6 22n. Therefore, the probability thatGn contains

a simple Kεn-minor is at most 22n ·
(
3
4

)(εn2 )
, which tends to 0 as n grows to in�nity. y

2.2 No large double minor
Proof of Claim 2.2. Let S ′

be a subset of k pairwise disjoint pairs of vertices in Gn such that

for every i, at most one of {ai, bi} is involved in S ′
.

We consider the probability that Gn/S′ induces a clique, where Gn/S′ is de�ned as the

graph obtained from Gn by considering only vertices involved in some pair of S ′
and identi-

fying the vertices in each pair.

We consider two distinct pairs (x1, y1), (x2, y2) of S ′
. Without loss of generality,

{x1, x2, y1, y2} = {ai, aj, ak, a`} for some i, j, k, `. The probability that there is an edge be-

tween {x1, y1} and {x2, y2} is 1 −
(
1
4

)4
. In other words, P(E((x1, y1), (x2, y2)) = ∅) =

(
1
4

)4
and since at most one of {ai, bi} is involved in S ′

for all i, all such events are mutually inde-

pendent. Therefore, the probability that S ′
yields a quasi-K|S′|-minor is

(
1−

(
1
4

)4)(|S′|
2 )

.

For any ε′ > 0, the number of candidates for S ′
is at most

(
2n
2ε′n

)
(the number of choices for

a ground set of 2ε′n vertices) times (2ε′n)! (a rough upper bound on the number of ways to

pair them). Note that

(
2n
2ε′n

)
· (2ε′n)! 6 (2n)2ε

′n
. We derive that the probability that there is a

set S ′
of size ε′n such that Gn/S′ = K|S′| is at most (2n)2ε

′n ·
(
1−

(
1
4

)4)(ε′n2 )
, which tends to

0 as n grows large.

Consider a double Kk-minor S of Gn. Note that no pair in S is equal to {ai, bi} (for any i),
as every bag induces a connected subgraph in Gn. We build greedily a maximal subset S ′ ⊆ S
such that S ′

involves at most one vertex out of every set of type {ai, bi}. Note that |S ′| > |S|
3

.

By taking ε′ = ε
3

in the above analysis, we obtain that the probability that there is a set S of

εn pairs that induces a quasi-K|S|-minor tends to 0 as n grows large.

y

2.3 No large triple minor
Proof of Claim 2.3. The graph Gn has 2n vertices, and a triple Kk-minor involves at least 3k
vertices. It follows that if Gn contains a triple Kk-minor then k 6 2n

3
. y
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