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Abstract

We prove that for any € > 0, for any large enough ¢, there is a graph G that admits
no K¢-minor but admits a (% — £)t-colouring that is “frozen” with respect to Kempe
changes, i.e. any two colour classes induce a connected component. This disproves
three conjectures of Las Vergnas and Meyniel from 1981.

1 Introduction

In an attempt to prove the Four Colour Theorem in 1879, Kempe [Kem?79] introduced an el-
ementary operation on the colourings' of a graph that became known as a Kempe change.
Given a k-colouring « of a graph GG, a Kempe chain is a maximal bichromatic component?. A
Kempe change in o corresponds to swapping the two colours of a Kempe chain so as to obtain
another k-colouring. Two k-colourings are Kempe equivalent if one can be obtained from the
other through a series of Kempe changes.

The study of Kempe changes has a vast history, see e.g. [Moh06] for a comprehensive
overview or [BBFJ19] for a recent result on general graphs. We refer the curious reader to the
relevant chapter of a 2013 survey by Cereceda [vdH13]. Kempe equivalence falls within the
wider setting of combinatorial reconfiguration, which [vdH13] is also an excellent introduction
to. Perhaps surprisingly, Kempe equivalence has direct applications in approximate counting
and applications in statistical physics (see e.g. [Sok00, MS09] for nice overviews). Closer to
graph theory, Kempe equivalence can be studied with a goal of obtaining a random colouring
by applying random walks and rapidly mixing Markov chains, see e.g. [Vig00].

Kempe changes were introduced as a mere tool, and are decisive in the proof of Vizing’s
edge colouring theorem [Viz64]. However, the equivalence class they define on the set of k-
colourings is itself highly interesting. In which cases is there a single equivalence class? In
which cases does every equivalence class contain a colouring that uses the minimum number
of colours? Vizing conjectured in 1965 [Viz68] that the second scenario should be true in every
line graph, no matter the choice of k. Despite partial results [Asr09, AC16], this conjecture
remains wildly open.

*The authors are supported by ANR project GrR (ANR-18-CE40-0032).
'Throughout this paper, all colourings are propetr, i.e. no two vertices with the same colour are adjacent.
?If a vertex of G is coloured 1 and has no neighbour coloured 2 in «, then it forms a Kempe chain of size 1.



In the setting of planar graphs, Meyniel proved in 1977 [Mey78] that all 5-colourings form
a unique Kempe equivalence class. The result was then extended to all K5-minor-free graphs
in 1979 by Las Vergnas and Meyniel [LVM81]. They conjectured the following, which can be
seen as a reconfiguration counterpoint to Hadwiger’s conjecture, though it neither implies it
nor is implied by it.

Conjecture 1.1 (Conjecture A in [LVM81]). For everyt, all the t-colourings of a graph with no
K-minor form a single equivalence class.

They also proposed a related conjecture that is weaker assuming Hadwiger’s conjecture

holds.

Conjecture 1.2 (Conjecture A’ in [LVMS81]). For every t and every graph with no K;-minor,
every equivalence class of t-colourings contains some (t — 1)-colouring.

Here, we disprove both Conjectures 1.1 and 1.2, as follows.

Theorem 1.3. For every ¢ > 0 and for any large enough t, there is a graph with no K;-minor,
whose (% — ¢g)t-colourings are not all Kempe equivalent.

In fact, we prove that for every ¢ > 0 and for any large enough ¢, there is a graph G that
does not admit a K;-minor but admits a (% — ¢)t-colouring that is frozen; Any pair of colours
induce a connected component, so that no Kempe change can modify the colour partition. To
obtain Theorem 1.3, we then argue that the graph admits a colouring with a different colour
partition. The notion of frozen k-colouring is related to the notion of quasi-K,-minor, intro-
duced in [LVM81]. A graph G admits a K,-minor if it admits p non-empty, pairwise disjoint
and connected bags By, ..., B, C V(G) such that for any i # j, there is an edge between some
vertex in B; and some vertex in B;. For the notion of quasi- K ,-minor, we drop the restriction
that each B; should induce a connected subgraph of GG, and replace it with the condition that
for any 7 # j, the set B; U B; induces a connected subgraph of G. If the graph G admits a
frozen p-colouring, then it trivially admits a quasi-/,-minor’, while the converse may not
be true. If all p-colourings of a graph form a single equivalence class, then either there is no
frozen p-colouring or there is a unique p-colouring of the graph up to colour permutation.
The latter situation in a graph with no K ,-minor would disprove Hadwiger’s conjecture, so
Las Vergnas and Meyniel conjectured that there is no frozen p-colouring in that case. Namely,
they conjectured the following.

Conjecture 1.4 (Conjecture C in [LVM81]). For anyt, any graph that admits a quasi-K,-minor
admits a K;-minor.

Conjecture 1.4 is known to hold for t < 8 [Jor94]. As discussed above, we strongly disprove
Conjecture 1.4 for large ¢. It is unclear how large ¢ needs to be for a counter-example.

Theorem 1.5. For every ¢ > 0 and for any large enough t, there is a graph G that admits a
quasi-Ky-minor but does not admit a K(g+6)t—minon
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Trivially, every graph that admits a quasi-K5;-minor admits a K;-minor. We leave the
following two open questions, noting that 2 > ¢ > L and ¢ > 3.
Question 1.6. What is the infimum c such that for any large enough ¢, there is a graph G that
admits a quasi- K;-minor but no K ;-minor?

Question 1.7. Is there a constant ¢’ such that for every ¢, all the ¢’ - t-colourings of a graph with
no K;-minor form a single equivalence class?

*One bag for each colour class.



2 Construction

Let n € N and let » > 0. We build a random graph G, on vertex set {a1,...,a,,b1,...,b,}:
for every ¢ # j independently, we select one pair uniformly at random among
{(ai, aj), (@i, bj), (bi, a;), (bi, bj)} and add the three other pairs as edges to the graph G,,.
Note that the sets {a;,b;}1<i<n form a quasi-K,-minor, as for every ¢ # j, the set
{ai, b;, a;j, b;} induces a path on four vertices in G,,, hence is connected.
Our goal is to argue that if n is sufficiently large then with high probability the graph
G, does not admit any K (2 +77)Tl-minor. This will yield Theorem 1.5. To additionally obtain

Theorem 1.3, we need to argue that with high probability, G,, admits an n-colouring with
a different colour partition than the natural one, where the colour classes are of the form
{a;, b;}. Informally, we can observe that each of {a1, ..., a,} and {by, ..., b,} induces a graph
behaving like a graph in Qn& (i.e. each edge exists with probability %) though the two processes
are not independent. This argument indicates that x(G;) = O(g;;;), but we prefer a simpler,
more pedestrian approach.

Assume that for some i, j, k, {, none of the edges a;b;, a;by, arb, and a,b; exist. Then
the graph G,, admits an n-colouring o where a(a,) = a(b,) = p for every p & {i,j, k,(}
and a(a;) = a(bj) =1, a(a;) = a(by) = J, alar) = a(b) = k and a(a;) = a(b;) = (see
Figure 1). Since every quadruple (7, j, k, ¢) has a positive and constant probability of satisfying
this property, GG, contains such a quadruple with overwhelmingly high probability when n is
large.

Figure 1: A different n-colouring given an appropriate quadruple.

We are now ready to prove that the probability that GG, admits a K (2 +77)n—minor tends to
3

0 as n grows to infinity. We consider three types of K ,-minors in (7, depending on the size of
the bags involved. If every bag is of size 1, we say that it is a simple K,-minor - in fact, it is
a subgraph. If every bag is of size 2, we say it is a double K,-minor. If every bag is of size at
least 3, we say it is a triple K,-minor. We prove three claims, as follows.

Claim 2.1. For any e > 0, P(G,, contains a simple K_,-minor) — 0 asn — oo.

Claim 2.2. For any e > 0, P(G,, contains a double K,,-minor) — 0 asn — oc.
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Claim 2.3. G,, does not contain a triple Kz, -minor.

Claims 2.1, 2.2 and 2.3 are proved in Sections 2.1, 2.2 and 2.3, respectively. If a graph admits
a K,-minor, then in particular it admits a simple K,-minor, a double K};-minor and a triple
K.-minor such that a + b + ¢ > p. Combining Claims 2.1, 2.2 and 2.3, we derive the desired
conclusion.

2.1 No large simple minor

Proof of Claim 2.1. Let S be a subset of k vertices of G,,. The probability that S induces a clique

p k
in GG,, is at most (%) <2) Indeed, if {a;, b;} C S for some i, then the probability is 0. Otherwise,
|S N {a;, b;}| < 1 for every i, so we have G[S] € O3, Le. edges exist independently with

k
probability %. Therefore, the probability that S induces a clique is (%) <2)
By union-bound, the probability that some subset on k vertices induces a clique is at most

k
(2: ) . (%) (2) For any € > 0, we note that @Z) < 22", Therefore, the probability that (7,, contains

a simple K_,,-minor is at most 22" - (%) (%) , which tends to 0 as n grows to infinity. a

2.2 No large double minor

Proof of Claim 2.2. Let S’ be a subset of k pairwise disjoint pairs of vertices in G,, such that
for every i, at most one of {a;, b;} is involved in 5"

We consider the probability that G, /s induces a clique, where G,,/s is defined as the
graph obtained from G, by considering only vertices involved in some pair of S’ and identi-
fying the vertices in each pair.

We consider two distinct pairs (x1,1), (22,y2) of S’.  Without loss of generality,
{z1,22,y1,y2} = {ai, aj, ax, as} for some i, j, k, {. The probability that there is an edge be-
tween {1,y } and {3, Y2} is 1 — (5)4. In other words, P(E((z1,v1), (z2,y2)) = 0) = (l)4
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and since at most one of {a;, b;} is involved in S’ for all ¢, all such events are mutually inde-

Ed
pendent. Therefore, the probability that " yields a quasi- K|/ -minor is <1 — (%)4)( ’ )
For any &’ > 0, the number of candidates for S’ is at most (22;”) (the number of choices for
a ground set of 2¢'n vertices) times (2c'n)! (a rough upper bound on the number of ways to
pair them). Note that (;jﬂ) - (2¢'n)! < (2n)%*'". We derive that the probability that there is a

set S’ of size £'n such that G, /s = K|g| is at most (2n)%™ - (1 — (i)4>< ’ ), which tends to

0 as n grows large.

Consider a double K-minor S of G,. Note that no pair in S is equal to {a;, b;} (for any ),
as every bag induces a connected subgraph in GG,,. We build greedily a maximal subset S’ C S
such that S’ involves at most one vertex out of every set of type {a;, b;}. Note that |S"| > %
By taking ¢’ = £ in the above analysis, we obtain that the probability that there is a set S of

en pairs that induces a quasi- K| g-minor tends to 0 as n grows large.

2.3 No large triple minor

Proof of Claim 2.3. The graph G, has 2n vertices, and a triple Kj-minor involves at least 3k
vertices. It follows that if G,, contains a triple Kj-minor then £ < 2?" J
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