On a recolouring version of Hadwiger’s conjecture
Marthe Bonamy, Marc Heinrich, Clément Legrand-Duchesne, Jonathan Narboni

To cite this version:
Marthe Bonamy, Marc Heinrich, Clément Legrand-Duchesne, Jonathan Narboni. On a recolouring version of Hadwiger’s conjecture. 2021. hal-04097535

HAL Id: hal-04097535
https://hal.science/hal-04097535
Preprint submitted on 15 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
On a recolouring version of Hadwiger’s conjecture

Marthe Bonamy1, Marc Heinrich2, Clément Legrand-Duchesne3, and Jonathan Narboni1

1CNRS, LaBRI, Université de Bordeaux, Bordeaux, France.2University of Leeds, United Kingdom.3Univ Rennes, F-35000 Rennes, France.

March 22, 2021

Abstract

We prove that for any $\varepsilon > 0$, for any large enough t, there is a graph G that admits no K_t-minor but admits a $(\frac{3}{2} - \varepsilon)t$-colouring that is “frozen” with respect to Kempe changes, i.e. any two colour classes induce a connected component. This disproves three conjectures of Las Vergnas and Meyniel from 1981.

1 Introduction

In an attempt to prove the Four Colour Theorem in 1879, Kempe [Kem79] introduced an elementary operation on the colourings1 of a graph that became known as a Kempe change. Given a k-colouring α of a graph G, a Kempe chain is a maximal bichromatic component2. A Kempe change in α corresponds to swapping the two colours of a Kempe chain so as to obtain another k-colouring. Two k-colourings are Kempe equivalent if one can be obtained from the other through a series of Kempe changes.

The study of Kempe changes has a vast history, see e.g. [Moh06] for a comprehensive overview or [BBF19] for a recent result on general graphs. We refer the curious reader to the relevant chapter of a 2013 survey by Cereceda [vdH13]. Kempe equivalence falls within the wider setting of combinatorial recon/f_iguration, which [vdH13] is also an excellent introduction to. Perhaps surprisingly, Kempe equivalence has direct applications in approximate counting and applications in statistical physics (see e.g. [Sok00, MS09] for nice overviews). Closer to graph theory, Kempe equivalence can be studied with a goal of obtaining a random colouring by applying random walks and rapidly mixing Markov chains, see e.g. [Vig00].

Kempe changes were introduced as a mere tool, and are decisive in the proof of Vizing’s edge colouring theorem [Viz64]. However, the equivalence class they define on the set of k-colourings is itself highly interesting. In which cases is there a single equivalence class? In which cases does every equivalence class contain a colouring that uses the minimum number of colours? Vizing conjectured in 1965 [Viz68] that the second scenario should be true in every line graph, no matter the choice of k. Despite partial results [Asr09, AC16], this conjecture remains wildly open.

1The authors are supported by ANR project GrR (ANR-18-CE40-0032).
2Throughout this paper, all colourings are proper, i.e. no two vertices with the same colour are adjacent.
3If a vertex of G is coloured 1 and has no neighbour coloured 2 in α, then it forms a Kempe chain of size 1.
In the setting of planar graphs, Meyniel proved in 1977 [Mey78] that all 5-colourings form a unique Kempe equivalence class. The result was then extended to all K_5-minor-free graphs in 1979 by Las Vergnas and Meyniel [LVM81]. They conjectured the following, which can be seen as a reconfiguration counterpoint to Hadwiger’s conjecture, though it neither implies it nor is implied by it.

Conjecture 1.1 (Conjecture A in [LVM81]). For every t, all the t-colourings of a graph with no K_t-minor form a single equivalence class.

They also proposed a related conjecture that is weaker assuming Hadwiger’s conjecture holds.

Conjecture 1.2 (Conjecture A’ in [LVM81]). For every t and every graph with no K_t-minor, every equivalence class of t-colourings contains some $(t - 1)$-colouring.

Here, we disprove both Conjectures 1.1 and 1.2, as follows.

Theorem 1.3. For every $\varepsilon > 0$ and for any large enough t, there is a graph with no K_t-minor, whose $(\frac{3}{2} - \varepsilon)t$-colourings are not all Kempe equivalent.

In fact, we prove that for every $\varepsilon > 0$ and for any large enough t, there is a graph G that does not admit a K_t-minor but admits a $(\frac{3}{2} - \varepsilon)t$-colouring that is frozen; Any pair of colours induce a connected component, so that no Kempe change can modify the colour partition. To obtain Theorem 1.3, we then argue that the graph admits a colouring with a different colour partition. The notion of frozen k-colouring is related to the notion of quasi-K_p-minor, introduced in [LVM81]. A graph G admits a K_p-minor if it admits p non-empty, pairwise disjoint and connected bags $B_1, \ldots, B_p \subset V(G)$ such that for any $i \neq j$, there is an edge between some vertex in B_i and some vertex in B_j. For the notion of quasi-K_p-minor, we drop the restriction that each B_i should induce a connected subgraph of G, and replace it with the condition that for any $i \neq j$, the set $B_i \cup B_j$ induces a connected subgraph of G. If the graph G admits a frozen p-colouring, then it trivially admits a quasi-K_p-minor, while the converse may not be true. If all p-colourings of a graph form a single equivalence class, then either there is no frozen p-colouring or there is a unique p-colouring of the graph up to colour permutation. The latter situation in a graph with no K_p-minor would disprove Hadwiger’s conjecture, so Las Vergnas and Meyniel conjectured that there is no frozen p-colouring in that case. Namely, they conjectured the following.

Conjecture 1.4 (Conjecture C in [LVM81]). For any t, any graph that admits a quasi-K_t-minor admits a K_t-minor.

Conjecture 1.4 is known to hold for $t \leq 8$ [Jor94]. As discussed above, we strongly disprove Conjecture 1.4 for large t. It is unclear how large t needs to be for a counter-example.

Theorem 1.5. For every $\varepsilon > 0$ and for any large enough t, there is a graph G that admits a quasi-K_t-minor but does not admit a $K_{(\frac{3}{2} + \varepsilon)t}$-minor.

Trivially, every graph that admits a quasi-K_{2t}-minor admits a K_t-minor. We leave the following two open questions, noting that $\frac{2}{3} \geq c \geq \frac{1}{2}$ and $c' \geq \frac{3}{2}$.

Question 1.6. What is the infimum c such that for any large enough t, there is a graph G that admits a quasi-K_t-minor but no K_{ct}-minor?

Question 1.7. Is there a constant c' such that for every t, all the $c' \cdot t$- colourings of a graph with no K_t-minor form a single equivalence class?

3One bag for each colour class.
2 Construction

Let \(n \in \mathbb{N} \) and let \(\eta > 0 \). We build a random graph \(G_n \) on vertex set \(\{a_1, \ldots, a_n, b_1, \ldots, b_n\} \): for every \(i \neq j \) independently, we select one pair uniformly at random among \(\{(a_i, a_j), (a_i, b_j), (b_i, a_j), (b_i, b_j)\} \) and add the three other pairs as edges to the graph \(G_n \).

Note that the sets \(\{a_i, b_i\}_{1 \leq i \leq n} \) form a quasi-\(K_n \)-minor, as for every \(i \neq j \), the set \(\{a_i, b_i, a_j, b_j\} \) induces a path on four vertices in \(G_n \), hence is connected.

Our goal is to argue that if \(n \) is sufficiently large then with high probability the graph \(G_n \) does not admit any \(K\left(\frac{2}{3} + \eta\right)n \)-minor. This will yield Theorem 1.5. To additionally obtain Theorem 1.3, we need to argue that with high probability, \(G_n \) admits an \(n \)-colouring with a different colour partition than the natural one, where the colour classes are of the form \(\{a_i, b_i\} \). Informally, we can observe that each of \(\{a_1, \ldots, a_n\} \) and \(\{b_1, \ldots, b_n\} \) induces a graph behaving like a graph in \(G_{n, \frac{3}{4}} \) (i.e. each edge exists with probability \(\frac{3}{4} \)) though the two processes are not independent. This argument indicates that \(\chi(G_n) = O\left(\frac{n}{\log n}\right) \), but we prefer a simpler, more pedestrian approach.

Assume that for some \(i, j, k, \ell \), none of the edges \(a_ib_j, a_jb_k, a_kb_\ell \) and \(a_\ell b_i \) exist. Then the graph \(G_n \) admits an \(n \)-colouring \(\alpha \) where \(\alpha(a_p) = \alpha(b_p) = p \) for every \(p \not\in \{i, j, k, \ell\} \) and \(\alpha(a_i) = \alpha(b_j) = i, \alpha(a_j) = \alpha(b_k) = j, \alpha(a_k) = \alpha(b_\ell) = k \) and \(\alpha(a_\ell) = \alpha(b_i) = \ell \) (see Figure 1). Since every quadruple \((i, j, k, \ell) \) has a positive and constant probability of satisfying this property, \(G_n \) contains such a quadruple with overwhelmingly high probability when \(n \) is large.

We are now ready to prove that the probability that \(G_n \) admits a \(K\left(\frac{2}{3} + \eta\right)n \)-minor tends to 0 as \(n \) grows to infinity. We consider three types of \(K_p \)-minors in \(G \), depending on the size of the bags involved. If every bag is of size 1, we say that it is a simple \(K_p \)-minor – in fact, it is a subgraph. If every bag is of size 2, we say it is a double \(K_p \)-minor. If every bag is of size at least 3, we say it is a triple \(K_p \)-minor. We prove three claims, as follows.

Claim 2.1. For any \(\varepsilon > 0 \), \(\mathbb{P}(G_n \text{ contains a simple } K_{\varepsilon n}-\text{minor}) \to 0 \) as \(n \to \infty \).

Claim 2.2. For any \(\varepsilon > 0 \), \(\mathbb{P}(G_n \text{ contains a double } K_{\varepsilon n}-\text{minor}) \to 0 \) as \(n \to \infty \).

![Figure 1: A different n-colouring given an appropriate quadruple.](image-url)
Claim 2.3. G_n does not contain a triple K_{3n+1}-minor.

Claims 2.1, 2.2 and 2.3 are proved in Sections 2.1, 2.2 and 2.3, respectively. If a graph admits a K_p-minor, then in particular it admits a simple K_n-minor, a double K_r-minor and a triple K_c-minor such that $a + b + c \geq p$. Combining Claims 2.1, 2.2 and 2.3, we derive the desired conclusion.

2.1 No large simple minor

Proof of Claim 2.1. Let S be a subset of k vertices of G_n. The probability that S induces a clique in G_n is at most $\left(\frac{3}{4}\right)^{\binom{n}{2}}$. Indeed, if $\{a_i, b_i\} \subseteq S$ for some i, then the probability is 0. Otherwise, $|S \cap \{a_i, b_i\}| \leq 1$ for every i, so we have $G[S] \in G_{k,\frac{3}{4}}$, i.e. edges exist independently with probability $\frac{3}{4}$. Therefore, the probability that S induces a clique is $\left(\frac{3}{4}\right)^{\binom{n}{2}}$.

By union-bound, the probability that some subset on k vertices induces a clique is at most $(2^n/k) \cdot \left(\frac{3}{4}\right)^{\binom{n}{2}}$. For any $\varepsilon > 0$, we note that $(2^n/\varepsilon n) \leq 2^n$. Therefore, the probability that G_n contains a simple $K_{\varepsilon n}$-minor is at most $2^n \cdot \left(\frac{3}{4}\right)^{\binom{n}{2}}$, which tends to 0 as n grows to infinity.

2.2 No large double minor

Proof of Claim 2.2. Let S' be a subset of k pairwise disjoint pairs of vertices in G_n, such that for every i, at most one of $\{a_i, b_i\}$ is involved in S'.

We consider the probability that G_n/S' induces a clique, where G_n/S' is defined as the graph obtained from G_n by considering only vertices involved in some pair of S' and identifying the vertices in each pair.

We consider two distinct pairs $(x_1, y_1), (x_2, y_2)$ of S'. Without loss of generality, $\{x_1, x_2, y_1, y_2\} = \{a_i, a_j, a_k, a_l\}$ for some i, j, k, ℓ. The probability that there is an edge between $\{x_1, y_1\}$ and $\{x_2, y_2\}$ is $1 - \left(\frac{1}{4}\right)^4$. In other words, $\mathbb{P}(E((x_1, y_1), (x_2, y_2)) = \emptyset) = \left(\frac{1}{4}\right)^4$ and since at most one of $\{a_i, b_i\}$ is involved in S' for all i, all such events are mutually independent. Therefore, the probability that S' yields a quasi-$K_{|S'|}$-minor is $\left(1 - \left(\frac{1}{4}\right)^4\right)^{\binom{|S'|}{2}}$.

For any $\varepsilon' > 0$, the number of candidates for S' is at most $(2^n/2\varepsilon' n)$ (the number of choices for a ground set of $2\varepsilon'n$ vertices) times $(2\varepsilon'n)!$ (a rough upper bound on the number of ways to pair them). Note that $(2^n/2\varepsilon' n) \cdot (2\varepsilon' n)! \leq (2n)^{2\varepsilon'n}$. We derive that the probability that there is a set S' of size $\varepsilon'n$ such that $G_n/S' = K_{|S'|}$ is at most $(2n)^{2\varepsilon'n} \cdot \left(1 - \left(\frac{1}{4}\right)^4\right)^{\binom{n}{2}}$, which tends to 0 as n grows large.

Consider a double K_k-minor S of G_n. Note that no pair in S is equal to $\{a_i, b_i\}$ (for any i), as every bag induces a connected subgraph in G_n. We build greedily a maximal subset $S' \subseteq S$ such that S' involves at most one vertex out of every set of type $\{a_i, b_i\}$. Note that $|S'| \geq \frac{|S|}{3}$. By taking $\varepsilon' = \frac{\varepsilon}{2}$ in the above analysis, we obtain that the probability that there is a set S of εn pairs that induces a quasi-$K_{\varepsilon n}$-minor tends to 0 as n grows large.

2.3 No large triple minor

Proof of Claim 2.3. The graph G_n has $2n$ vertices, and a triple K_k-minor involves at least $3k$ vertices. It follows that if G_n contains a triple K_k-minor then $k \leq \frac{2n}{3}$.
Acknowledgements

The authors thank Vincent Delecroix for helpful discussions.

References

