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On a recolouring version of Hadwiger's conjecture *

We prove that for any ε > 0, for any large enough t, there is a graph G that admits no K t -minor but admits a ( 3 2 -ε)t-colouring that is "frozen" with respect to Kempe changes, i.e. any two colour classes induce a connected component. This disproves three conjectures of Las Vergnas and Meyniel from 1981. * The authors are supported by ANR project GrR (ANR 18 CE40 0032). 1 Throughout this paper, all colourings are proper, i.e. no two vertices with the same colour are adjacent. 2 If a vertex of G is coloured 1 and has no neighbour coloured 2 in α, then it forms a Kempe chain of size 1.

Introduction

In an attempt to prove the Four Colour Theorem in 1879, Kempe [START_REF] Kempe | On the geographical problem of the four colours[END_REF] introduced an elementary operation on the colourings 1 of a graph that became known as a Kempe change. Given a k-colouring α of a graph G, a Kempe chain is a maximal bichromatic component 2 . A Kempe change in α corresponds to swapping the two colours of a Kempe chain so as to obtain another k-colouring. Two k-colourings are Kempe equivalent if one can be obtained from the other through a series of Kempe changes.

The study of Kempe changes has a vast history, see e.g. [START_REF] Mohar | Kempe equivalence of colorings[END_REF] for a comprehensive overview or [START_REF] Bonamy | On a conjecture of Mohar concerning Kempe equivalence of regular graphs[END_REF] for a recent result on general graphs. We refer the curious reader to the relevant chapter of a 2013 survey by Cereceda [vdH13]. Kempe equivalence falls within the wider setting of combinatorial recon guration, which [vdH13] is also an excellent introduction to. Perhaps surprisingly, Kempe equivalence has direct applications in approximate counting and applications in statistical physics (see e.g. [START_REF] Sokal | A personal list of unsolved problems concerning lattice gases and antiferromagnetic Potts models[END_REF][START_REF] Mohar | A new Kempe invariant and the (non)-ergodicity of the Wang-Swendsen-Koteckỳ algorithm[END_REF] for nice overviews). Closer to graph theory, Kempe equivalence can be studied with a goal of obtaining a random colouring by applying random walks and rapidly mixing Markov chains, see e.g. [START_REF] Vigoda | Improved bounds for sampling colorings[END_REF].

Kempe changes were introduced as a mere tool, and are decisive in the proof of Vizing's edge colouring theorem [START_REF] Vadim | On an estimate of the chromatic class of a p-graph[END_REF]. However, the equivalence class they de ne on the set of kcolourings is itself highly interesting. In which cases is there a single equivalence class? In which cases does every equivalence class contain a colouring that uses the minimum number of colours? Vizing conjectured in 1965 [START_REF] Vadim | Some unsolved problems in graph theory[END_REF] that the second scenario should be true in every line graph, no matter the choice of k. Despite partial results [START_REF] Armen | A note on transformations of edge colorings of bipartite graphs[END_REF][START_REF] Asratian | Solution of Vizing's problem on interchanges for the case of graphs with maximum degree 4 and related results[END_REF], this conjecture remains wildly open.

In the setting of planar graphs, Meyniel proved in 1977 [START_REF] Meyniel | Les 5-colorations d'un graphe planaire forment une classe de commutation unique[END_REF] that all 5-colourings form a unique Kempe equivalence class. The result was then extended to all K 5 -minor-free graphs in 1979 by Las Vergnas and Meyniel [START_REF] Michel | Kempe classes and the Hadwiger conjecture[END_REF]. They conjectured the following, which can be seen as a recon guration counterpoint to Hadwiger's conjecture, though it neither implies it nor is implied by it.

Conjecture 1.1 (Conjecture A in [START_REF] Michel | Kempe classes and the Hadwiger conjecture[END_REF]). For every t, all the t-colourings of a graph with no K t -minor form a single equivalence class.

They also proposed a related conjecture that is weaker assuming Hadwiger's conjecture holds.

Conjecture 1.2 (Conjecture A' in [START_REF] Michel | Kempe classes and the Hadwiger conjecture[END_REF]). For every t and every graph with no K t -minor, every equivalence class of t-colourings contains some (t -1)-colouring.

Here, we disprove both Conjectures 1.1 and 1.2, as follows.

Theorem 1.3. For every ε > 0 and for any large enough t, there is a graph with no K t -minor, whose (3 2 -ε)t-colourings are not all Kempe equivalent. In fact, we prove that for every ε > 0 and for any large enough t, there is a graph G that does not admit a K t -minor but admits a ( 3 2 -ε)t-colouring that is frozen; Any pair of colours induce a connected component, so that no Kempe change can modify the colour partition. To obtain Theorem 1.3, we then argue that the graph admits a colouring with a di erent colour partition. The notion of frozen k-colouring is related to the notion of quasi-K p -minor, introduced in [START_REF] Michel | Kempe classes and the Hadwiger conjecture[END_REF]. A graph G admits a K p -minor if it admits p non-empty, pairwise disjoint and connected bags B 1 , . . . , B p ⊂ V (G) such that for any i = j, there is an edge between some vertex in B i and some vertex in B j . For the notion of quasi-K p -minor, we drop the restriction that each B i should induce a connected subgraph of G, and replace it with the condition that for any i = j, the set B i ∪ B j induces a connected subgraph of G. If the graph G admits a frozen p-colouring, then it trivially admits a quasi-K p -minor 3 , while the converse may not be true. If all p-colourings of a graph form a single equivalence class, then either there is no frozen p-colouring or there is a unique p-colouring of the graph up to colour permutation. The latter situation in a graph with no K p -minor would disprove Hadwiger's conjecture, so Las Vergnas and Meyniel conjectured that there is no frozen p-colouring in that case. Namely, they conjectured the following.

Conjecture 1.4 (Conjecture C in [START_REF] Michel | Kempe classes and the Hadwiger conjecture[END_REF]). For any t, any graph that admits a quasi-K t -minor admits a K t -minor.

Conjecture 1.4 is known to hold for t 8 [START_REF] Jørgensen | Contractions to K8[END_REF]. As discussed above, we strongly disprove Conjecture 1.4 for large t. It is unclear how large t needs to be for a counter-example.

Theorem 1.5. For every ε > 0 and for any large enough t, there is a graph G that admits a quasi-K t -minor but does not admit a K ( 2 3 +ε)t -minor. Trivially, every graph that admits a quasi-K 2t -minor admits a K t -minor. We leave the following two open questions, noting that 2 3 c 1 2 and c 3 2 . Question 1.6. What is the in mum c such that for any large enough t, there is a graph G that admits a quasi-K t -minor but no K ct -minor? Question 1.7. Is there a constant c such that for every t, all the c • t-colourings of a graph with no K t -minor form a single equivalence class?

Construction

Let n ∈ N and let η > 0. We build a random graph G n on vertex set {a 1 , . . . , a n , b 1 , . . . , b n }: for every i = j independently, we select one pair uniformly at random among {(a i , a j ), (a i , b j ), (b i , a j ), (b i , b j )} and add the three other pairs as edges to the graph G n .

Note that the sets {a i , b i } 1 i n form a quasi-K n -minor, as for every i = j, the set {a i , b i , a j , b j } induces a path on four vertices in G n , hence is connected.

Our goal is to argue that if n is su ciently large then with high probability the graph G n does not admit any K ( 2 3 +η)n -minor. This will yield Theorem 1.5. To additionally obtain Theorem 1.3, we need to argue that with high probability, G n admits an n-colouring with a di erent colour partition than the natural one, where the colour classes are of the form {a i , b i }. Informally, we can observe that each of {a 1 , . . . , a n } and {b 1 , . . . , b n } induces a graph behaving like a graph in G n, 3 4 (i.e. each edge exists with probability 3 4 ) though the two processes are not independent. This argument indicates that χ(G n ) = O( n log n ), but we prefer a simpler, more pedestrian approach.

Assume that for some i, j, k, , none of the edges a i b j , a j b k , a k b and a b i exist. Then the graph G n admits an n-colouring α where α(a p ) = α(b p ) = p for every p ∈ {i, j, k, } and α(a 1). Since every quadruple (i, j, k, ) has a positive and constant probability of satisfying this property, G n contains such a quadruple with overwhelmingly high probability when n is large.

i ) = α(b j ) = i, α(a j ) = α(b k ) = j, α(a k ) = α(b ) = k and α(a ) = α(b i ) = (see Figure
Figure 1: A di erent n-colouring given an appropriate quadruple.

We are now ready to prove that the probability that G n admits a K ( 2 3 +η)n -minor tends to 0 as n grows to in nity. We consider three types of K p -minors in G, depending on the size of the bags involved. If every bag is of size 1, we say that it is a simple K p -minor -in fact, it is a subgraph. If every bag is of size 2, we say it is a double K p -minor. If every bag is of size at least 3, we say it is a triple K p -minor. We prove three claims, as follows.

Claim 2.1. For any ε > 0, P(G n contains a simple K εn -minor) → 0 as n → ∞.

Claim 2.2. For any ε > 0, P(G n contains a double K εn -minor) → 0 as n → ∞.

One bag for each colour class.
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Claim 2.3. G n does not contain a triple K 2 3 n+1 -minor. Claims 2.1, 2.2 and 2.3 are proved in Sections 2.1, 2.2 and 2.3, respectively. If a graph admits a K p -minor, then in particular it admits a simple K a -minor, a double K b -minor and a triple K c -minor such that a + b + c p. Combining Claims 2.1, 2.2 and 2.3, we derive the desired conclusion. 

No large simple minor

. By union-bound, the probability that some subset on k vertices induces a clique is at most

. For any ε > 0, we note that 2n εn 2 2n . Therefore, the probability that G n a simple K εn -minor is at most

, which tends to 0 as n grows to in nity.

No large double minor

Proof of Claim 2.2. Let S be a subset of k pairwise disjoint pairs of vertices in G n such that for every i, at most one of {a i , b i } is involved in S . We consider the probability that G n / S induces a clique, where G n / S is de ned as the graph obtained from G n by considering only vertices involved in some pair of S and identifying the vertices in each pair.

We consider two distinct pairs (x 1 , y 1 ), (x 2 , y 2 ) of S . Without loss of generality, {x 1 , x 2 , y 1 , y 2 } = {a i , a j , a k , a } for some i, j, k, . The probability that there is an edge between {x 1 , y 1 } and {x 2 , y 2 } is 1 -1 4 4 . In other words, P(E((x 1 , y 1 ), (x 2 , y 2 )) = ∅) = 1 4 4 and since at most one of {a i , b i } is involved in S for all i, all such events are mutually independent. Therefore, the probability that S yields a quasi-

2 ) .

For any ε > 0, the number of candidates for S is at most 2n 2ε n (the number of choices for a ground set of 2ε n vertices) times (2ε n)! (a rough upper bound on the number of ways to pair them). Note that 2n 2ε n • (2ε n)! (2n) 2ε n . We derive that the probability that there is a

, which tends to 0 as n grows large.

Consider a double K k -minor S of G n . Note that no pair in S is equal to {a i , b i } (for any i), as every bag induces a connected subgraph in G n . We build greedily a maximal subset S ⊆ S such that S involves at most one vertex out of every set of type {a i , b i }. Note that |S | |S| 3 . By taking ε = ε 3 in the above analysis, we obtain that the probability that there is a set S of εn pairs that induces a quasi-K |S| -minor tends to 0 as n grows large.

No large triple minor

Proof of Claim 2.3. The graph G n has 2n vertices, and a triple K k -minor involves at least 3k vertices. It follows that if G n contains a triple K k -minor then k 2n 3 .