
HAL Id: hal-04097496
https://hal.science/hal-04097496v2

Submitted on 12 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the application of the Schoenberg quasi-interpolant
for complexity reduction in trajectory generation

Vincent Marguet, Florin Stoican, Ionela Prodan

To cite this version:
Vincent Marguet, Florin Stoican, Ionela Prodan. On the application of the Schoenberg quasi-
interpolant for complexity reduction in trajectory generation. European Control Conference 2023,
Jun 2023, Bucharest, Romania. �hal-04097496v2�

https://hal.science/hal-04097496v2
https://hal.archives-ouvertes.fr

On the application of the Schoenberg quasi-interpolant for
complexity reduction in trajectory generation

Vincent Marguet1, Florin Stoican2 and Ionela Prodan1

Abstract— The paper extends previous work on
trajectory generation for UAV (Unmanned Aerial
Vehicles) using B-spline curves to parameterize an
associated flat output. Typical constraints and costs
(such as those involving input bounds and trajectory
length) lead to nonlinear formulations in terms of
the control points weighting the B-spline curve. This
complexity adversely affects the computation time
and conservatism of the result. To mitigate these
effects we use the Schoenberg operator to provide a
quasi-interpolant of the original nonlinear functions.
These improvements come at the price of an ap-
proximation error which requires a tightening of the
original constraints (either from a theoretical bound
or via an iterative procedure). The obtained results
are exemplified over a fixed wing UAV model and they
can be applied for any optimization-based trajectory
planning problem.
Index Terms– Trajectory generation, B-spline curve,
Schoenberg operator, approximation, optimization
problem, UAV (Unmanned Aerial Vehicles), Fixed
wing aircraft application.

I. Introduction
Trajectory generation is a topic much studied in the

literature, especially in the context of motion planning
for unmanned aerial vehicles (UAVs). One popular ap-
proach is to solve an optimization problem: minimize a
cost penalizing the trajectory’s energy, time or length
while also respecting various constraints (such as having
to pass through pre-defined way-points) [1], [2]. Unfor-
tunately, many times, the resulting trajectory cannot be
accurately tracked when the robotic platform has non-
negligible dynamics. E.g., in [3], a hybrid PSO algorithm
is used to compute paths as straight segments linking
farm blocks which have to be inspected by agricultural
UAVs. This kind of trajectory may prove adequate for
over-actuated platforms (such as quadcopters) but not
for fixed-wing UAVs which have stringent constraints on
the banking angle and the stall velocity.

One popular way to tackle the feasibility issue is to
impose smoothness in the design stage by parameterizing
the trajectory as weighted sum of basis functions which

* This work has been partially supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French
program Investissements d’avenir.

1 Univ. Grenoble Alpes, Grenoble INP†, LCIS,
F-26000, Valence, France {vincent.marguet,
ionela.prodan}@lcis.grenoble-inp.fr, † Institute of
Engineering and Management Univ. Grenoble Alpes.

2 Faculty of Automatic Control and Computers, Politehnica
University of Bucharest, ACSE, Bucharest, Romania,
florin.stoican@upb.ro

have the desired properties. [4] and [5] choose Bezier
functions. It allows to define the trajectory as a com-
bination of control points (the weights) and Bernstein
polynomials. B-spline functions, an even more generic
class, are also quite popular for trajectory generation like
in [6], [7] or to generate a map of the environment as in
[8]. The idea is to construct an optimization problem, via
various manipulations and simplifications, such that the
decision variables are the control points [9].

While solving a constrained optimization problem may
lead to a provably feasible trajectory, the complexity of
the problem depends strongly on the underlying dynam-
ics, cost and constraints. Quite often these are described
by nonlinear relations involving derivatives. Hence, the
solution takes a long time to compute, is convoluted
and conservative (the nonlinear formulations involving
control point lead to spline curves far from their bounds).

The goal of this paper is to decouple the computational
difficulties from the specifics of the problem at hand (i.e.,
how ‘hard’ the problem is, should be a decision taken in
the design stages by refining various design parameters
and not be decided implicitly by the platform’s limita-
tions). Hence, the contributions of this paper are:

i) employ the Schoenberg operator to approximate
nonlinear functions (which stem from cost and/or
constraints representation in an optimisation-based
trajectory generation problem);

ii) present a motion planning algorithm which effi-
ciently provides feasible trajectories via Schoenberg-
based approximations.

Although the trajectory generation problem has been
studied for decades, to the best of our knowledge, there is
no paper using the Schoenberg operator in this context.

Section II recapitulates relevant definitions and prop-
erties of the B-spline curve, introduces the Schoenberg
operator and presents the model of the fixed wing air-
craft used in this paper to illustrate the results here-
inafter. Section III states the main goal and provides
an algorithm to solve a motion planning problem via
Schoenberg-based approximations. Section IV illustrates
the benefits of this approach through simulations. Sec-
tion V draws the conclusions. The following notations
are used throughout the paper.

II. Prerequisites
This section recalls some basic notions of B-spline basis

parametrizations, introduces the Schoenberg operator
[10] and the UAV model used for exemplification [11].

Notation Meaning
t Time instant
T Final time
n Number of control points
p Order of the B-spline curves
ξ Knot vector used to define the B-spline basis func-

tions
P Matrix gathering the control points defining a B-

spline curve
Bp,ξ(t) B-spline basis function of order p and knot vector

ξ
Pk Column with the components of the (k + 1)-th

control point
Bk,p,ξ (k + 1)-th B-spline basis function of order p and

knot vector ξ (ξ can be omitted to be less heavy)
τk (k + 1)-th time instant of the knot vector ξ
m Number of components in the knot vector ξ −1
z B-spline trajectory
ż First derivative of z
z̈ Second derivative of z
MatT Transpose matrix of Mat
Mp,p−r Matrix used to calculate the derivatives of the B-

splines until order r
t̃k (k + 1)-th Greville point
f̃ Schoenberg operator applied to the function f (i.e.

approximation of f)
∥∆n∥∞ Maximal knot interval
x(t) Position on x-axis at time t
y(t) Position on y-axis at time t
ψ(t) Yaw angle at time t
ϕ(t) Roll angle at time t
Va(t) Airspeed velocity at time t
g Gravitational acceleration
pj Position of the j-th way-point

A. B-spline curve
We consider the parametrization of a trajectory z(t)

with B-spline curves as a linear combination of control
points and B-spline basis functions:

z(t) =

n−1∑
k=0

PkBk,p,ξ(t) = PBp,ξ(t), ∀t ∈ [0, T], (1)

with P =
[
P0 . . . Pn−1

]
the matrix which gathers the

control points, Bp,ξ(t) =
[
B0,p,ξ(t) . . . Bn−1,p,ξ(t)

]⊤
the basis vector, ξ = {τ0 ≤ τ1 ≤ ... ≤ τm} a knot
sequence starting at 0 and ending at T . If m ≥ p + 2,
we can define B-splines of order up to p over the knot
sequence.

The k-th B-spline basis function of order p is defined
recursively by:

Bk,1,ξ(t) =

{
1, t ∈ [τk; τk+1[

0, otherwise,
(2a)

Bk,p,ξ(t) =
t− τk

τk+p − τk
Bk,p−1,ξ(t)+

+
τk+p+1 − t

τk+p+1 − τk+1
Bk+1,p−1,ξ(t). (2b)

This particular function has many properties [12]:
P1) Each B-spline basis function has a local support:

Bk,p,ξ(t) = 0, ∀t /∈ [τk; τk+p+1). (3)

P2) The B-spline functions partition the unity:

n−1∑
k=0

Bk,p,ξ(t) = 1, ∀t ∈ [τ0; τm] (4a)

and
Bk,p,ξ(t) ≥ 0, ∀t ∈ [τ0; τm]. (4b)

P3) The ’r’ order derivatives of B-spline basis functions
are linear combinations of B-splines of lower order, i.e.
there exists a matrix Mp,p−r such that:

Bp,ξ
(r)(t) =Mp,p−rBp−r,ξ(t) (5)

P4) Bk,p,ξ(τl) ∈ Cp−µl at τl ∈ ξ with multiplicity µl and
C∞ otherwise.
P5) Convexity property: The B-spline curve lies within
the union of all convex hulls defined by subsets of p
consecutive control points.

Remark 1. The property P5) implies that taking the p
first values of the knot vector equal to 0, the first control
point will be the starting point of the curve. For the same
reason, taking the p last values of the knot vector equal to
T will have the consequence of setting the final point of
the curve at the last control point. This is why the knot
vector used in this paper will be defined as

ξ =

{
τ0 = . . . = τp−1 < τp <

. . . < τm−p < τm−p+1 = . . . = τm

}
. (6)

For further use, note that we take n = m− p+ 1.

B. Schoenberg operator
The Schoenberg operator [10], [13], [14] approximates

a function (call it f(·)) by interpolating it as weighted
sum of B-splines basis functions and the function’s values
in the Greville points of the B-spline basis:

f̃(t) =

ñ−1∑
k=0

f(t̃k)B̃k,p̃,ξ̃(t), (7)

where the Greville points are:

t̃k =
τ̃k+1 + ...+ τ̃k+p̃−1

p̃− 1
. (8)

Remark 2. Note the presence of the ‘tilde’ symbol in
(7): even if the function f(·) to be approximated is a
combination of B-splines, it is not necessary that the same
family of B-splines is used in (7), hence, p̃, ξ̃ may differ.

C. Fixed wing aircraft model
Let us consider a 2D 3-DOF model of a fixed wing

UAV, [12]. The position (x(t), y(t)) and the heading
(yaw) angle ψ(t) ∈ [0; 2π] rad are the state variables.
Their dynamics are described by the following equations,

where Va(t) and ϕ(t) are the inputs, the airspeed velocity
and the roll angle, respectively:

ẋ(t) = Va(t) cosψ(t), (9a)
ẏ(t) = Va(t) sinψ(t), (9b)

ψ̇(t) =
g tanϕ(t)
Va(t)

. (9c)

We take as flat output (see [15], [11] for more details on
flatness and this UAV’s flat representation) the position
of the aircraft z(t) =

[
z1(t) z2(t)

]⊤
=
[
x(t) y(t)

]⊤.
Thus, we are able to express all the state variables
and inputs via the flat output and its first and second
derivatives:

x(t) = z1(t), (10a)
y(t) = z2(t), (10b)

ψ(t) = arctan
(
ż2(t)

ż1(t)

)
, (10c)

Va(t) =
√
ż21(t) + ż22(t), (10d)

ϕ(t) = arctan
(
1

g

z̈2(t)ż1(t)− ż2(t)z̈1(t)√
ż21(t) + ż22(t)

)
. (10e)

This will allow to reformulate the various
costs/constraints in terms of the flat output z(t)
which will be further parameterized as in (1).

III. Schoenberg-based approximation
Motion planning often reduce to solving a constrained

optimization problem of the form

min
z(t)

∫ T

0

C(z(t))dt (11a)

s.t. gi(z(t)) ≤ 0, 0 ≤ t ≤ T, (11b)
hj(z(t)) = 0, 0 ≤ t ≤ T. (11c)

The goal is to find a trajectory z(t) which minimizes
the cost C(·) from (11a) while simultaneously respecting
(11b) and (11c) over the time interval [0, T].

To better illustrate the subsequent ideas let us partic-
ularize (11) by taking z(t) as in (10). Then, we have:

• the cost C(·) minimizes the trajectory length along
the time horizon [0, T];

• the bounds on the velocity’s magnitude are denoted
by v and v, respectively;

• the bounds on the roll angle are denoted by ϕ and
ϕ, respectively;

• the way-points passing (through pj at tj) conditions.
Thus, (11) is instantiated to the particular form:

min
z(t)

∫ T

0

∥ż(t)∥dt (12a)

s.t. v ≤ ∥ż(t)∥ ≤ v, ∀t ∈ [0, T] (12b)
ϕ ≤ ϕ(t) ≤ ϕ, ∀t ∈ [0, T] (12c)
z(tj) = pj , ∀j. (12d)

Except very specific cases (e.g., computing Dubins
trajectories for the unicycle model) it is not possible
to solve (11), or (12), for an arbitrary z(t). The usual
approach is to project z(t) onto a basis of functions and
reformulate (11), or (12), into a more manageable dis-
crete optimization problem. Specifically, parameterizing
z(t) as in (1) allows to reformulate1 (12) into

min
Pk,Bk(t)

∫ T

0

fc(t)dt, (13a)

s.t. v2 ≤ fv(t) ≤ v2, (13b)
tan(ϕ) ≤ fϕ(t) ≤ tan(ϕ), (13c)
n−1∑
k=0

PkBk,p(tj) = pj , ∀j, (13d)

with the notations

fc(t) =

√√√√ n−2∑
k1,k2=0

(
P ′
k1

)⊤
P ′
k2
Bk1,p−1(t)Bk2,p−1(t), (14a)

fv(t) =

n−2∑
k1,k2=0

(
P ′
k1

)⊤
P ′
k2
Bk1,p−1(t)Bk2,p−1(t), (14b)

fϕ(t) =

n−3∑
k1=0

n−2∑
k2=0

(
P ′′
k1

)⊤
QP ′

k2
Bk1,p−2(t)Bk2,p−1(t)

g

√
n−2∑

k1,k2=0

(
P ′
k1

)⊤
P ′
k2
Bk1,p−1(t)Bk2,p−1(t)

,

(14c)

where Q =

[
0 −1
1 0

]
and P ′

k, P
′′
k are used as short-hands

for the control points associated to the first and second
order derivatives of the B-spline curve (as per Property
P3), the dependencies are linear).

Problem (13) still explicitly considers time as a vari-
able. To bring it to a discrete time variant we exploit
B-spline properties and provide sufficient conditions in-
volving the associated control points.

Condition (13b) is a good example of this. Starting
from (1) and applying Property P3) we arrive at ż(t) =∑n−2

k=0 P
′
kBk,p−1(t) which in turn means that ∥ż(t)∥2 =∑n−2

k1,k2=0

(
P ′
k1

)⊤
P ′
k2
Bk1,p−1(t)Bk2,p−1(t). The (n − 1)2

terms Bk1,p−1(t)Bk2,p−1(t), based on Property P2), also
partition the unity which means that ∥ż(t)∥2 lies within
the convex hull of all combinations

(
P ′
k1

)⊤
P ′
k2

, hence

v2 ≤
(
P ′
k1

)⊤
P ′
k2

≤ v2, 0 ≤ k{1,2} ≤ n− 2, (15)

is a sufficient condition for (12b). With varying degrees
of success, the same reasoning may be applied to any
term from (13).

We notice that the problem depends now on a finite
number of variables (the control points Pk) meaning that

1Whenever clear from context, we simplify the notation and do
not write the knot vector, hence, Bk,p(t) instead of Bk,p,ξ(t).

it can be posed and solved as a standard constrained op-
timization problem. This comes with several drawbacks:

• the number of control points, the order and knot
vector of the B-splines restrict the shape of z(t);

• some sufficient formulations of the constraints are
conservative (see, e.g., (15) wrt (13b));

• some terms (specifically those appearing in (13a)–
(13c)) are nonlinear.

Remark 3. Already in (13) we observe a relatively com-
plex formulation for requirements which are in essence
quite simple. Even worse, the difficulty of the problem is
not entirely ‘controllable’ at the design stage: while we
may choose the basis function parameters (their number
n and order p) we cannot control the complexity of the
functions which describe the constraints/cost (since they
are directly influenced by the model). ♦

Remark 4. Two shortcomings, induced by weighting (1),
are best illustrated by (13b). First is that the number of
inequalities has increased significantly (2(n−1)2 in (15)).
Second, ∥ż(t)∥2 will be ‘far’ from its bounds,

(
P ′
k1

)⊤
P ′
k2

,
thus making (15) conservative with respect to (13b). This
is even worse for (13c), where, by the same reasoning,
there would be 2(n− 2)3(n− 3) conditions to test. ♦

To handle the issues raised in Remarks 3 and 4 we
make use of the Schoenberg operator introduced in
Section II-B to approximate terms appearing in cost
and/or constraints. Using again the illustrative example
from (13) we apply (7) thrice, once to approximate the
nonlinear cost (13a), once to approximate the velocity in
(13b) and once to approximate the roll angle in (13c).
Correspondingly, the approximations are

f̃{c,v,ϕ}(t) =

ñ−1∑
k=0

f{c,v,ϕ}(t̃k)Bk,p̃,ξ̃(t), (16)

which allow to:
i) approximate the cost

∫ T

0
fc(t)dt from (13a) as

∫ T

0

f̃c(t)dt =
∫ T

0

ñ−1∑
k=0

fc(t̃k)Bk,p̃,ξ̃(t)

=

ñ−1∑
k=0

[
fc(t̃k)

∫ T

0

Bk,p̃,ξ̃(t)dt
]
, (17)

ii) approximate the velocity inequalities v2 ≤ fc(t) ≤
v2 from (13b) by

v2 ≤
ñ−1∑
k=0

fv(t̃k)Bk,p̃,ξ̃(t) ≤ v2, (18)

iii) approximate the roll angle inequalities tan(ϕ) ≤
fϕ(t) ≤ tan(ϕ) from (13c) by

tan(ϕ) ≤
ñ−1∑
k=0

fϕ(t̃k)Bk,p̃,ξ̃(t) ≤ tan(ϕ). (19)

Introducing approximations (17)–(19) and keeping the
already linear equality (13d) leads to the approximated
constrained-optimization problem

min
Pk

ϵ2 (20a)

−ϵ ≤
ñ−1∑
k=0

[
fc(t̃k)

∫ T

0

Bk,p̃(t)dt
]
≤ ϵ, (20b)

s.t. v2 ≤ fv(t̃k) ≤ v2, 0 ≤ k ≤ ñ− 1, (20c)
tan(ϕ) ≤ fϕ(t̃k) ≤ tan(ϕ), 0 ≤ k ≤ ñ− 1, (20d)

pj =

n−1∑
k=0

PkBk,p(tj), ∀j. (20e)

Note that (20) neatly tackles the shortcomings iden-
tified earlier: the cost’s non-linearity is pushed into the
constraints via the addition of slack variable ϵ and the
constraints’ number is reduced from 2(n − 1)2 + 2(n −
2)(n − 1)3 to 4ñ when comparing (20c)–(20d) with
(13b)–(13c). To sum up, the initial problem (12) is re-
stated into the B-spline parameterized problem (13) via
mapping (1), next put into a sufficient formulation as a
discrete constrained optimization via (15) and the like,
which is then brought to an approximated but simplified
form in (20) via the application of (7) in (17)–(19).

Building on the particularities of (9), we highlight that
the reasoning holds for the generic motion problem (11),
as described in Algorithm 1.

Algorithm 1: Solving a motion planning problem
via Schoenberg-based approximations.

Input: list of functions defining problem (11);
parameters p, n, ξ appearing in (1);
Output: feasible trajectory z(t);

1 Construct an initial B-spline basis as in (2);
2 Express the terms appearing in (11) as (possibly)

nonlinear combinations of control points and
splines (as is done in (14) for (13));

3 Provide approximations based on the Schoenberg
operator (7), as is done in (16) for (14);

4 Introduce these approximations into the initial
problem and solve it (i.e., obtain the control
points Pk), similar to (13) versus (20);

5 Introduce the control points in (1) to obtain the
feasible trajectory z(t). Use it and its derivatives
to provide the dynamics’ inputs.

Hidden under the rug is the effect of the approximation
error: we solve (20) for simplified functions f̃ but the
original cost and constraints apply to the ‘real’ functions
f . This may be handled by increasing the number of
elements in the approximation basis {B0,p̃,ξ̃, . . . Bñ−1,p̃,ξ̃}
(the fact that we used the same p̃, ñ, ξ̃ in (14) was for
convenience; their values may have changed from (14a)
to (14b)) but this quickly runs into numerical issues.

TABLE I
Numerical values of the simulations.

Simulation data Numerical Value
Gravitational accelera-
tion g

9.81 m/s2

Velocity control input Va ∈ [18 25] m/s
Bank control input ϕ ∈ [−0.43 0.43] rad
Altitude 150 m
Simulation time T 150 s
Way-point list P={(1000,1000,150),(1100,250,150),

(400,0,150),(-250,250,150),
(400,500,150)}

Number of control
points n

10

Order of the B-spline
curves p

4

Number of greville
points ñ

20

IV. Illustrative example for an UAV system
The ideas discussed in Section III are illustrated by

the UAV model described in (II-C). We remind that
the initial problem (13) cannot be solved because of
the high number of constraints and their complexity.
Hence, we underline that the interest of applying the
Schoenberg operator to approximate the constraints and
the cost function is to solve the approximated opti-
mization problem and obtain a feasible solution. Due to
the approximation error, some constraints may have to
be tightened, that is why we need to confirm that the
control points obtained in (20) are a solution of the initial
problem (13). The numerical values for the constraints
in the optimization problem (20) are taken from the
experimental results proposed in [11].

Every 37.5 seconds of the simulation, the UAV has to
be at the next way-point. As delineated in Table I, the
roll angle limits are ϕ = −ϕ = −0.43 rad, and tan is an
odd and increasing function in the interval [-0.43;+0.43].
Hence, the constraint (20d) can be rewritten as

0 ≤ |fϕ(t̃k)| ≤ tan(ϕ), 0 ≤ k ≤ ñ− 1, (21)

Considering the square of the above constraint we have:

f2ϕ(t̃k) ≤ tan2(ϕ), 0 ≤ k ≤ ñ− 1, (22)

To resume, the optimization problem (20) is composed
of 3ñ inequality constraints (ñ inequality constraints for
the minimum velocity, ñ inequality constraints for the
maximum velocity, ñ inequality constraints for the roll
angle) and the constraints for the way-points passing.

The optimization problem (20) with the numerical
values from Table I was run in Matlab 2021a using the
IPOPT solver. The velocity constraint is represented in
Fig 1: the black stars representing

√
fv(t̃k) were used

as constraints: they have to stay between vmin and vmax

and it guarantees that the approximated function
√
f̃v(t)

(in blue) lies within these bounds. It means that the
approximated function respects the constraint.

However, the objective is that the initial function (in
black) respects the constraints. We see, that it is almost

Fig. 1. Evolution of the airspeed velocity Va when the velocity
constraint is not tightened.

the case. To respect the constraint during the whole
simulation, we have to tighten the constraints applied
in the optimization problem. Indeed, as explained in the
previous section there is an approximation error caused
by the Schoenberg operator. A study of the bounds based
on the control points to describe this approximation error
would be of interest to offer feasibility guarantees, i.e.,
the control points obtained from the simplified problem
(such as (20)) lead to a feasible solution in the initial
problem (13).

Thus, we replace the velocity interval [vmin; vmax] by
Iv = [vmin +0.2(vmax − vmin); vmax − 0.2(vmax − vmin)].
The results taking into account this tightening on the
velocity bound are delineated in the next illustrations:
Fig 2, 3 and 4 show that the way-points, velocity and the
roll angle constraints are satisfied by the approximations
and by the initial curves. The computational time analy-
sis results are presented in Table II. This approximation
method clearly reduced the computational time to solve
the optimization problem by reducing the number of
constraints.

Fig. 2. Path of the fixed wing aircraft obtained when the velocity
constraint is tightened to Iv .

We have considered the iterative procedure from Algo-

Fig. 3. Evolution of the airspeed velocity Va when the velocity
constraint is tightened to Iv .

Fig. 4. Evolution of the roll angle ϕ when the velocity constraint
is tightened to Iv .

TABLE II
Computational time analysis for the approximated curves.

Simulation Results Numerical Value
Number of inequality constraints of (13) ∞
Computational time of (13) −
Number of inequality constraints of (20) 60
Computational time of (20) 67 s
Number of iterations to solve (20) 176

rithm 1 where the original constraints are progressively
tightened until the approximated problem provides a
feasible solution for the original one.

V. Conclusion
This paper presents an algorithm to approximate

the functions representing the cost function and the
constraints of an optimization problem with a better
computational time. Reducing the computational time
is even more relevant, when the trajectory needs to be
computed on-line. The Schoenberg quasi-interpolant is

applied to reduce the complexity of the optimal B-spline
curve generated for a fixed-wing aircraft. Furthermore,
this algorithm can be applied to every system which
admits a flat representation. Future work will concern the
approximation error caused by the Schoenberg operator
and the extension of this algorithm to multiple UAVs,
taking into account ”inter-UAV” constraints like com-
munication range among them and collision avoidance.

References
[1] D. Saccani and L. Fagiano, “Autonomous uav navigation in an

unknown environment via multi-trajectory model predictive
control,” in 2021 European Control Conference (ECC). IEEE,
2021, pp. 1577–1582.

[2] X. Li, X. Gao, W. Zhang, and L. Hao, “Smooth and collision-
free trajectory generation in cluttered environments using
cubic b-spline form,” Mechanism and Machine Theory, vol.
169, p. 104606, 2022.

[3] X. Li, Y. Zhao, J. Zhang, and Y. Dong, “A hybrid pso algo-
rithm based flight path optimization for multiple agricultural
uavs,” in 2016 IEEE 28th international conference on tools
with artificial intelligence (ICTAI). IEEE, 2016, pp. 691–697.

[4] G. J. Yang and B. W. Choi, “Smooth trajectory planning
along bezier curve for mobile robots with velocity constraints,”
International Journal of Control and Automation, vol. 6, no. 2,
pp. 225–234, 2013.

[5] B. Sabetghadam, R. Cunha, and A. Pascoal, “Real-time tra-
jectory generation for multiple drones using bézier curves,”
IFAC-PapersOnLine, vol. 53, no. 2, pp. 9276–9281, 2020.

[6] N. T. Nguyen, L. Schilling, M. S. Angern, H. Hamann,
F. Ernst, and G. Schildbach, “B-spline path planner for safe
navigation of mobile robots,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE,
2021, pp. 339–345.

[7] Y. Hervagault, I. Prodan, and L. Lefevre, “Trajectory gen-
eration with communication-induced constraints for surface
vehicles,” in 2017 21st International Conference on System
Theory, Control and Computing (ICSTCC). IEEE, 2017,
pp. 482–487.

[8] R. T. Rodrigues, N. Tsiogkas, A. Pascoal, and A. P. Aguiar,
“Online range-based slam using b-spline surfaces,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 1958–1965,
2021.

[9] F. Stoican, A. Postolache, and I. Prodan, “Nurbs-based trajec-
tory design for motion planning in a multi-obstacle environ-
ment,” in 2021 European Control Conference (ECC). IEEE,
2021, pp. 2014–2019.

[10] T. Lyche, C. Manni, and H. Speleers, “Foundations of spline
theory: B-splines, spline approximation, and hierarchical re-
finement,” in Splines and PDEs: From Approximation Theory
to Numerical Linear Algebra. Springer, 2018, pp. 1–76.

[11] I. Prodan, S. Olaru, R. Bencatel, J. B. de Sousa, C. Stoica, and
S.-I. Niculescu, “Receding horizon flight control for trajectory
tracking of autonomous aerial vehicles,” Control Engineering
Practice, vol. 21, no. 10, pp. 1334–1349, 2013.

[12] F. Stoican, I. Prodan, D. Popescu, and L. Ichim, “Con-
strained trajectory generation for uav systems using a b-spline
parametrization,” in 2017 25th Mediterranean Conference on
Control and Automation (MED). IEEE, 2017, pp. 613–618.

[13] L. Beutel, H. Gonska, D. Kacsó, and G. Tachev, “On variation-
diminishing schoenberg operators: new quantitative state-
ments,” Multivariate Approximation and Interpoltaion with
Applications (ed. by M. Gasca), Monogr. Academia Ciencas
de Zaragoza, vol. 20, pp. 9–58, 2002.

[14] T. Zapryanova and G. Tachev, “Generalized inverse theorem
for schoenberg operator,” Journal of Modern Mathematics
Frontier, vol. 1, no. 2, pp. 11–16, 2012.

[15] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness
and defect of non-linear systems: introductory theory and
examples,” International journal of control, vol. 61, no. 6, pp.
1327–1361, 1995.

