Manon Costa 
email: manon.costa@math.univ-toulouse.fr
  
Pascal Maillard 
email: pascal.maillard@math.univ-toulouse.fr
  
Anthony Muraro 
email: anthony.muraro@math.univ-toulouse.fr
  
  
  
  
  
COMPLETE CHARACTERIZATION OF STABILITY OF A DISCRETE-TIME HAWKES PROCESS WITH INHIBITION AND MEMORY OF LENGTH TWO

Keywords: Hawkes process, Inhibition, Markov chain, Autoregressive process, Ergodicity, Lyapunov functions. MSC2020 Classification: 60J20, 62M10, 39A30

 

Introduction

The motivation of this paper is to pave the way for obtaining sufficient and necessary conditions for the stability of non-linear Hawkes processes with inhibition. Hawkes processes are a class of point processes used to model events that have mutual influence over time. They were initially introduced by Hawkes (1971) ( [START_REF] Hawkes | Spectra of Some Self-Exciting and Mutually Exciting Point Processes[END_REF], [START_REF] Hawkes | A Cluster Process Representation of a Self-Exciting Process[END_REF]) and are now used in a variety of fields such as finance, biology, and neuroscience.

More precisely, a Hawkes process (N h t ) t∈R = N h ([0, t] ) t∈R is defined by its initial condition on (-∞, 0] and its stochastic conditional intensity denoted by Λ, characterized by :

Λ(t) = ϕ λ + t -∞ h(t -s)N h (ds) , (1) 
where λ > 0, h : R + → R and ϕ : R → R + are measurable, deterministic functions (see [START_REF] Daley | An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods[END_REF] for further details). The function h is called the reproduction function, and contains the 1 information of the behaviour of the process throughout time. In the case where ϕ is nondecreasing, the sign of the function h encodes for the type of time dependence: when h is non-negative, the process is said to be self-exciting; when h is signed : the negative values of h can then be seen as self-inhibition (see [START_REF] Cattiaux | Limit theorems for hawkes processes including inhibition[END_REF] and [START_REF] Costa | Renewal in Hawkes processes with self-excitation and inhibition[END_REF]). The case where h ≥ 0 and ϕ = id is called the linear case. Considering signed functions h requires to add non-linearity by the mean of a function ϕ which ensures that the intensity remains positive. In this paper, we will focus on the particular case where ϕ = (•) + is the ReLU function defined on R by (x) + = max(0, x).

Several authors have established sufficient conditions on h ensuring the existence of a stable version of this process. For signed h, Brémaud and Massoulié [START_REF] Bremaud | Stability of Nonlinear Hawkes Processes[END_REF] proved that a stable version of the process exists if ∥h∥ 1 < 1. In [START_REF] Costa | Renewal in Hawkes processes with self-excitation and inhibition[END_REF], Costa et al. proved that it is sufficient to have ∥h + ∥ 1 < 1, where h + (x) = max(h(x), 0) using a coupling argument. Unfortunately, this sufficient criterion does not take into account the effect of inhibition, captured by the negative part of h. Going further is difficult because non-linearity breaks the direct link between the function h and the probabilistic structure of the Hawkes process. Recent results have been obtained by [START_REF] Bonde | Stability for Hawkes processes with inhibition[END_REF] for a two dimensional non-linear Hawkes process with weighted exponential kernel, modeling the case of two populations of interacting neurons including both inhibition and excitation. The author provide a criterion on the weight function matrix for stability exploiting the Markovian structure of the Hawkes process in that case. It is noteworthy that the stability condition [14, Assumption 1.2] is similar to the case R 2 of this paper, by reinterpreting the meaning of our parameters to correspond to those of the model described in [START_REF] Bonde | Stability for Hawkes processes with inhibition[END_REF]. Our work focuses on a simpler process due to its discrete-time nature, yet the significance of our study lies in providing an almost complete classification of its asymptotic behaviour without requiring assumptions on the parameter values of the model.

In order to get an intuition on the results that one might obtain on Hawkes processes, we choose to consider a simplified, discrete analog of those processes. Namely we will study an autoregressive process ( Xn ) n≥1 with initial condition ( X0 , . . . , X-p+1 ) where p ∈ {1, 2, . . . }, and such that:

∀n ≥ 1, Xn ∼ P ϕ a 1 Xn-1 + • • • + a p Xn-p + λ , (2) 
where P(ρ) denotes the Poisson distribution with parameter ρ, and a 1 , . . . , a p are real numbers.

In the linear case (a 1 , . . . , a p non-negative, and ϕ(x) = x) these integer-valued processes are called INGARCH processes, and have already been studied in ( [START_REF] Ferland | Integer-Valued GARCH Process[END_REF], [START_REF] Fokianos | Interventions in INGARCH processes[END_REF]), where a necessary condition for existence and stability of this class of processes has been derived and can be written p i=1 a i < 1. Furthermore, the link between Hawkes processes and autoregressive Poisson processes has already been made for the linear case : M. Kirchner proved that the discretized autoregressive process (with p = +∞) converges weakly to the associated Hawkes process (see [START_REF] Kirchner | Hawkes and inar (∞) processes[END_REF] for details). Although this convergence has only been demonstrated in the linear case, i.e., with positive a i , it seemed valuable to us to understand the modifications induced by the presence of inhibition on the asymptotic behavior of these processes. An analogous discrete process has been proposed by Seol [START_REF] Seol | Limit theorems for discrete hawkes processes[END_REF] using an autoregressive structure based on Bernouilli random variables.

In order to explore the effect of inhibition, we consider signed values for the parameters a 1 , . . . , a p . In this article, we focus on the specific case of p = 2, so that our model of interest can be written as :

∀n ≥ 2, Xn ∼ P a Xn-1 + b Xn-2 + λ + , (3) 
with a, b ∈ R and X0 , X1 ∈ N. (In this paper we will use the convention 0 ∈ N).

In this paper, the most important result is the classification of the process defined in (3). Note that the complete characterization of the behavior of this simple process is difficult due to the variety of behaviors observed. We will prove that the introduction of non-linearity through the ReLU function makes the process more stable relatively to its linear counterpart, in the sense that the parameter space (a, b) ∈ R 2 for which the linear process y n+1 = ay n + by n-1 + λ admits a stationary version is strictly a subset of the parameter space for which the nonlinear process admits a stationary version ( see Appendix A.). Our results also enlighten the complex role of inhibition and in particular the asymmetric role of a and b associated with the range at which inhibition occurs. Our work suggests the existence of complex algebraic and geometric structures that are likely to play an important role in the more general case of a memory of order p. In order to obtain our results, we used a wide range of probabilistic tools, corresponding to the variety of the behaviours of the trajectories of the process, depending on the parameters of the model.

Notations, definitions and results

2.1. Definition and main result. Let a, b ∈ R and λ > 0. We consider a discrete time process ( Xn ) n≥1 with initial condition ( X0 , X-1 ) such that the following holds for all n ≥ 1:

conditioned on X-1 , . . . , Xn-1 : Xn ∼ P a Xn-1 + b Xn-2 + λ + ,
where (•) + is the ReLU function defined on R by (x) + := max(0, x).

As we said previously, some papers have already been dealing with the linear version of this process : if a and b are non-negative, the parameter of the Poisson random variable in (3) is also non-negative, and the ReLU function vanishes. In this case, Proposition 1 in [START_REF] Ferland | Integer-Valued GARCH Process[END_REF] states that the process is a second-order stationary process if a + b < 1. This weak stationarity ensures that the mean, variance and autocovariance are constant with time.

Let us define the function

b c (a) =      1 a ≤ 0 1 -a a ∈ (0, 2) -a 2 4
a ≥ 2 and define the following sets (see Figure 1):

R = (a, b) ∈ R 2 : b < b c (a) (4) 
T = (a, b) ∈ R 2 : b > b c (a) . (5) 
Our main result is the following Theorem 1.

• If (a, b) ∈ R, then the sequence ( Xn ) n≥0 converges in law as n → ∞.

• if (a, b) ∈ T , then the sequence ( Xn ) n≥0 satisfies that almost surely Xn + Xn+1 -→ n→∞ +∞ .

This result derives from the study of the natural Markov chain associated with Xn that is defined by: X n := ( Xn , Xn-1 ), n ≥ 0 . (6) Before giving more details about the behaviour of (X n ) n≥0 , let us comment on Theorem 1. In particular, we stress that the condition for convergence in law is not symmetrical in a and b. More precisely, for any a ∈ R, the sequence ( Xn ) can be tight provided that b is chosen small enough, but the converse is not true as soon as b > 1. This induces that inhibition has a stronger regulating effect when occurs after an excitation, rather than before.

The question of the critical behavior of the process on the boundary {b = b c (a)} remains open and presents us a difficult question for further work.

2.2. The associated Markov chain. As mentioned above, the main part of the article is devoted to the study of a Markov chain (X n ) which encodes the time dependency of ( Xn ). We will rely on the recent treatment by Douc, Moulines, Priouret and Soulier [START_REF] Douc | Markov chains[END_REF] for results about Markov chains. In particular, we use their notion of irreducibility, which is weaker than the usual notion of irreducibility typically found in textbooks on Markov chains (on discrete state space). Thus, a Markov chain is called irreducible if there exists an accessible state, i.e., a state that can be reached with positive probability from any other state. Following Douc, Moulines, Priouret and Soulier [START_REF] Douc | Markov chains[END_REF], we refer to the usual notion of irreducibility (i.e., every state is accessible) as strong irreducibility.

The transition matrix of the Markov chain (X n ) n≥0 defined in ( 6) is thus given for (i, j, k, l) ∈ N 4 by:

P ((i, j), (k, ℓ)) = δ iℓ e -s ij s k ij k! , (7) 
where :

s ij := (ai + bj + λ) + and δ ij := 1 if i = j 0 else .
In other words, starting from a state (i, j), the next step of the Markov chain will be (k, i) where k ∈ N is the realization of a Poisson random variable with parameter s ij . In particular, if s ij = 0, then the next step of the Markov chain is (0, i).

Since the probability that a Poisson random variable is zero is strictly positive, it is possible to reach the state (0, 0) with positive probability from any state in two steps. In particular, the state (0, 0) is accessible and the Markov chain is irreducible. Furthermore, the Markov chain is aperiodic [5, Section 7.4], since P ((0, 0), (0, 0)) = e -λ > 0. Note that strong irreducibility may not hold (see Proposition 2 in the appendix).

Recall the definition of the sets R and T in (4) and (5).

Theorem 2.

• Let (a, b) ∈ R. Then the Markov chain (X n ) n≥0 is geometrically ergodic, i.e., it admits an invariant probability measure π and there exists β > 1, such that for every initial state,

β n d T V (Law(X n ), π) → 0, n → ∞
, where d T V denotes total variation distance.

• Let (a, b) ∈ T . Then the Markov chain is transient, i.e., every state is visited a finite number of times almost surely, for every initial state. Theorem 1 is a simple consequence of this result. Indeed, in the case of (a, b) ∈ R, the convergence in law of Xn simply derives from the convergence in law of X n since Xn is the first coordinate of X n . In the transient case, (a, b) ∈ T the result in Theorem 1 simply derives from the fact that

||X n || 1 → n→∞ ∞ almost surely.
The rest of the article is devoted to the proof of Theorem 2. We first focus on the recurrent case in Section 3, then on the transient case in Section 4. Throughout this paper, we will provide typical trajectories of the considered cases. For the sake of clarity, we have plotted the realizations of (X n ) n=0,...,N by connecting its successive realizations. Unless otherwise stated for coherence purpose, we always set X 0 = (0, 0) and λ = 1 for our plots.

Proof of Theorem 2: recurrence

In this section, we prove the recurrence part of Theorem 2. The proof goes by exhibiting three functions satisfying Foster-Lyapounov drift conditions for different ranges of the parameters (a, b) covering the whole recurrent regime R.

3.1.

Foster-Lyapounov drift criteria. Drift criteria are powerful tools that have been introduced by Foster [START_REF] Foster | On the Stochastic Matrices Associated with Certain Queuing Processes[END_REF], and deeply studied, and popularized, by Meyn and Tweedie [START_REF] Meyn | Markov Chains and Stochastic Stability. Communications and control engineering series[END_REF], among others. These drift criteria allow to prove convergence to the invariant measure of Markov chains and yield explicit rates of convergence. We use here the treatment from Douc, Moulines, Priouret and Soulier [START_REF] Douc | Markov chains[END_REF], which is influenced by Meyn and Tweedie [START_REF] Meyn | Markov Chains and Stochastic Stability. Communications and control engineering series[END_REF], but is more suitable for Markov chains which are irreducible but not strongly irreducible.

A set of states C ⊂ N 2 is called petite [5, Definition 9.4.1], if there exists a state x 0 ∈ N 2 and a probability distribution (p n ) n∈N on N such that inf x∈C n∈N

p n P n (x, x 0 ) > 0,
where we recall that P n (x, x 0 ) is the n-step transition probability from x to x 0 . Since the Markov chain (X n ) n≥0 is irreducible, any finite set is petite (take x 0 to be the accessible state) and any finite union of petite sets is petite [START_REF] Douc | Markov chains[END_REF]Proposition 9.4.5].

Let V : N 2 → [1, ∞) be a function, ε ∈ (0, 1], K < ∞ and C ⊂ N 2 a set of states. We say that the drift condition D(V, ε, K, C) is satisfied if ∆V (x) := E x [V (X 1 ) -V (X 0 )] ≤ -εV (x) + K1 C , where E x [ • ] = E[ • | X 0 = x]. It is easy to see that this condition implies condition D g (V, λ, b, C) from [5, Definition 14.1.5], with λ = 1 -ε and b = K. Proposition 1. Assume that the drift condition D(V, ε, K, C
) is verified for some V , ε, K and C as above and assume that C is petite. Then there exists β > 1 and a probability measure π on N 2 , such that, for every initial state x ∈ N 2 ,

β n × y∈N 2 V (y)|P x (X n = y) -π(y)| → 0, n → ∞.
In particular, for every initial state x ∈ N 2 ,

β n d T V (Law(X n ), π) → 0, n → ∞
and π is an invariant probability measure for the Markov chain (X n ) n≥0 .

Proof. As mentioned in Section 2.2, the Markov chain is irreducible and aperiodic. The first statement then follows by combining parts (ii) and (a) of Theorem 15.1.3 in [START_REF] Douc | Markov chains[END_REF] with the remark preceding Corollary 14.1.6 in [START_REF] Douc | Markov chains[END_REF]. The second statement immediately follows, noting that V ≥ 1. □

We will consider separately the following ranges of the parameters:

R 1 = {(a, b) ∈ R 2 : a, b < 1 and a + b < 1} , R 2 = {a > 0 and a 2 + 4b < 0} , R 3 = {1 ≤ a < 2 and -1 < b < 1 -a} .
We then have

R = R 1 ∪ R 2 ∪ R 3 , see Figure 2. a b 1 -1 1 b = -a 2 4 b = 1 -a R 1 R 2 R 3 Figure 2.
Illustration of the three zones of parameters on which the proof of ergodicity will be carried.

3.2.

Case R 1 . This case is the natural extension of the results that have been already proved for the linear process (see Proposition 1 in [START_REF] Ferland | Integer-Valued GARCH Process[END_REF]). Let V : N 2 → R + be the function defined by

V (i, j) := αi + βj + 1,
where α, β > 0 are parameters to be chosen later.

We then have that V (i, j) ≥ 1 for all (i, j) ∈ N 2 . We look for ε > 0 such that ∆V (x) + εV (x) ≤ 0 except for a finite number of x ∈ N 2 .

Let ε > 0 to be properly chosen later. Then,

∆V (i, j) + εV (i, j) = k∈N e -s ij s k ij k! (αk + βi + 1) -(αi + βj + 1) + ε(αi + βj + 1) = αs ij + i(β -α + αε) + j(βε -β) + ε ,
Note that s ij = 0 or s ij = ai + bj + λ > 0. In both cases, ∆V + εV is a linear function of (i, j) ∈ N 2 . We will thus choose α, β such that the coefficients of ∆V + εV are negative, so there will be only a finite number of (i, j) that satisfies ∆V (i, j) + εV (i, j) ≥ 0.

Let us first consider couples (i, j) such that s ij = 0. According to the above, it is sufficient to have :

β -α + αε < 0 βε -β < 0 ⇐⇒ β < α(1 -ε) ε < 1 .
In the sequel, we impose ε < 1.

If

s ij = ai + bj + λ > 0, then : ∆V (i, j) + εV (i, j) = i(αa -α + β + αε) + j(αb + βε -β) + λα + ε.
For the same reasons as before, it is sufficient to have α, β > 0 such that :

αa -α + β + αε < 0 αb + βε -β < 0 ⇐⇒ β < α(1 -a -ε) β > αb 1 -ε (since ε < 1)
.

Let α := 1. With the above statements we thus want to choose β, ε > 0 such that :

b 1 -ε < β < 1 -a -ε β < 1 -ε i.e., b 1 -ε < β < min{1 -a -ε, 1 -ε}.
Recall that a + b < 1, so it is possible to find ε 0 ∈ (0, 1) small enough so that :

∀ε ≤ ε 0 , b 1 - ε < 1 -a -ε. -If a ≥ 0, then min{1 -a -ε, 1 -ε} = 1 -a -ε and since a < 1, we can choose ε ≤ ε 0 so small that b 1 -ε < β < min{1 -a -ε, 1 -ε} on one hand, and 1 -a -ε > 0 on the other hand. It is thus possible to choose β > 0 such that : b 1 -ε < β < min{1 -a -ε, 1 -ε}. -If a < 0, then min{1 -a -ε, 1 -ε} = 1 -ε. Since b < 1, it is possible to set ε ≤ ε 0 so small that b < (1 -ε) 2 . Hence we have b 1 -ε < 1 -ε,
so that it is possible to choose β > 0 that satisfies our constrains. Note that ∆V (0, 0) = λ > 0. Hence, with α, β, ε > 0 chosen as above, we have that :

∆V (i, j) ≤ -εV (i, j) except for a finite number of states (i, j) ∈ N 2 .
This proves that a drift condition D(V, ε, C) holds for finite set C, which yields the result.

3.3. Case R 2 . In this section, we assume that a > 0 and a 2 + 4b < 0. The Lyapounov function we will consider is the following one:

∀(i, j) ∈ N 2 , V (i, j) = i j + 1 + 1.
Before getting into the details, a remark about this function. While we initially discovered it by trial and error, it has an interesting geometric interpretation. As seen in Figure 3, in case R 2 , the macroscopic trajectories of the Markov chain tend to turn counterclockwise until they hit the j-axis and eventually get pulled back to (0, 0). This provides a heuristic understanding of why V should be a Lyapounov function. Indeed, it is an increasing function of the angle between the vector (i, j) and the j-axis, and therefore V (X n ) should have a tendency to decrease whenever X n is far away from the j-axis.

We now turn to the details. We will need to distinguish the region A of the states (i, j) where s ij = 0 (shown in red in Figure 3):

A := (i, j) ∈ N 2 : s ij = 0 = (i, j) ∈ N 2 : ai + bj + λ ≤ 0 . ( 8 
)
We have the following lemma:

Lemma 1. The set A is petite.
Proof. By definition of A, we have s ij = 0 for all (i, j) ∈ A, hence P ((i, j), (0, i)) = 1. Furthermore, for every i ∈ N, since b < -a 2 /4 < 0, we have

P ((0, i), (0, 0)) = e -s 0i = e -(λ+bi) + ≥ e -λ .

It follows that inf

(i,j)∈A P 2 ((i, j), (0, 0)) ≥ e -λ > 0, which shows that A is petite. □ Lemma 2. There exists a finite set C ⊂ N 2 and ε ∈ (0, 1), such that the drift condition D(V, ε, K, A ∪ C) is satisfied for some K < ∞.

Proof. Since a 2 4 + b < 0, there exists ε ∈ (0, 1) small enough such that (a+ε)

2 4 + b(1 -ε) < 0.
Consider (i, j) ̸ ∈ A, and compute :

∆V (i, j) + εV (i, j) = (ε -1)i 2 + bj 2 + (a + ε)ij + L 1 (i, j) (i + 1)(j + 1) ,
where L 1 (i, j) is a polynomial of degree 1.

On the numerator we recognize a quadratic form, and as (a+ε) 2

4

+ b(1ε) < 0, we have that this quadratic form is negative-definite. Thus, there is only a finite number of (i, j) ̸ ∈ A such that ∆V (i, j) + εV (i, j) > 0. We define C ⊂ N 2 \ A to be the finite set of such (i, j).

Note that for every (i, j) ∈ A, we have ), the finiteness of K following from the fact that C is finite, we have that the drift condition D(V, ε, K, A ∪ C) is satisfied. Figure 4 illustrates the cutting of the state space that we just described. □

∆V (i, j) + εV (i, j) ≤ E (i,j) [V (X 1 )] = V (0, i) = 1. Hence, setting K = 1 ∨ max x∈C E x [V (X 1 )] ∈ [1, ∞
In the case R 2 , by Lemma 1 and Lemma 2, we can now apply Proposition 1. Note that A ∪ C is petite because A is petite (Lemma 1), C is finite, hence petite, and the union of two petite sets is again petite. This yields the proof of the case R2 of Theorem 2. 4 < b < 1a. However, for the sake of conciseness, we will prove the ergodicity of the Markov chain on a larger space, namely R 3 . As a consequence, this case will cover some parameters sets which have already been considered in case R 2 . Note that this does not represent any issue in our strategy of proof. The choice of R 3 will become clearer later on.

We will thus assume here that 1 ≤ a < 2 and -1 < b < 1a. Let us denote by V the following function :

∀(i, j) ∈ N 2 , V (i, j) := 1 + i 2 -aij + b 2 + 1 2 j 2 1 A c (i, j).
First notice that the quadratic form in V is positive-definite. Indeed, if 1 ≤ a < 2, then b 2 > (1a) 2 and :

4 × b 2 + 1 2 -a 2 > 2(1 -a) 2 + 2 -a 2 = (a -2) 2 > 0.
Thus, the function V satisfies V ≥ 1.

Compute, for (i, j) ̸ ∈ A and ε ∈ (0, 1) to be properly chosen later :

∆V (i, j) + εV (i, j) = ∞ k=0 e -s ij s k ij k! V (k, i) + (ε -1)V (i, j) ≤ ∞ k=0 e -s ij s k ij k! 1 + k 2 -aki + b 2 + 1 2 i 2 + (ε -1)V (i, j) = s ij (s ij + 1) -ais ij + b 2 + 1 2 i 2 + (ε -1)V (i, j) + 1 = b 2 -1 2 + ε i 2 + a(b + 1 -ε)ij + b 2 (1 + ε) + ε -1 2 j 2 + L 2 (i, j),
where L 2 (i, j) is a polynomial of degree 1.

We want to choose ε ∈ (0, 1) such that the above quadratic form is negative-definite, that is, such that :

b 2 -1 2 + ε < 0, and b 2 -1 2 + ε b 2 (1 + ε) + ε -1 2 - a 2 4 (b + 1 -ε) 2 > 0. (9) 
On the one hand, we have b 2 -1 < 0. On the other hand, the second inequality in ( 9) can be written as follows :

(b 2 -1) 2 -a 2 (b + 1) 2 + k ε,a,b > 0, where k ε,a,b ∈ R satisfies k ε,a,b -→ ε→0 0.
In addition, note that :

(a, b) ∈ R 3 =⇒ (b 2 -1) 2 -a 2 (b + 1) 2 > 0.
From the foregoing, we deduce that there exists ε ∈ (0, 1) small enough such that both conditions of (9) are satisfied. Thus, there is only a finite number of (i, j) ̸ ∈ A such that ∆V (i, j) + εV (i, j) > 0. We define C ⊂ N 2 \ A to be the finite set of such (i, j).

Finally, similarly as in Lemma 1, the set A is petite, because b < 1a ≤ 0. Furthermore similarly as in the case R 2 , for all (i, j) ∈ A, E (i,j) (V (X 1 )) = V (0, i) is bounded, since (0, i) ∈ A except for a finite number of i. Since the set C is finite, we have that A ∪ C is a petite set and up to an adequate choice of K the drift condition D(V, ε, K, A ∪ C) is satisfied.

Proof of Theorem 2: transience

In this section, we show that the Markov chain (X n ) n≥0 is transient in the regime T of the parameters. We will distinguish between the following two cases:

• Case T1 : a < 0, b > 1 (section 4.1).

• Case T2 : 0 ≤ a < 2 and a + b > 1 or a ≥ 2 and a 2 + 4b > 0 (section 4.2). In both cases, we will apply the following lemma: Lemma 3. Let S 1 , S 2 , . . . be a sequence of subsets of N 2 and 0 < m 1 < m 2 < . . . an increasing sequence of integers. Suppose that (1) On the event n≥1 {X mn ∈ S n }, we have X n ̸ = (0, 0) for all n ≥ 1, (2) P (0,0) (X m 1 ∈ S 1 ) > 0 and for all n ≥ 1 and every x ∈ S n , we have P x (X m n+1 -mn ∈ S n+1 ) > 0.

(3) There exist (p n ) n≥1 taking values in [0, 1] and such that n≥1 (1

-p n ) < ∞, such that ∀n ≥ 1 : ∀x ∈ S n : P x (X m n+1 -mn ∈ S n+1 ) ≥ p n .
Then the Markov chain (X n ) n≥0 is transient.

Proof. Since (0, 0) is an accessible state, it is enough to show that

P (0,0) (X n ̸ = (0, 0) , ∀n ≥ 1) > 0.
Using assumption 1, it is sufficient to prove that

P (0,0) (X mn ∈ S n , ∀n ≥ 1) > 0. ( 10 
)
By assumption 3, there exists n 0 ≥ 1 such that n≥n 0 p n > 0. It follows that for every x ∈ S n 0 ,

P x (X mn-mn 0 ∈ S n , ∀n > n 0 ) ≥ n≥n 0 p n > 0.
Furthermore, by assumption 2, we have that P (0,0) (∀n ≤ n 0 , X mn ∈ S n ) > 0. Combining the last two inequalities yields [START_REF] Hawkes | Spectra of Some Self-Exciting and Mutually Exciting Point Processes[END_REF] and finishes the proof. □ 4.1. Case T1. In this region of parameters, the Markov chain eventually reaches the i and j axes. Indeed, since a < 0, if (X n ) hits a state (i, 0) with i ≥ -λ a , as s i0 = (ai + λ) + = 0, the next step of the Markov chain will be (0, i). Afterwards, the Markov chain will hit the state (P(bi + λ), 0), with bi + λ > i. Consequently, to follow the example, if we focus on the i axe, starting from (k, 0) with k big enough, the Markov chain will return in two steps to a state (k ′ , 0) belonging to the i-axe, satisfying k ′ > k with high probability. In order to formalize these observations, it is very natural to consider the Markov chain induced by the transition matrix P 2 , namely (X 2n+1 ) n≥0 . For i ≥ -λ a , s i0 = 0 and thus :

P X 2n+1 = (k, 0) X 2n-1 = (i, 0), i ≥ -λ a = e -s 0i s k 0i k! = e -(bi+λ) (bi + λ) k k! . ( 11 
)
Note that if a ≤ -λ, this results holds for i ∈ N. Equation [START_REF] Hawkes | A Cluster Process Representation of a Self-Exciting Process[END_REF] means that if X2n-1 ≥ -λ a , and X2n-2 = 0, then X2n = 0, and X2n+1 is a Poisson random variable with parameter b X2n-1 + λ.

Let us now prove our statement.

Proof of the transience of (X n ) when a < 0 and b > 1. Fix r ∈ (1, b). We wish to apply Lemma 3 with

m n = 2n -1, n ≥ 1 and S n = {(i, 0) ∈ N : i ≥ r n }.
We verify that the assumptions ( 1)-( 3) from Lemma 3 hold. For the first assumption, note that if X 2n-1 = (i, 0) ∈ S n , then X 2n = (j, i) for some j, hence X 2n-1 ̸ = (0, 0) and X 2n ̸ = (0, 0) since i ≥ 1. In particular, assumption (1) holds. We now verify that the second assumption holds. For states x, y ∈ N 2 , write x → 1 y if P x (X 1 = y) > 0. Furthermore, for S ⊂ N 2 , write x → 1 S if x → 1 y for some y ∈ S. Note that (0, 0) → 1 (i, 0) for every i ∈ N, so that (0, 0) → 1 S 1 . Now, for every i ∈ N, we have (i, 0) → 1 (0, i), and then, because b > 0, (0, i) → 1 (j, 0) for every j ∈ N. In particular, from every x ∈ S n , we can indeed reach S n+1 in two steps. Hence, the second assumption is verified as well.

We now prove the third assumption. We claim that there exists n 0 ∈ N, such that the following holds:

∀n ≥ n 0 , ∀x ∈ S n : P x (X 2 ∈ S n+1 ) ≥ 1 - b (b -r) 2 r n . ( 12 
)
To prove [START_REF] Kirchner | Hawkes and inar (∞) processes[END_REF], first note that according to the earlier remark on [START_REF] Hawkes | A Cluster Process Representation of a Self-Exciting Process[END_REF], if n 0 is chosen such that r n 0 ≥ -λ/a, then starting from a state (i, 0) with i ≥ r n 0 , we have X1 = 0 almost surely and X2 ∼ P(bi + λ). Therefore, if n ≥ n 0 and i ≥ r n ≥ r n 0 ,

1 -P (i,0) ( X2 ≥ r n+1 , X1 = 0) = P (i,0) ( X2 < r n+1 ) ≤ P P(bi + λ) < r n+1 ≤ P P(br n ) < r n+1 = P (P(br n ) -br n < r n (r -b)) ≤ P (|P(br n ) -br n | > r n (b -r)) ≤ b (b -r) 2 r n ,
by the Bienaymé-Chebychev inequality. This proves [START_REF] Kirchner | Hawkes and inar (∞) processes[END_REF]. Now, (12) implies,

∀x ∈ S n : P x (X 2 ∈ S n+1 ) ≥ p n := 1 - b (b -r) 2 r n + , and n≥1 (1 -p n ) ≤ n≥1 b (b -r) 2 r n < ∞.
This proves that the third assumption of Lemma 3 holds. The lemma then shows that the Markov chain is transient. □

4.2.

Case T2: 0 ≤ a < 2 and a + b > 1 or a ≥ 2 and a 2 + 4b > 0. For this case, we will take benefit of the comparison between the stochastic process ( Xn ) and its linear deterministic version. Namely, let us consider the linear recurrence relation defined by y 0 , y 1 ∈ N and : A. for more details). An easy calculation shows that in case T2, we have a 2 + 4b > 0, hence the eigenvalues are simple and real-valued. We denote the largest eigenvalue by:

∀n ≥ 0, y n+2 = ay n+1 + by n + λ. ( 13 
)
θ := a + √ a 2 + 4b 2 .
The following holds in case T2, as can be easily verified:

θ > 1 ( 14 
)
θ 2 + b > 0. ( 15 
)
In fact, one can check that case T2 exactly corresponds to the region in the space of parameters a, b where θ > 1, meaning that the sequence (y n+1 , y n ) n≥0 , with (y n ) n≥0 the solution to [START_REF] Meyn | Markov Chains and Stochastic Stability. Communications and control engineering series[END_REF], grows exponentially inside the positive quadrant, along the direction of the eigenvector (θ, 1).

In what follows, we fix 1 < r < θ, such that

r 2 -ar -b < 0, ( 16 
)
where we use the fact that θ > 1 is the largest root of the polynomial X 2 -aXb.

We split our study into two different sub-cases depending on the sign of b.

4.2.1. Subcase T2a : b ≥ 0. In this case, we have a Xn + b Xn-1 + λ > 0 for all n ∈ N, and so Xn+1 ∼ P(a Xn + b Xn-1 + λ), i.e., no truncation is necessary. It is classical that in this case, Xn grows exponentially in n almost surely, but we provide a simple proof for completeness. We therefore apply Lemma 3 with the sequence m n = n and

S n = {(i, j) ∈ N 2 , i ≥ r n , j ≥ r n-1 }.
With these notations, assumption 1 is automatically satisfied. Assumption 2 is also satisfied, because (i, j) → 1 (k, i) for every i, j, k ∈ N, since ai + bj + λ > 0 for every i, j ∈ N as explained above.

In order to prove assumption 3, let us consider n ∈ N and let (i, j) ∈ S n . By definition, starting from (i, j), X1 ∼ P(ai + bj + λ). Thus, P (i,j) ( X1 < r n+1 ) = P P(ai + bj + λ) < r n+1 ≤ P P(ar n + br n-1 ) < r n+1

= P P(ar n + br n-1 ) -(ar n + br n-1 ) < r n-1 (r 2arb) .

Recall that r 2arb < 0 by (16), which implies :

P (i,j) ( X1 < r n+1 ) ≤ P P(ar n + br n-1 ) -(ar n + br n-1 ) > -r n-1 (r 2 -ar -b) ≤ (a + b)r 2 r n (r 2 -ar -b) 2 ,
where we used again the Bienaymé-Chebychev inequality. Thus

P (i,j) (X 1 ∈ S n+1 ) ≥ 1 - (a + b)r 2 r n (r 2 -ar -b) 2 + =: p n .
This allows to conclude the proof with Lemma 3, as in the previous case. 4.2.2. Subcase T2b : b < 0. In this case, because of the negativity of b it is more difficult to find an adequate lower-bound of a Xn + b Xn-1 . We will thus prove a stronger result, which is illustrated on Figure 6 : asymptotically, the process ( Xn ) grows exponentially and the ratio Xn+1 / Xn is close to θ.

From ( 16) and ( 15), we can choose ε > 0 small enough such that :

r 2 -a(r -ε) -b < 0 (17) θ 2 -θε + b > 0. (18) 
We will use Lemma 3 using m n = n and for n ∈ N * :

S n = (i, j) ∈ N 2 , i ≥ r n , j ≥ r n-1 , i j -θ ≤ ε .
Note that Assumption 1 from Lemma 3 is again automatically verified. Assumption 2 is also verified, since for (i, j) ∈ S n , we have

ai + bj + λ > a(θ -ε) + b j ≥ a(r -ε) + b j > 0, (19) 
by (17), and so (i, j) → 1 (k, i) for every k ∈ N.

We now show that Assumption 3 from Lemma 3 is verified. Let n ∈ N and (i, j) ∈ S n . Then :

P (i,j) (X 1 / ∈ S n+1 ) ≤ P (i,j) X1 < r n+1 + P (i,j) X1 i -θ > ε . (20) 
We first bound the first term on the right-hand side of (20). By (19), we have

P (i,j) X1 < r n+1 = P P(ai + bj + λ) < r n+1 ≤ P P a(r -ε) + b r n-1 < r n+1 = P P a(r -ε) + b r n-1 -a(r -ε) + b r n-1 < r n-1 r 2 -a(r -ε) -b .
Furthermore, using (17) and applying the Bienaymé-Chebychev inequality we obtain :

P (i,j) X1 < r n+1 ≤ P P a(r -ε) + b r n-1 -a(r -ε) + b r n-1 > -r n-1 r 2 -a(r -ε) -b ≤ a(r -ε) + b r n-1 r n-1 r 2 -a(r -ε) -b 2 = a(r -ε) + b r r n r 2 -a(r -ε) -b 2 = C 1 r n , (21) 
where C 1 is a constant that does not depend on n.

We now bound the second term on the right-hand side of (20). Let us write :

X1 i -θ = X1 -E (i,j) [ X1 ] i + E (i,j) [ X1 ] i -θ
First notice that, for any (i, j) ∈ S n :

E (i,j) X1 i -θ = ai + bj + λ i -θ = a + b j i + λ i -θ ≤ a + b θ -θ =0 +|b| j i - 1 θ + λ i < |b| θ(θ -ε) ε + λ i , (22) 
where we used that if |x -θ| < ε and ε < θ, then

1 x - 1 θ = |θ -x| xθ < ε θ(θ -ε) .
To prove that

P (i,j) X1 i -θ > ε ≤ C 2 r n
, where C 2 is a constant that does not depend on n, we deduce from (22) that it is sufficient to show that :

P (i,j)   X1 -E (i,j) [ X1 ] + λ i > δε   ≤ C 2 r n ,
where, by (18), we have

δ := 1 - |b| θ(θ -ε) > 0.
Furthermore, since b < 0 and (i, j) ∈ S n , we have that

ai + bj + λ ≤ ai + λ ≤ (a + λ)i.
We finally have, using the Bienaymé-Chebyshev inequality :

P (i,j)   X1 -E (i,j) [ X1 ] + λ i > δε   = P (i,j) X1 -E (i,j) [ X1 ] > δεi -λ ≤ (a + λ)i (δεi -λ) 2 = a + λ δε √ i -λ/ √ i 2 ≤ a + λ δεr n/2 -λr -n/2 2
Last inequality holds for a sufficiently large n. Indeed, since i ≥ r n , we always have

δε √ i -λ/ √ i > δεr n/2 -λr -n/2 ,
and for n large enough we have

δε √ i - λ √ i > 0.
This yields, for some constant C 2 < ∞,

P (i,j)   X1 -E (i,j) [ X1 ] + λ i > 1 - |b| θ(θ -ε) ε   ≤ C 2 r n . (23) 
Combining ( 21) and (23) we have that :

P (i,j) (X 1 ∈ S n+1 ) ≥ 1 - C 1 + C 2 r n + =: p n .
Which will finally lead us to the result, by using Lemma 3 as before.

Perspectives and open problems

Critical behavior. In the case of linear Hawkes processes, it is well known that, at criticality, the process achieves fractal-like, i.e., heavy-tail behavior, related to critical branching processes. It is tempting to believe that this should remain true on the whole boundary between the phases R and T , but the fractal exponents might differ.

For the sake of completeness, we offer a numerical study of the various critical cases of the considered model, which indicates different behaviour depending whether a < 2 or a > 2. We present realizations of the process ( Xn ), as we believe it is simpler to visualize the behavioral differences compared to showing realizations of the Markov chain in N 2 . Given the diversity of the process behaviours, we anticipate the need for various probabilistic tools to describe the process evolution over long time spans. We consider the same setting as for the previous figures: an initial condition X-1 , X0 = 0 and λ = 1. The number N describes the number of simulated steps. On Figure 7, we observe a linear growth of the discrete time process X n , with oscillations to 0 when a < 0 and b = 1 (left panel) and without oscillations in the case a + b = 1. The situation seems to be different for a ≥ 2 and b = -a 2 /4. When a > 2 we observe an exponential growth (Fig. 8 (left)) similarly to the transient regime, while the case a = 2 presents large excursions away from 0 but deciphering transient or recurrent behavior is difficult. These simulations show that the study of these critical cases is an interesting research topic for the future.

Generalization of the model. As explained at the beginning of the article, the results obtained here should be seen as a starting point for the search for necessary and sufficient conditions for the stability of Hawkes processes with inhibition, in discrete or continuous time.

We believe that obtaining a similar classification in the cases p > 2 or p = ∞ is a very difficult problem. It should be closely related to the study of the asymptotic behavior of certain deterministic equations, such as the non-linear recurrence equation

x n = (a 1 x n-1 + • • • + a p x n-p ) + .
It seems that the algebraic structures underlying these equations are intricate and, to this date, unknown. The understanding of these structures seem crucial for the study of the asymptotic behavior of the solutions to these equations. In a work in progress, we achieve partial results in this direction.

Appendix A. Linear recurrence equations

Let α ∈ R, p ∈ N and a 1 , . . . , a p ∈ R. Consider the linear recurrence equation

x n = a 1 x n-1 + • • • + a p x n-p + α, n ≥ 1,
with given initial data x 0 , . . . , x -p+1 ∈ R. Define the matrix Recall that the spectral radius ρ(A) of the matrix A is the defined by

A =      a 1 • • • a p-1 a p 1 . . .
ρ(A) = max(|θ 1 |, . . . , |θ p |),
where θ 1 , . . . , θ p ∈ C are the complex eigenvalues of A, counted with algebraic multiplicity. Equivalently, θ 1 , . . . , θ p are the roots, counted with multiplicity, of the characteristic polynomial

P (z) = det(zI -A) = z p -a 1 z p-1 -• • • -a p .
We recall the following classical fact: Theorem 3 ([9] Chapter 9, Thm 9.1). The following are equivalent:

(1) xn converges as n → ∞, for every initial data x 0 , . . . , x -p+1 (2) ρ(A) < 1

In the case p = 2, setting a = a 1 and b = a 2 , we have P(z) = z 2azb. Its roots are

θ ± = a 2 ± a 2 4 + b.
In particular,

ρ(A) = |a| 2 + a 2 4 + b, if a 2 4 + b ≥ 0 √ -b, if a 2 4 + b < 0. A quick calculation shows that ρ(A) < 1 ⇐⇒ |a| + b < 1 and b > -1. (24) 
This corresponds to the triangular dashed region of parameters in Figure 1 of section 2.

Appendix B. Criteria for strong irreducibility

The Markov chain considered in this article is irreducible in the (weak) sense of Douc, Moulines, Priouret and Soulier [START_REF] Douc | Markov chains[END_REF], but not necessarily strongly irreducible, i.e., irreducible in the classical sense. In this section, we study the decomposition of the state space into communicating classes. We recall the basic definitions. Let x, y ∈ N 2 . We say that x leads to y, or, in symbols, x → y, if there exists n ≥ 0 such that P(X n = y | X 0 = x) > 0. We say that x communicates with y if x → y and y → x. This is an equivalence relation which partitions the state space N 2 into classes called communicating classes.

Recall that the Markov chain is called strongly irreducible if all states are accessible, equivalently, if N 2 is a communicating class. A communicating class C ⊂ N 2 is called closed if there does not exist x ∈ C and y ∈ C c , such that x → y. Proposition 2.

• The Markov chain (X n ) is strongly irreducible on N 2 if and only if a ≥ 0, or if a > -λ and a + b ≥ 0. • The communicating class of (0, 0) contains

S = {(0, 0)} ∪ {(0, k), k ∈ N * } ∪ {(k, 0), k ∈ N * } . ( 25 
)
and is actually equal to S iff a ≤ -λ.

We will use the following :

Lemma 4. Let i, j, k, ℓ ∈ N. The transition matrix P of the Markov chain (X k ) satisfies :

P 2 ((i, j), (k, ℓ)) = e -(s ij +s ℓi ) s ℓ ij s k ℓi ℓ! k! ,
and for all n ≥ 3,

P n ((i, j), (k, ℓ)) = m 1 ,...,m n-2 ∈N exp    - n q=1 s σ n q+1 σ n q+2    n q=1 s σ n q σ n q+1 σ n q+2 m 1 ! . . . m n-2 ! k! ℓ! , (26) 
with σ n := (σ n 1 , σ n 2 , . . . , σ n n+2 ) = (k, ℓ, m n-2 , . . . , m 1 , i, j).

Proof of proposition 2. As mentioned above:

(i, j) → (0, i) → (0, 0), for any (i, j) ∈ N 2 since it only requires that 2 successive 0 are drawn from the Poisson random variable. Therefore, to prove strong irreducibility, it is thus sufficient to prove that (0, 0) ⇝ (i, j), for all (i, j) ∈ N 2 . Let us consider different cases, depending on the values of the parameters a and b.

-If a ≥ 0 :. Since λ > 0, s 00 > 0 thus (j, 0) is accessible from (0, 0), for all j ∈ N. Moreover, when a ≥ 0, s j0 = (aj + λ) + > 0 and then (j, 0) → (i, j), yielding the result.

-If -λ < a < 0 and a + b ≥ 0 :. Let k ∈ N. Since a + b ≥ 0 and a + λ > 0, we have : s k+1,k = (a(k + 1) + bk + λ) + = ((a + b)k + a + λ) + > 0, Let (i, j) ∈ N 2 . Since s k+1,k > 0 for all k, we deduce that any (ℓ, k + 1) is accessible from (k + 1, k). Thus, in order to reach (i, j) from (0, 0), we move from small steps to (j, j -1), and then reach (i, j) : (0, 0) → (1, 0) → (2, 1) → • • • → (j, j -1) → (i, j).

which concludes the proof of this case.

-If a ≤ -λ:. We will prove that the communicating class of (0, 0) is given by (25). Let k ∈ N * , then as previously, we have that (0, 0) → (k, 0) since s 00 > 0, however since a ≤ -λ, s k0 = (ak + λ) + = 0, and the next step of the Markov chain will be (0, k). Depending on the value of the parameter b, the next step of the Markov chain will either be (0, 0) if s 0k = 0, or (k ′ , 0) with k ′ ≥ 0 if s 0k > 0 and so on. This proves that the class cl(0, 0) is closed and given by ( 25).

-If -λ < a < 0 and a + b < 0. In this case we can only prove that the Markov chain is not strongly irreducible on N 2 but we do not identify the communicating class of (0, 0).

• Case 1 : b ≤ 0. Since a < 0, we can choose k ⋆ such that ak ⋆ + λ ≤ 0.

We will show that it is not possible to reach the state (1, k ⋆ ). Assuming the opposite leads to the existence of ℓ ∈ N such that (k ⋆ , ℓ) → (1, k ⋆ ) which implies that s k⋆,ℓ > 0. If b < 0, we deduce that necessarly ak ⋆ + bℓ + λ > 0 =⇒ ℓ < -ak ⋆λ b ≤ 0, so ℓ < 0 which is contradictory. We then deduce that the Markov chain is reducible. If b = 0, s k⋆,ℓ > 0 would imply that ak ⋆ + λ > 0 which contradicts the definition of k ⋆ .

• Case 2 : b > 0.

Since a + b < 0, it is possible to choose k ⋆ ∈ N large enough so that :

(a + b)k ⋆ + λ ≤ 0.

In particular, 0 ≥ ak ⋆ + bk ⋆ + λ ≥ ak ⋆ + λ, so that :

-ak ⋆ -λ b ≥ k ⋆ ≥ -λ a .
Notice that k ⋆ ≥ 2 since k ⋆ ≥ -λ a > 1.

We will show that it is not possible to reach (1, k ⋆ ) starting from (0, 0). Assuming the opposite leads us to the existence of n ∈ N such that P n ((0, 0), (1, k ⋆ )) > 0.

Using (26) in the Lemma 4 implies that it exists m 1 , . . . , m n-2 ∈ N such that :

              
s k⋆,m n-2 > 0 s k⋆ m n-2 m n-3 > 0 . . . s m 3 m 2 m 1 > 0 s m 2 m 1 0 > 0 First, we thus have that :

ak ⋆ + bm n-2 + λ > 0 =⇒ m n-2 > -ak ⋆ -λ b ≥ k ⋆ ,
then, since k ⋆ > 0, we necessarily have s m n-2 m n-3 > 0. It yields :

am n-2 + bm n-3 + λ > 0 =⇒ m n-3 > -am n-2 -λ b ≥ -ak ⋆ -λ b ≥ k ⋆ .
We thus have by immediate induction that :

∀i ∈ {1, . . . , n -2}, m i ≥ k ⋆ ≥ -λ a .

Finally, s m 1 ,0 > 0 implies am 1 + λ > 0, which is contradictory. We conclude that there is no finite path between (0, 0) and (1, k ⋆ ), so the Markov chain (X k ) k≥0 is reducible on N 2 . □

Figure 1 .

 1 Figure1. The partition of the parameter space described in Theorem 2. The green region corresponds to R, while the red region corresponds to T . The smaller figures are typical trajectories of the Markov chain (X n ) n≥0 for each region of the parameter space. In the all the simulations, we chose λ = 1. The region delineated by a dashed triangular line corresponds to the region of parameter space for which the linear recurrence equation y n = ay n-1 +by n-2 +λ is bounded for all n ∈ N, for any given y 0 , y 1 ∈ R. See Appendix A for more details.

Figure 3 .

 3 Figure 3. An illustration of Case R 2 . Here, the parameters are a = 3, b = -2.5 and N = 1000. In red, the set A of couples (i, j) such that s ij = s 0i = 0.

Figure 4 .

 4 Figure 4. Graphical representation of the sets A, C described above.

Figure 5 .

 5 Figure 5. Log-log plot of a typical trajectory of (X n ), to make the erratic behaviour of the first points of the Markov chain more visible. Here, the parameters are a = -0.3, b = 1.2 and N = 100.

Figure 6 .

 6 Figure 6. Log-log plot of a typical trajectory of (X n ), with a = 1.5, b = -0.3 and N = 100

Figure 7 .

 7 Figure 7. Trajectories of ( X n ) 0≤n≤1000 for critical parameters (a, b) = (-1, 1) on the left and (a, b) = (0.5, 0.5) on the right. We observe a linear growth of the process as it could be expected in critical cases.

Figure 8 .

 8 Figure 8. Trajectories of ( X n ) 0≤n≤1000 for critical parameters (a, b) = (4, -4) on the left and (a, b) = (2, -1) on the right.

,

  the sequence (x n ) n≥1 solves the system of linear recurrences xn = Ax n-1 + ᾱ, n ≥ 1.
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