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COMPLETE CHARACTERIZATION OF STABILITY OF A

TWO-PARAMETER DISCRETE-TIME HAWKES PROCESS WITH

INHIBITION

MANON COSTA, PASCAL MAILLARD, AND ANTHONY MURARO

Université de Toulouse

Abstract. We consider a discrete-time version of a Hawkes process defined as a Poisson
auto-regressive process whose parameters depend on the past of the trajectory. We allow
these parameters to take on negative values, modelling inhibition. More precisely, the model
is the stochastic process (Xn)n≥0 with parameters a1, . . . , ap ∈ R, p ∈ N and λ ≥ 0, such
that for all n ≥ p, conditioned on X0, . . . , Xn−1, Xn is Poisson distributed with parameter

(a1Xn−1 + · · ·+ apXn−p + λ)+

We consider specifically the case p = 2, for which we are able to classify the asymptotic
behavior of the process for the whole range of parameters, except for boundary cases. In
particular, we show that the process remains stochastically bounded whenever the linear
recurrence equation xn = a1xn−1 + a2xn−1 + λ remains bounded, but the converse is not
true. Relatedly, the criterion for stochastic boundedness is not symmetric in a1 and a2, in
contrast to the case of non-negative parameters, illustrating the complex effects of inhibition.

Keywords: Hawkes process, Inhibition, Markov chain, Auto-regressive process, Ergodicity,
Lyapunov functions.

MSC2020 Classification: 60J20, 62M10, 39A30.

1. Introduction

Hawkes processes are a class of point processes used to model events that occur and have
mutual influence over time. They were initially introduced by Hawkes (1971) ([9], [10]) for
a geophysics purpose to model earthquakes, but are now used in a variety of fields such as
finance, biology, and neuroscience.

More precisely, a Hawkes process (Nh
t )t∈R =

(
Nh([0, t]

)
)t∈R is defined by its initial condition

on (−∞, 0] and its conditional intensity (see [4]) denoted by Λ, characterized by :

∀t ∈ R+, lim
s→0+

E
[
Nh(t+ s)−Nh(t)

∣∣ Ft]
s

= Λ(t), (1)

where Ft := σ
(
Nh
(
(−∞, s)

)
, s ≤ t

)
is the natural filtration of the Hawkes process and :

Λ(t) = φ

(
λ+

∫ t

−∞
h(t− s)Nh(ds)

)
, (2)

where λ > 0, h : R+ → R and φ : R → R+ are measurable, deterministic functions. The
function Λ thus quantifies the probability that an even occurs in a infinitesimal period of
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time. The function h is called the reproduction function, and contains the information of the
behaviour of the process throughout time. The sign of the function h encodes for the type
of time dependence: when h is non negative, the process is said to be self-exciting : every
event that occurs increases the probability of an other event to occur; when h is signed :
the negative values of h can then be seen as self-inhibition (see [2] and [3]). The case where
h ≥ 0 and φ = id is called the linear case. Considering signed functions h requires to add
non-linearity by the mean of a function φ which ensures that the intensity remains positive.
In this paper, we will focus on the particular case where φ = (·)+ is the ReLU function defined
on R by (x)+ = max(0, x).

We are interested in sufficient conditions on h providing the existence of a stable version
of this process. For signed h, Brémaud and Massoulié [1] proved that a stable version of
the process exists if ‖h‖1 < 1. In [3], Costa et al. proved that it is sufficient to have
‖h+‖1 < 1, where h+(x) = max(h(x), 0) using a coupling argument. Unfortunately, this
sufficient criterion does not take into account the effect of inhibition, captured by the negative
part of h. The study of this process is difficult, because of its lack of probabilistic structure.
Actually, the Hawkes process is in general non-markovian, and the construction of a linear
Hawkes process as a Poisson arrival of Galton-Watson clusters (see [10]) fails as soon as we
consider the non linear setting. Recent results have been obtained by [13] in the case of two
populations of interacting neurons with exponential kernels.

In order to get an intuition on the results that one might obtain on Hawkes processes, we
choose to consider a simplified, discrete analogue of those processes. Namely we will study
an auto-regressive process (X̃n)n≥1 with initial condition (X̃0, . . . , X̃−p+1) and such that:

∀n ≥ 1, X̃n ∼ P
(
φ
(
a1X̃n−1 + · · ·+ apX̃n−p + λ

))
, (3)

where P(ρ) denotes the Poisson distribution with parameter ρ, and a1, . . . , ap are real numbers.
In the linear case (a1, . . . , ap non-negative, and φ(x) = x) these integer-valued processes

are called INGARCH processes, and have already been studied in ([6], [7]), where a necessary
condition for existence and stability of this class of processes has been derived. Furthermore,
the link between Hawkes processes and auto-regressive Poisson processes has already been
made for the linear case : M. Kirchner proved that the discretized auto-regressive process
(with p = +∞) converges weakly to the associated Hawkes process (see [11] for details).

In order to explore the effect of inhibition, we consider signed values for the parameters
a1, . . . , ap in the case of p = 2, so that our model of interest can be written as :

∀n ≥ 2, X̃n ∼ P
((

aX̃n−1 + bX̃n−2 + λ
)
+

)
, (4)

with a, b ∈ R and X̃0, X̃1 ∈ N.
In this paper, the most important result is the classification of the process defined in (4).

We will prove that adding a non-linearity to the model makes the process more stable, in
the sense that the region of the parameters where a stationary version of the process exists
is wider. To prove this, we used a wide range of probabilistic tools, corresponding to the
variety of the behaviours of the trajectories of the process, depending on the parameters of
the model.
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2. Notations, definitions and results

2.1. Definition and main result. Let a, b ∈ R and λ > 0. We consider a discrete time
process (X̃n)n≥1 with initial condition (X̃0, X̃−1) such that the following holds for all n ≥ 1:

conditioned on X̃−1, . . . , X̃n−1: X̃n ∼ P
((

aX̃n−1 + bX̃n−2 + λ
)
+

)
,

where (·)+ is the ReLU function defined on R by (x)+ := max(0, x).
As we said previously, some papers have already been dealing with the linear version of this

process : if a and b are non-negative, the parameter of the Poisson random variable in (4) is
also non-negative, and the ReLU function vanishes. In this case, Proposition 1 in [6] states
that the process is a second-order stationary process if a + b < 1. This weak stationarity
ensures that the mean, variance and autocovariance are constant with time.

Let us define the function

bc(a) =


1 a ≤ 0

1− a a ∈ (0, 2)

−a2

4 a ≥ 2

and define the following sets (see Figure 1):

R =
{

(a, b) ∈ R2 : b < bc(a)
}

(5)

T =
{

(a, b) ∈ R2 : b > bc(a)
}
. (6)

Our main result is the following

Theorem 1.

• If (a, b) ∈ R, then the sequence (X̃n)n≥0 converges in law as n→∞.

• if (a, b) ∈ T , then the sequence (X̃n)n≥0 satisfies that almost surely

X̃n + X̃n+1 −→
n→∞

+∞ .

This result derives from the study of the natural Markov chain associated with X̃n that is
defined by:

Xn := (X̃n, X̃n−1) .

Before giving more details about the behaviour of (Xn)n≥0, let us comment on Theorem 1.
In particular, we stress that the condition for convergence in law is not symmetrical in a and
b. More precisely, for any a ∈ R, the sequence (X̃n) can be tight provided that b is chosen
small enough, but the converse is not true as soon as b > 1. This induces that inhibition has
a stronger regulating effect when occurs after an excitation, rather than before.

2.2. The associated Markov chain. As mentioned above, the main part of the article is
devoted to the study of a Markov chain (Xn) which encodes the time dependency of (X̃n).
We will rely on the recent treatment by Douc, Moulines, Priouret and Soulier [5] for results
about Markov chains. In particular, we use their notion of irreducibility, which is weaker than
the usual notion of irreducibility typically found in textbooks on Markov chains (on discrete
state space). Thus, a Markov chain is called irreducible if there exists an accessible state, i.e.
a state that can be reached with positive probability from any other state. Following Douc,
Moulines, Priouret and Soulier [5], we refer to the usual notion of irreducibility (i.e., every
state is accessible) as strong irreducibility.
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Let us recall that Xn is defined as

Xn := (X̃n, X̃n−1), n ≥ 0 . (7)

and, conditioned on X̃−1, . . . , X̃n−1,

X̃n+1 ∼ P((aX̃n + bX̃n−1 + λ)+) .

The transition matrix of the Markov chain (Xn)n≥0 defined in (7) is thus given for (i, j, k, l) ∈
N4 by:

P ((i, j), (k, `)) = δi`
e−sijskij
k!

, (8)

where :

sij := (ai+ bj + λ)+ and δij :=

{
1 if i = j

0 else
.

In other words, starting from a state (i, j), the next step of the Markov chain will be (k, i)
where k ∈ N is the realization of a Poisson random variable with parameter sij . In particular,
if sij = 0, then the next step of the Markov chain is (0, i).

Since the probability that a Poisson random variable is zero is strictly positive, it is possible
to reach the state (0, 0) with positive probability from any state in two steps. In particular, the
state (0, 0) is accessible and the Markov chain is irreducible. Furthermore, the Markov chain
is aperiodic [5, Section 7.4], since P ((0, 0), (0, 0)) = e−λ > 0. Note that strong irreducibility
may not hold (see Proposition 2 in the appendix).

Recall the definition of the sets R and T in (5) and (6).

Theorem 2.

• Let (a, b) ∈ R. Then the Markov chain (Xn)n≥0 is geometrically ergodic, i.e., it
admits an invariant probability measure π and there exists β > 1, such that for every
initial state,

βndTV (Law(Xn), π)→ 0, n→∞,
where dTV denotes total variation distance.
• Let (a, b) ∈ T . Then the Markov chain is transient, i.e., every state is visited a finite

number of times almost surely, for every initial state.

Theorem 1 is a simple consequence of this result. Indeed, in the case of (a, b) ∈ R, the

convergence in law of X̃n simply derives from the convergence in law of Xn since X̃n is the
first coordinate of Xn. In the transient case, (a, b) ∈ T the result in Theorem 1 simply derives
from the fact that ||Xn||1 →n→∞ ∞ almost surely.

The rest of the article is devoted to the proof of Theorem 2. We first focus on the recurrent
case in Section 3, then on the transient case in Section 4.

3. Proof of Theorem 2: recurrence

In this section, we prove the recurrence part of Theorem 2. The proof goes by exhibit-
ing three functions satisfying a Foster-Lyapounov drift conditions for different ranges of the
parameters (a, b) covering the whole recurrent regime R.
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a

b

1

-1

1

b = −a2

4

b =
1−

a

•

• •Case R

•

•

Case T1
Case T2

•

Figure 1. The partition of the parameter space described in Theorem 2. The
green region corresponds to R, while the red region corresponds to T . The
smaller figures are typical trajectories of the Markov chain (Xn)n≥0 for each
region of the parameter space. In the all the simulations, we chose λ = 1.

3.1. Foster-Lyapounov drift criteria. Drift criteria are powerful tools that have been
introduced by Foster [8], and deeply studied, and popularized, by Meyn and Tweedie [12],
among others. These drift criteria allow to prove convergence to the invariant measure of
Markov chains and yield explicit rates of convergence. We use here the treatment from Douc,
Moulines, Priouret and Soulier [5], which is influenced by Meyn and Tweedie [12], but is more
suitable for Markov chains which are irreducible but not strongly irreducible.

A set of states C ⊂ N2 is called petite [5, Definition 9.4.1], if there exists a state x0 ∈ N2

and a probability distribution (pn)n∈N on N such that

inf
x∈C

∑
n∈N

pnP
n(x, x0) > 0,

where we recall that Pn(x, x0) is the n-step transition probability from x to x0. Since the
Markov chain (Xn)n≥0 is irreducible, any finite set is petite (take x0 to be the accessible state)
and any finite union of petite sets is petite [5, Proposition 9.4.5].

Let V : N2 → [1,∞) be a function, ε ∈ (0, 1], K < ∞ and C ⊂ N2 a set of states. We say
that the drift condition D(V, ε,K,C) is satisfied if

∆V (x) := Ex[V (X1)− V (X0)] ≤ −εV (x) +K1C

It is easy to see that this condition implies condition Dg(V, λ, b, C) from [5, Definition 14.1.5],
with λ = 1− ε and b = K.
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Proposition 1. Assume that the drift condition D(V, ε,K,C) is verified for some V , ε, K
and C as above and assume that C is petite. Then there exists β > 1 and a probability measure
π on N2, such that, for every initial state x ∈ N2,

βn ×
∑
y∈N2

V (y)|Px(Xn = y)− π(y)| → 0, n→∞.

In particular, for every initial state x ∈ N2,

βndTV (Law(Xn), π)→ 0, n→∞
and π is an invariant probability measure for the Markov chain (Xn)n≥0.

Proof. As mentioned in Section 2.2, the Markov chain is irreducible and aperiodic. The first
statement then follows by combining parts (ii) and (a) of Theorem 15.1.3 in [5] with the
remark preceding Corollary 14.1.6 in [5]. The second statement immediately follows, noting
that V ≥ 1. �

We will consider separately the following ranges of the parameters:

R1 = {(a, b) ∈ R2 : a, b < 1 and a+ b < 1} ,
R2 = {a > 0 and a2 + 4b < 0} ,
R3 = {1 ≤ a < 2 and −1 < b < 1− a} .

a

b

1

-1

1

b = −a2

4

b =
1−

a

R1

R2

R3

Figure 2. Illustration of the three zones of parameters on which the proof of
ergodicity will be carried.

We then have R = R1 ∪R2 ∪R3, see Figure 2.

3.2. Case R1. This case is the natural extension of the results that have been already proved
for the linear process (see Proposition 1 in [6]).

Let V : N2 → R+ the function defined by

V (i, j) := αi+ βj + 1,

where α, β > 0 are parameters to be chosen later.
We then have that V (i, j) ≥ 1 for all (i, j) ∈ N2. We look for ε > 0 such that ∆V (x) +

εV (x) ≤ 0 except for a finite number of x ∈ N2.
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Figure 3. Typical trajectory for the case R1. Here, the parameters chosen
are a = 0.6, b = 0.3 and N = 1000

Let ε > 0 to be properly chosen later. Then,

∆V (i, j) + εV (i, j) =
∑
k∈N

e−sijskij
k!

(αk + βi+ 1)− (αi+ βj + 1) + ε(αi+ βj + 1)

= αsij + i(β − α+ αε) + j(βε− β) + ε ,

Note that ∆V + εV is a linear function of (i, j). We will thus choose α, β such that the
coefficients of ∆V +εV are negative, so there will be only a finite number of (i, j) that satisfies
∆V (i, j) + εV (i, j) ≥ 0.

Let us first consider couples (i, j) such that sij = 0. According to the above, it is sufficient
to have : {

β − α+ αε < 0
βε− β < 0

⇐⇒
{
β < α(1− ε)
ε < 1

.

In the sequel, we impose ε < 1.
If sij = ai+ bj + λ > 0, then :

∆V (i, j) + εV (i, j) = i(αa− α+ β + αε) + j(αb+ βε− β) + λα+ ε.

For the same reasons as before, it is sufficient to have α, β > 0 such that :{
αa− α+ β + αε < 0
αb+ βε− β < 0

⇐⇒
{
β < α(1− a− ε)
β >

αb

1− ε (since ε < 1)
.

Let α := 1. With the above statements we thus want to choose β, ε > 0 such that :{ b

1− ε < β < 1− a− ε
β < 1− ε

i.e.
b

1− ε < β < min{1− a− ε, 1− ε}.
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Recall that a+ b < 1, so it is possible to find ε0 ∈ (0, 1) small enough so that :

∀ε̃ ≤ ε0,
b

1− ε̃ < 1− a− ε̃.

− If a ≥ 0, then min{1− a− ε, 1− ε} = 1− a− ε and since a < 1, we can choose ε ≤ ε0
so small that

b

1− ε < β < min{1 − a − ε, 1 − ε} on one hand, and 1 − a − ε > 0 on

the other hand. It is thus possible to choose β > 0 such that :

b

1− ε < β < min{1− a− ε, 1− ε}.

− If a < 0, then min{1− a− ε, 1− ε} = 1− ε. Since b < 1, it is possible to set ε ≤ ε0 so

small that b < (1− ε)2. Hence we have
b

1− ε < 1− ε, so that it is possible to choose

β > 0 that satisfies our constrains.

Note that ∆V (0, 0) = λ > 0. Hence, with α, β, ε > 0 chosen as above, we have that :

∆V (i, j) ≤ −εV (i, j) except for a finite number of states (i, j) ∈ N2.

This proves that a drift condition D(V, ε, C) holds for C finite set, which yields the result.

3.3. Case R2. In this section, we assume that a > 0 and a2 + 4b < 0.

Figure 4. An illustration of Case R2. Here, the parameters are a = 3, b =
−2.5 and N = 1000. In red, the set A of couples (i, j) such that sij = s0i = 0.

The Lyapounov function we will consider is the following one:

∀(i, j) ∈ N2, V (i, j) =
i

j + 1
+ 1.

Before getting into the details, a remark about this function. While we initially discovered
it by trial and error, it has an interesting geometric interpretation. As seen in Figure 4,
in case R2, the macroscopic trajectories of the Markov chain tend to turn counterclockwise
until they hit the j-axis and eventually get pulled back to (0, 0). This provides a heuristic
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understanding of why V should be a Lyapounov function. Indeed, it is an increasing function
of the angle between the vector (i, j) and the j-axis, and therefore V (Xn) should have a
tendency to decrease whenever Xn is far away from the j-axis.

We now turn to the details. We will need to distinguish the region A of the states (i, j)
where sij = 0 (shown in red in Figure 4):

A :=
{

(i, j) ∈ N2 : sij = 0
}

=
{

(i, j) ∈ N2 : ai+ bj + λ ≤ 0
}
. (9)

We have the following lemma:

Lemma 1. The set A is petite.

Proof. By definition of A, we have sij = 0 for all (i, j) ∈ A, hence P ((i, j), (0, i)) = 1.
Furthermore, for every i ∈ N, since b < −a2/4 < 0, we have

P ((0, i), (0, 0)) = e−s0i = e−(λ+bi)+ ≥ e−λ.

It follows that

inf
(i,j)∈A

P 2((i, j), (0, 0)) ≥ e−λ > 0,

which shows that A is petite. �

Lemma 2. There exists a finite set C ⊂ N2 and ε ∈ (0, 1), such that the drift condition
D(V, ε,K,A ∪ C) is satisfied for some K <∞.

Proof. Since
a2

4
+ b < 0, there exists ε ∈ (0, 1) small enough such that

a2

4
+ b < bε < 0.

Consider (i, j) 6∈ A, and compute :

∆V (i, j) + εV (i, j) =
(ε− 1)i2 + bj2 + aij + L(i, j)

(i+ 1)(j + 1)
,

where L(i, j) is a polynomial of degree 1.

On the numerator we recognize a quadratic form, and as a2

4 + b(1 − ε) < 0, we have that
this quadratic form is negative-definite. Thus, there is only a finite number of (i, j) 6∈ A such
that ∆V (i, j) + εV (i, j) > 0. We define C ⊂ N2 \A to be the finite set of such (i, j).

Note that for every (i, j) ∈ A, we have

∆V (i, j) + εV (i, j) ≤ E(i,j)[V (X1)] = V (0, i) = 1.

Hence, setting K = 1 ∨ maxx∈C Ex[V (X1)] ∈ [1,∞), the finiteness of K following from the
fact that C is finite, we have that the drift condition D(V, ε,K,A ∪ C) is satisfied.

Figure 5 illustrates the cutting of the state space that we just described. �

In the case R2, by Lemma 1 and Lemma 2, we can now apply Proposition 1. Note that
A∪C is petite because A is petite (Lemma 1), C is finite, hence petite, and the union of two
petite sets is again petite. This yields the proof of the case R2 of Theorem 2.
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Figure 5. Graphical representation of the sets A,C described above.

3.4. Case R3. To finish the proof of Theorem 2, it suffices to consider parameters a and b

such that 1 ≤ a < 2 and −a2

4 < b < 1− a. However, for the sake of conciseness, we will prove
the ergodicity of the Markov chain on a larger space, namely R3. As a consequence, this
case will cover some parameters sets which have already been considered in case R2. Note
that this does not represent any issue in our strategy of proof. The choice of R3 will become
clearer later on.

We will thus assume here that 1 ≤ a < 2 and −1 < b < 1 − a. Let us denote by V the
following function :

∀(i, j) ∈ N2, V (i, j) := 1 +

(
i2 − aij +

b2 + 1

2
j2
)
1Ac(i, j).

First notice that the quadratic form in V is positive-definite.
Indeed, if 1 ≤ a < 2, then b2 > (1− a)2 and :

4× b2 + 1

2
− a2 > 2(1− a)2 + 2− a2 = (a− 2)2 > 0.

Thus, the function V satisfies V ≥ 1.
Compute, for (i, j) 6∈ A and ε ∈ (0, 1) to be properly chosen later :

∆V (i, j) + εV (i, j) =

∞∑
k=0

e−sijskij
k!

V (k, i) + (ε− 1)V (i, j)

≤
∞∑
k=0

e−sijskij
k!

(
1 +

(
k2 − aki+

b2 + 1

2
i2
))

+ (ε− 1)V (i, j)

= sij(sij + 1)− aisij +
b2 + 1

2
i2 + (ε− 1)V (i, j)

=

(
b2 − 1

2
+ ε

)
i2 + a(b+ 1− ε)ij +

(
b2(1 + ε) + ε− 1

2

)
j2 + L(i, j),

where L(i, j) is a polynomial of degree 1.
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We want to choose ε ∈ (0, 1) such that the above quadratic form is negative-definite, that
is, such that :

b2 − 1

2
+ ε < 0, and

(
b2 − 1

2
+ ε

)(
b2(1 + ε) + ε− 1

2

)
− a2

4
(b+ 1− ε)2 > 0. (10)

On the one hand, we have b2− 1 < 0. On the other hand, the second inequality in (10) can
be written as follows :

(b2 − 1)2 − a2(b+ 1)2 + kε,a,b > 0,

where kε,a,b ∈ R satisfies kε,a,b −→
ε→0

0.

In addition, note that :

(a, b) ∈ R3 =⇒ (b2 − 1)2 − a2(b+ 1)2 > 0.

From the foregoing, we deduce that there exists ε ∈ (0, 1) small enough such that both
conditions of (10) are satisfied. Thus, there is only a finite number of (i, j) 6∈ A such that
∆V (i, j) + εV (i, j) > 0. We define C ⊂ N2 \A to be the finite set of such (i, j).

Finally, similarly as in Lemma 1, the set A is petite, because b < 1 − a ≤ 0. Furthermore
similarly as in the case R2, for all (i, j) ∈ A, E(i,j)(V (X1)) = V (0, i) is bounded, since
(0, i) ∈ A except for a finite number of i. Since the set C is finite, we have that A ∪ C is a
petite set and up to an adequate choice of K the drift condition D(V, ε,K,A∪C) is satisfied.

4. Proof of Theorem 2: transience

In this section, we show that the Markov chain (Xn)n≥0 is transient in the regime T of the
parameters. We will distinguish between the following two cases:

• Case T1 : a < 0, b > 1 (section 4.1).
• Case T2 : 0 ≤ a < 2 and a+ b > 1 or a ≥ 2 and a2 + 4b > 0 (section 4.2).

In both cases, we will apply the following lemma:

Lemma 3. Let S1, S2, . . . be a sequence of subsets of N2 and 0 < m1 < m2 < . . . an increasing
sequence of integers. Suppose that

(1) On the event
⋂
n≥1{Xmn ∈ Sn}, we have Xn 6= (0, 0) for all n ≥ 1,

(2) P(0,0)(Xm1 ∈ S1) > 0 and for all n ≥ 1 and every x ∈ Sn, we have Px(Xmn+1−mn ∈
Sn+1) > 0.

(3) There exist (pn)n≥1 taking values in [0, 1] and such that
∑

n≥1(1−pn) <∞, such that

∀n ≥ 1 : ∀x ∈ Sn : Px(Xmn+1−mn ∈ Sn+1) ≥ pn.
Then the Markov chain (Xn)n≥0 is transient.

Proof. Since (0, 0) is an accessible state, it is enough to show that

P(0,0)(Xn 6= (0, 0) ,∀n ≥ 1) > 0.

Using assumption 1, it is sufficient to prove that

P(0,0)(Xmn ∈ Sn ,∀n ≥ 1) > 0. (11)

By assumption 3, there exists n0 ≥ 1 such that
∏
n≥n0

pn > 0. It follows that for every
x ∈ Sn0 ,

Px(Xmn−mn0
∈ Sn ,∀n > n0) ≥

∏
n≥n0

pn > 0.
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Furthermore, by assumption 2, we have that

P(0,0)(∀n ≤ n0 , Xmn ∈ Sn) > 0.

Combining the last two inequalities yields (11) and finishes the proof. �

4.1. Case T1. In this region of parameters, the Markov chain eventually reaches the i and j
axes. Indeed, since a < 0, if (Xn) hits a state (i, 0) with i ≥ −λ

a , as si0 = (ai+ λ)+ = 0, the
next step of the Markov chain will be (0, i). Afterwards, the Markov chain will hits the state
(P(bi+ λ), 0), with bi+ λ > i. Consequently, to follow the example, if we focus on the i axe,
starting from (k, 0) with k big enough, the Markov chain will return in two steps to a state
(k′, 0) belonging to the i-axe, satisfying k′ > k with high probability.

Figure 6. Log-log plot of a typical trajectory of (Xn), to make the erratic
behaviour of the first points of the Markov chain more visible. Here, the
parameters are a = −0.3, b = 1.2 and N = 100.

In order to formalize these observations, it is very natural to consider the Markov chain

induced by the transition matrix P 2, namely (X2n+1)n≥0. For i ≥ −λ
a
, si0 = 0 and thus :

P
(
X2n+1 = (k, 0)

∣∣ X2n−1 = (i, 0), i ≥ −λ
a

)
=
e−s0isk0i
k!

=
e−(bi+λ)(bi+ λ)k

k!
.

(12)

Note that if a ≤ −λ, this results holds for i ∈ N.
Equation (12) means that if X̃2n−1 ≥ −λ

a , and X̃2n−2 = 0, then X̃2n = 0, and X̃2n+1 is a

Poisson random variable with parameter bX̃2n−1 + λ.
Let us now prove our statement.

Proof of the transience of (Xn) when a < 0 and b > 1. Fix r ∈ (1, b). We wish to apply Lemma 3
with

mn = 2n− 1, n ≥ 1



DISCRETE-TIME HAWKES PROCESS WITH INHIBITION 13

and

Sn = {(i, 0) ∈ N : i ≥ rn}.
We verify that the assumptions (1)-(3) from Lemma 3 hold. For the first assumption, note that
if X2n−1 = (i, 0) ∈ Sn, then X2n = (j, i) for some j, hence X2n−1 6= (0, 0) and X2n 6= (0, 0)
since i ≥ 1. In particular, assumption (1) holds.

We now verify that the second assumption holds. For states x, y ∈ N2, write x →1 y if
Px(X1 = y) > 0. Furthermore, for S ⊂ N2, write x →1 S if x →1 y for some y ∈ S. Note
that (0, 0) →1 (i, 0) for every i ∈ N, so that (0, 0) →1 S1. Now, for every i ∈ N, we have
(i, 0) →1 (0, i), and then, because b > 0, (0, i) →1 (j, 0) for every j ∈ N. In particular, from
every x ∈ Sn, we can indeed reach Sn+1 in two steps. Hence, the second assumption is verified
as well.

We now prove the third assumption. We claim that there exists n0 ∈ N, such that the
following holds:

∀n ≥ n0,∀x ∈ Sn : Px(X2 ∈ Sn+1) ≥ 1− b

(b− r)2rn . (13)

To prove (13), first note that according to the earlier remark on (12), if n0 is chosen such that

rn0 ≥ −λ/a, then starting from a state (i, 0) with i ≥ rn0 , we have X̃1 = 0 almost surely and

X̃2 ∼ P(bi+ λ). Therefore, if n ≥ n0 and i ≥ rn ≥ rn0 ,

1− P(i,0)(X̃2 ≥ rn+1, X̃1 = 0) = P(i,0)(X̃2 < rn+1)

≤ P
(
P(bi+ λ) < rn+1

)
≤ P

(
P(brn) < rn+1

)
= P (P(brn)− brn < rn(r − b))
= P (|P(brn)− brn| > rn(b− r))

≤ b

(b− r)2rn ,

by the Bienaymé-Chebychev inequality. This proves (13). Now, (13) implies,

∀x ∈ Sn : Px(X2 ∈ Sn+1) ≥ pn :=

(
1− b

(b− r)2rn
)

+

,

and ∑
n≥1

(1− pn) ≤
∑
n≥1

b

(b− r)2rn <∞.

This proves that the third assumption of Lemma 3 holds. The lemma then shows that the
Markov chain is transient. �

4.2. Case T2: 0 ≤ a < 2 and a + b > 1 or a ≥ 2 and a2 + 4b > 0. For this case, we will
take benefit of the comparison between the stochastic process (X̃n) and its linear deterministic
version. Namely, let us consider the linear recurrence relation defined by y0, y1 ∈ N and :

∀n ≥ 0, yn+2 = ayn+1 + byn + λ. (14)
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Figure 7. Log-log plot of a typical trajectory of (Xn), with a = 1.5, b = −0.3
and N = 100

The solutions to this equation are determined by the eigenvalues and eigenvectors of the matrix(
0 b
1 a

)
, which is the companion matrix of the polynomial X2 − aX − b. An eigenvalue of a

companion matrix is a root of its associated polynomial. An easy calculation shows that in
case T2, we have a2 + 4b > 0, hence the eigenvalues are simple and real-valued. We denote
the largest eigenvalue by:

θ :=
a+
√
a2 + 4b

2
.

The following holds in case T2, as can be easily verified:

θ > 1 (15)

θ2 + b > 0. (16)

In fact, one can check that case T2 exactly corresponds to the region in the space of parameters
a, b where θ > 1, meaning that the sequence (yn+1, yn)n≥0, with (yn)n≥0 the solution to (14),
grows exponentially inside the positive quadrant, along the direction of the eigenvector (θ, 1).

In what follows, we fix 1 < r < θ, such that

r2 − ar − b < 0, (17)

where we use the fact that θ > 1 is the largest root of the polynomial X2 − aX − b.
We split our study into two different sub-cases depending on the sign of b.

4.2.1. Subcase T2a : b ≥ 0. In this case, we have aX̃n + bX̃n−1 + λ > 0 for all n ∈ N, and so
X̃n+1 ∼ P(aX̃n + bX̃n−1 + λ), i.e. no truncation is necessary. It is classical that in this case,

X̃n grows exponentially in n almost surely, but we provide a simple proof for completeness.
We therefore apply Lemma 3 with the sequence mn = n and

Sn = {(i, j) ∈ N2, i ≥ rn, j ≥ rn−1}.
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With these notations, assumption 1 is automatically satisfied. Assumption 2 is also satisfied,
because (i, j)→1 (k, i) for every i, j, k ∈ N, since ai+bj+λ > 0 for every i, j ∈ N as explained
above.

In order to prove assumption 3, let us consider n ∈ N and let (i, j) ∈ Sn. By definition,

starting from (i, j), X̃1 ∼ P(ai+ bj + λ). Thus,

P(i,j)(X̃1 < rn+1) = P
(
P(ai+ bj + λ) < rn+1

)
≤ P

(
P(arn + brn−1) < rn+1

)
= P

(
P(arn + brn−1)− (arn + brn−1) < rn−1(r2 − ar − b)

)
.

Recall that r2 − ar − b < 0 by (17), which implies :

P(i,j)(X̃1 < rn+1) ≤ P
(∣∣P(arn + brn−1)− (arn + brn−1)

∣∣ > −rn−1(r2 − ar − b))
≤ (a+ b)r2

rn(r2 − ar − b)2 ,

where we used again the Bienaymé-Chebychev inequality. Thus

P(i,j)(X1 ∈ Sn+1) ≥
(

1− (a+ b)r2

rn(r2 − ar − b)2
)

+

=: pn.

This allows to conclude the proof with Lemma 3, as in the previous case.

4.2.2. Subcase T2b : b < 0. In this case, because of the negativity of b it is more difficult to
find an adequate lower-bound of aX̃n + bX̃n−1. We will thus prove a stronger result, which is
illustrated on Figure 7 : asymptotically, the process (X̃n) grows exponentially and the ratio

X̃n+1/X̃n is close to θ.
From (17) and (16), we can choose ε > 0 small enough such that :

r2 − a(r − ε)− b < 0 (18)

θ2 − θε+ b > 0. (19)

We will use Lemma 3 using mn = n and for n ∈ N∗ :

Sn =

{
(i, j) ∈ N2, i ≥ rn, j ≥ rn−1,

∣∣∣∣ ij − θ
∣∣∣∣ ≤ ε} .

Note that Assumption 1 from Lemma 3 is again automatically verified. Assumption 2 is also
verified, since for (i, j) ∈ Sn, we have

ai+ bj + λ >
[
a(θ − ε) + b

]
j ≥

[
a(r − ε) + b

]
j > 0, (20)

by (18), and so (i, j)→1 (k, i) for every k ∈ N.
We now show that Assumption 3 from Lemma 3 is verified. Let n ∈ N and (i, j) ∈ Sn.

Then :

P(i,j)(X1 /∈ Sn+1) ≤ P(i,j)

(
X̃1 < rn+1

)
+ P(i,j)

(∣∣∣∣∣X̃1

i
− θ
∣∣∣∣∣ > ε

)
(21)
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We first bound the first term on the right-hand side of (21). By (20), we have

P(i,j)

(
X̃1 < rn+1

)
= P

(
P(ai+ bj + λ) < rn+1

)
≤ P

(
P
([
a(r − ε) + b

]
rn−1

)
< rn+1

)
= P

(
P
([
a(r − ε) + b

]
rn−1

)
−
[
a(r − ε) + b

]
rn−1 < rn−1

[
r2 − a(r − ε)− b

])
.

Furthermore, using (18) and applying the Bienaymé-Chebychev inequality we obtain :

P(i,j)

(
X̃1 < rn+1

)
≤ P

(∣∣∣P([a(r − ε) + b
]
rn−1

)
−
[
a(r − ε) + b

]
rn−1

∣∣∣ > −rn−1[r2 − a(r − ε) + b
])

≤
[
a(r − ε) + b

]
rn−1[

rn−1
[
r2 − a(r − ε) + b

]]2
=

[
a(r − ε) + b

]
r

rn
[
r2 − a(r − ε) + b

]2 =
C1

rn
,

(22)

where C1 is a constant that does not depend on n.

We now bound the second term on the right-hand side of (21). Let us write :∣∣∣∣∣X̃1

i
− θ
∣∣∣∣∣ =

∣∣∣∣∣X̃1 − E(i,j)[X̃1]

i

∣∣∣∣∣+

∣∣∣∣∣E(i,j)[X̃1]

i
− θ
∣∣∣∣∣

First notice that, for any (i, j) ∈ Sn :∣∣∣∣∣∣
E(i,j)

[
X̃1

]
i

− θ

∣∣∣∣∣∣ =

∣∣∣∣ai+ bj + λ

i
− θ
∣∣∣∣ =

∣∣∣∣a+ b
j

i
+
λ

i
− θ
∣∣∣∣

≤
∣∣∣∣a+

b

θ
− θ
∣∣∣∣︸ ︷︷ ︸

=0

+|b|
∣∣∣∣ji − 1

θ

∣∣∣∣+
λ

i

<
|b|

θ(θ − ε)ε+
λ

i
, (23)

where we used that if |x− θ| < ε and ε < θ, then∣∣∣∣1x − 1

θ

∣∣∣∣ =
|θ − x|
xθ

<
ε

θ(θ − ε) .
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To prove that P(i,j)

(∣∣∣∣∣X̃1

i
− θ
∣∣∣∣∣ > ε

)
≤ C2

rn
, where C2 is a constant that does not depend on

n, we deduce from (23) that it is sufficient to show that :

P(i,j)


∣∣∣X̃1 − E(i,j)[X̃1]

∣∣∣+ λ

i
> δε

 ≤ C2

rn
,

where, by (19), we have

δ := 1− |b|
θ(θ − ε) > 0.

Furthermore, since b < 0 and (i, j) ∈ Sn, we have that

ai+ bj + λ ≤ ai+ λ ≤ (a+ λ)i.

We finally have, using the Bienaymé-Chebyshev inequality :

P(i,j)


∣∣∣X̃1 − E(i,j)[X̃1]

∣∣∣+ λ

i
> δε

 = P(i,j)

(∣∣∣X̃1 − E(i,j)[X̃1]
∣∣∣ > δεi− λ

)
≤ (a+ λ)i

(δεi− λ)2

≤ a+ λ(
δεrn/2 − λr−n/2

)2
This yields, for some constant C2 <∞,

P(i,j)


∣∣∣X̃1 − E(i,j)[X̃1]

∣∣∣+ λ

i
>

(
1− |b|

θ(θ − ε)

)
ε

 ≤ C2

rn
. (24)

Combining (22) and (24) we have that :

P(i,j)(X1 ∈ Sn+1) ≥
(

1− C1 + C2

rn

)
+

=: pn.

Which will finally lead us to the result, by using Lemma 3 as before.

Appendix A. Criteria for strong irreducibility

The Markov chain considered in this article is irreducible in the (weak) sense of Douc,
Moulines, Priouret and Soulier [5], but not necessarily strongly irreducible, i.e. irreducible
in the classical sense. In this section, we study the decomposition of the state space into
communicating classes. We recall the basic definitions. Let x, y ∈ N2. We say that x leads to
y, or, in symbols, x→ y, if there exists n ≥ 0 such that P(Xn = y | X0 = x) > 0. We say that
x communicates with y if x→ y and y → x. This is an equivalence relation which partitions
the state space N2 into classes called communicating classes.

Recall that the Markov chain is called strongly irreducible if all states are accessible, equiv-
alently, if N2 is a communicating class. A communicating class C ⊂ N2 is called closed if
there does not exist x ∈ C and y ∈ Cc, such that x→ y.

Proposition 2.
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• The Markov chain (Xn) is strongly irreducible on N2 if and only if a ≥ 0, or if a > −λ
and a+ b ≥ 0.
• The communicating class of (0, 0) contains

S = {(0, 0)} ∪ {(0, k), k ∈ N∗} ∪ {(k, 0), k ∈ N∗} . (25)

and is actually equal to S iff a ≤ −λ.

We will use the following :

Lemma 4. Let i, j, k, ` ∈ N. The transition matrix P of the Markov chain (Xk) satisfies :

P 2 ((i, j), (k, `)) =
e−(sij+s`i)s`ijs

k
`i

`! k!
,

and for all n ≥ 3,

Pn ((i, j), (k, `)) =
∑

m1,...,mn−2∈N

exp

−
n∑
q=1

sσn
q+1σ

n
q+2


n∏
q=1

s
σn
q

σn
q+1σ

n
q+2

m1! . . .mn−2! k! `!
, (26)

with σn := (σn1 , σ
n
2 , . . . , σ

n
n+2) = (k, `,mn−2, . . . ,m1, i, j).

Proof of proposition 2. As mentioned above:

(i, j)→ (0, i)→ (0, 0),

for any (i, j) ∈ N2 since it only requires that 2 successive 0 are drawn from the Poisson
random variable. Therefore, to prove strong irreducibility, it is thus sufficient to prove that
(0, 0)  (i, j), for all (i, j) ∈ N2. Let us consider different cases, depending on the values of
the parameters a and b.
− If a ≥ 0 :. Since λ > 0, s00 > 0 thus (j, 0) is accessible from (0, 0), for all j ∈ N.

Moreover, when a ≥ 0, sj0 = (aj + λ)+ > 0 and then (j, 0)→ (i, j), yielding the result.

− If −λ < a < 0 and a+ b ≥ 0 :. Let k ∈ N. Since a+ b ≥ 0 and a+ λ > 0, we have :

sk+1,k = (a(k + 1) + bk + λ)+ = ((a+ b)k + a+ λ)+ > 0,

Let (i, j) ∈ N2. Since sk+1,k > 0 for all k, we deduce that any (`, k + 1) is accessible from
(k + 1, k). Thus, in order to reach (i, j) from (0, 0), we move from small steps to (j, j − 1),
and then reach (i, j) :

(0, 0)→ (1, 0)→ (2, 1)→ · · · → (j, j − 1)→ (i, j).

which concludes the proof of this case.

− If a ≤ −λ:. We will prove that the communicating class of (0, 0) is given by (25).
Let k ∈ N∗, then as previously, we have that (0, 0) → (k, 0) since s00 > 0, however since
a ≤ −λ, sk0 = (ak+λ)+ = 0, and the next step of the Markov chain will be (0, k). Depending
on the value of the parameter b, the next step of the Markov chain will either be (0, 0) if
s0k = 0, or (k′, 0) with k′ ≥ 0 if s0k > 0 and so on. This proves that the class cl(0, 0) is closed
and given by (25).
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− If −λ < a < 0 and a+ b < 0. In this case we can only prove that the Markov chain is not
strongly irreducible on N2 but we do not identify the communicating class of (0, 0).

• Case 1 : b ≤ 0.
Since a < 0, we can choose k? such that

ak? + λ ≤ 0.

We will show that it is not possible to reach the state (1, k?). Assuming the opposite
leads to the existence of ` ∈ N such that (k?, `)→ (1, k?) which implies that sk?,` > 0.
If b > 0, we deduce that necessarly

ak? + b`+ λ > 0 =⇒ ` <
−ak? − λ

b
≤ 0,

so ` < 0 which is contradictory. We then deduce that the Markov chain is reducible.
If b = 0, sk?,` > 0 would imply that ak? + λ > 0 which contradicts the definition of

k?.
• Case 2 : b > 0.

Since a+ b < 0, it is possible to choose k? ∈ N large enough so that :

(a+ b)k? + λ ≤ 0.

In particular, 0 ≥ ak? + bk? + λ ≥ ak? + λ, so that :

−ak? − λ
b

≥ k? ≥
−λ
a
.

Notice that k? ≥ 2 since k? ≥
−λ
a

> 1.

We will show that it is not possible to reach (1, k?) starting from (0, 0). Assuming
the opposite leads us to the existence of n ∈ N such that

Pn ((0, 0), (1, k?)) > 0.

Using (26) in the Lemma 4 implies that it exists m1, . . . ,mn−2 ∈ N such that :

sk?,mn−2 > 0

sk?mn−2mn−3
> 0

. . .

sm3
m2m1

> 0

sm2
m10

> 0

First, we thus have that :

ak? + bmn−2 + λ > 0 =⇒ mn−2 >
−ak? − λ

b
≥ k?,

then, since k? > 0, we necessarily have smn−2mn−3 > 0. The consideration on the
exponent is important, to avoid the case where sij = 0 with an exponent equal to 0.
It yields :

amn−2 + bmn−3 + λ > 0 =⇒ mn−3 >
−amn−2 − λ

b
≥ −ak? − λ

b
≥ k?.
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We thus have by immediate induction that :

∀i ∈ {1, . . . , n− 2}, mi ≥ k? ≥
−λ
a
.

Finally, sm1,0 > 0 implies am1 + λ > 0, which is contradictory.
We conclude that there is no finite path between (0, 0) and (1, k?), so the Markov

chain (Nk) is reducible on N2.
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