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1.  Introduction
Climate models, or Earth system models (ESMs), have become a primary means of exploration of our changing 
climate. Numerical models of the Earth system were among the earliest applications of digital computing (see 
Platzman, 1979, for a participant's account of early attempts at numerical modeling of the atmosphere). This 
soon gave rise both to numerical weather prediction, and studies of the climate, what John von Neumann called 
the “infinite forecast” (Smagorinsky, 1983), the statistics of weather fluctuations over long time periods. The 
inclusion of the ocean circulation into the climate system, starting with Manabe and Bryan (1969), also led to our 
first attempts to understand the radiative and thermal balance of the planet under changes in CO2 concentration 
(Manabe & Wetherald, 1975). This eventually leads to the series of reports issued by the Intergovernmental Panel 
on Climate Change, the latest one being the sixth, where the human footprint on climate and biodiversity is now 
starkly visible, with fossil fuels being a primary cause.

There are by now about 116 models from 44 institutions around the planet building ESMs (according to the 
ESGF data statistics portal) to understand the climate and work out the implications of various climate policy 
choices. The construction of these ESMs is generally described in “model documentation” papers, that detail 
the various scientific and technical choices that went into the building of these models. We take here as exam-
ples the documentation of the most recent model versions from two of the world's premier modeling institu-
tions, the Geophysical Fluid Dynamics Laboratory (Held et al., 2019), and the Institut Pierre-Simon Laplace 
(IPSL) (Boucher et  al.,  2020). While these articles describe complete coupled models, they typically begin 

Abstract  The objective of this study is to evaluate the potential for History Matching (HM) to tune a 
climate system with multi-scale dynamics. By considering a toy climate model, namely, the two-scale Lorenz96 
model and producing experiments in perfect-model setting, we explore in detail how several built-in choices 
need to be carefully tested. We also demonstrate the importance of introducing physical expertise in the range 
of parameters, a priori to running HM. Finally we revisit a classical procedure in climate model tuning, that 
consists of tuning the slow and fast components separately. By doing so in the Lorenz96 model, we illustrate 
the non-uniqueness of plausible parameters and highlight the specificity of metrics emerging from the coupling. 
This paper contributes also to bridging the communities of uncertainty quantification, machine learning and 
climate modeling, by making connections between the terms used by each community for the same concept and 
presenting promising collaboration avenues that would benefit climate modeling research.

Plain Language Summary  Climate models are computer simulation codes that incorporate 
centuries of human knowledge of the physics of planet Earth. They are used to understand the past, the present 
and make projections about the future of our climate. To validate a climate model, scientists tune a number of 
its parameters so that it yields a simulated climate resembling real-life observations as much as possible. The 
main challenge in this tuning task is the extreme cost of climate models which limits a lot the number of tuning 
experiments scientists can run. In this paper we are interested in a technique that uses artificial intelligence in 
order to replace the expensive climate model with a cheaper surrogate. We experiment on a simplified model 
to assess the strengths and weaknesses of this semi-automatic technique, and show that it can be more efficient 
when combined with human expertise.
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by describing the choices made in the “fast” component, the atmosphere (e.g., Zhao et al., 2018a, 2018b) for 
GFDL's model (Hourdin, Rio, et al., 2020), for IPSL. Typically this component is first constructed, by build-
ing or refining representations of the various physical processes contributing to the atmospheric circulation, 
applying the most recent physical knowledge and observational constraint. A frequent method to validate the 
atmospheric component is to run experiments conforming to the Atmospheric Model Intercomparison Protocol 
(AMIP: Gates, 1992). AMIP experiments typically run about 30 simulated years (SY). Subsequently this model 
is coupled to the “slow” component, the ocean. (Other components of the climate, e.g., changes in the biosphere 
are also “slow” relative to the atmosphere: in this paper, we use the ocean to stand in as the canonical “slow” 
component.) While the ocean component can be validated to a certain extent following the Ocean Model Inter-
comparison Project (OMIP: Griffies et al., 2016), several key phenomena of interest such as the El-Niño Southern 
Oscillation (ENSO), or simply sea-ice cover in northern and southern hemispheres, are emergent properties of 
the coupled ocean-atmosphere system, as noted by Held et al. (2019) and Adcroft et al. (2019) for and Mignot 
et al. (2021) for IPSL.

We draw attention to the appearance of the word “tuning” in the title of several of the articles cited above 
(Hourdin, Rio, et al., 2020; Mignot et al., 2021; Zhao et al., 2018b). The tuning, or calibration as termed by stat-
isticians, of ESMs is itself an object of study in its own right (Hourdin et al., 2017; Schmidt, Bader, et al., 2017; 
Schmidt, Lan, et al., 2017; Schmidt, Teixeira, et al., 2017). Broadly speaking, this takes place in two stages, a first 
stage where we vary a few parameters in each process representation to bring them individually within observa-
tional constraints, and a second stage where the whole integrated system is calibrated to bring it within global 
constraints such as the Earth's radiative balance as observed from space by satellites. In the “traditional” approach 
to model calibration, described above, the model is run forward for a sufficient time for a given choice of param-
eters to validate it against observations. For the full coupled system including the “slow” physics of the ocean, 
doing this evaluation over a range of parameter choices can be expensive (Adcroft et al., 2019), 50,000–150,000 
SY, limiting the exploration.

The stalling of arithmetic speed in computing in recent years has led to a similar slowdown in the addition of detail 
in ESMs (Balaji, 2021), compounding the problem. On the other hand, new computing hardware is well-suited 
to methods of machine learning (ML), leading to a reawakening of interest in ML methods first pioneered in the 
1950s and 1960s (Sonnewald et al., 2021, for a recent review on the subject). We are interested in particular by 
the use of ML techniques for surrogate modeling where the broad approach is to use ML to emulate the expen-
sive forward models. The emulator is then used to perform the explorations of parameter space for calibration, 
minimizing the number of instances of the forward model that need to be run for calibration. One recent approach 
applied for climate modeling is the Calibrate-Emulate-Sample method of the CliMA group (Cleary et al., 2021) 
where a limited set of runs of an atmospheric model is used for a broad characterization of an attractor in the 
parameter space of the model, by comparison with a reference, typically a model higher up “Charney's ladder” 
(Balaji, 2021), such as a large-eddy simulation (LES) model (Couvreux et al., 2020; Dunbar et al., 2020). Such 
models are very high resolution and very expensive and cannot be run on climate timescales (Schneider, Teixeira, 
et al., 2017). Emulators are then used to refine the landscape of the attractor, which can then be sampled to yield 
optimal values of parameters, as well quantify the uncertainty bounds on these values.

In an alternate approach pioneered by the HighTune Group (Couvreux et  al.,  2020; Hourdin, Williamson, 
et al., 2020), a version of the History Matching (hereinafter noted HM) method developed by D. Williamson 
et al. (2013) is employed. In this method, the emulator is used in successive waves not to find optimal parameter 
values, but to eliminate implausible regions of parameter space, according to a chosen set of metrics (distance 
between model outputs and observations). The forward model is then used to sample only the region of parameter 
space not ruled out yet (NROY). If the NROY space is a null space (i.e., no plausible parameter values that satisfy 
constraints to within tolerance), the method identifies “structural error” in the model, which is unable to satisfy 
observational constraints (D. Williamson et al., 2015).

While these methods show tremendous promise, their application so far has been in the tuning of a small compo-
nent of the model, the physics of shallow clouds calibrated against an LES model where shallow cloud dynamics 
and physics are resolved. It has been shown by Hourdin, Williamson, et al. (2020) that these methods can acceler-
ate atmosphere model tuning relative to the conventional methods. An open question is one of how these methods 
will fare in the presence of the multiple timescales of the ocean-atmosphere system. The challenges posed to 
some pioneering ML methods for the ocean's timescales have been outlined in Sonnewald et al. (2021).
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Some of these questions are already under investigation in a coupled model, and the challenges are becoming 
clear. In this article, we use a canonical idealized model of the climate, the two-scale Lorenz96 (L96, described 
below in Section 2.1) system to explore the question of tuning in the presence of multiple timescales. The L96 
system has often been used for studying climate models with a dynamical-systems lens, for example, Schneider, 
Lan, et al. (2017), Christensen and Berner (2019).

In the original description by Lorenz, this model represents westward propagating waves, the slow variable, 
amidst a noisy background, the fast variable, as a simplification of atmospheric flows. We envision wider impli-
cations of our results for model tuning. Tuning a coupled ocean-atmosphere model requires the encompassing 
of conjointly a slow variable, the ocean, and a faster one, the atmosphere. Alternatively, tuning an ocean model 
alone (as forced by prescribed atmospheric conditions), requires the tuning of parameterizations of fast meso 
and submesoscale processes, and larger-scale slower dynamics such as horizontal gyres or the meridional over-
turning circulation, with the risk of introducing compensating parameter errors that offset each other to provide 
approximately optimal solutions. These two illustrations are not unique, as one can easily find other examples of 
multi-scale dynamics in the climate system that require specific ad hoc tuning to respect direct and inverse energy 
cascades across scales. Here we use the L96 system where we interpret the slow and fast layers of the system as 
ocean and atmosphere, respectively. This paper explores one of the methods for automatic tuning outlined above, 
the HM method, in the presence of multiple timescales.

The paper is organized as follows: the two-scale L96 model and the History Matching algorithm are presented 
in Section 2. In Section 3, dedicated to the results of various experiments in a perfect model framework, we start 
with direct applications of HM to the full L96 model, and then consider AMIP and OMIP-like experiments that 
is, experiments where only one of the two variables is explicitly resolved. We finally discuss, in Section 4, the 
lessons learned from applying HM to L96 and the open research avenues that could lead to an efficient applica-
tion of HM to coupled climate models.

2.  Materials and Methods
2.1.  The L96 Model

Introduced by Edward Lorenz in a ECMWF workshop on predictability (Lorenz, 1996), the L96 model is still one 
of the most used toy models in geosciences. It serves as a simple test bed to investigate the performance of algo-
rithms related to dynamical system forecasting, parameterization, data assimilation and more (Chattopadhyay 
et al., 2020; Gagne et al., 2020; Lguensat et al., 2017; Lorenz & Emanuel, 1998; Rasp, 2019).

The two-scale Lorenz-96 model consists of K slow variables Xk(k = 1, …, K), each of which is coupled to J fast 
variables Yj,k(j = 1, …, J). The ODE system is described by the following equations:

𝑑𝑑𝑑𝑑𝑘𝑘

𝑑𝑑𝑑𝑑
= −𝑋𝑋𝑘𝑘−1(𝑋𝑋𝑘𝑘−2 −𝑋𝑋𝑘𝑘+1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Advection

−𝑋𝑋𝑘𝑘
⏟⏟⏟
Diffusion

+𝐹𝐹
⏟⏟⏟
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

−
ℎ𝑐𝑐

𝑏𝑏

𝐽𝐽
∑

𝑗𝑗=1

𝑌𝑌𝑗𝑗𝑗𝑗𝑗

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

� (1)

𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗𝑗

𝑑𝑑𝑑𝑑
= −𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗+1,𝑘𝑘(𝑌𝑌𝑗𝑗+2,𝑘𝑘 − 𝑌𝑌𝑗𝑗−1,𝑘𝑘)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
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−𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗𝑗

⏟⏟⏟
Diffusion

+
ℎ𝑐𝑐

𝑏𝑏
𝑋𝑋𝑘𝑘

⏟⏟⏟
Coupling

� (2)

The two types of variables have periodic boundary conditions and are arranged in a cyclic way (Figure 1). The 
system is integrated using a Runge–Kutta fourth order scheme with a time step of Δt = 0.001 (note that L96 is 
fully non-dimensional). We based our implementation of the L96 on the Python code accompanying the paper 
of Rasp  (2019) https://github.com/raspstephan/Lorenz-Online, with the difference being in using the original 
formulation of the L96 as stated in Equations 1 and 2.

As in Lorenz' seminal paper, we use K = 36, J = 10, a chaotic behavior is ensured by using the parameters h = 1 
and F = c = b = 10 (Lorenz, 1996). In such setting, the temporal-scale ratio c implies that the Y (fast) variables 
fluctuate 10 times rapidly as the X (slow) variables, and b the spatio-scale ratio implies that their amplitude is 
1/10 of the slow variables.
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As noted above in Section 1, this article intends to reproduce the process of tuning of a system with multiple 
temporal scales, in order to help us anticipate what might transpire when the HM method is applied to a full 
coupled climate model. We underline that this is a gross simplification, as the real system has many interlocking 
feedbacks and more than just two timescales. The forcing F is also stationary here, whereas the external forcing 
in the real system has both short-lived (e.g., volcanic eruptions) and slowly-evolving (e.g., greenhouse gas emis-
sions) components. Nevertheless, we will demonstrate that there are important lessons to be learned regarding 
the coupling of multiscale systems, and this article will walk through the steps of automatic tuning to illustrate 
the strengths of the objective approach, as well as aspects requiring caution.

Concretely, we use time-averaged statistics of the variables produced by such a system, with the settings mentioned 
above, as observations and consider the History Matching technique as a means to tune the four parameters {F, 
h, c, b}. As this is an abstract model with no observational counterpart we set ourselves in a perfect model frame-
work, and consider a preliminary realization of the L96 model as the trajectory from which we can extract an 
analog of the climatological quantities used to tune climate models, that is, the “truth.” Note that we are interested 
in approximating the model's climate (attractors in its parameter landscape), not the actual trajectory itself (its 
“weather”). Afterward, we pretend that we do not know which values of the parameters is the most appropriate 
to replicate the truth and examine to what extent the History Matching technique is capable of finding values of 
parameters {F, h, c, b} that produce a suitable approximation of the true model climate.

2.2.  The History Matching Method

The term “History Matching” (HM) stems from the oil engineering community, where the use of statistical 
“reservoir simulators” instead of complex and expensive fluid flow models serves to find inputs (reservoir geol-
ogy e.g.,) for which the outputs closely match historical hydrocarbon reservoir production (Craig et al., 1997; 
Sacks et  al.,  1989). HM is a well published and established method used in several science and engineering 
applications such as galaxy formation models (Bower et al., 2010) and infectious disease models (Andrianakis 
et al., 2015), to name a few. HM is also closely related to precalibration (Edwards et al., 2011) used to reduce 
parameter search space before performing a Bayesian calibration.

The uptake of these methods in climate model development is perhaps not as high as it could have been, and it is 
still an open question whether this is simply due to conservatism, or whether there are indeed good reasons why 
these methods do not scale to full-complexity models (Salter et al., 2019). However there are recent forays into 
the use of HM in atmospheric model development, as noted above in Section 1, notably via the HighTune project 
(Couvreux et al., 2020; Hourdin, Rio, et al., 2020; Villefranque et al., 2021).

In the conventional method of tuning, the parameter space is explored by trial and error, where a number of 
(expensive) runs of the forward model are examined by experts to arrive an at “optimal” set of parameter values. 
In the HM approach, few runs of the expensive model are used to construct a “training” data set used by fast 
emulators or surrogates such as Gaussian Processes (GP) (Gramacy, 2020; Kennedy & O’Hagan, 2001) which 
mimic the parameterized model and extrapolate on the whole parameter space. Successive “waves” iteratively 
eliminate implausible regions of parameter space, and the not-ruled-out-yet (NROY) space presents a smaller 
region of parameter space to be explored, using the full (expensive) model rather than a surrogate.

Figure 1.  The two-scale Lorenz 96 system consists of a non-linear “slow” ODE of X variables coupled to a non-linear 
“fast” ODE of the Y variables. In our case, the number of X is 36, where each X is coupled to 10 Y variables as shown in this 
schematic. Time is expressed in MTUs (Model Time Units) where 1 MTU = 1000Δt.
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In the ML community, the process of using cheap emulators with the aim of derivative-free calibrating of costly 
black-box models, belongs to the field of surrogate modeling or meta-modeling (Gramacy, 2020). HM thus benefits 
from many of the advancements in this field, and is affected by the ongoing revolution in ML techniques and tools.

It is important to note that many similarities arise when comparing Bayesian calibration and HM, they however 
have fundamental differences in their strategies. In fact, calibration by construction will always result in a poste-
rior distribution over all the input space (because the distribution needs to sum up to one) and then will always 
find a solution to the calibration problem. History matching, in contrast, focuses on ruling out bad solutions, and 
might even in some cases lead to an empty set of solutions.

Algorithm 1 summarizes the overall steps of the HM method, which are detailed in the following subsections.

2.2.1.  Space Filling Design

The need for collecting small informative samples that are cheap and at the same time permit a good representa-
tion of a whole search space, made sampling methods at the heart of Design of Experiments (DoE or DoX), a 
research area on its own.

In surrogate modeling in general and HM in particular, starting from a guess interval for the set of parameters, we 
attempt to “fill” parameter space as uniformly as possible, and, if possible, aim for minimal correlation between 
the parameters in the design. Two families of sampling methods exist in the literature: space-filling designs and 
low-discrepancy sequences (see Steponavičė et al., 2016, for a review of these methods). As in most recent litera-
ture and in particular in D. B. Williamson et al. (2017), we use a popular space-filling design technique: maximin 
Latin Hypercubes Sampling (LHS) (McKay et al., 2000; Morris & Mitchell, 1995). Note that the space of ranges 
of all parameters describes a hyper-rectangle rather than a hypercube, until the parameters are normalized, a 
procedure applied later in the algorithm to help training the GP.

Algorithm 1.  History Matching With Iterative Refocusing

Require: the (expensive) simulator S + a priori information about the range 
of P parameters + M predefined metrics of interest

  Step 1: Select a number of parameter sets
    • Define the hypercube formed by the ranges of the P parameters.
    • �Sample N = 10 × P training points from that parameter space using maximin  

Latin Hypercube Sampling (or another space-filling design method).
  Step 2: Calculate the metrics
    • �Evaluate the simulator at each of the N points. Construct the training 

data 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = {𝐩𝐩𝑛𝑛, 𝑆𝑆(𝐩𝐩𝐧𝐧)}
𝑁𝑁
𝑛𝑛=1 .

  Step 3: Train the emulators
    • �Train a GP-based (or another ML-based) emulator for each of the M 

metrics (following a single GP per single output strategy).
  Step 4: Calculate Implausibilities
    • �Evaluate the implausibility I(p′) over a large number (usually hundreds 

of thousands) of parameter samples p′ from the initial hypercube, using 
the emulators.

    • �Identify NROY space as points where the implausibility is less than 3 
for each of the M metrics (conservative strategy). Alternatively, a 
finite number of metrics may be allowed to have implausibility higher 
than 3.

  Step 5: Iterative refocusing
    • Resample the NROY space and repeat steps 2–4 unless
      – the emulator's uncertainty Vc is smaller than the other uncertainties,
      – NROY is empty (all space is implausible),
      – the computational allowance for running the simulator has exhausted.
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Chapman et al. (1994), a study from the sea ice modeling community, introduced the rule of thumb to determine the 
number of samples, and suggested that a number of 10 × P samples where P is the number of model parameters, is 
usually a good starting point. Loeppky et al. (2009) ran a number of experiments to further support this rule of thumb.

2.2.2.  The Metrics

Metrics here refer to the quantities chosen by the modeler to assess the performance of the model. Their role in 
tuning is crucial since they constrain the parameter search. We note that in the ML community, the term “metrics” 
refers usually to mathematical functions used for evaluating the performance of ML models (such as MSE, 
cross-entropy, etc.). Here it is the performance of black-box simulator, S, that is, the climate model in practice, 
that the metrics are expected to assess.

When tuning a climate model, the metrics are physical quantities that reflect the distance between climate model 
outputs and observations (e.g., the shortwave cloud radiative effect as in Hourdin, Williamson, et al., 2020).

A major difference in our application of HM from D. B. Williamson et al.  (2017) and Hourdin, Williamson, 
et al.  (2020) relies on the dimension of the metrics vector. With as many as 180 metrics (and presumably as 
soon as M  >  10), it becomes relevant to reduce the dimensionality of the metrics vector using for example, 
Principal Component Analysis (hereafter PCA, also known as Empirical Orthogonal Functions in the geosci-
ence literature, applied onto the matrix from model outputs at the different parameters). In brief, PCA aims at 
computing the eigenvectors and eigenvalues of the data covariance matrix. A classical and numerically stable 
approach to perform PCA is through the Singular Value Decomposition algorithm (SVD), we refer the reader to 
Shlens (2014) for more details. This algorithm is implemented within the scikit-learn Python library we 
use for PCA in this work (Pedregosa et al., 2011).

As a consequence, the GP will be fitted during step 3 in the reduced space and not in the M-dimensional space. 
Observations are also projected in the reduced space before calculating the implausibilities. Reducing the dimen-
sionality of metrics seems to be relevant for metrics that are not scalar, for example, geographical maps of 
geophysical variables. However, due to the simplicity of L96 model, we could not test such procedure in the 
present study.

2.2.3.  The Emulator

In the surrogate modeling literature, GP have been the method of choice when dealing with tuning or calibration 
problems. GP are simple regressors that have the advantage of yielding not only mean estimates but also uncer-
tainties. As in D. B. Williamson et al. (2017), GP are considered in this work as a viable candidate to emulate the 
metrics in Equation 3.

Let us denote p, a set of tunable parameters as a configuration, and f(p) the vector of PCA-transformed metrics 
associated with the result of numerical simulation using this configuration. The mathematical model used for the 
regression is based on the following formula:

𝑓𝑓𝑖𝑖(𝑝𝑝) =
∑

𝑗𝑗

𝛽𝛽𝑖𝑖𝑖𝑖𝑔𝑔𝑗𝑗(𝑝𝑝) + 𝜖𝜖𝑖𝑖(𝑝𝑝)� (3)

𝜖𝜖𝑖𝑖(𝑝𝑝) ∼ 𝐺𝐺𝐺𝐺 (0, 𝐶𝐶𝑖𝑖(., .;𝜙𝜙𝑖𝑖))� (4)

where g(p) contains a library of basis functions in p (polynomials e.g.,), β is a set of trainable coefficients, Ci 
denotes pre-specified covariance functions for the GP and ϕi are their parameters. Note that the two equations 
can be summarized into one by taking the linear regression part as a mean function of the GP. Training the overall 
regression model resorts to fitting all the parameters of the GP.

In this work, we take a blind approach to the fitting of the mean function, that is, no human expertise is available 
on the choice of basis functions. We however note that if such expertise is available it must be prioritized. The 
regression can then be performed using classical ordinary least squares or sparsity enforcing techniques such 
as LASSO; here we follow, as in D. B. Williamson et al. (2017), a forwards and backwards stepwise regression 
(Draper & Smith, 1998) approach. Regarding the covariance function, again several choices are available (Radial 
Basis Function (RBF), Matérn, Periodic, etc.) but throughout this paper we use the RBF kernel for its simplicity.

It must be noted that using an overly complex mean function can easily lead to overfitting, especially when 
being in a small data set regime (tens of samples) as in the experiments conducted in this paper. To address this 
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issue several procedures are employed following Salter and Williamson (2016): first, the maximum number of 
terms allowed for the mean function regression step is 10th of the sample size. Second, a nugget term is added 
to the RBF kernel to avoid interpolating the training design points. Last but not least, a proper validation of our 
GP-based emulators must be conducted, here we use a classical Leave-One-Out approach (L1O). In the L1O 
procedure we run a series of our emulator refitting by leaving out one sample each time from the design points 
and then testing if that sample lies within the 95% confidence interval of the emulator. We would ideally then 
expect that a 95% ratio of the left out points lie inside the confidence intervals if the emulator is good. While it is 
an ideal case, we consider in this work that the emulator is good if the ratio is at least over 90%.

2.2.4.  The Implausibility

A natural way to find the configuration (i.e., the set of parameters p) that allows the model to get as close as possi-
ble to the real state of the climate system, resorts to defining a distance measure between the PCA-transformed 
metrics f(p) and the PCA-transformed observations of the real system z. Note that these observations are even-
tually biased, due to instrumental inaccuracies for example, hence the metrics calculated from observations are 
eventually distinct from the actual true metrics, denoted y below.

Using the emulator to find the configuration that minimizes the distance between the model output and the system 
state, comes to solving the following optimization problem:

𝑝𝑝∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝‖𝑧𝑧 − 𝑓𝑓 (𝑝𝑝)‖,�

where ‖·‖ is a norm taking into account different uncertainty sources. The mathematical formulas hereinafter 
take place within each component of the transformed space. Here we use for ‖·‖ the Mahalanobis distance

‖𝑧𝑧 − 𝑓𝑓 (𝑝𝑝)‖ = (𝑧𝑧 − 𝑓𝑓 (𝑝𝑝))𝑇𝑇Var [𝑧𝑧 − 𝑓𝑓 (𝑝𝑝)]−1(𝑧𝑧 − 𝑓𝑓 (𝑝𝑝)).�

Because we only run a selected number of simulations and use the emulators to complete the hypercube of param-
eters, we do not have access to the entire distribution of f(p) but only to the expectation E[f(p)] and to the variance 
Var[f(p)]. Following notations in D. B. Williamson et al. (2017), we denote Ve the error variance of observations 
and Vη the error variance due to the simulator uncertainties that we suppose to be independent. We can then refor-
mulate the distance to observations, using the prediction of the emulator, and we refer to it as the implausibility:

�(�) = ‖� − E[� (�)]‖

= (� − E[� (�)])�Var [� − E[� (�)]]−1(� − E[� (�)])

= (� − E[� (�)])�Var [(� − �) + (� − � (�)) + � (�) − �[� (�)]]−1(� − E[� (�)])

= (� − E[� (�)])� (�� + �� + Var[� (�)])−1(� − E[� (�)])

�

With this definition, we factor in the implausibility for the different uncertainties associated with the model itself 
(L96 in our case, the climate model otherwise), with observations and with the predictions of the emulators. Thus 
the small values of implausibility appear in two cases only: the distance between the prediction of the model and 
the real state of the system is small or one of the three uncertainties is too high.

Having calculated the implausibility for a given set of parameter p, deciding to keep it or rule it out is based on a 
threshold value T for the implausibility that is, p is ruled out if I(p) > T and the NROY region is {p: I(p) ≤ T}. For 
d-dimensional z, Bower et al. (2010) use 𝐴𝐴 𝐴𝐴 = 𝜒𝜒2

𝑑𝑑𝑑0.995
 , the 99.5 th percentile of the χ 2 distribution with d degrees 

of freedom.

If z is one-dimensional, as will be considered in this work, the implausibility is written as:

𝐼𝐼(𝑝𝑝) =
|𝑧𝑧 − E[𝑓𝑓 (𝑝𝑝)]|

[

𝑉𝑉𝑒𝑒 + 𝑉𝑉𝜂𝜂 + Var[𝑓𝑓 (𝑝𝑝)]
]1∕2� (5)

and the Pukelsheim rule is generally used and sets T = 3. This general rule states that any continuous unimodal 
distribution contains at least 95% of its probability mass within a distance of 3 standard deviations from its mean.

2.2.5.  Iterative Refocusing

When the emulators are trained, they can be applied in inference mode on a high number of configurations from 
the initial hypercube as mentioned in Algorithm 1, the implausibility score and the threshold T define the NROY 
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as explained in the previous section. Once the first NROY space is produced, it seems obvious to apply the HM 
procedure, on this reduced space. This has the advantage of training better GP-based surrogates only on samples 
from the new NROY, because the parameter space is smaller than before, therefore reevaluating the implausibil-
ities. We refer to this task by the term refocusing (D. B. Williamson et al., 2017), and each iteration of steps 2–4 
in Algorithm 1 is called a wave.

The iterative aspect of the HM provides a certain flexibility that other approaches may not. After having signifi-
cantly reduced the parameter space with a set of metrics describing well the general tendencies of the system, one 
could try to reduce it further by using metrics describing some more local aspects. Notwithstanding, the multi-
wave HM comes with some challenges. Many flavors of HM exist in the literature, where some specific choices are 
made for some steps, notably, the stopping criteria and the NROY resampling strategy. Overall, the stopping crite-
ria are problem-dependent, and the limitation of computational resources most often comes to play. In a pragmatic 
manner, the iterative process must be halted when it is expected that performing one additional wave would not 
reduce the parameter space sufficiently compared to the computational cost that it would require (as a reminder, 
the simulator is run at each step 2 of the algorithm). Also, as stated in D. B. Williamson et al. (2017), “when the 
emulator variance is largely smaller than the denominator in the implausibility calculation, then it is unlikely that 
further waves will change the implausibility very much” and it may be unreasonable to perform a new wave.

In addition, a difficulty arises with multi-wave design right after the first wave: LHS cannot sample the NROY 
space as it is in general not a hyper-rectangle anymore and may contain several disconnected regions. Several 
strategies were followed in the literature: Yeh et al. (2016) used clustering to find medoids that act as representa-
tives of each cluster, Andrianakis et al. (2015) used Gaussian random variables centered at the mean from NROY 
points to sample design points for the subsequent wave. This is an open research question and recent advances 
in ML can lead to promising avenues (Garbuno-Inigo et al., 2020). In the present application of HM to L96, we 
follow a rejection sampling approach to sample subsequent waves' NROY as in reference papers employing HM, 
such as Bower et al. (2010): we apply LHS on the entire initial parameter space with enough samples to retain 
approximately the desired 10 × P configurations after rejecting those with an implausibility score greater than 3 
for each emulator. Concretely, we introduce in this work this simple method: after wave number w, we estimate 
the search space reduction ratio

𝑟𝑟 =
NROY𝑤𝑤volume

Initial search space volume
,�

we then generate a maximin LHS sampling of size 𝐴𝐴 ⌈

10×4

𝑟𝑟
⌉ on the initial search space, where ⌈.⌉ is the ceiling func-

tion. The samples of wave w are checked if they are ruled out by a previous wave emulator, only the samples that 
were not ruled out by all the emulators of the previous waves are kept. If the number of the remaining samples is 
lower than 10 × 4 we repeat this procedure with a new LHS sample and concatenate the results. In most cases, 
we end up with a number of samples that is higher than 10 × 4 from which we select randomly 10 × 4 samples to 
respect the computational budget allowed for each wave.

If r becomes too small (which happens naturally when HM effectively reduces a lot the search space), the maxi-
min LHS becomes computationally heavy and we then switch to a random LHS (without maximin optimization).

2.2.6.  The Code

As stated before, the L96 model is written in Python, special attention was given to parallel computing in order 
to run several experiments efficiently, the joblib Python library was used for this task. The main HM routine is 
written in R (LHS, GP-fitting, L1O, visualization). The code is based on the ExeterUQ_MOGP library that acts 
as an R interface for the Python written mogp_emulator library for training GPs, also available online. Again, 
to speed-up the calculation of implausibilities, we make use of the future R library for parallel computation. 
Please note that the code requires minimal R knowledge, which would not constitute a barrier for pure Python 
practitioners. All the scripts for this paper are preserved at Zenodo https://doi.org/10.5281/zenodo.7384270 
(Lguensat, 2022).

3.  Results
In this section we demonstrate the relevance of the HM algorithm in a perfect model setting that is, (Ve = Vη = 0). 
Our aim is to outline new insights regarding the influence of several design choices when applying HM and to 
evaluate its applicability to models with different time scales. The general goal of this study is to answer several 
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questions about the choices usually made when applying HM for climate 
modeling applications. Specifically, for the current paper, we aim to “history 
match” the metrics in Equation 6 to reduce the search space for the four L96 
parameters p = {h, F, c, b}.

As the L96 model is only a toy version of a climate model, we chose as 
metrics the first and second order momenta of both variables, as well as their 
covariances:

𝑓𝑓 (𝑝𝑝) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⟨𝑋𝑋⟩𝜏𝜏

⟨𝑌𝑌 ⟩𝜏𝜏

⟨𝑋𝑋2
⟩𝜏𝜏

⟨𝑋𝑋𝑌𝑌 ⟩𝜏𝜏

⟨𝑌𝑌 2
⟩𝜏𝜏

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

� (6)

where X represents the K = 36 Xk variables, and 𝐴𝐴 𝑌𝑌  represents the means of the J = 10 Yk,j variables associated to 
each Xk, hence the metrics vector f(X, Y) includes 36*5 = 180 metrics. Note that the carets denote the time average 
of a function ϕ(t) over the time interval [t0, t0 + τ],

⟨𝜙𝜙⟩𝜏𝜏 =
1

𝜏𝜏 ∫
𝑡𝑡0+𝜏𝜏

𝑡𝑡0

𝜙𝜙(𝑡𝑡)d𝑡𝑡𝑡�

which we calculate using discrete sums instead of integrals.

3.1.  Data Generation

Using the “true” set of parameters ptrue = {10, 1, 10, 10} we run a short simulation (10 MTUs) to reach a state in 
the L96 attractor, save that state, then run again a longer simulation starting from the attractor for τ = 100 MTUs. 
This latter simulation yields a specific trajectory of the L96 model that we will consider as the ground truth for 
our tuning experiments. As written above, in our chosen set-up, evaluating our metrics against the latter ground 
truth, yields a vector of 180 dimensions (Equation 6) for every set of parameters p.

For the maximin LHS at the first HM wave, we generate 10 × 4 (10 times the number of parameters to tune) = 40 
set of parameters for the first wave. Subsequent waves follow the rule introduced in Section 2.2.6.

The emulation training problem calls for the use of multi-input multi-output GP (inputs: 4 dimensional, outputs: 
180 dimensional). It is common to find in the literature the use of multiple single-output GP instead (one per 
output so 180 single-output GP in our case) due to their better scaling with memory and computational time. 
Obviously, this would disregard correlations between the outputs and may lead to lower performance since some 
information is discarded. A straightforward way to tackle both problems is through the use of dimensionality 
reduction algorithms. In this study, we use PCA and keep a number of principal components that retain 99% of 
the total variance. Emulating the metrics in the reduced space with independent GP often performs as well as 
using a multi-output emulator, especially if the size of the training samples is large compared to the dimension of 
the reduced space (Wilkinson, 2010).

3.2.  History Matching With No Physical Prior

We start our experiments with a standard setup where we suppose we have access to the simulator, here the L96 
code, and to the ground truth output metrics, but have priors uninformed by physical bounds on the parameters. 
Hence we start with arbitrary uniform priors except for parameter c that is positive because we know from the 
equations that c represents a time-scale ratio (Table 1).

We perform HM as described in the previous sections, and carry out a total of 6 waves which sums up to 240 simu-
lations of the L96 model (Table 2). PCA reduces the problem to fitting 8 metrics instead of 180, an illustration of 

Table 1 
Prior Intervals for the Parameters Along With the Ground Truth Values, for 
the History Matching Experiment With No Physical Based Prior

Params Prior True

F [–20,20] 10

h [–2,2] 1

c [0,20] 10

b [–20,20] 10
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the projection space of the two leading PCs we are fitting with GP along with 
the projected observations (ground truth) is shown in Figure 2. The NROY 
ratio r moves from 16.96% at wave one to 0.02% at wave six, this sharp reduc-
tion might be explained by the large priors. This situation is rather preferable 
than choosing narrow priors at the risk of missing the good parameters which 
would lead to an empty NROY from wave one.

More specifically, the NROY matrix suggests that most of the reduction of 
the parameter space is tied to the F parameter (Figure 3, we refer the reader to 
Appendix A for an explanation of NROY visualizations): nearly all the nega-
tive values are ruled-out (remember that the NROY matrix shows parame-
ters normalized on the [–1, 1] interval, hence projecting back to the original 
space, this means that values of F on the interval [–20, 0] are ruled-out). 
NROY plots reveal also some covariance between parameters h and b. In 
wave 1 this is shown as a broad diagonal stripe in the NROY plot. By wave 6 
the lowest and highest values of both parameters are ruled out, but the diago-
nal feature remains. The coupling terms in Equations 1 and 2 both have 𝐴𝐴

ℎ

𝑏𝑏
 , so 

the covariance identified is valid.

At wave 6, we are left with 0.02% of the initial search space. The associated NROY plots show that we success-
fully narrowed the search space for parameters h, b, F, but interestingly parameter c presents multiple NROY 
regions (Figure 3, right hand side). This suggests possible metastability phenomena on time scales longer than 
the integration time used to calculate the metrics, which is also encountered in the Ensemble Kalman Inversion 
based calibration used in Schneider, Teixeira, et al. (2017). The effect of parameter c seems to be weaker than 
that of the other parameters, the wave 6 NROY suggests that several satisfactory solutions can be found with very 
different values of c.

It is worth highlighting again that the goal of HM is not finding exactly the ground truth solution, but ruling out 
the wrong ones. Thus, we consider a HM experiment to be successful if: (a) the ground truth solution is not ruled 
out, (b) the parameter search space is largely reduced. For this experiment with no physical prior (other than on 
the sign of c), running additional waves does not change the NROY space further, and becomes tedious because 
of the rejection sampling of an extremely small region.

From the remaining configurations in the NROY of wave 6, the modeler needs to make a final choice of the 
configurations they plan to run using the real (and expensive) simulator. Sampling a representative low number 
of configurations from the last NROY is not in itself part of the HM algorithm, but remains an open question from 
a practical point of view. We propose here to use a clustering algorithm, namely K-means, as a low cost solution 
to find an ensemble of representative points from the HM final NROY.

By applying the K-means algorithm we find six clusters (according to the silhouette score (Appendix D) whose 
centers are considered as candidate configurations. Before running the L96 model (our “expensive” simulator in 

Figure 2.  Samples used to train the Gaussian Process emulators projected onto the two leading PCs, at wave 1 (left hand 
side) and at wave 6 (right hand side).

Table 2 
Evolution of the Not Ruled Out Yet Ratio r for Each Wave of the History 
Matching Experiment With No Physical Based Prior

Wave NROY (%) NbSim

1 16.96 40

2 7.91 40

3 5.55 40

4 2.31 40

5 0.94 40

6 0.02 40

Total = 240

Note. Right hand side column specifies the number of explicit simulation 
with L96 model carried out at each wave.
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this idealized study) with these sets of parameters, we verify that they belong to the last NROY effectively: it is 
not granted that a K-means cluster center is included in the NROY. Indeed, one of the centers did not respect this 
condition hence we finally end up with 5 configurations (Table 3).

Finally, we run L96 simulations with the 5 sets of parameters identified by the HM procedure (Table 3), calculate 
the metrics and overlay their distribution onto that of observed metrics (i.e., our initial L96 simulation, considered 
as ground truth, Figure 4). Note that we evaluate the realism of metrics with statistical distributions, similar to 
climate modelers evaluating simulated climate against observations. Looking at these distributions, one configu-
ration clearly stands out as a bad candidate (Figure C1), although it was not ruled out by HM ! This configuration 
is an example illustrating that HM can retain a low-implausibility configuration not because the metrics are 
close to observations (low nominator of implausibility), but because the GP were uncertain (high denominator 

of implausibility). The reader can notice in Table 3 that h and c have values 
that are too close to the ranges boundaries, which might explain why the GPs 
are uncertain.

As a conclusion from the HM experiment with no physical based prior, we 
demonstrate that the HM procedure can effectively reconstruct the parame-
ters of the initial L96 simulation, with no physically based prior on the value 
of these parameters. Notwithstanding, we identify two major challenges that 
the user is left with. First, the NROY space reduces, to the most, at nearly 
2000 configurations of parameters, despite the simplicity of this experiment 
(which only has 4 tunable parameters, as a reminder). Applying additional 
statistical techniques and evaluating explicitly some NROY configurations 
against observations, reduces the number of good candidates for reconstruct-
ing the initial simulation to 4. Second, the HM may retain low-implausibility 
configurations, not because the metrics are close to observations, but because 
the metrics were not sufficient to constrain the results. Additionally, when 
applying to ocean and atmosphere data, uncertainties that feed into the 

Figure 3.  Not ruled out yet plots for the History Matching experiment with no physical based prior, at wave 1 (left hand side) and at wave 6 (right hand side).

Table 3 
Final Sets of Parameters Identified by the K-Means Procedure and 
Consistent With History Matching Results, in the Experiment With 
Unphysical Based Prior, Alongside the Ground Truth (GT) Values (Bottom 
Line), and the Corresponding Median KL-Div Between Their Simulations 
and Observations (Right Hand Side Column)

h F c b

1 0.99 11.90 16.21 9.17

2 1.15 8.94 3.94 10.33

3 0.58 10.31 11.90 6.89

4 0.92 10.31 10.28 9.35

5 1.87 11.52 19.03 15.65

GT 1 10 10 10
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implausibility may be too large, which we cannot test with a model as simple as L96. Incorporating more physical 
expertise in HM procedure, as illustrated in the section below, helps resolving these challenges.

3.3.  Incorporating Domain Expertise in History Matching

In this section, we discuss how important is reducing the prior space, especially if the HM user has a physics-informed 
initial guess on the value of the parameters. For example, when using the two-scale L96 model, usually the X vari-
ables are slower than the Y variables, and their amplitude is higher than those of Y. We assume then c and b to be 
higher than 1. In addition, we can also introduce knowledge from the domain of application, for example, assuming 
that F and h are positive (which is the case in all studies where L96 model is used as a toy model for climate). The 
advantage of HM is that if these new priors do no contain the ground truth solution, the first wave will result in an 
empty NROY, and the modeler will be enforced to review their model, metrics, uncertainties and also the priors.

Performing the HM procedure with physically-informed priors (as listed in Table 4), required only 5 waves and a 
total of 200 simulations to reach the same reduction in parameter space as with no physical-based prior (Table 5). 
Actually, the NROY space becomes less than 1% of the initial space at wave 4, while it took one additional wave 
in the previous experiment. While running two waves (40 × 2 = 80 L96 simulations) is computationally cheap in 
our study, we highlight that each wave that we would run for a coupled climate model would be very expensive. 
This illustrates how beneficial it is to chose the prior intervals as carefully as possible, incorporating as much as 
possible the knowledge from experienced modelers in the domain of application.

3.4.  AMIP-Style Experiment

Our ambition when applying HM to L96 model is to mimic the calibration of parameters in ocean-atmosphere 
models, which couple a fast media, the atmosphere, where variables generally adjust within days to months, and 
the ocean, the slow media, where some variables require up to hundred years to reach equilibrium. Such calibrat-
ing exercise, commonly begins with preliminary calibration of the parameters of each media in uncoupled exper-
iments, which explicitly simulate only one of the two media. In this section, we start with exploring the potential 
of HM for calibrating the parameters of L96 fast variables alone, that is, Y. As parameter F is not involved directly 

in the Y variables equation (Equation 2), only the three parameters {h, c, b} 
are tuned here. Hence at each wave of the HM algorithm, we decide to run 
30 simulations only. The prior intervals are taken to be similar to those of the 
previous section.

Those simulations only resolve the equation for Y variables, with X infor-
mation extracted from the initial simulation, considered as ground truth (see 
Equation 7):

���,�

��
= −����+1,�(��+2,� − ��−1,�) − ���,� +

ℎ�
�

��
⏟⏟⏟
Retrieved

from initial
simulation

� (7)

Figure 4.  Histograms of metrics on the final 4 configurations identified by the K-means procedure and consistent with History Matching results, in the experiment with 
unphysical based prior, along with the histogram of the observed metrics.

Table 4 
Prior Intervals for the Parameters for the History Matching Experiment 
With Domain Expertise

Params Prior True

F [0,20] 10

h [0,2] 1

c [1,20] 10

b [1,20] 10
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where the parameters to be tuned are {h,c,b} and are highlighted in blue 
color.

In AMIP-style experiment, the metrics reduce to those concerning Y varia-
bles only, that is,

� (�) =
⎛

⎜

⎜

⎝

⟨�̄ ⟩�

⟨�̄ 2
⟩�

⎞

⎟

⎟

⎠

,� (8)

Following PCA, the problem resorts to fitting 2 metrics instead of 72. Only 
5 waves are necessary to reduce the NROY from 71.86% to less than 0.01% 
of the initial parameter space (Table 6). Still, at wave 5, there remains some 
uncertainty in the calibration for parameter c, as indicated by the band-shape 
features in c− related panels (Figure 6).

3.5.  OMIP-Style Experiment

We then explore the OMIP-style experiment and calibrate the parameters affecting L96 slow variables alone, that 
is, X. We are left with only two independent parameters to tune, F and 𝐴𝐴 𝐴𝐴 =

ℎ𝑐𝑐

𝑏𝑏
 (Equation 9).

���

��
= −��−1(��−2 −��+1) −�� + � − �

�
∑

�=1

��,�

⏟⏟⏟
Retrieved from

initial simulation

� (9)

The prior intervals for both parameters is the same as for previous experiments, [0,20], and we initially include 
all metrics that concern the X variables, that is,

� (�) =

⎛

⎜

⎜

⎜

⎜

⎝

⟨�⟩�

⟨�2
⟩�

⟨��̄ ⟩�

⎞

⎟

⎟

⎟

⎟

⎠

.� (10)

PCA reduces the problem to fitting 7 metrics instead of 108. With such definition of metrics, the NROY at wave 
1 is empty, which seems to be due to mismatches between the initial simulation and the OMIP-style outputs for 

𝐴𝐴 ⟨𝑋𝑋𝑌𝑌 ⟩𝑇𝑇 metrics primarily (Figure 7). This is presumably due to the lack of coupling between X and Y variables 
when running L96 in OMIP-style experiment (cf. Equation 9). Actually, 𝐴𝐴 ⟨𝑋𝑋𝑌𝑌 ⟩𝑇𝑇  metrics, which associates the 
slow and fast variables of L96 model, stands for any properties emerging from the coupling of an ocean with an 
atmosphere, for example, sea-ice related quantities.

When removing the 𝐴𝐴 ⟨𝑋𝑋𝑌𝑌 ⟩𝑇𝑇 metric from the evaluation against ground truth 
in OMIP-style experiment, then a single wave of HM reduces the parame-
ter space to 1.8%. The final NROY space includes a single cluster centered 
on values [F, G] = [10.23, 1.06], which are very close to the ground truth 
(Figure 8). As a conclusion, HM is efficient in OMIP-style experiments only 
if metrics reduce to those affecting the slow variable exclusively. This is 
another lesson we learned that we discuss in the next section.

4.  Discussion
The Lorenz96 system, since it was first articulated by Lorenz, has been used 
to understand general circulation models from a dynamical systems perspec-
tive. In its typical use (such as by Lorenz himself in Lorenz  (1996)), the 
X layer stands in for the resolved-scale flow, and the Y for subgrid-scale 
unresolved flows, to study the response of the full system to the aggregate 

Table 5 
Same as Table 2 for the History Matching Experiment With Prior Intervals 
for the Parameters Limited by Domain Expertise

Wave NROY (%) NbSim

1 25.57 40

2 3.18 40

3 0.59 40

4 0.04 40

5 0.02 40

Total = 200

Table 6 
Same as Table 2 for the AMIP-Style History Matching Experiment, Where 
Only the Fast Component of L96 Is Calibrated

Wave NROY (%) NbSim

1 71.86 30

2 12.19 30

3 1.24 30

4 0.12 30

5 0.01 30

Total = 150
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behavior of the unresolved scales. In this manuscript we take the same L96 system to study a different aspect of 
the coupled climate system, with a fast (Y, “atmosphere”) and slow (X, “ocean”) component, with the coupling 
representing the surface exchanges.

Our objective is to revisit the problem of model calibration in the presence of distinct timescales in sepa-
rate components of the coupled system. As noted in studies of model calibration or “tuning” (e.g., Hourdin 
et al., 2017), this is generally done by first separately calibrating individual components of the climate system to 
conform to theoretical and observational constraints, and then in a separate step, applying global constraints on 
emergent properties of the coupled climate system, such as top-of-atmosphere radiative balance, or ENSO behav-
ior (Held et al., 2019; Mignot et al., 2021). The initial stages are done with fixed surface exchanges: for example, 
in AMIP experiment, Zhao et al. (2018a) calibrates the atmosphere under prescribed sea surface temperatures. 
As the intent is not to “retune” the atmosphere after coupling, there is a careful assessment of how the ocean 
might react, by looking at diagnostics such the “implied” ocean heat transport (Zhao et al., 2018b). The ocean 
is likewise first calibrated using fixed atmospheric forcings, following the OMIP protocol described in Griffies 
et al. (2016). The ocean tuning in then refined a coupled setting (Adcroft et al., 2019), to adjust the tunings to 
match the differences between the standard atmosphere forcings of AMIP and the actual atmospheric model to 
be used in the GCM. This carries the risk, of course, of compensating for atmospheric model biases by adjusting 
ocean parameters. When tuning the IPSL climate model for CMIP6, it was actually intentional to compensate 
for biases in the atmosphere, that initially limited dense water formation, by tuning the sea-ice leads fraction and 
finally enhance ventilation of the deep ocean (Mignot et al., 2021).

As GCMs move toward more objective methods of model calibration, we must examine these nuances introduced 
by coupling. Here we have emulated the HM-based model calibration process in the L96 system. An initial 
“truth” run of L96 serves as the HM target for a given set of values of the parameters {F, h, c, b}: the aim is to 
discover optimal tuning values of these parameters from a given prior distribution of possible values. This is thus 

Figure 5.  Not ruled out yet plots for the History Matching experiment with prior intervals for the parameters limited by 
domain expertise, at wave 5.
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a “perfect model” setting, and only parametric error can be studied, not structural error, since the same equations 
are used in the test model, with only the parameters to be discovered. In an ocean-atmosphere coupled model, as 
well as in a more complex climate model, there are structural biases inherent to the grid resolution, the choice 
of algorithms for discretization, and/or poorly known physics, in particular at the interface between the different 

Figure 6.  Not ruled out yet plots for the AMIP-style History Matching experiment, at wave 5.

Figure 7.  Non-dimensional metrics for the OMIP-style experiment: for the ground truth (red lines) and for a selection of parameters (blue lines).
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components. The HM procedure enables us to factor those in through uncertainty in the metrics, but an accurate 
quantification of those uncertainties is not straightforward as it often combines with parametric uncertainties 
(Balaji et al., 2022). Also when tuning a climate model, metrics refer to observations, that may encompass intrin-
sic uncertainty which should also be taken into account, as well, this limitation cannot be envisioned in a perfect 
model setting.

When tuning the L96 model, we use the set of metrics shown in Equation 6: they are first- and second-order 
metrics covering the slow and fast components separately, as well as a cross-term metric for the emergent prop-
erties of the coupled system. In calibrating a real GCM, we of course consider more complex and higher-order 
metrics, but broadly they will fall into one of these categories: fast, slow and emergent-coupled. It must be noted 
however that the L96 system is extremely simple compared to real GCMs, leading to some limitations in the 
applicability of our conclusions. Notwithstanding, our conclusion that ocean-only experiments cannot be used to 
calibrate ocean parameters if the emergent-coupled metrics are included in the HM procedure, seems to be robust. 
For example, tuning sea-ice quantities in IPSL-CM6A-LR had to be done in coupled mode (Mignot et al., 2021). 
This advocates for running OMIP experiments to calibrate ocean quantities related to the ocean interior dynam-
ics, and calibrating upper-ocean variables, including sea-ice, in coupled mode.

Figure 8.  OMIP tuning experiment: not ruled out yet plot after one wave.
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A second aspect of objective calibration that we consider, is the independence of metrics. As there are many 
measures of validation, objective methods can rapidly become expensive if they are all to be taken into account. 
However there is considerable covariance between metrics. We explore here the use of PCA to find a minimal 
optimal set of metrics that capture the variance across metric space, similar to the approach in Baker et al. (2015). 
Even in the case of L96 model with a relatively small number of metrics as compared to a climate model, it 
appears efficient to reduce dimensionality of the metrics, hence we strongly recommend to proceed similarly with 
climate models, in line with Salter et al. (2019). Another approach that can be useful consist of selecting a small 
number of metrics that are directly relatable (i.e., understandable by the modeler) and for which there exists good 
observations with known uncertainties, these can prove valuable as a sanity check. It is important to mention here 
a limitation of this study which is the idealized setting of the experiments. While our use of PCA was successful 
in all the experiments, Salter et al. (2019) warn from a usual risk coming with the use of PCA in HM studies 
where misspecification of model discrepancy can lead the HM algorithm to yield an empty NROY. They called 
it the terminal case and present a methodology for defining calibration-optimal bases that help avoid this issue.

Finally, a benefit of HM is that it can capture equally plausible but nonunique parameter regimes that arise when 
learning from GCM climate statistics. This appears clearly when applying HM in AMIP-style experiments of L96 
model: HM procedure identifies a region of parameter space within which realizations of the model would likely 
result in comparable solutions to the “ground truth.” The non-uniqueness of parameters, for a given model code 
and specific metrics, is an emergent property of GCMs that must be discussed in the context of CMIP exercises.

5.  Conclusion and Future Work
We find that the L96 system can indeed shed light on certain aspects of the calibration of coupled models with 
two intrinsic timescales, providing lessons for the use of HM or other objective calibration methods in GCM 
development. The key findings of this paper can be summarized as follows.

First, we find that the HM method does indeed allow calibration of models close to optimal values, with minimal 
errors relative to the true values of {F, h, c, b}. Simulations with the tuned values of these parameters produce 
simulations whose “climate”—time-averaged metrics—is statistically close to the initial simulation considered 
as ground truth. Three waves of tuning efficiently reduces the NROY space to a fraction 𝐴𝐴 (10−3 − 10−4

)

 of the 
prior volume of parameter space to be explored.

In the meanwhile, we show that we can reduce the space of metrics considerably by finding the eigenfunctions in 
metric space that explain most of the variance. We conducted preliminary experiments using nonlinear PCA and 
ML-based methods of dimensionality reduction (autoencoders) and did not find much benefit relative to standard 
PCA, at least in the L96 system. We cannot infer from this that nonlinear PCA might not be of use for reducing 
the dimensions of the space of metrics in a real GCM; it has been used for related purposes in other contexts, such 
as estimating the similarity of climate across simulations (Baker et al., 2015).

Second, we illustrate how much the number of waves hence explicit simulations of the L96 model can be drasti-
cally reduced if physical expertise is introduced prior to the initiation of HM algorithm. Additionally, as shown 
in Appendix B, the remaining NROY includes a smaller number of clusters, hence plausible sets of parameters 
to mimic ground truth. This advocates to merging as much physical expertise as possible when setting the prior 
intervals for each parameters. It’s important to underline here that the goal of HM here is not to find the true value 
of parameters used for the initial experiment. Rather, it is to find acceptable values that produce a similar climate. 
Hence it has to be verified that each cluster from the final NROY is fed into a simulation, from which the climate 
is compared to the ground truth.

Third, we demonstrate that conducting independent component tuning (AMIP and OMIP) is indeed capable of 
introducing compensating errors into the coupled system, due to metrics emerging from the coupling between the 
slow and the fast components, such as sea-ice for example, The compensation was revealed by the empty NROY 
resulting from the first wave of the OMIP experiment with all the metrics. Additionally, we can sometimes find 
a non-compact NROY with two “clusters” with different values of two parameters (Figure 6), that yield equally 
satisfying metrics (Figure B1). Here, physical insight might play a key role in deciding which NROY cluster to 
select. One should then be careful when using clustering techniques, K-means has its shortcomings such as the 
lack of flexibility in cluster shape. For complex (e.g., non-elliptic) clusters, DBSCAN or other density-based 
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clustering techniques can be explored, but then the idea of a representative centroid of the cluster is not relevant 
anymore.

An issue with a potential use of HM for real coupled climate models is the difficulty, or even the impossibility, 
of running hundreds of high cost simulations. Active learning techniques can help overcome the greedy sampling 
done in the iterative refocussing step.  It resorts to choosing the next design point by solving an optimization 
problem (Craig et al., 1997), recent work by Garbuno-Inigo et al. (2020) delves into this question and presents 
three active learning criteria. We believe that advancements in this direction might help lower the cost of a global 
coupled model HM.

As a final word, as we learned many lessons from applying HM to L96 model in the context of climate model 
tuning, it appears clearly that HM should not be seen as a fully automatic stand-alone solution for climate model 
tuning. Rather, it should be seen as a semi-automatic tool that, combined with physical expertise on climate 
model sensitivities, can provide efficient reduction of parameter search space. Also, as compared to manual 
tuning, it offers a unique opportunity to reduce the number of climate model simulations yet exploring a larger 
diversity of parameter sets, which helps transitioning climate modeling to a more sustainable science. Hence we 
encourage climate modelers to start incorporating it in the tuning road-map of their models, as a first step toward 
quantifying the overall uncertainty of climate projections.

Appendix A:  Visualizing NROY Plots
In order to visualize the NROY space, two types of information are usually considered in HM literature: mini-
mum implausibility and optical depth. An example using 3 tunable parameters (a,b,c) is shown in Figure A1, 
where the minimum implausibility is represented below the diagonal of the NROY “matrix” while the optical 

Figure A1.  Not ruled out yet plots for the theoretical case of applying History Matching to tune a 3-parameter model. Colors associated to the left-hand-side bar 
indicate the minimum implausibility, while those associated to the right-hand-side bar show the optical depth, for every grid point of each 2-dimensional subplot. 
Subset to the right hand side provides further details on how to read each subplot.
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depth is shown above it. Before explaining these two information in detail, we note that given the difficulty of 
visualizing a d–dimensional space with d > 3, the NROY space visualization is done using a composition of 𝐴𝐴

𝑑𝑑(𝑑𝑑−1)

2
 

two-dimensional subplots.

Let us consider one subplot such as the one shown to the right of Figure A1. The ordinate and abscissa represent 
respectively b and c parameter intervals projected into [–1, 1], a normalization that is done to help training the 
GP. We remind the reader that the NROY plots are obtained at test time (in ML terminology), rather than at train-
ing time. In fact, we apply our trained GP to a large variety of configurations, usually in the order of hundreds 
of thousands of parameter sets (in this work we initially use one million samples from a random LHS of the 
search space for parameters). Since the 2-dimensional subplots are restricted to combinations of 2 variables, 
each subplot is divided into bins in the 2 directions of the plot. In the aforementioned example, each bin has a 
restricted  space for b and c but contains all the possible values of a. The latter group of configurations is then 
qualified by the minimum implausibility (i.e., the minimum implausibility amongst all configurations of that 
group) and the optical depth, that is the fraction of configurations with implausibility smaller than the pre-defined 
threshold. The rationale behind the minimum implausibility is that if the minimum is already higher than the 
threshold considered for implausibility (here 3), then whatever the choice for the other parameter(s), the metrics 
would be far from observations.

For easier visualization, the orientation of all subplots follow the arrows of the top-left one. The black dots in each 
subplot represent the ground-truth configuration, if already known.

Appendix B:  K-Means Clustering Results
B1.  Incorporating Domain Expertise in History Matching Experiment

We apply K-means on the final NROY (Figure 5) and find 3 clusters whose centers also belong to the final 
NROY (Table B1). In this case, all configurations produce metrics whose distributions are similar to observations 
(Figure C2). Interestingly, the remaining 3 configurations have median KL-div that are lower than 0.09 which is 
the value for the second best configuration in the very first experiment shown in this paper. This confirms that 
narrowing the prior helps HM reducing faster the search space and leads to better configurations.

B2.  AMIP-Style Experiment

The K-means algorithms identifies two solutions, which have a very low KL-div (Table B2). We conclude that 
both sets of parameters can be considered as acceptable configurations. Indeed, running simulations with these 
two sets of parameters yields distributions of metrics that are very close to observations, equally (Figure B1). 
Table B2 shows also that values of both h and b are identified close to the “ground truth,” whilst the value of c 
seems to be almost unimportant. The very lowest values of c are slightly less plausible, but anything between 5 
and 20 looks to be acceptable.

h F c b KL-div

1 1.05 9.87 9.06 10.52 0.03

2 0.81 10.06 11.46 9.30 0.05

3 1.11 12.13 17.10 10.48 0.07

Table B1 
Same as Table 3 for the History Matching Experiment With Domain Expertise
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h c b KL-div

1 1.00 10.26 10.03 0.0018

2 1.05 16.98 10.41 0.0024

Table B2 
Same as Table 3 for the AMIP-Style History Matching Experiment

Figure B1.  Histograms of metrics on the final 2 configurations identified by AMIP-style History Matching, and the observed 
metrics.
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Appendix C:  Metrics for the Resulting Configurations Found by the K-Means
C1.  Experiment 1: Tuning L96 With Unphysical Prior

See appendix Figure C1

C2.  Experiment 2: Tuning L96 With Physical Prior

See appendix Figure C2

Figure C1.  Histograms of the metrics on the configurations (straight lines) and the observed metrics (dashed line).

Figure C2.  Histograms of the metrics on the configurations (straight lines) and the observed metrics (dashed line).
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Appendix D:  Silhouette Scores
Presented in this appendix are silhouette scores used for deciding the number of clusters in the K-means cluster-
ing Figure D1.

Data Availability Statement
Jupyter notebooks (Python and R) developed for this work are open sourced and can be used to gener-
ate the datasets and figures used in this paper. They can also be minimally modified in order to be used 
for another simulation model for further exploration. They can be accessed from the Github repository 
https://github.com/HRMES-MOPGA/L96HistoryMatching and are preserved at Zenodo https://doi.org/10.5281/
zenodo.7384270 (Lguensat, 2022).
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