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Abstract

The expectile is a prime candidate for being a standard risk measure in actuarial
and financial contexts, for its ability to recover information about probabilities and
typical behavior of extreme values as well as its excellent axiomatic properties. A
series of recent papers has focused on expectile estimation at extreme levels, with
a view on gathering essential information about low-probability, high-impact events
that are of most interest to risk managers. The obtention of accurate confidence
intervals for extreme expectiles is paramount in any decision process in which they
are involved, but actual inference on these tail risk measures is still a difficult question
due to their least squares nature and sensitivity to tail heaviness. This article focuses
on asymptotic Gaussian inference about tail expectiles in the challenging context of
heavy-tailed observations. We use an in-depth analysis of the proofs of asymptotic
normality results for two classes of extreme expectile estimators to derive bias-reduced
and variance-corrected Gaussian confidence intervals. These, unlike previous attempts
in the literature, are well-rooted in statistical theory and can accommodate underlying
distributions that display a wide range of tail behaviors. A large-scale simulation study
and three real data analyses confirm the versatility of the proposed technique.

MSC 2010 subject classifications: 62E20, 62G15, 62G20, 62G30, 62G32, 62P05
Keywords: Asymptotic normality, Bias correction, Expectiles, Extreme values, Heavy

tails, Inference, Variance correction

1 Introduction

The problem of correctly estimating and inferring extreme risk, carried by low-probability
high-impact events such as systemic financial crises and natural disasters, arises in a large
range of applications such as insurance and finance, where it is crucial to correctly evaluate
and manage the risk carried by a portfolio of claimants or stocks. Several risk measures
have been fruitfully used in this context. Among these, expectiles have recently grown
increasingly popular for a number of reasons, including the fact that they induce the only
law-invariant, coherent (Artzner et al., 1999) and elicitable (Gneiting, 2011) risk measure,
see Bellini et al. (2014) and Ziegel (2016). Consequently, a straightforward backtesting
methodology can be developed for expectiles, which allows one to rank expectile forecasts
by their accuracy (see Theorem 10 in Gneiting, 2011). This crucially hinges on their
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formulation as minimizers of an asymmetric squared loss function (Newey and Powell,
1987), as follows:

ξτ = argmin
θ∈R

E(ητ (Y − θ)− ητ (Y )), (1.1)

where Y denotes the loss variable, assumed to have a finite first moment, τ ∈ (0, 1) is the
asymmetry level, and ητ (u) = |τ − 1{u ≤ 0}|u2 is the so-called expectile check function
(throughout, 1{·} denotes the indicator function).

Expectile estimation and inference was first developed in Newey and Powell (1987) in
the context of testing for homoskedasticity and conditional symmetry in linear regression
problems. Recent contributions include deep asymptotic results for the estimation of
central, non-tail expectiles of fixed order τ , see for example Holzmann and Klar (2016)
and Krätschmer and Zähle (2017). The problem of estimating extreme expectiles, whose
order τ ↑ 1, is more difficult and has been studied only fairly recently, even though it
constitutes the right framework for the assessment of extreme risk. The starting point for
extreme expectile estimation appears to be a series of papers focusing on the challenging
case when the underlying distribution has a heavy right tail (Daouia et al., 2018, 2019,
2020). In this series of articles, two classes of estimators are developed: the first class
extrapolates to the far tail a Least Asymmetrically Weighted Squares (LAWS) estimator,
obtained through the minimization of the empirical counterpart of problem (1.1), and the
second extrapolates a quantile-based (or indirect) estimator whose construction rests upon
a remarkable asymptotic proportionality relationship linking extreme expectiles to their
quantile analogs.

It was noted later by Padoan and Stupfler (2022) that asymptotic Gaussian inference of
extreme expectiles using these two classes of estimators was a difficult question, due to the
fact that the asymptotic variances of the Gaussian limiting distributions of the estimators
tend to provide a poor representation of the actual uncertainty in finite samples. A
solution put forward in Padoan and Stupfler (2022) is to construct corrected confidence
intervals that better approximate this uncertainty. However, because their built-in bias
correction operates under the restriction that finite-sample bias due to the second order
approximation does not dominate, there is no guarantee that they perform well in the wider
heavy tail framework. It is now known that comprehensive bias correction is necessary if
a reasonable degree of finite-sample accuracy of the extreme expectile estimators is to be
ensured (Girard et al., 2022b). The variability of the bias-corrected versions introduced
in Girard et al. (2022b) is, however, similarly hard to handle using straightforward plug-
in estimators of the asymptotic variances arising in the Gaussian limiting distributions,
and no satisfactory solution for inference is provided therein. More generally, since the
precise form of the corrections of Padoan and Stupfler (2022) is motivated only by intensive
simulations in certain models, a reverse engineering of their construction is difficult, thus
making a potential extension to other types of distributional tails (such as light tails)
impossible.

The contribution of the present paper is to develop corrected Gaussian confidence
intervals for extreme expectiles of heavy-tailed distributions, with a rigorous theoretical
foundation and whose coverage is close to the nominal confidence level even in moder-
ately large samples. Our method essentially consists in carefully identifying, and then
correcting, the approximation errors made in the proofs of the asymptotic normality of
the extrapolated LAWS and quantile-based estimators. These approximation errors are
typically due to either (i) using the asymptotic connection between extreme quantiles and
expectiles while ignoring higher-order error terms, (ii) incorrectly neglecting correlations
between two estimators when the asymptotic behavior of one of them dominates, or (iii)
employing the delta-method for linearization purposes and, in doing so, incurring variance
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distortions that are not accounted for. We provide successive corrections for each of these
types of errors, resulting in refined variance estimators that converge to the asymptotic
variances. In order to do so, we start by carefully approximating the finite-sample variabil-
ity of the standard (i.e. without bias reduction) versions of the LAWS and quantile-based
estimators. Then, we remark that the bias correction procedures of Girard et al. (2022b)
introduce further variability, and we design a simple but nonetheless very effective extra
correction of the asymptotic variance that is able to push the coverage of the resulting
asymptotic Gaussian confidence intervals close to the nominal rate irrespective of the
degree of tail heaviness in the underlying distribution.

Even though our corrections are technically involved and rely on a very careful investi-
gation of the probabilistic behavior of the expectile estimators, they are conceptually very
simple and result in confidence intervals that are computationally cheap. In particular, we
avoid resorting to bootstrap, which is computationally expensive and known to be diffi-
cult to calibrate when the underlying distribution is heavy-tailed: Athreya (1987), Knight
(1989) and Hall (1990) show that the traditional bootstrap is not consistent for the distri-
bution of a sample mean, and Angus (1993) proves that it is not consistent either for the
distribution of a sample minimum or maximum (i.e. an extreme value). Being extensions
of the mean and extreme values, tail expectiles are similarly difficult to infer using re-
sampling schemes. A potential consistent alternative is subsample bootstrap, but this has
been shown to perform poorly both for inference about the mean (Hall and Jing, 1998) and
about the tail index of heavy-tailed distributions (Guillou, 2000). Parametric bootstrap in
the spirit of Cornea-Madeira and Davidson (2015) is another possibility, but it has not, to
the best of our knowledge, been implemented for heavy-tailed distributions. The approach
we propose bypasses all these difficulties in using bootstrap by staying within the familiar
realm of asymptotic Gaussian inference.

The outline of this paper is the following. Section 2 spells out in detail our statistical
framework as well as the two classes of expectile estimators that we will focus on. We then
work out bias-reduced and variance-corrected asymptotic Gaussian confidence intervals
built on the LAWS and quantile-based estimators in Sections 3 and 4, respectively, and
show that they have asymptotically correct coverage. Section 5 examines their finite-
sample performance on simulated data and on three samples of real data from insurance
and finance. Appendix A describes the estimators of the second-order parameters used
in our implementation. Appendix B gives further details as to how our corrections are
calculated. Appendix C contains all necessary proofs and Appendix D provides extra
finite-sample results about our simulation study and real data analyses. Our methods are
implemented in the freely available R package Expectrem, which can be downloaded at
https://github.com/AntoineUC/Expectrem.

2 Statistical framework and inferential problem

Let F : y 7→ P(Y ≤ y) and F = 1 − F denote, respectively, the distribution and survival
functions of the loss variable Y , whose large values represent extreme losses. We focus
on heavy-tailed distributions that are commonplace in insurance and finance (Embrechts
et al., 1997), which amounts to assuming that F is regularly varying in a neighborhood
of +∞, that is, F (ty)/F (t) → y−1/γ as t → ∞ for any y > 0. Then E|Y | < ∞ provided
E|min(Y, 0)| < ∞ and γ < 1, so that the expectile ξτ is well-defined by (1.1) for any
τ ∈ (0, 1).

Let the data points Y1, . . . , Yn be independent copies of Y , and τn, τ
′
n ↑ 1 denote high

asymmetry levels such that n(1 − τn) → ∞ and (1 − τ ′n)/(1 − τn) → 0 as n → ∞. It is
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useful to think of τ ′n as the target expectile level satisfying n(1− τ ′n) → c <∞, so that the
extreme expectile ξτ ′n is located in a region where very few or no data points lie, and of τn
as an intermediate level, i.e. “extreme, but not too much”, so that ξτn can be estimated
nonparametrically. Then, according to Daouia et al. (2018), an extreme expectile ξτ ′n can

be estimated by, first, estimating an intermediate expectile ξτn (by, say, ξτn) and the tail
index γ (by, say, γ), before combining them to obtain an extrapolated estimator of the
form

ξ
⋆
τ ′n

=

(
1− τ ′n
1− τn

)−γ

ξτn .

A first approach to estimate ξτn is by using the empirical counterpart of the minimization
problem (1.1), giving rise to the LAWS estimator ξ̂τn = argminθ∈R

∑n
i=1 ητn(Yi − θ).

An alternative option is to use the asymptotic proportionality relationship ξτn ∼ (γ−1 −
1)−γqτn (see Bellini and Di Bernardino, 2017), and to estimate qτn therein by q̂τn =
Yn−⌊n(1−τn)⌋,n, where Y1,n ≤ Y2,n ≤ · · · ≤ Yn,n are the order statistics relative to Y1, . . . , Yn.
Combined with the Hill estimator (Hill, 1975)

γ̂Hτn =
1

⌊n(1− τn)⌋

⌊n(1−τn)⌋∑
i=1

log Yn−i+1,n − log Yn−⌊n(1−τn)⌋,n,

this results in a quantile-based (or indirect) estimator ξ̃τn = (1/γ̂Hτn − 1)−γ̂H
τn q̂τn . An

expectile-based alternative estimator of γ, pioneered by Girard et al. (2022a,b), is

γ̂Eτn =

(
1 +

F̂n(ξ̂τn)

1− τn

)−1

where F̂n(x) =
1

n

n∑
i=1

1{Yi > x}.

All in all, the present article will focus on inference about ξτ ′n based on the estimators

ξ̂⋆τ ′n =

(
1− τ ′n
1− τn

)−γ̂E
τn

ξ̂τn (2.1)

and ξ̃⋆τ ′n =

(
1− τ ′n
1− τn

)−γ̂H
τn

ξ̃τn =

(
1− τ ′n
1− τn

)−γ̂H
τn

(1/γ̂Hτn − 1)−γ̂H
τn q̂τn . (2.2)

Their asymptotic analysis requires quantifying the gap between the extremes of Y and
pure Pareto extremes through the following second-order regular variation condition.

C2(γ, ρ,A) There exist γ > 0, ρ ≤ 0 and a measurable auxiliary function A having
constant sign and converging to 0 at infinity such that

∀y > 0, lim
t→∞

1

A(1/F (t))

(
F (ty)

F (t)
− y−1/γ

)
= y−1/γ y

ρ/γ − 1

γρ
.

Here and throughout the ratio (ya − 1)/a should be read as log y when a = 0.
In this context it was shown in Daouia et al. (2018) and Girard et al. (2022b) that,

if ρ < 0 and under the conditions λ1 = limn→∞
√
n(1− τn)A((1 − τn)

−1) ∈ R, λ2 =
limn→∞

√
n(1− τn)/qτn ∈ R and

√
n(1− τn)/ log((1− τn)/(1− τ ′n)) → ∞, one has√

n(1− τn)

log((1− τn)/(1− τ ′n))
log

(
ξ̂⋆τ ′n
ξτ ′n

)
d−→ N

(
γ(γ−1 − 1)1−ρ

1− γ − ρ
λ1 + γ2(γ−1 − 1)γ+1E(Y )λ2,

γ3(1− γ)

1− 2γ

)
(2.3)
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when E|min(Y, 0)|2 <∞ and γ < 1/2, and√
n(1− τn)

log((1− τn)/(1− τ ′n))
log

(
ξ̃⋆τ ′n
ξτ ′n

)
d−→ N

(
λ1

1− ρ
, γ2
)
. (2.4)

The asymptotic distributions in (2.3) and (2.4) feature bias components due to the semi-
parametric heavy tail framework. This has motivated the recent work of Girard et al.
(2022b) on bias reduction procedures for extreme expectile estimation. They assume that
A(t) = bγtρ, for a certain constant b ̸= 0 and ρ < 0; this condition is satisfied by most
classical continuous heavy-tailed distributions, see Table 4. Then, given estimates ρ of ρ
and b of b (we use here the estimators of ρ and b provided by the R package Expectrem1,
whose construction we recall in Appendix A), they first introduce a bias-reduced version
of the extrapolated LAWS estimator having the form

ξ̂⋆,BR
τ ′n

=

(
1− τ ′n
1− τn

)−γ̂E,BR
τn

ξ̂τn × (1 + B̂1,n)(1 + B̂2,n)(1 + B̂3,n), (2.5)

where γ̂E,BR
τn is a bias-reduced version of γ̂Eτn defined as

γ̂E,BR
τn =

1 +
F̂n(ξ̂τn)

1− τn
×

(
1− Y n

ξ̂τn

)−1

(2τn − 1)

(
1 +

b(F̂n(ξ̂τn))
−ρ

1− γ̂Eτn − ρ

)−1

,

with Y n being the sample mean of Y1, . . . , Yn. [In Girard et al. (2022b), a bias-reduced
version of the Hill estimator is used in place of γ̂Eτn in the right-hand side above; the R
package Expectrem has been updated to reflect this change, motivated by the construction
of an estimator which relies on expectiles as the main tool.] The B̂j,n, meanwhile, are
defined as follows:

B̂1,n =
((1− τ ′n)/(1− τn))

−ρ − 1

ρ
bγ̂E,BR

τn (1− τn)
−ρ,

1 + B̂2,n = (1 + r̂(τn))
γ̂E,BR
τn

1 +

(1/γ̂E,BR
τn −1)

−ρ

(1+r̂(τn))
ρ − 1

ρ
bγ̂E,BR

τn (1− τn)
−ρ


−1

where 1 + r̂(τn) =

(
1− Y n

ξ̂τn

)
1

2τn − 1

(
1 +

b(F̂n(ξ̂τn))
−ρ

1− γ̂E,BR
τn − ρ

)−1

,

and 1 + B̂3,n = (1 + r̂⋆(τ ′n))
−γ̂E,BR

τn

1 +

(1/γ̂E,BR
τn −1)

−ρ

(1+r̂⋆(τ ′n))
ρ − 1

ρ
bγ̂E,BR

τn (1− τ ′n)
−ρ


where 1 + r̂⋆(τ ′n) =

(
1− Y n

ξ̂⋆τ ′n

)
1

2τ ′n − 1

(
1 +

b(1/γ̂E,BR
τn − 1)−ρ

1− γ̂E,BR
τn − ρ

(1− τ ′n)
−ρ

)−1

.

Besides, a bias-reduced version of the indirect, extrapolated quantile-based estimator is
given by

ξ̃⋆,BR
τ ′n

=

(
1− τ ′n
1− τn

)−γ̂H,BR
τn

{(1/γ̂H,BR
τn − 1)−γ̂H,BR

τn q̂τn} × (1 + B̃1,n)(1 + B̃3,n). (2.6)

1Credit goes to B.G. Manjunath and F. Caeiro for the original R implementation in package evt0,
which is unfortunately unavailable from CRAN as of April 2023.
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Here B̃1,n is defined as B̂1,n, but with

γ̂H,BR
τn = γ̂Hτn

(
1− b

1− ρ
(1− τn)

−ρ

)
,

which is a bias-reduced version of the Hill estimator proposed by Caeiro et al. (2005), in
place of γ̂E,BR

τn . Similarly for B̃3,n, where in addition r̂⋆(τ ′n) is replaced by r̃⋆(τ ′n), in which

ξ̂⋆τ ′n is replaced by ξ̃⋆τ ′n . Then, ξ̂
⋆,BR
τ ′n

and ξ̃⋆,BR
τ ′n

in (2.5) and (2.6) have the same asymptotic

behavior as ξ̂⋆τ ′n and ξ̃⋆τ ′n in (2.3) and (2.4), respectively, the only difference being that

they are asymptotically unbiased, see Theorem 2 in Girard et al. (2022b). A Gaussian
100(1− α)% asymptotic confidence interval for ξτ ′n based on ξ̂⋆,BR

τ ′n
is then

Î
(1)
τ ′n

(α) =

[
ξ̂⋆,BR
τ ′n

exp

(
± log((1− τn)/(1− τ ′n))√

n(1− τn)

√
ŝ2,BR
n × z1−α/2

)]

with ŝ2,BR
n =

(γ̂E,BR
τn )3(1− γ̂E,BR

τn )

1− 2γ̂E,BR
τn

, (2.7)

where z1−α/2 is the quantile of level 1 − α/2 for the standard Gaussian distribution. An

alternative confidence interval based on ξ̃⋆,BR
τ ′n

is

Ĩ
(1)
τ ′n

(α) =

[
ξ̃⋆,BR
τ ′n

exp

(
± log((1− τn)/(1− τ ′n))√

n(1− τn)

√
σ̃2,BR
n × z1−α/2

)]
with σ̃2,BR

n = (γ̂H,BR
τn )2. (2.8)

The rationale behind our inference method is that such an asymptotic result ignores the
correlation between the intermediate expectile estimator and the tail index estimator, as
well as the inherent variability of the intermediate expectile estimator which can be very

substantial in the heavy right tail setup. The intervals Î
(1)
τ ′n

(α) and Ĩ
(1)
τ ′n

(α) then tend to
have poor coverage even in the ideal scenario when the underlying distribution is very
close to the Pareto distribution, as shown in the middle panels of Figures 1 and 2 below.
By comparing their left and right panels, it can also be inferred that the bias correction is
reasonably effective at least for sufficiently large τn, whereas the estimation of the variances
of (
√
n(1− τn)/ log((1− τn)/(1− τ ′n))) log(ξ̂

⋆,BR
τ ′n

/ξτ ′n) and (
√
n(1− τn)/ log((1− τn)/(1−

τ ′n))) log(ξ̃
⋆,BR
τ ′n

/ξτ ′n), by ŝ
2,BR
n and σ̃2,BR

n respectively, is a long way off the truth. It is on
the accurate estimation of these variances that our contributions below will focus.

3 Bias-reduced and variance-corrected LAWS-based infer-
ence

Assume throughout this section that E|min(Y, 0)|2 < ∞ and γ < 1/2. The basic idea to
show the joint asymptotic normality of γ̂Eτn and ξ̂τn , which are the key building blocks in the

estimator ξ̂⋆,BR
τ ′n

, is to note that this amounts to showing the joint asymptotic normality of
intermediate expectiles and quantiles at suitably chosen intermediate levels. The crucial
point then is that the expectile ξτ is just the τth quantile of the distribution function
E = 1− E defined as

E(y) =
E(|Y − y|1{Y > y})

E(|Y − y|)
=

φ(1)(y)

2φ(1)(y) + y − E(Y )
, with φ(a)(y) = E([Y−y]a1{Y > y}).
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Figure 1: Left panels: Comparison of the empirical variance of (
√
n(1− τn)/ log((1 −

τn)/(1−τ ′n))) log(ξ̂
⋆,BR
τ ′n

/ξτ ′n) (red curve) with boxplots of the asymptotic variance estimate

ŝ2,BR
n . Middle panels: Empirical coverage probabilities of the associated 95% confidence

interval Î
(1)
τ ′n

(α) with the nominal level 1 − α = 0.95 in red. Right panels: Target value

ξτ ′n (red line) and medians of the lower and upper bounds of Î
(1)
τ ′n

(α). These results were
obtained from N = 5,000 replicated samples of n = 1,000 independent observations from
the following distributions: Burr distribution with parameters γ = 0.2 and ρ = −5 (first
row) and the Fréchet distribution with parameter γ = 0.4 (second row). The target
expectile level is τ ′n = 1− 1/n = 0.999, and the results are represented as functions of the
discretized level k = kn = n(1− τn) throughout.

See Jones (1994). Since ξ̂τ is the τth expectile relative to the empirical distribution

function F̂n = 1 − F̂n, it is the τth quantile of the distribution function Ên = 1 − Ên

defined as

Ên(y) =
φ̂
(1)
n (y)

2φ̂
(1)
n (y) + y − Y n

, with φ̂(a)
n (y) =

1

n

n∑
i=1

(Yi − y)a1{Yi > y} and Y n =
1

n

n∑
i=1

Yi.

It follows that the joint asymptotic normality of intermediate expectiles and quantiles is

equivalent to the joint asymptotic normality of Ên and F̂n at suitably chosen intermediate
levels. Our purpose is to finely quantify the joint uncertainty in this limiting relationship
and account for the various sources of errors in the asymptotic approximations, as a
preliminary to doing so again for the extrapolated version of ξ̂⋆,BR

τ ′n
. We give a sketch of

the most important steps below; full details, following from a careful inspection of the
proofs of Theorem 2 in Stupfler and Usseglio-Carleve (2023) and Theorem 2 in Girard
et al. (2022b), can be found in Appendix B.1.

It is, first of all, straightforward to prove that if τn and αn are intermediate levels (with
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Figure 2: Left panels: Comparison of the empirical variance of (

√
n(1− τn)/ log((1 −

τn)/(1−τ ′n))) log(ξ̃
⋆,BR
τ ′n

/ξτ ′n) (red curve) with boxplots of the asymptotic variance estimate

σ̃2,BR
n . Middle panels: Empirical coverage probabilities of the associated 95% confidence

interval Ĩ
(1)
τ ′n

(α) with the nominal level 1 − α = 0.95 in red. Right panels: Target value

ξτ ′n (red line) and medians of the lower and upper bounds of Ĩ
(1)
τ ′n

(α). These results were
obtained from N = 5,000 replicated samples of n = 1,000 independent observations from
the following distributions: Student distribution with ν = 1/γ = 0.6 degrees of freedom
(first row) and the Generalized Pareto Distribution with shape parameter γ = 0.8 and
unit scale (second row). The target expectile level is τ ′n = 1−1/n = 0.999, and the results
are represented as functions of k = kn = n(1− τn) throughout.

αn to be suitably chosen later), the covariance matrix of
√
n(1− τn)(φ̂

(1)
n (ξτn)/φ

(1)(ξτn)−
1, F̂n(qαn)/F (qαn)−1) is exactly the 2×2 symmetric matrixMφ = Mφ

n having components:

Mφ
n,11 = (1− τn)

(
φ(2)(ξτn)

[φ(1)(ξτn)]
2
− 1

)
, Mφ

n,22 = (1− τn)
αn

1− αn

and Mφ
n,12 = (1− τn)

(
φ(1)(ξτn ∨ qαn) + (ξτn ∨ qαn − ξτn)F (ξτn ∨ qαn)

φ(1)(ξτn)(1− αn)
− 1

)
.

Then, since Y n −E(Y ) converges to 0 at the rate 1/
√
n by the central limit theorem, and

thus converges faster than extreme value procedures, we neglect the uncertainty in Y n

throughout and in particular in Ên. A straightforward calculation provides

Ên(ξτn)

E(ξτn)
− 1 ≈ ξτn − E(Y )

2φ(1)(ξτn) + ξτn − E(Y )

(
φ̂
(1)
n (ξτn)

φ(1)(ξτn)
− 1

)
.

This suggests that the joint distribution of
√
n(1− τn)(Ên(ξτn)/E(ξτn)−1, F̂n(qαn)/F (qαn)−

8



1) has a covariance matrix that can be more accurately approximated by ME = ME
n hav-

ing components:

ME
n,11 =

(ξτn − E(Y ))2Mφ
n,11

(2φ(1)(ξτn) + ξτn − E(Y ))2
, ME

n,12 =
(ξτn − E(Y ))Mφ

n,12

2φ(1)(ξτn) + ξτn − E(Y )
, ME

n,22 =Mφ
n,22.

The next step is to remark that for u, v ∈ R,

P

({√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
≤ u

}
∩
{√

n(1− τn)

(
q̂αn

qαn

− 1

)
≤ v

})

≈ P

({√
n(1− τn)

(
Ên(ξτn)

E(ξτn)
− 1

)
≤
√
n(1− τn)

(
E(ξτn)

E(yn)
− 1

)}

∩

{√
n(1− τn)

(
F̂n(qαn)

F (qαn)
− 1

)
≤
√
n(1− τn)

(
F (qαn)

F (zn)
− 1

)})

where yn = yn(u) = ξτn(1 + u/
√
n(1− τn)) and zn = zn(v) = qαn(1 + v/

√
n(1− τn)). A

Taylor expansion yields

E(ξτn)

E(yn)
− 1 = uξτn

1√
n(1− τn)

φ(1)(ξτn) + F (ξτn)(ξτn − E(Y ))

φ(1)(ξτn)(2φ
(1)(ξτn) + ξτn − E(Y ))

(1 + o(1))

and assumption C2(γ, ρ,A) entails
√
n(1− τn)(F (qαn)/F (zn)−1) → v/γ. It readily follows

that the covariance matrix of
√
n(1− τn)(ξ̂τn/ξτn − 1, q̂αn/qαn − 1) is approximated by

Mξ = Mξ
n, whose elements are

M ξ
n,11 =

(
φ(1)(ξτn)(2φ

(1)(ξτn) + ξτn − E(Y ))

ξτn(φ
(1)(ξτn) + F (ξτn)(ξτn − E(Y )))

)2

ME
n,11,

M ξ
n,12 = γ

(
φ(1)(ξτn)(2φ

(1)(ξτn) + ξτn − E(Y ))

ξτn(φ
(1)(ξτn) + F (ξτn)(ξτn − E(Y )))

)
ME

n,12, and M
ξ
n,22 = γ2ME

n,22.

Now that we have obtained a suitable approximation to the covariance matrix of the

Gaussian asymptotic distribution of ξ̂τn and q̂αn , we recall that γ̂Eτn = (1 + F̂n(ξ̂τn)/(1 −
τn))

−1 and we note that{√
n(1− τn)

(
F̂n(ξ̂τn)

1− τn
− F (ξτn)

1− τn

)
≤ z

}
=
{
ξ̂τn ≥ q̂

1−(1−τn)(F (ξτn )/(1−τn)+z/
√

n(1−τn))

}
.

The intermediate quantile level βn = βn(z) = 1−(1−τn)(F (ξτn)/(1−τn)+z/
√
n(1− τn))

in the right-hand side is such that 1− βn ∼ 1− αn = F (ξτn) ∼ (γ−1 − 1)(1− τn). Then

P

({√
n(1− τn)

(
F̂n(ξ̂τn)

1− τn
− F (ξτn)

1− τn

)
≤ z

}
∩

{√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
≤ z′

})

≈ P

({√
n(1− τn)

(
q̂αn

qαn

− 1

)
qαn

ξτn
−
√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
≤ −

√
n(1− τn)

(
qβn

ξτn
− 1

)}

∩

{√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
≤ z′

})
.

9



From Proposition 1 in Daouia et al. (2020) and the second-order regular variation assump-
tion, √

n(1− τn)

(
qβn

ξτn
− 1

)
=
√
n(1− τn)

(
qβn

qτn
× qτn
ξτn

− 1

)
≈ −γ 1− τn

F (ξτn)
z

up to bias terms, which will be taken care of in the bias reduction procedure (and therefore
can be neglected at this stage). Conclude that the asymptotic distribution of

√
n(1− τn)

(
F̂n(ξ̂τn)

1− τn
− F (ξτn)

1− τn
,
ξ̂τn
ξτn

− 1

)

is essentially that of

−1

γ

F (ξτn)

1− τn

1

γ

F (ξτn)

1− τn

1 0

√n(1− τn)


ξ̂τn
ξτn

− 1

q̂αn

qαn

− 1

 ,

and so can be approximated by a centered Gaussian distribution having covariance matrix
M = Mn defined by its elements

Mn,11 =
1

γ2

(
F (ξτn)

1− τn

)2 [
M ξ

n,11 − 2M ξ
n,12 +M ξ

n,22

]
,

Mn,12 =
1

γ

F (ξτn)

1− τn

[
M ξ

n,12 −M ξ
n,11

]
and Mn,22 =M ξ

n,11.

It remains to find a precise version of the asymptotic behavior of γ̂E,BR
τn , and for this we

start by considering γ̂Eτn . For this purpose, we set ψ(x) = 1/(1+x) and note the following
refinement of the delta-method as a formal power series expansion of ψ:√

n(1− τn)(γ̂
E
τn − ψ(F (ξτn)/(1− τn)))

=
√
n(1− τn)(ψ(F̂n(ξ̂τn)/(1− τn))− ψ(F (ξτn)/(1− τn)))

=

∞∑
j=1

ψ(j)(F (ξτn)/(1− τn))

j!
[n(1− τn)]

(1−j)/2

{√
n(1− τn)

(
F̂n(ξ̂τn)

1− τn
− F (ξτn)

1− τn

)}j

.

Evaluating the variance of the right-hand side and its covariance with
√
n(1− τn)(ξ̂τn/ξτn−

1) as formal power series and truncating the resulting series at an order 1/[n(1− τn)]J , for
a suitably chosen J ≥ 1, will lead to an accurate approximation M(J) = Mn(J) of the co-
variance matrix of

√
n(1− τn)(γ̂

E
τn−γ, ξ̂τn/ξτn−1). Of course, first of all,Mn,22(J) =Mn,22

since this element is the asymptotic variance of
√
n(1− τn)(ξ̂τn/ξτn − 1) and does not in-

volve the above power series. Then straightforward calculations based on higher order
moments and covariances of Gaussian random variables entail

Mn,11(∞) =
∞∑
j=0

mj,11

[n(1− τn)]j
with mj,11 = (1 + F (ξτn)/(1− τn))

−2(j+2)M j+1
n,11

×

(
(2j + 1)!!(2j + 1)−

j∑
i=1

(2i− 1)!!(2j + 1− 2i)!!

)

10



where the double factorial N !! denotes the product of all integers from 1 to N having the
same parity as N , and

Mn,12(∞) =
∞∑
j=0

mj,12

[n(1− τn)]j
with mj,12 = −(1 + F (ξτn)/(1− τn))

−2(j+1)M j
n,11

×Mn,12(2j + 1)!!.

The matrix M(J) = Mn(J), approximating the covariance matrix of
√
n(1− τn)(γ̂

E
τn −

ψ(F (ξτn)/(1−τn)), ξ̂τn/ξτn−1), is finally obtained by truncating each of the series defining
Mn,11(∞) and Mn,12(∞) at order 1/[n(1 − τn)]

J . In practice J = 1 already provides
reasonable results, and we adopt this choice in our implementation. We use this in order
to approximate the uncertainty about γ̂E,BR

τn . Straightforward calculations yield

γ̂E,BR
τn − γ = un(γ̂

E
τn , ξ̂τn/ξτn)− un((1 + F (ξτn)/(1− τn))

−1, 1) + OP(A((1− τn)
−1)))

where

un(x, y) =

(
1 + (2τn − 1)

(
1

x
− 1

)(
1− E(Y )

yξτn

)−1
)−1

.

Here and throughout the paper, we have neglected the finite-sample variability in Y n, and
we neglect any term proportional to (or dominated by) A((1 − τn)

−1) for the purpose of
approximating the variance of our estimators only. The rationale behind this choice is
that, since A(t) = γbtρ, keeping these terms in this kind of calculation would, because
of the bias reduction procedure, entail ultimately having to approximate the correlation
of estimators of the second-order parameters ρ and b with estimators of other extreme
value parameters, here γ̂Eτn and ξ̂τn . This is a joint convergence problem which, to the best
of our knowledge, remains open, and whose solution deserves a separate in-depth study.
Moreover, in many usual cases in extreme value theory (for instance, when γ < 1/2), one
has γ < −ρ, and then A(t) is negligible with respect to 1/q1−1/t ∼ (γ−1 − 1)−γ/ξ1−1/t as
t→ ∞, which further justifies this modeling choice in our setting. The random vector

√
n(1− τn)

(
γ̂E,BR
τn − γ,

ξ̂τn
ξτn

− 1

)

can thus be considered asymptotically Gaussian centered with a covariance matrix ap-
proximated by MBR(J) = MBR

n (J) whose elements are

MBR
n,11(J) = (∂1un((1 + F (ξτn)/(1− τn))

−1, 1))2Mn,11(J)

+ (∂2un((1 + F (ξτn)/(1− τn))
−1, 1))2Mn,22(J)

+ 2∂1un((1 + F (ξτn)/(1− τn))
−1, 1)∂2un((1 + F (ξτn)/(1− τn))

−1, 1)Mn,12(J),

MBR
n,12(J) = ∂1un((1 + F (ξτn)/(1− τn))

−1, 1)Mn,12(J)

+ ∂2un((1 + F (ξτn)/(1− τn))
−1, 1)Mn,22(J),

MBR
n,22(J) = Mn,22(J).

Our final step is to combine all these elements in order to accurately quantify the un-
certainty in log(ξ̂⋆,BR

τ ′n
/ξτ ′n). Starting with (2.5), and neglecting any term proportional to

11



A((1− τn)
−1) or A((1− τ ′n)

−1) and approximating Y n by E(Y ), we find

log
ξ̂⋆,BR
τ ′n

ξτ ′n
≈
[
log

(
1− τn
1− τ ′n

)
+ log

(
2τ ′n − 1

2τn − 1

)]
(γ̂E,BR

τn − γ) + log
ξ̂τn
ξτn

+ γ̂E,BR
τn log

(
1− E(Y )

ξ̂τn

)
− γ log

(
1− E(Y )

ξτn

)

−

γ̂E,BR
τn log

1− E(Y )(
1−τ ′n
1−τn

)−γ̂E,BR
τn

ξ̂τn

− γ log

1− E(Y )(
1−τ ′n
1−τn

)−γ
ξτn


 .

This eventually leads to the approximation√
n(1− τn)

log((1− τn)/(1− τ ′n))
log

ξ̂⋆,BR
τ ′n

ξτ ′n
≈
√
n(1− τn)

{
gn(γ̂

E,BR
τn , ξ̂τn/ξτn)− gn(γ, 1)

}
where

gn(x, y) = x

(
1 +

log((2τ ′n − 1)/(2τn − 1))

log((1− τn)/(1− τ ′n))

)
+

log(y)

log((1− τn)/(1− τ ′n))

+
x

log((1− τn)/(1− τ ′n))
log

(
1− E(Y )

ξτny

)

− x

log((1− τn)/(1− τ ′n))
log

1− E(Y )(
1−τ ′n
1−τn

)−x
ξτny

 .

The variance of the asymptotic Gaussian distribution of (
√
n(1− τn)/ log((1 − τn)/(1 −

τ ′n))) log(ξ̂
⋆,BR
τ ′n

/ξτ ′n) is then well approximated by

s2n(J) = (∂1gn(γ, 1))
2MBR

n,11(J) + 2∂1gn(γ, 1)∂2gn(γ, 1)M
BR
n,12(J) + (∂2gn(γ, 1))

2MBR
n,22(J).

In order to produce confidence intervals, we estimate γ by γ̂E,BR
τn , ξτn by ξ̂τn , E(Y ) by Y n,

F (ξτn) by F̂n(ξ̂τn), φ
(1)(ξτn) by

φ̂(1)
n (ξ̂τn) =

1

n

n∑
i=1

(Yi − ξ̂τn)1{Yi > ξ̂τn}.

The estimation of φ(2)(ξτn) is more complex, because its naive empirical counterpart

φ̂
(2)
n (ξ̂τn) is unbiased but highly skewed, and therefore tends to vastly underestimate

φ(2)(ξτn). A second-order approximation of the underlying distribution function F in
a neighborhood of infinity suggests the more accurate estimator

φ̃(2)
n (ξ̂τn) = 2F̂n(ξ̂τn)ξ̂

2
τn(γ̂

E,BR
τn )2

(
1

(1− γ̂E,BR
τn )(1− 2γ̂E,BR

τn )

+
b(F̂n(ξ̂τn))

−ρ

ρ

{
1

(1− γ̂E,BR
τn − ρ)(1− 2γ̂E,BR

τn − ρ)
− 1

(1− γ̂E,BR
τn )(1− 2γ̂E,BR

τn )

})
.
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We deduce from these calculations a corrected asymptotic Gaussian confidence interval
for ξτ ′n at level 1− α as

Î
(2)
τ ′n

(α) = Î
(2)
τ ′n

(α; J) =

[
ξ̂⋆,BR
τ ′n

exp

(
± log((1− τn)/(1− τ ′n))√

n(1− τn)

√
ŝ2n(J)× z1−α/2

)]
where ŝ2n(J) is obtained from s2n(J) by replacing γ by γ̂E,BR

τn , ξτn by ξ̂τn , E(Y ) by Y n, F (ξτn)

by F̂n(ξ̂τn), φ
(1)(ξτn) by φ̂

(1)
n (ξ̂τn) and φ

(2)(ξτn) by φ̃
(2)
n (ξ̂τn). The R function CIextExpect

(with method="direct"), available as part of our package Expectrem, computes this con-
fidence interval.

We finally state and prove that this corrected confidence interval has asymptotically

correct coverage and is always (asymptotically) longer than the naive interval Î
(1)
τ ′n

(α).

Theorem 1. Assume that E(|min(Y, 0)|2+δ) <∞ for some δ > 0, and condition C2(γ, ρ,A)
holds with 0 < γ < 1/2, ρ < 0 and A(t) = bγtρ. Let τn, τ

′
n be two sequences such that

τn, τ
′
n ↑ 1 as n → ∞, n(1 − τn) → ∞, (1 − τ ′n)/(1 − τn) → 0 and log((1 − τn)/(1 −

τ ′n))/
√
n(1− τn) → 0 as n → ∞. Assume further that

√
n(1− τn)A((1 − τn)

−1) → 0
and

√
n(1− τn)/qτn → λ ∈ R, and ρ and b are consistent estimators of ρ and b such that

(ρ− ρ) log(n) = oP(1). Then:

(i) For any J ≥ 1, ŝ2n(J) → γ3(1− γ)/(1− 2γ) in probability, and

∀α ∈ (0, 1), lim
n→∞

P
(
ξτ ′n ∈ Î

(2)
τ ′n

(α; J)
)
= 1− α.

(ii) One has

ξτ ′n√
n(1− τn)

(length(Î
(2)
τ ′n

(α; J))− length(Î
(1)
τ ′n

(α))) →

√
γ3

(1− γ)(1− 2γ)
z1−α/2

in probability.

4 Bias and variance-corrected quantile-based inference

For the purpose of carrying out inference using the quantile-based extrapolated estima-
tor ξ̃⋆,RB

τ ′n
, the key is to obtain an accurate representation of the uncertainty in the pair

(γ̂Hτn , ξ̃τn), where the quantile-based intermediate expectile estimator is ξ̃τn = (1/γ̂Hτn −
1)−γ̂H

τn q̂τn . Throughout this section we take τn = 1− kn/n, where kn is a sequence of inte-
gers, q̂τn = Yn−kn,n is the corresponding intermediate order statistic, and γ̂Hτn = γ̂H1−kn/n

is
the usual Hill estimator of γ calculated upon the top kn log-spacings. Again, we only give
the main steps of our construction, with full technical details reported in Appendix B.2.

The idea is to write√
kn log

(
ξ̃1−kn/n

(γ−1 − 1)−γq1−kn/n

)
=
√
kn{ϕ(γ̂H1−kn/n

)− ϕ(γ)}+
√
kn log

(
q̂1−kn/n

q1−kn/n

)
where ϕ(x) = −x log(x−1 − 1) and, analogously to Section 3, to construct a formal power
series expansion of ϕ in a neighborhood of γ:√

kn log

(
ξ̃1−kn/n

(γ−1 − 1)−γq1−kn/n

)

=
√
kn log

(
q̂1−kn/n

q1−kn/n

)
+

∞∑
j=1

ϕ(j)(γ)

j!
k

1−j
2

n

{√
kn(γ̂

H
1−kn/n

− γ)
}j
.
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We approximate the variance of
√
kn log(ξ̃1−kn/n/((γ

−1−1)−γq1−kn/n)) and its covariance

with
√
kn(γ̂

H
1−kn/n

−γ) through a truncated formal power series at an order 1/kJn , for a suit-
ably chosen J ≥ 1. This provides a finite-sample correction for the asymptotic covariance
matrix of

√
kn(γ̂

H
1−kn/n

−γ, log(ξ̃1−kn/n/((γ
−1−1)−γq1−kn/n))), and hence a correction for

the asymptotic variance of the extrapolated quantile-based extreme expectile estimator.
The resulting matrix V(J) = Vn(J) has the following coefficients: the first variance term
V11(J) = V11(0) = γ2, obtained from the asymptotic variance of

√
kn(γ̂

H
1−kn/n

− γ), does

not depend on J . The second variance term V22(J), found by evaluating the variance of
the right-hand side in the above expansion, is obtained by truncating the series

V22(∞) = γ2 +Var

 ∞∑
j=1

ϕ(j)(γ)

j!
k

1−j
2

n γjZj


where Z is standard Gaussian. [This is justified because, by Theorem 2.4.8 p.52, Lemma 3.2.3
p.71 and Theorem 3.2.5 p.74 in de Haan and Ferreira (2006),

√
kn(γ̂

H
1−kn/n

− γ) and
√
kn(q̂1−kn/n/q1−kn/n − 1) are asymptotically independent with asymptotic variance γ2.]

After straightforward calculations, gathering powers of kn together, we find

V22(∞) = γ2

1 + (m(γ))2 +

∞∑
j=1

γ2j

kjn

(
(2j + 1)!!

2j+1∑
i=1

ϕ(i)(γ)ϕ(2j+2−i)(γ)

i!(2j + 2− i)!

− 1

2j+1

j∑
i=1

ϕ(2i)(γ)ϕ(2j+2−2i)(γ)

i!(j + 1− i)!

))
=:

∞∑
j=0

vj,22

kjn

where m(γ) = ϕ′(γ) = (1 − γ)−1 − log(γ−1 − 1). An expression of the formal covariance
term V12(∞) is similarly easily derived: if Z is standard Gaussian,

V12(∞) =
∞∑
j=0

ϕ(j)(γ)

j!
k

1−j
2

n γj+1E(Zj+1) =
∞∑
j=0

ϕ(2j+1)(γ)

2jj!kjn
γ2j+2 =:

∞∑
j=0

vj,12

kjn
.

In practice we truncate these power series at order 1/kJn , for a given J ≥ 1, so that a
refined approximation to the covariance matrix of

√
kn(γ̂

H
1−kn/n

− γ, log(ξ̃1−kn/n/((γ
−1 −

1)−γq1−kn/n))) is the symmetric matrix V(J) whose elements are V11(J), V12(J) and
V22(J). In our implementation we stop the approximation at order 1/k2n, that is, J =
2. Simple expressions of the coefficients vj,12 and vj,22, for j = 0, 1, 2, are provided in
Appendix B.2.

We may now proceed with the construction of a confidence interval for ξτ ′n . We again
neglect any term proportional to A((1 − τn)

−1) or A((1 − τ ′n)
−1), and we neglect the

finite-sample variability in Y n as an estimator of E(Y ). Starting from Equation (2.6),
straightforward calculations lead to the approximation

log
ξ̃⋆,BR
τ ′n

ξτ ′n
≈
(
log

(
kn

n(1− τ ′n)

)
+ log(2τ ′n − 1)

)
(γ̂H1−kn/n

− γ) + log
ξ̃1−kn/n

(γ−1 − 1)−γq1−kn/n

−

γ̂H1−kn/n
log

(
1− E(Y )

ξ̃⋆τ ′n

)
− γ log

1− E(Y )(
n(1−τ ′n)

kn

)−γ
(γ−1 − 1)−γq1−kn/n


 .

This can be reformulated as
√
kn

log (kn/(n(1− τ ′n)))
log

ξ̃⋆,BR
τ ′n

ξτ ′n
≈
√
kn

{
hn

(
γ̂H1−kn/n

,
ξ̃1−kn/n

(γ−1 − 1)−γq1−kn/n

)
− hn(γ, 1)

}
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where

hn(x, y) =

(
1 +

log(2τ ′n − 1)

log(kn/(n(1− τ ′n)))

)
x+

log(y)

log(kn/(n(1− τ ′n)))

− x

log(kn/(n(1− τ ′n)))
log

1− E(Y )(
n(1−τ ′n)

kn

)−x
(γ−1 − 1)−γq1−kn/n y

 .

This suggests that the variance of (
√
kn/ log(kn/(n(1 − τ ′n)))) log(ξ̃

⋆,BR
τ ′n

/ξτ ′n) is well ap-
proximated by

σ2n(J) = (∂1hn(γ, 1))
2V11(J) + 2∂1hn(γ, 1)∂2hn(γ, 1)V12(J) + (∂2hn(γ, 1))

2V22(J).

We deduce from these calculations a corrected asymptotic Gaussian confidence interval
for ξτ ′n at level 1− α as

Ĩ
(2)
τ ′n

(α) = Ĩ
(2)
τ ′n

(α; J) =

[
ξ̃⋆,BR
τ ′n

exp

(
± log(kn/(n(1− τ ′n)))√

kn

√
σ̃2n(J)× z1−α/2

)]
where

σ̃2n(J) = (∂1ĥn(γ̂
H,BR
1−kn/n

, 1))2(γ̂H,BR
1−kn/n

)2 + (∂2ĥn(γ̂
H,BR
1−kn/n

, 1))2V̂22(J)

+ 2∂1ĥn(γ̂
H,BR
1−kn/n

, 1)∂2ĥn(γ̂
H,BR
1−kn/n

, 1)V̂12(J)

is obtained by replacing γ by γ̂H,BR
1−kn/n

, q1−kn/n by q̂1−kn/n and E(Y ) by Y n in the quantities

V11(J) ≡ γ2, V12(J), V22(J), ∂1hn(γ, 1) and ∂2hn(γ, 1), thus producing their respective
estimators V̂11(J) ≡ (γ̂H,BR

1−kn/n
)2, V̂12(J), V̂22(J), ∂1ĥn(γ̂

H,BR
1−kn/n

, 1) and ∂2ĥn(γ̂
H,BR
1−kn/n

, 1).
Next, we examine the asymptotic properties of this confidence interval that can be

calculated by the R function CIextExpect (with method="indirect") available as part
of our package Expectrem.

Theorem 2. Assume that E|min(Y, 0)| <∞ and condition C2(γ, ρ,A) holds with 0 < γ <
1, ρ < 0 and A(t) = bγtρ. Let kn, τ

′
n be two sequences such that kn → ∞, kn/n → 0,

n(1 − τ ′n)/kn → 0 and log(kn/(n(1 − τ ′n)))/
√
kn → 0 as n → ∞. Assume further that√

knA(n/kn) → 0 and
√
kn/q1−kn/n → λ ∈ R, and ρ and b are consistent estimators of ρ

and b such that (ρ− ρ) log(n) = oP(1). Then:

(i) For any J ≥ 1, σ̃2n(J) → γ2 in probability, and

∀α ∈ (0, 1), lim
n→∞

P
(
ξτ ′n ∈ Ĩ

(2)
τ ′n

(α; J)
)
= 1− α.

(ii) One has

ξτ ′n√
kn

(length(Ĩ
(2)
τ ′n

(α; J))− length(Ĩ
(1)
τ ′n

(α))) → 2γm(γ)z1−α/2

in probability, where m(γ) = (1− γ)−1 − log(γ−1 − 1).

The corrected interval Ĩ
(2)
τ ′n

(α; J) is not always longer than the naive Gaussian interval

Ĩ
(1)
τ ′n

(α), since m(γ) > 0 if and only if γ > γ0 ≈ 0.218.

We note moreover that, since γ3(1 − γ)/(1 − 2γ) > γ2 if and only if γ ∈ ((3 −√
5)/2, 1/2) ≈ (0.382, 0.5), the corrected interval Î

(2)
τ ′n

(α; J) will tend to be shorter than

Ĩ
(2)
τ ′n

(α; J) when the underlying distribution has a finite third moment. Of course, this rule-
of-thumb ignores the variability of the LAWS extreme expectile estimator, which may be
considerable in finite samples. We shall check these insights on simulated data in Section 5.
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5 Finite-sample study

5.1 The Expectrem package

The R package Expectrem, freely available at https://github.com/AntoineUC/Expectrem,
has been updated to include the methodology developed in this article and fixes have
been made to ensure correctness of the implementation. Aside from containing the
functions tindexp (to compute either γ̂Eτn if argument br=FALSE or γ̂E,BR

τn if br=TRUE)
and extExpect to compute LAWS (if argument method="direct") or quantile-based (if
method="indirect") extreme expectile estimators ξ̂⋆τ ′n and ξ̃⋆τ ′n (the bias-reduced versions

ξ̂⋆,BR
τ ′n

and ξ̃⋆,BR
τ ′n

are also obtained with br=TRUE), we added two functions in order to make
the simulation study and applications introduced in this paper easily reproducible:

• CIextExpect: an improved version of extExpect, which returns the extreme expec-
tile estimate, and its associated bias-reduced and variance-corrected confidence in-

terval Î
(2)
τ ′n

(α; J) (for LAWS estimates) and Ĩ
(2)
τ ′n

(α; J) (for quantile-based estimates).

The required inputs are the dataset X, the value kn = n(1− τn) as k and the target
expectile level τ ′n as tau. The LAWS (method="direct", default) and quantile-
based (method="indirect") Weissman estimators can be computed, and the nom-
inal level (ci.level, default 0.95) may be chosen. For comparison purposes, one

may also compute the naive, uncorrected confidence intervals Î
(1)
τ ′n

(α) and Ĩ
(1)
τ ′n

(α),
available respectively as method="direct naive" and method="indirect naive",
and univariate versions of the corrected confidence regions of Padoan and Stupfler
(2022), available as method="direct PS" and method="indirect PS" for LAWS
and quantile-based estimators, respectively.

• logspacqqplot: for a dataset X given in input, this function returns an exponential
quantile-quantile plot of the kn (as k) top log-spacings. If argument weighted=TRUE
(default), the weighted log-spacings i log(Xn−i+1,n/Xn−i,n) are computed (1 ≤ i ≤
k). If weighted=FALSE, they are replaced by log(Xn−i,n/Xn−kn,n). The straight line

with slope γ̂H,BR
1−kn/n

may be added if add.line=TRUE. This is useful for the purpose
of diagnosing tail heaviness a posteriori.

Note that the expression of φ̃
(2)
n (ξ̂τn), introduced in Section 3 in the calculation of Î

(2)
τ ′n

(α; J),
can be somewhat unstable in small samples due to the estimation of γ and ρ. The Cauchy-
Schwarz inequality yields (φ(1)(ξτn))

2 ≤ φ(2)(ξτn) ≤
√
φ(4)(ξτn) and motivates the con-

strained estimator

qφ(2)
n (ξ̂τn) = min

max
{
φ̃(2)
n (ξ̂τn), (φ̂

(1)
n (ξ̂τn))

2
}
,

√√√√ 1

n

n∑
i=1

(Yi − ξ̂τn)
41{Yi > ξ̂τn}


which we found to work reasonably well in practice in a wide array of situations. This
constrained estimator is used in the CIextExpect function (if method="direct") in place

of φ̃
(2)
n (ξ̂τn).

5.2 Simulation study

In order to get a comprehensive overview of the practical performance of the suggested
confidence intervals, we consider the following test cases for the distribution of Y (see
Table 4 for more details):
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• A Fréchet distribution with tail index γ > 0, i.e. F (y) = 1− exp(−y−1/γ) for y > 0.
Here A(t) = γ/(2t), and in particular ρ = −1. The Fréchet distribution is ubiquitous
in extreme value analysis, especially in multivariate problems where it is the standard
marginal distribution when estimating multivariate extreme dependence structures,
see for instance Chapter 8 of Beirlant et al. (2004).

• A Burr distribution with tail index γ > 0 and second-order parameter ρ < 0,
i.e. F (y) = (1 + y−ρ/γ)1/ρ for y > 0. Here A(t) = γtρ, so we can make ρ vary
in order to generate scenarios with various degrees of difficulty. We consider here
ρ = −5,−1,−0.5, representing easy, standard and hard scenarios, respectively.

For each of these families of distributions, we consider γ = 0.1, 0.2, 0.3 and 0.4 for the
LAWS estimator, and γ = 0.1, 0.3, 0.5 and 0.7 for the quantile-based estimator: recall that
the latter is valid on the larger range of values γ ∈ (0, 1), compared to the former which
is restricted to γ ∈ (0, 1/2). Then, for each value of γ, we simulate N = 5,000 datasets
{Y1, . . . , Yn} of n ∈ {200, 1,000, 5,000} independent realizations of Y , with distribution
function F = 1 − F . We set τ ′n = 1 − 1/n and compare the finite-sample performance of
the following inference methods for ξτ ′n :

• The standard confidence intervals Î
(1)
τ ′n

(α) and Ĩ
(1)
τ ′n

(α). In order to show the impact
of bias reduction, the versions of these intervals not featuring bias correction at
all, i.e. where ξ̂⋆,BR

τ ′n
, ξ̃⋆,BR

τ ′n
, γ̂E,BR

τn and γ̂H,BR
τn are replaced by ξ̂⋆τ ′n , ξ̃

⋆
τ ′n
, γ̂Eτn and γ̂Hτn ,

respectively, are also considered, namely

Î
(3)
τ ′n

(α) =

[
ξ̂⋆τ ′n exp

(
± log((1− τn)/(1− τ ′n))√

n(1− τn)

√
ŝ2n × z1−α/2

)]

with ŝ2n =
(γ̂Eτn)

3(1− γ̂Eτn)

1− 2γ̂Eτn
, (5.1)

and

Ĩ
(3)
τ ′n

(α) =

[
ξ̃⋆τ ′n exp

(
± log((1− τn)/(1− τ ′n))√

n(1− τn)

√
σ̃2n × z1−α/2

)]
with σ̃2n = (γ̂Hτn)

2. (5.2)

• The corrected confidence intervals introduced in Padoan and Stupfler (2022), i.e. uni-
variate versions of their confidence regions Ẽ⋆

τ ′n,α
and Ê⋆

τ ′n,α
for LAWS and quantile-

based estimators, respectively. These take the form

Î
(4)
τ ′n

(α) =

[
ξ̂⋆,PSτ ′n

exp

(
± log((1− τn)/(1− τ ′n))√

n(1− τn)

√
s2n × z1−α/2

)]
(5.3)

and Ĩ
(4)
τ ′n

(α) =

[
ξ̃⋆,PSτ ′n

exp

(
± log((1− τn)/(1− τ ′n))√

n(1− τn)

√
σ2n × z1−α/2

)]
(5.4)

where ξ̂⋆,PSτ ′n
(resp. ξ̃⋆,PSτ ′n

) and s2n (resp. σ2n) are suitably chosen bias-corrected LAWS

(resp. quantile-based) estimates of ξτ ′n and asymptotic variance estimates for these
quantities. We refer to Padoan and Stupfler (2022) for full details.

• Our proposed confidence intervals Î
(2)
τ ′n

(α; J) and Ĩ
(2)
τ ′n

(α; J), with J = 1 and J = 2,
respectively.
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These are all calculated using the R function CIextExpect from the Expectrem package,
described in Section 5.1, at the default 1− α = 0.95 confidence level.

To assess the finite-sample performance of these inference methods, we provide three
types of graphs:

• A graph comparing the empirical variances (across the N = 5,000 replicated samples
and on the log-scale) of ξ̂⋆,BR

τ ′n
(resp. ξ̃⋆,BR

τ ′n
) with the average estimated variances

ŝ2,BR
n , ŝ2n(J), ŝ

2
n and s2n (resp. σ̃2,BR

n , σ̃2n(2), σ̃
2
n and σ2n) giving rise to the considered

confidence intervals,

• A graph comparing the empirical coverage probability (across the N = 5,000 repli-

cated samples) of each of the confidence intervals Î
(1)
τ ′n

(α), Î
(2)
τ ′n

(α; 1), Î
(3)
τ ′n

(α) and

Î
(4)
τ ′n

(α) (resp. Ĩ
(1)
τ ′n

(α), Ĩ
(2)
τ ′n

(α; 2), Ĩ
(3)
τ ′n

(α) and Ĩ
(4)
τ ′n

(α)) to the nominal level 1−α = 0.95,

• A graph comparing the median length (across the N = 5,000 replicated samples) of
each of these confidence intervals.

This results in 96 series of 3 graphs deferred to Appendix D.1, as Figures D.1–D.24, for
the sake of brevity. We give representative examples of our results in Figures 3 and 4.

As the left panels make clear, the confidence intervals Î
(2)
τ ′n

(α; 1) and Ĩ
(2)
τ ′n

(α; 2) are con-
structed based on variance estimates whose median tends to be much closer to the empirical
variance of ξ̂⋆,BR

τ ′n
and ξ̃⋆,BR

τ ′n
than those on which the examined competitors are built. That

the average value of our variance estimates may be poor should not be surprising since we
are working with heavy-tailed data, whose high values are very disruptive to an accurate
estimation of the variance. The middle panels indicate that overall there is substantial gain

in preferring Î
(2)
τ ′n

(α; 1) (resp. Ĩ
(2)
τ ′n

(α; 2)) to Î
(1)
τ ′n

(α) and Î
(3)
τ ′n

(α) (resp. Ĩ
(1)
τ ′n

(α) and Ĩ
(3)
τ ′n

(α)).

Empirical coverage probabilities of Î
(2)
τ ′n

(α; 1) and Ĩ
(2)
τ ′n

(α; 2) are also typically more stable

than those of Î
(4)
τ ′n

(α) and Ĩ
(4)
τ ′n

(α) as a function of k, while generally being as close or even

closer to the nominal level (see e.g. the example of the Burr distribution with γ = 0.3
and ρ = −1, with the LAWS approach, or the difficult case of the Burr distribution with
γ = 0.1 and ρ = −0.5, with the quantile-based method). Finally, the right panels confirm
the observations made following Theorems 1 and 2: the LAWS (resp. quantile-based) in-

terval Î
(2)
τ ′n

(α; 1) (resp. Ĩ
(2)
τ ′n

(α; 2)) is longer than its counterpart Î
(1)
τ ′n

(α) (resp. longer than

Ĩ
(1)
τ ′n

(α) for values of γ ≥ 0.3), while being kept to a reasonable length. There does not

seem to be a rule for comparing these lengths with those of Î
(4)
τ ′n

(α) and Ĩ
(4)
τ ′n

(α).

5.3 Real data analyses

We showcase the proposed inference methods on three real data examples: the first two
revisit the applications of Daouia et al. (2018) and Girard et al. (2022b) to medical insur-
ance data and stock price data, respectively, and the third one addresses cyber insurance
of data breaches through the assessment of and inference about their associated extreme
risk.

5.3.1 Example 1: Society of Actuaries medical insurance claims data

The Society of Actuaries (SOA Group) Medical Insurance Large Claims Database records
all the claim amounts exceeding 25,000 USD over the timeframe 1991-92. We only deal here
with the n = 75,789 claims for 1991. This dataset (available in the R package Expectrem
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Figure 3: Left panels: Comparison of the empirical variance of (
√
n(1− τn)/ log((1 −

τn)/(1−τ ′n))) log(ξ̂
⋆,BR
τ ′n

/ξτ ′n) (red curve) with boxplots of the asymptotic variance estimate

ŝ2n(1) and the average values of ŝ2,BR
n (dashed curve), ŝ2n(1) (green curve), ŝ2n (dashed-

dotted curve) and s2n (blue curve) as functions of k = kn. Middle panels: coverage

probabilities of the associated 95% confidence intervals Î
(1)
τ ′n

(α), Î
(2)
τ ′n

(α; 1), Î
(3)
τ ′n

(α) and

Î
(4)
τ ′n

(α) (same color code) with the nominal level 0.95 in red. Right panels: Median length

of these confidence intervals (same color code). First row: Burr distribution with γ = 0.1
and ρ = −0.5, second row: Fréchet distribution with γ = 0.2, third row: Burr distribution
with γ = 0.3 and ρ = −1, fourth row: Burr distribution with γ = 0.4 and ρ = −5. The
sample size is n = 1,000 and the target expectile level is τ ′n = 1− 1/n = 0.999.
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Figure 4: Left panels: Comparison of the empirical variance of (
√
n(1− τn)/ log((1 −

τn)/(1−τ ′n))) log(ξ̃
⋆,BR
τ ′n

/ξτ ′n) (red curve) with boxplots of the asymptotic variance estimate

σ̃2n(2) and the average values of σ̃2,BR
n (dashed curve), σ̃2n(2) (green curve), σ̃2n (dashed-

dotted curve) and σ2n (blue curve) as functions of k = kn. Middle panels: coverage

probabilities of the associated 95% confidence intervals Ĩ
(1)
τ ′n

(α), Ĩ
(2)
τ ′n

(α; 2), Ĩ
(3)
τ ′n

(α) and

Ĩ
(4)
τ ′n

(α) (same color code) with the nominal level 0.95 in red. Right panels: Median length

of these confidence intervals (same color code). First row: Burr distribution with γ = 0.1
and ρ = −0.5, second row: Fréchet distribution with γ = 0.3, third row: Burr distribution
with γ = 0.5 and ρ = −1, fourth row: Burr distribution with γ = 0.7 and ρ = −5. The
sample size is n = 1,000 and the target expectile level is τ ′n = 1− 1/n = 0.999.
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as the dataset soa) has been analyzed by a number of authors, including Beirlant et al.
(2004) who find evidence of a heavy right tail (see also the histogram and rug plot in the
top left panel of Figure 5) with tail index γ ≈ 1/3, and Daouia et al. (2018), who estimate
extreme quantiles at level αn = 1 − 1/100,000 by making use of extrapolated extreme
expectile estimates.

Our objective here is to estimate and infer extreme expectiles themselves in this dataset
using our bias-reduced and variance-corrected techniques. The top right panel of Figure 5
compares the point estimates ξ̂⋆τ ′n in (2.1) and ξ̃⋆τ ′n in (2.2) with their bias-reduced counter-

parts in (2.5) and (2.6), as functions of the intermediate anchor level k = kn = n(1− τn)
and at level τ ′n = 1− 1/100,000. It is readily seen that the bias reduction scheme is highly
effective, which here stems from the fact that the estimated value of ρ hovers around
ρ = −0.2 and thus the bias component is expected to be sizeable. We then carry out infer-
ence on the basis of the bias-reduced estimates, see the bottom panels of Figure 5, where

we compare the straightforward intervals Î
(1)
τ ′n

(α) and Ĩ
(1)
τ ′n

(α) to the variance-corrected

versions Î
(2)
τ ′n

(α; 1) and Ĩ
(2)
τ ′n

(α; 2), respectively. We first observe that the variance-corrected
interval is very similar to its naive counterpart when the quantile-based method is used.
This is sensible in view of the results of our simulation study, where one sees that the
naive and corrected quantile-based extreme expectile confidence intervals are very close
when γ ≈ 0.3, which is precisely the case here. When using the LAWS-based confidence
intervals, however, the bottom left panel of Figure 5 suggests that the finite-sample vari-
ability of the LAWS extreme expectile estimate is more important than what is suggested

by the straightforward interval Î
(1)
τ ′n

(α). Using the latter would lead to a substantial un-
derestimation of the uncertainty on the target extreme expectile and thus to an incorrect
assessment of tail risk carried out by large medical claims with potentially detrimental
consequences on the insurance companies involved.

5.3.2 Example 2: Commerzbank stock price data

We consider the daily negative log-returns of the Commerzbank stock price on the DAX30
stock exchange between March 6, 2012 and July 28, 2016, resulting in a sample Y1, . . . , Yn
of size n = 1,048 (available in the R package Expectrem as the dataset commerzbank). As
already pointed out by Girard et al. (2022b) for this dataset, the temporal dependence
can be handled by filtering the time series with an ARMA(1,1)-GARCH(1,1) model:

Yt = µ+ ϕYt−1 + ut + θut−1,

where ut = σtεt is such that σ2t = c + au2t−1 + bσ2t−1, with (εt) being an unobserved
independent nondegenerate white noise sequence, i.e. copies of a random variable ε such
that E(ε) = 0, E(ε2) = 1 and P(ε2 = 1) < 1, and the constants µ, ϕ, θ, a, b and c
being the model parameters. Denote by Fn the algebra generated by the ARMA-GARCH
process up to time n, and recall that the expectile is positive homogeneous and location
equivariant, so that the conditional expectile for the next day given the data up to time
n can be modeled as

ξτ (Yn+1|Fn) = µ+ ϕYn + σn+1 ξτ (ε) + θun.

The estimation of expectiles in practice requires an informed choice of the target level. One
possible strategy, studied among others by Bellini and Di Bernardino (2017), is to assume
that the underlying distribution function Φ of the innovations εt is standard Gaussian.
In this setting, for example an expectile of level τ ′n = 0.995 of the εt coincides with their
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Figure 5: Society of Actuaries medical insurance claims data (sample size n = 75,789).
Top left: Histogram and rug plot of the log-claims log Yi, 1 ≤ i ≤ n. Top right: Expectile
point estimates ξ̂⋆τ ′n (solid black), ξ̃⋆τ ′n (dotted black), ξ̂⋆,BR

τ ′n
(solid green) and ξ̃⋆,BR

τ ′n
(dotted

green), at level τ ′n = 1 − 1/100,000, as a function of k = kn = n(1 − τn). Bottom left:
Bias-reduced LAWS expectile point estimate ξ̂⋆,BR

τ ′n
(solid black) with associated confidence

intervals Î
(1)
τ ′n

(α) (dashed black) and Î
(2)
τ ′n

(α; 1) (dashed green) at the 95% confidence level.

Bottom right: Bias-reduced quantile-based expectile point estimate ξ̃⋆,BR
τ ′n

(solid black)

with associated confidence intervals Ĩ
(1)
τ ′n

(α) (dashed black) and Ĩ
(2)
τ ′n

(α; 2) (dashed green)

at the 95% confidence level.
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quantile at level βn = Φ(ξτ ′n(ε)) ≈ 0.974. As such, if the predicted expectiles and quantiles
at the levels τ ′n = 0.995 and 0.974, respectively, are significantly different, then there is
evidence that the distribution of the errors is not Gaussian.

We first estimate the ARMA-GARCH model parameters and predict the residuals ε̂i
and ûi using the methodology introduced in Girard et al. (2022b), i.e. by, first, using the
function garchFit in the R package fGarch and the option @residuals in order to retrieve
the ûi, and then, by obtaining the predictions ε̂i of the innovations by fitting a pure
GARCH model directly to the ûi and applying garchFit(...)@residuals. Following
the theory developed in Girard et al. (2021), we treat the residuals ε̂i from the model as
independent and identically distributed copies of ε for the estimation of the tail index γ
of ε and its extreme expectile ξτ ′n(ε). The independence assumption was checked using
a series of Ljung-Box independence tests on residuals and their squares, with the lowest
p−value being 0.39. Evidence that ε is indeed heavy-tailed is gathered in the top-right
panel of Figure 6 using exponential QQ-plots of the log-spacings. The extreme (τ ′n = 0.995)
expectile estimates with their associated 90% and 95% confidence intervals (as functions
of k = kn = n(1 − τn)) are reported in the middle panels of Figure 6. We eyeball the
threshold kn for stability of the estimates and take in the sequel kn = 32, leading to the
tail index estimates γ̂H,BR

kn
(ε) = 0.329 and γ̂E,BR

kn
(ε) = 0.315. The extreme quantile (of

level βn, extrapolated and non-extrapolated) estimators are also reported in the middle
panels of Figure 6, where

q̂βn(ε) = ε̂n−⌊n(1−βn)⌋,n and

q̂⋆,BR
βn

(ε) =

(
kn

n(1− βn)

)γ̂H,BR
kn

(ε)

ε̂n−kn,n

(
1 +

1

ρ

{(
kn

n(1− βn)

)ρ

− 1

}
× bγ̂H,BR

kn
(ε)

(
n

kn

)ρ
)

are the empirical and bias-reduced extrapolated Weissman quantile estimates of qβn(ε).
The resulting quantile and expectile estimates are reported, with confidence intervals, in
Table 1 for kn = 32.

Interval 90% CI 95% CI ξτ ′n(ε) estimate q̂βn(ε) q̂⋆βn
(ε)

Î
(1)
τ ′n

(α) [2.435, 3.136] [2.377, 3.213]
ξ̂⋆,BR
τ ′n

≈ 2.763

2.017 1.999
Î
(2)
τ ′n

(α) [2.091, 3.652] [1.982, 3.852]

Ĩ
(1)
τ ′n

(α) [2.337, 3.305] [2.261, 3.416]
ξ̃⋆,BR
τ ′n

≈ 2.779
Ĩ
(2)
τ ′n

(α) [2.129, 3.627] [2.023, 3.817]

Table 1: 90% (first column) and 95% (second column) confidence intervals for the extreme
expectile ξτ ′n of the innovations εt at τ ′n = 0.995, along with their associated LAWS
and quantile-based point estimates (third column), and empirical and Weissman quantile
estimates (fourth and fifth columns) calculated at the level βn ≈ 0.974.

Dynamic predictions of extreme expectiles of Yn+1 given Yn are then obtained as

ξ̂⋆,BR
τ ′n

(Yn+1|Fn) = µ̂+ ϕ̂Yn + σ̂n+1 ξ̂
⋆,BR
τ ′n

(ε) + θ̂ûn

and ξ̃⋆,BR
τ ′n

(Yn+1|Fn) = µ̂+ ϕ̂Yn + σ̂n+1 ξ̃
⋆,BR
τ ′n

(ε) + θ̂ûn.

In order to visualize these predictions, the key point is that, if µ̂, ϕ̂, θ̂ and the past
(Yt)t≤n−1 of the process are considered as fixed, then ûn = Yn − ϕ̂Yn−1 − θ̂ûn−1 − µ̂
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Figure 6: Commerzbank stock price data (sample size n = 1,048). Top left: Daily
log-returns (black curve) and ARMA-GARCH log-volatility estimates (red bold curve,
smoothed using the R function smooth.spline with smoothing parameter λ = 5× 10−7).
Top right: Exponential QQ-plot of the log-spacings log(ε̂n−i+1,n/ε̂n−kn,n), 1 ≤ i ≤ kn =

32. The straight line has slope γ̂H,BR
kn

(ε) = 0.329. Middle panels: Expectile estimates

ξ̂⋆,BR
τ ′n

(ε) and ξ̃⋆,BR
τ ′n

(ε) at τ ′n = 0.995 (solid blue and green curves) with their associated

confidence intervals Î
(2)
τ ′n

(α; 1) and Ĩ
(2)
τ ′n

(α; 2) (dashed blue and green curves) at the 90%

(left) and 95% (right) confidence levels, along with quantile estimates q̂βn(ε) and q̂
⋆,BR
βn

(ε)
at level βn ≈ 0.974 (dashed-dotted and solid red curves). Bottom panels: Dynamic esti-
mates and their associated 90% (left) and 95% (right) confidence intervals, with the same
color code.
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(resp. σ̂2n+1) is an affine function of Yn (resp. is quadratic in ûn and hence in Yn). The
dynamic extreme expectile estimates can thus be seen as functions of the observation
Yn = yn. These functions are represented in the bottom panels of Figure 6, together with
confidence intervals deduced from those of ξτ ′n(ε) by ignoring the uncertainty in µ̂, ϕ̂, θ̂,

â, b̂ and ĉ: this is justified theoretically by the fact that these estimators converge at the
rate 1/

√
n and thus much faster than those obtained via our extreme value procedures.

They are compared with dynamic bias-reduced Weissman quantile estimates of level βn,
calculated as

q̂⋆,BR
βn

(Yn+1|Fn) = µ̂+ ϕ̂Yn + σ̂n+1 q̂
⋆,BR
βn

(ε) + θ̂ûn.

It is readily seen that the quantile estimates do not belong to the 90% confidence intervals
of the expectile estimates, and belong to the LAWS-based 95%−confidence interval but
not to the quantile-based 95%−confidence interval. This constitutes further evidence
that the residuals of the ARMA-GARCH model are not Gaussian and therefore that the
standard selection rules of expectile levels on light-tailed data do not apply to stock price
data in general. A financial consequence of this analysis is that a risk assessment based
on expectiles using the guidelines provided by Bellini and Di Bernardino (2017) in the
Gaussian case would be more conservative than if it were based on quantiles.

5.3.3 Example 3: Privacy Rights Clearinghouse cyber risk data

Cyber risks, especially the subclass of personal data breaches from firms/organisations,
defined by Article 4(12) of the European Union General Data Protection Regulation as
breaches of security leading to mass identity fraud, are a rapidly increasing threat to in-
dividuals, companies, public services, and governments. Insurance against data breaches
constitutes the bulk of coverage of losses related to cyber events. The financial loss due to
a single breached piece of private data is estimated to be in average 213 USD, which trans-
lates into a global cost estimated at hundreds of billions of USD per year, see Wheatley
et al. (2016). Early work on data breach risks from an extreme value perspective in-
cludes quantifying the heavy-tailed nature of breach sizes in Maillart and Sornette (2010)
and Wheatley et al. (2016). Very recently, Farkas et al. (2021) have computed loss quan-
tiles for a cyber portfolio by combining Generalized Pareto modeling and regression trees.
We further investigate such questions here using expectiles. As described below in our
exploratory analysis, tail index estimates are found to be mostly larger than 0.5 in the dif-
ferent studied classes of breach data, thus leading to more conservative (i.e. prudent) risk
measurements against catastrophic breach events than if quantiles were used, according
to Bellini et al. (2014).

We use the PRC (Privacy Rights Clearinghouse) database2 which is the most com-
prehensive open scientific dataset for breaches occurring in businesses, educational insti-
tutions, government and military, healthcare institutions, and other media and nonprofit
organisations. The PRC database gathers cyber events from different sources, which in-
troduces heterogeneity among the reported events. In order to reduce the heterogeneity
effect when inferring the tail risk, we follow the setup of Farkas et al. (2021) letting the
sources of information be grouped into four types: (1) US federal government agencies;
(2) US state government agencies; (3) Nonprofit organizations; and (4) Media. To strive
towards checking the fundamental assumption of identically distributed data, we stratify
the breaches occurring in healthcare, medical providers and medical insurance services
(represented by the MED acronym) and educational institutions (represented by the EDU

2See https://privacyrights.org/data-breaches. Data on file with the authors.
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acronym) along both the source of information and breach event type. This differentia-
tion of the cyber events (after eliminating duplicates and NA values) occurring between
January 1st, 2005 and October 25th, 2019, results in 6 MED (respectively, 3 EDU) classes
of sizes n > 100; we exclude small clusters of less than 100 observations. As summarized
in Table 2, the classes we obtain are determined by the following five types of breaches:
HACK (hacking by an outside party or infection by malware), INSD (similar to HACK
but performed by an insider), PHYS (physical breach, including paper documents that
are lost, discarded or stolen), PORT (portable device lost, discarded or stolen) and DISC
(unintended disclosure not involving hacking, intentional breach or physical loss), and by
Federal, State and Nonprofit sources of information (the Media source appears only in
very small clusters of size n < 50).

A more global and automated clustering is adopted by Farkas et al. (2021) based on
their GPD regression tree analysis of the severity distribution, but nothing guarantees
that our model assumptions (e.g. stationarity) are satisfied when using the leaves of their
trees. It should also be noted that the PRC database only reports breach sizes, that is, the
number of records affected by each breach event. The related financial loss is not provided
directly by the database, but can be quantified approximately from a claims-driven loss
formula, calibrated by Farkas et al. (2021) to the specific PRC database. We refer to
Section 5.1 in Farkas et al. (2021) for a detailed discussion and justification of the rational
behind their calibration. The resulting losses provide a rough approximation of the real
claim data. Lack of this data still constitutes a bottleneck to precise risk assessment and
insurance pricing, but the analysis presented here might already help “risk thinkers” to
better grasp these new cyber risks from the extreme value perspective.

Numerical results obtained for the nine studied classes are displayed in Table 2. The
tuning parameter k = n(1 − τn) appearing in both γ̂H,BR

τn and ξ̃⋆,BR
1−1/n is chosen following

the path stability algorithm developed by El Methni and Stupfler (2017) which consists in
computing the standard deviations of the estimators over a “moving window” of successive
values of k, and then by selecting the first value of k where the standard deviation is
minimal and sufficiently low for each estimator. Graphs of γ̂H,BR

1−k/n versus k, along with

asymptotic Gaussian 95% confidence intervals and the value of k selected by the path
stability procedure as well as the final pointwise estimate, and their analogs for ξ̃⋆,BR

1−1/n can
be found in Appendix D.2.

The results show a substantial difference in the bias-corrected Hill estimates γ̂H,BR
τn ∈

[0.40, 0.78] of the tail index across all clusters. We also observe 7 extremely heavy-tailed
cyber clusters with tail index estimates exceeding 0.5, in which the estimated expectile
risk measure at level τ ′n = 1− 1/n exceeds the maximum historical loss. Our asymptotic
corrected Gaussian confidence intervals point towards upper risk bounds whose value may
even exceed three times the maximum loss. An accurate quantification of this uncertainty
is of course crucial, especially in this challenging context with small datasets. We pro-
vide a further point of comparison by estimating a quantile-based Value-at-Risk using the
bias-corrected extrapolated Weissman estimator q̂⋆,BR

1−1/n. It is precisely on the 7 extremely
heavy-tailed cyber risk classes where the difference between extreme expectiles and quan-
tiles is strongest. In particular, the estimated expectile loss measures can be as much
as three times higher than their quantile counterparts, and the quantile estimates do not
even exceed the maximum historical loss for five of these classes. It is here more prudent
to measure tail risk based on expectiles rather than on quantiles, which depend on the
frequency of tail losses and not on their severity.
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Sector, level, type n γ̂H,BR
τn (k̂opt) ξ̃⋆,BR

1−1/n (k̃opt) max1≤i≤n Yi q̃⋆,BR
1−1/n (qkopt)

of breach [95% CI] (million USD) (million USD) (million USD)
[95% CI] [95% CI]

MED, federal, PHYS 1140 0.654 (320) 156.04 (322) 95.12 84.17 (316)
[0.582, 0.726] [79.91, 304.70] [55.49, 127.68]

MED, federal, DISC 766 0.582 (299) 61.54 (323) 57.07 33.51 (314)
[0.516, 0.648] [36.26, 104.44] [23.11, 48.58]

MED, federal, HACK 545 0.782 (263) 545.01 (265) 463.34 157.36 (266)
[0.688, 0.877] [181.26, 1638.73] [92.96, 266.36]

MED, state, HACK 178 0.497 (67) 17.49 (69) 60.26 13.07 (42)
[0.378, 0.616] [9.21, 33.22] [7.21, 23.69]

MED, nonprofit, PORT 223 0.714 (54) 169.99 (42) 60.26 99.86 (56)
[0.523, 0.904] [37.90, 762.35] [47.12, 211.64]

MED, nonprofit, INSD 106 0.752 (42) 38.03 (43) 16.57 12.18 (40)
[0.525, 0.980] [4.40, 328.57] [5.13, 28.92]

EDU, nonprofit, HACK 178 0.402 (36) 29.17 (43) 32.63 28.54 (68)
[0.270, 0.533] [16.57, 51.34] [17.49, 46.56]

EDU, nonprofit, DISC 174 0.529 (27) 21.48 (27) 21.13 15.98 (28)
[0.329, 0.728] [7.10, 64.94] [8.53, 29.91]

EDU, nonprofit, PORT 103 0.578 (46) 25.03 (46) 10.52 11.78 (58)
[0.411, 0.745] [8.80, 71.17] [6.36, 2181]

Table 2: Privacy Rights Clearinghouse cyber risk data. First column: Sector, level and
type of breach. Second column: Sample size n of each class. Third column: Bias-reduced
Hill estimate of γ along with the selected k and asymptotic Gaussian 95% confidence
interval. Fourth column: Quantile-based bias-reduced extreme expectile estimator ξ̃⋆,BR

1−1/n
along with the selected k and bias-reduced and variance-corrected asymptotic Gaussian

95% confidence interval Ĩ
(2)
1−1/n(α; 2). Fifth column: Maximum observation. Sixth column:

Weissman extreme quantile estimator q̂⋆,BR
1−1/n obtained by making use of the bias-reduced

Hill estimator, along with the selected k and asymptotic Gaussian 95% confidence interval.
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Appendix to the paper “Bias-reduced and variance-corrected
asymptotic Gaussian inference about extreme expectiles”

Abdelaati Daouia, Gilles Stupfler & Antoine Usseglio-Carleve

This appendix is organized as follows. Section A describes the estimators of the second-
order parameters used in our implementation. Section B gives further details as to how our
corrections are calculated. Section C contains all necessary proofs and Section D provides
extra finite-sample results about our simulation study and real data analyses.

A Estimation of the second-order parameters b and ρ

Under the working assumption that A(t) = bγtρ, the estimators b = bn and ρ = ρn of
the b and ρ parameters are calculated as follows: for a given n−sample (Y1, . . . , Yn), let
Y1,n ≤ Y2,n ≤ · · · ≤ Yn,n be the associated order statistics and set

M (j)
κn

=
1

κn

κn∑
i=1

(log Yn−i+1,n − log Yn−κn,n)
j , for j = 1, 2, 3.

For j = 1, this is just the Hill estimator. These quantities are the basic building blocks

for the quantity T
(τ)
κn defined as

T (τ)
κn

=



(
M

(1)
κn

)τ
−
(
M

(2)
κn /2

)τ/2
(
M

(2)
κn /2

)τ/2
−
(
M

(3)
κn /6

)τ/3 if τ > 0,

log
(
M

(1)
κn

)
− 1

2 log
(
M

(2)
κn /2

)
1
2 log

(
M

(2)
κn /2

)
− 1

3 log
(
M

(3)
κn /6

) if τ = 0.

The estimator of ρ that we consider is a simple function of T
(τ)
κn :

ρ̂(τ)κn
= −

∣∣∣∣∣3(T (τ)
κn − 1)

T
(τ)
κn − 3

∣∣∣∣∣ . (A.1)

This estimator is implemented in the R function mop, available in the Expectrem package3.
In this package, with κn = ⌊n0.999⌋, and a choice of τ ∈ {0, 1} is made based on a stability

criterion for κ 7→ ρ̂
(τ)
κ for large κ (see Section 3.2 in Gomes et al. (2016) for more details).

According to Proposition 2.1 in Caeiro et al. (2005), these choices ensure, if ρ is large
enough (a calculation analogous to that in Remark 2.2 in Caeiro et al. (2005) provides

roughly ρ > −249.75, which will cover all practical applications), that (ρ̂
(τ)
κn − ρ) log(n) =

oP(1) as required in our asymptotic results. An estimator of b is then

b̂κn =
(κn
n

)ρ
(

1
κn

κn∑
i=1

(
i
κn

)−ρ
)(

1
κn

κn∑
i=1

Ui

)
−
(

1
κn

κn∑
i=1

(
i
κn

)−ρ
Ui

)
(

1
κn

κn∑
i=1

(
i
κn

)−ρ
)(

1
κn

κn∑
i=1

(
i
κn

)−ρ
Ui

)
−
(

1
κn

κn∑
i=1

(
i
κn

)−2ρ
Ui

) , (A.2)

3Taken from the package evt0, unfortunately not available anymore from CRAN at the time this paper
was written.
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where ρ = ρ̂
(τ)
κn and the Ui = i log(Yn−i+1,n/Yn−i,n) are the weighted log-spacings. This

estimator is also available from the R function mop. The aforementioned choice of κn
ensures that b = b̂κn is consistent, see Proposition 2.2 in Caeiro et al. (2005). Our results
will therefore always feature the conditions that (ρ− ρ) log(n) = oP(1) and b− b = oP(1).

B Detailed calculations for the construction of LAWS and
quantile-based extreme expectile confidence intervals

B.1 LAWS confidence interval construction

Our argument is motivated by an inspection of the existing proof of the joint asymptotic
normality of an intermediate empirical expectile and the corresponding expectile-based tail
index estimator γ̂Eτn (see Theorem 2 in Stupfler and Usseglio-Carleve (2023) and Theorem 2
in Girard et al. (2022b)). The idea of the proof is not new; however, carefully identifying
the crucial steps of this proof and the key approximations that are made will be instru-
mental in our subsequent construction of refined confidence intervals in which the novelty
of the present work resides. We assume throughout this section that E|min(Y, 0)|2 < ∞
and γ < 1/2.

B.1.1 Preliminary steps

The basic idea of the proof behind Theorem 2 in Stupfler and Usseglio-Carleve (2023) is
that for any z1, z2 ∈ R,{√

n(1− τn)

(
F̂n(ξ̂τn)

1− τn
− (γ−1 − 1)

)
≤ z1,

√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
≤ z2

}

=

{
ξ̂τn ≥ q̂

1−(1−τn)(γ−1−1+z1/
√

n(1−τn))
,
√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
≤ z2

}
. (B.1)

Evaluating the joint uncertainty in (γ̂Eτn , ξ̂τn) is therefore equivalent to evaluating the joint

uncertainty in (ξ̂τn , q̂αn), where αn is a sequence satisfying 1−αn = (γ−1 − 1)(1− τn)(1+
o(1)). Pick then u, v ∈ R and set

An(u, v) =

{√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
≤ u

}
∩
{√

n(1− τn)

(
q̂αn

qαn

− 1

)
≤ v

}
.

Setting yn = yn(u) = ξτn(1 + u/
√
n(1− τn)) and zn = zn(v) = qαn(1 + v/

√
n(1− τn)), it

follows that

An(u, v) =

{√
n(1− τn)

(
Ên(yn)

E(yn)
− 1

)
≤
√
n(1− τn)

(
E(ξτn)

E(yn)
− 1

)}

∩

{√
n(1− τn)

(
F̂n(zn)

F (zn)
− 1

)
≤
√
n(1− τn)

(
F (qαn)

F (zn)
− 1

)}
. (B.2)

There are two crucial points of note here. On the one hand, it is straightforward to obtain,
via a Lyapunov central limit theorem, that

√
n(1− τn)

(
Ên(yn)

E(yn)
− 1,

F̂n(zn)

F (zn)
− 1

)
d−→ N

(
(0, 0),

γ

1− γ
Σ

)
, (B.3)

2



where the 2× 2 symmetric matrix Σ has entries Σ11 = 2(1− γ)/(1− 2γ), Σ12 = Σ22 = 1.
On the other hand, √

n(1− τn)

(
E(ξτn)

E(yn)
− 1

)
=
u

γ
(1 + o(1)) (B.4)

and
√
n(1− τn)

(
F (qαn)

F (zn)
− 1

)
=
v

γ
(1 + o(1)).

This is shown using the second-order regular variation property and Lemma A.3(iv)
in Stupfler and Usseglio-Carleve (2023). One now readily concludes that

√
n(1− τn)

(
ξ̂τn
ξτn

− 1,
q̂αn

qαn

− 1

)
d−→ N

(
(0, 0),

γ3

1− γ
Σ

)
. (B.5)

The final step is to recall Equation (B.1) and to use the fact that

{ξ̂τn ≥ q̂αn}

=

{√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
≥
√
n(1− τn)

(
q̂αn

qαn

− 1

)
qαn

ξτn
+
√
n(1− τn)

(
qαn

ξτn
− 1

)}
.

Now recall that, from Proposition 1 in Daouia et al. (2020) and the second-order regular
variation assumption,

qαn

ξτn
=
qαn

qτn
× qτn
ξτn

=

(
1− γ2

1− γ
× z1√

n(1− τn)
(1 + o(1))

)

×
(
1− γ(γ−1 − 1)γ

qτn
(E(Y ) + o(1))−

(
(γ−1 − 1)−ρ

1− γ − ρ
+ o(1)

)
A((1− τn)

−1)

)
when αn = αn(z1) = 1 − (1 − τn)(γ

−1 − 1 + z1/
√
n(1− τn)). Neglecting bias terms and

isolating z1, one now readily finds, via (B.1), that{√
n(1− τn)

(
F̂n(ξ̂τn)

1− τn
− (γ−1 − 1)

)
≤ z1,

√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
≤ z2

}

=

{
−1− γ

γ2
×
√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
+

1− γ

γ2
×
√
n(1− τn)

(
q̂αn

qαn

− 1

)
+ oP(1) ≤ z1,

√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
≤ z2

}
.

This means that the asymptotic covariance matrix of

√
n(1− τn)

(
F̂n(ξ̂τn)

1− τn
− (γ−1 − 1),

ξ̂τn
ξτn

− 1

)
is essentially that of

−1− γ

γ2
1− γ

γ2

1 0

×
√
n(1− τn)


ξ̂τn
ξτn

− 1

q̂1−(1−τn)(γ−1−1)

q1−(1−τn)(γ−1−1)
− 1

 . (B.6)
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The asymptotic covariance structure of
√
n(1− τn)(γ̂

E
τn − γ, ξ̂τn/ξτn − 1) is then obtained

by applying the delta-method with the function x 7→ (h(x), y) = (1/(1 + x), y): one finds√
n(1− τn)

(
γ̂Eτn − γ,

ξ̂τn
ξτn

− 1

)
d−→ N

((
γ(γ−1 − 1)1−ρ

1− γ − ρ
λ1 + γ2(γ−1 − 1)γ+1E(Y )λ2, 0

)
,

γ3

1− 2γ

(
1− γ 1
1 2

))
(B.7)

where λ1 = limn→∞
√
n(1− τn)A((1−τn)−1) and λ2 = limn→∞

√
n(1− τn)/qτn , assumed

henceforth to be finite. Recall finally that, if (1− τ ′n)/(1− τn) → 0,(
1− τ ′n
1− τn

)γ ξτ ′n
ξτn

= 1 +O(1/
√
n(1− τn)),

see Proposition 1 in Daouia et al. (2020) and the proof of Theorem 4.3.8 p.139 in de Haan
and Ferreira (2006). Using the identity

log

(
ξ̂⋆τ ′n
ξτ ′n

)
= (γ̂Eτn − γ) log

(
1− τn
1− τ ′n

)
+ log

(
ξ̂τn
ξτn

)
− log

((
1− τ ′n
1− τn

)γ ξτ ′n
ξτn

)
provides (2.3). The fact that b− b = oP(1) and (ρ−ρ) log(n) = oP(1) then yields the same
asymptotic normality result for ξ̂⋆,BR

τ ′n
, only with the asymptotic mean being 0.

B.1.2 Calculations

The idea is to construct versions of steps (B.3), (B.4), (B.5), (B.6) and (B.7) that are
more accurate in finite samples. We do so based on the sequence αn = 1 − F (ξτn),
which is asymptotically equivalent (but not equal) to the sequence 1− (1− τn)(γ

−1 − 1)
corresponding to the choice z1 = 0 in (B.1). This choice is motivated by the fact that for
the construction of asymptotic Gaussian confidence regions, one is typically interested in
an accurate calculation of the probability of events such as (B.1) for small values of (z1, z2),
because this is the region where most of the mass of the Gaussian limiting distribution
concentrates. Taking αn = 1 − F (ξτn), rather than αn = 1 − (1 − τn)(γ

−1 − 1), makes it

possible to more accurately quantify the uncertainty in F̂n(ξ̂τn) by comparing it directly
to its population counterpart F (ξτn).

We first examine what room for improvement there is when using the asymptotic
approximation (B.3). We do so with yn replaced by ξτn and zn replaced by qαn , i.e. we
take u = v = 0 in yn = yn(u) and zn = zn(v), which is once again appropriate for
our purpose of correctly evaluating the probability of An(u, v) for small u and v. It is
straightforward to prove that the covariance matrix of√

n(1− τn)

(
φ̂
(1)
n (ξτn)

φ(1)(ξτn)
− 1,

F̂n(qαn)

F (qαn)
− 1

)
is exactly the 2× 2 symmetric matrix Mφ, where Mφ = Mφ

n has components:

Mφ
n,11 = (1− τn)

(
φ(2)(ξτn)

[φ(1)(ξτn)]
2
− 1

)
,

Mφ
n,12 = (1− τn)

(
φ(1)(ξτn ∨ qαn) + (ξτn ∨ qαn − ξτn)F (ξτn ∨ qαn)

φ(1)(ξτn)(1− αn)
− 1

)
= (1− τn)

αn

1− αn
and Mφ

n,22 = (1− τn)
αn

1− αn
=Mφ

12.
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In particular

Mφ
n →


2γ

1− 2γ

γ

1− γ
γ

1− γ

γ

1− γ

 as n→ ∞.

Recall that Ên(y) = φ̂
(1)
n (y)/(2φ̂

(1)
n (y) + y − Y n) and therefore

Ên(ξτn)

E(ξτn)
− 1

=
φ̂
(1)
n (ξτn)(ξτn − E(Y ))− φ(1)(ξτn)(ξτn − Y n)

φ(1)(ξτn)(2φ̂
(1)
n (ξτn) + ξτn − Y n)

=
(φ̂

(1)
n (ξτn)− φ(1)(ξτn))(ξτn − E(Y )) + φ(1)(ξτn)(Y n − E(Y ))

φ(1)(ξτn)(2φ̂
(1)
n (ξτn) + ξτn − Y n)

≈ ξτn − E(Y )

2φ(1)(ξτn) + ξτn − E(Y )

(
φ̂
(1)
n (ξτn)

φ(1)(ξτn)
− 1

)
+

1

2φ(1)(ξτn) + ξτn − E(Y )
(Y n − E(Y )).

Since Y n−E(Y ) converges to 0 at the rate 1/
√
n by the central limit theorem, this identity

suggests that it is in fact reasonable to write

Ên(ξτn)

E(ξτn)
− 1 ≈ ξτn − E(Y )

2φ(1)(ξτn) + ξτn − E(Y )

(
φ̂
(1)
n (ξτn)

φ(1)(ξτn)
− 1

)
.

As a consequence, the joint distribution of

√
n(1− τn)

(
Ên(ξτn)

E(ξτn)
− 1,

F̂n(qαn)

F (qαn)
− 1

)

has a covariance matrix that can be more accurately approximated by ME = ME
n having

components:

ME
n,11 =

(ξτn − E(Y ))2Mφ
11

(2φ(1)(ξτn) + ξτn − E(Y ))2
, ME

n,12 =
(ξτn − E(Y ))Mφ

12

2φ(1)(ξτn) + ξτn − E(Y )
, ME

n,22 =Mφ
22.

[Clearly ME
n is elementwise asymptotically equivalent to Mφ

n.] We now focus on obtaining
a more accurate version of (B.5). Recall from (B.2) that

P(An(u, v)) = P

({√
n(1− τn)

(
Ên(yn)

E(yn)
− 1

)
≤
√
n(1− τn)

(
E(ξτn)

E(yn)
− 1

)}

∩

{√
n(1− τn)

(
F̂n(zn)

F (zn)
− 1

)
≤
√
n(1− τn)

(
F (qαn)

F (zn)
− 1

)})

≈ P

({√
n(1− τn)

(
Ên(ξτn)

E(ξτn)
− 1

)
≤
√
n(1− τn)

(
E(ξτn)

E(yn)
− 1

)}

∩

{√
n(1− τn)

(
F̂n(qαn)

F (qαn)
− 1

)
≤
√
n(1− τn)

(
F (qαn)

F (zn)
− 1

)})
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where yn = yn(u) = ξτn(1 + u/
√
n(1− τn)) and zn = zn(v) = qαn(1 + v/

√
n(1− τn)); the

approximation is motivated by the fact that Ên(yn)/E(yn)−1 and Ên(ξτn)/E(ξτn)−1 have

the same asymptotic behavior, and similarly for F̂n(zn)/F (zn)−1 and F̂n(qαn)/F (qαn)−1.
Note also that the function E is absolutely continuous, because y 7→ φ(1)(y) =

∫∞
y F (t) dt

is Lipschitz continuous and the denominator y 7→ E(|Y −y|) = 2φ(1)(y)+y−E(Y ) defines
a Lipschitz continuous function that is bounded away from zero. The function E has
Lebesgue derivative

E
′
(y) = −φ

(1)(y) + F (y)(y − E(Y ))

(2φ(1)(y) + y − E(Y ))2
.

This suggests the use of a Taylor expansion to obtain the following more precise version
of (B.4):

E(ξτn)

E(yn)
− 1 = uξτn

1√
n(1− τn)

φ(1)(ξτn) + F (ξτn)(ξτn − E(Y ))

φ(1)(ξτn)(2φ
(1)(ξτn) + ξτn − E(Y ))

(1 + o(1)).

Therefore, using (B.2), the distribution of (ξ̂τn/ξτn − 1, q̂αn/qαn − 1) is approximated by
that of(

1

ξτn

φ(1)(ξτn)(2φ
(1)(ξτn) + ξτn − E(Y ))

φ(1)(ξτn) + F (ξτn)(ξτn − E(Y ))

(
Ên(ξτn)

E(ξτn)
− 1

)
, γ

(
F̂n(qαn)

F (qαn)
− 1

))
.

An approximation of the covariance matrix of
√
n(1− τn)(ξ̂τn/ξτn −1, q̂αn/qαn −1) is then

given by Mξ = Mξ
n, whose elements are

M ξ
n,11 =

(
φ(1)(ξτn)(2φ

(1)(ξτn) + ξτn − E(Y ))

ξτn(φ
(1)(ξτn) + F (ξτn)(ξτn − E(Y )))

)2

ME
n,11,

M ξ
n,12 = γ

(
φ(1)(ξτn)(2φ

(1)(ξτn) + ξτn − E(Y ))

ξτn(φ
(1)(ξτn) + F (ξτn)(ξτn − E(Y )))

)
ME

n,12, and M
ξ
n,22 = γ2ME

n,22.

Note that indeed

Mξ
n → γ3

1− γ
Σ =


2γ3

1− 2γ

γ3

1− γ

γ3

1− γ

γ3

1− γ

 as n→ ∞,

as a straightforward consequence of Lemma 3 in Stupfler and Usseglio-Carleve (2023)
involving burdensome calculations, which use the asymptotic equivalents

φ(1)(y) =
γ

1− γ
yF (y)(1 + o(1)) and φ(2)(y) =

2γ2

(1− γ)(1− 2γ)
y2F (y)(1 + o(1)),

combined with the convergence F (ξτ )/(1 − τ) → γ−1 − 1 as τ ↑ 1. This means that Mξ

provides a corrected version of the asymptotic covariance matrix of
√
n(1− τn)(ξ̂τn/ξτn −

1, q̂αn/qαn − 1) that is consistent with the asymptotics in (B.5).
We turn to finding an improvement of (B.6). Note that{√
n(1− τn)

(
F̂n(ξ̂τn)

1− τn
− F (ξτn)

1− τn

)
≤ z

}
=
{
ξ̂τn ≥ q̂

1−(1−τn)(F (ξτn )/(1−τn)+z/
√

n(1−τn))

}
.
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The intermediate quantile level βn = βn(z) = 1−(1−τn)(F (ξτn)/(1−τn)+z/
√
n(1− τn))

in the right-hand side is such that 1− βn ∼ F (ξτn) ∼ (γ−1 − 1)(1− τn). Then

P

({√
n(1− τn)

(
F̂n(ξ̂τn)

1− τn
− F (ξτn)

1− τn

)
≤ z

}
∩

{√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
≤ z′

})

= P

({√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
≥
√
n(1− τn)

(
q̂βn

qβn

− 1

)
qβn

ξτn
+
√
n(1− τn)

(
qβn

ξτn
− 1

)}

∩

{√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
≤ z′

})

≈ P

({√
n(1− τn)

(
q̂αn

qαn

− 1

)
qαn

ξτn
−
√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
≤ −

√
n(1− τn)

(
qβn

ξτn
− 1

)}

∩

{√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
≤ z′

})

where again αn = βn(0) = F (ξτn), because (q̂βn/qβn − 1)qβn/ξτn and (q̂αn/qαn − 1)qαn/ξτn
have the same asymptotic behavior. From Proposition 1 in Daouia et al. (2020) and the
second-order regular variation assumption,√

n(1− τn)

(
qβn

ξτn
− 1

)
=
√
n(1− τn)

(
qβn

qτn
× qτn
ξτn

− 1

)
≈ −γ 1− τn

F (ξτn)
z

up to bias terms, which will be taken care of in the bias reduction procedure (and therefore
can be neglected at this stage). Conclude that the asymptotic distribution of

√
n(1− τn)

(
F̂n(ξ̂τn)

1− τn
− F (ξτn)

1− τn
,
ξ̂τn
ξτn

− 1

)

can be more accurately approximated by that of

−1

γ

F (ξτn)

1− τn

1

γ

F (ξτn)

1− τn

1 0

√n(1− τn)


ξ̂τn
ξτn

− 1

q̂αn

qαn

− 1

 .

As a consequence, this asymptotic distribution can be approximated by a centered Gaus-
sian distribution having covariance matrix M = Mn defined by its elements

Mn,11 =
1

γ2

(
F (ξτn)

1− τn

)2 [
M ξ

n,11 − 2M ξ
n,12 +M ξ

n,22

]
,

Mn,12 =
1

γ

F (ξτn)

1− τn

[
M ξ

n,12 −M ξ
n,11

]
and Mn,22 =M ξ

n,11.

This is the required refinement of (B.6), satisfying

Mn =

(
Mn,11 Mn,12

Mn,12 Mn,22

)
→


1− γ

γ(1− 2γ)
− γ

1− 2γ

− γ

1− 2γ

2γ3

1− 2γ

 as n→ ∞.
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It remains to find a more precise version of (B.7) tailored to γ̂E,BR
τn . This convergence

relies on applying the delta-method to F̂n(ξ̂τn)/(1 − τn) with the transformation ψ :
x 7→ 1/(1 + x). An even more accurate approximation is possible by, first, noting that

γ̂Eτn = ψ(F̂n(ξ̂τn)/(1−τn)) is an (asymptotically) unbiased estimator of ψ(F (ξτn)/(1−τn)),
and then by writing a formal power series expansion of ψ in order to assess the behavior
of γ̂Eτn − ψ(F (ξτn)/(1− τn)). This is done as follows:√

n(1− τn)(γ̂
E
τn − ψ(F (ξτn)/(1− τn)))

=
√
n(1− τn)(ψ(F̂n(ξ̂τn)/(1− τn))− ψ(F (ξτn)/(1− τn)))

=
∞∑
j=1

ψ(j)(F (ξτn)/(1− τn))

j!
[n(1− τn)]

(1−j)/2

{√
n(1− τn)

(
F̂n(ξ̂τn)

1− τn
− F (ξτn)

1− τn

)}j

.

Evaluating the variance of the right-hand side and its covariance with
√
n(1− τn)(ξ̂τn/ξτn−

1) and truncating the resulting (formal) power series at an order 1/[n(1− τn)]J , for a suit-
ably chosen J ≥ 1, will lead to a matrix M(J) = Mn(J) whose first two rows and columns
will represent a correction for the asymptotic variance matrix in (B.7), with higher val-
ues of J intuitively linked to a more accurate approximation. Of course, first of all,
Mn,22(J) = Mn,22 since this asymptotic variance of

√
n(1− τn)(ξ̂τn/ξτn − 1) does not

involve the above power series. Then, recalling that

√
n(1− τn)

(
F̂n(ξ̂τn)

1− τn
− F (ξτn)

1− τn

)
≈
√
Mn,11 Z

where Z is standard Gaussian, Mn,11(J) is obtained by calculating first

Mn,11(∞) = Var

 ∞∑
j=1

ψ(j)(F (ξτn)/(1− τn))

j!
[n(1− τn)]

(1−j)/2M
j/2
n,11Z

j

 .

Recall that E(Zj) = 0 if j is odd and (j − 1)!! if j is even, where the double factorial N !!
denotes the product of all integers from 1 to N having the same parity as N , i.e., when
N is even, (N − 1)!! = (N − 1)(N − 3) · · · 3 · 1 = N !/(2N/2(N/2)!). It follows that

Cov(Zi, Zj) =


0 when i+ j is odd,

(i+ j − 1)!! when i and j are odd,

(i+ j − 1)!!− (i− 1)!!(j − 1)!! when i and j are even.

Paired with the fact that ψ(j)(x) = (−1)jj!(1 + x)−j−1, we obtain, after straightforward
calculations and gathering together negative powers of n(1− τn),

Mn,11(∞) = (1 + F (ξτn)/(1− τn))
−4Mn,11

×

1 +

∞∑
j=1

(1 + F (ξτn)/(1− τn))
−2j

[n(1− τn)]j
M j

n,11

[
(2j + 1)!!(2j + 1)−

j∑
i=1

(2i− 1)!!(2j + 1− 2i)!!

]
=:

∞∑
j=0

mj,11

[n(1− τn)]j
.
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We next seek Mn,12(J), which requires evaluating

Cov

{√n(1− τn)

(
F̂n(ξ̂τn)

1− τn
− F (ξτn)

1− τn

)}j

,
ξ̂τn
ξτn

− 1

 , for j ≥ 1.

Recall that if (X1, X2) is a Gaussian centered random pair then E(X2|X1) = (Cov(X1, X2)/Var(X1))X1.
It follows that, for any j ≥ 1,

Cov(Xj
1 , X2) = E(Xj

1X2) =
Cov(X1, X2)

Var(X1)
E(Xj+1

1 ).

Therefore

Mn,12(∞)

=

∞∑
j=1

ψ(j)(F (ξτn)/(1− τn))

j!
[n(1− τn)]

(1−j)/2Mn,12M
(j−1)/2
n,11 E(Zj+1)

= −(1 + F (ξτn)/(1− τn))
−2Mn,12

1 +
∞∑
j=1

(1 + F (ξτn)/(1− τn))
−2j

[n(1− τn)]j
M j

n,11(2j + 1)!!


=:

∞∑
j=0

mj,12

[n(1− τn)]j
.

The matrix M(J) = Mn(J), approximating the covariance matrix of
√
n(1− τn)(γ̂

E
τn −

ψ(F (ξτn)/(1−τn)), ξ̂τn/ξτn−1), is finally obtained by truncating each of the series defining
Mn,11(∞) and Mn,12(∞) at order 1/[n(1−τn)]J . We now use this in order to approximate

the uncertainty about γ̂E,BR
τn . One has

γ̂E,BR
τn =

1 + (2τn − 1)(1/γ̂Eτn − 1)

(
1− Y n

ξ̂τn

)−1

(1 + OP(A((1− τn)
−1)))

−1

= un(γ̂
E
τn , ξ̂τn/ξτn) + OP(A((1− τn)

−1)),

where

un(x, y) =

(
1 + (2τn − 1)

(
1

x
− 1

)(
1− E(Y )

yξτn

)−1
)−1

.

Here and in the rest of this section, we have neglected the finite-sample variability in
Y n, which typically converges faster to E(Y ) than the other (extreme value) terms do to
their respective limits. We have also neglected any term proportional to A((1 − τn)

−1)
or A((1 − τ ′n)

−1). The rationale behind this choice is that, since A(t) = γbtρ, keeping
these terms in this kind of calculation would then entail approximating the correlation of
estimators of the second-order parameters ρ and b with estimators of other extreme value
parameters, here γ̂Eτn and ξ̂τn . This is a joint convergence problem which, to the best of
our knowledge, remains open, and whose solution deserves a separate in-depth study. We
now write√

n(1− τn)

(
γ̂E,BR
τn − γ,

ξ̂τn
ξτn

− 1

)

=
√
n(1− τn)

(
un(γ̂

E
τn , ξ̂τn/ξτn)− un((1 + F (ξτn)/(1− τn))

−1, 1),
ξ̂τn
ξτn

− 1

)
+ oP(1).
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The random vector √
n(1− τn)

(
γ̂E,BR
τn − γ,

ξ̂τn
ξτn

− 1

)
can thus be considered asymptotically Gaussian centered with a covariance matrix ap-
proximated by MBR(J) = MBR

n (J) whose elements are

MBR
n,11(J) = (∂1un((1 + F (ξτn)/(1− τn))

−1, 1))2Mn,11(J)

+ (∂2un((1 + F (ξτn)/(1− τn))
−1, 1))2Mn,22(J)

+ 2∂1un((1 + F (ξτn)/(1− τn))
−1, 1)∂2un((1 + F (ξτn)/(1− τn))

−1, 1)Mn,12(J),

MBR
n,12(J) = ∂1un((1 + F (ξτn)/(1− τn))

−1, 1)Mn,12(J)

+ ∂2un((1 + F (ξτn)/(1− τn))
−1, 1)Mn,22(J),

MBR
n,22(J) = Mn,22(J).

Here

∂1un(x, y) =
ξτn(2τn − 1)(ξτny − E(Y ))y

[(E(Y )− 2ξτny(1− τn))x− ξτny(2τn − 1)]2
(B.8)

and ∂2un(x, y) =
ξτn(2τn − 1)E(Y )x(1− x)

[(E(Y )− 2ξτny(1− τn))x− ξτny(2τn − 1)]2
. (B.9)

Our final step is to combine all these elements in order to accurately quantify the uncer-
tainty in log(ξ̂⋆,BR

τ ′n
/ξτ ′n). We rewrite this quantity as

log
ξ̂⋆,BR
τ ′n

ξτ ′n
= (γ̂E,BR

τn − γ) log

(
1− τn
1− τ ′n

)
+ log

ξ̂τn
ξτn

− log(1 +B1,n)

+ γ̂E,BR
τn log

(
1− Y n/ξ̂τn
2τn − 1

)
− log(1 +B2,n)

− γ̂E,BR
τn log


1− Y n/

((
1−τ ′n
1−τn

)−γ̂E,BR
τn

ξ̂τn

)
2τ ′n − 1

− log(1 +B3,n)

+ OP(A((1− τn)
−1)).

Since we neglect any term proportional to A((1− τn)
−1) or A((1− τ ′n)

−1), we now:

• Neglect B1,n,

• Approximate 1 + B2,n by (1 + r(τn))
γ , where 1 + r(τn) is itself approximated by

(1− E(Y )/ξτn)/(2τn − 1),

• Approximate 1 + B3,n by (1 + r(τ ′n))
−γ , where 1 + r(τ ′n) is itself approximated by

(1− E(Y )/ξτ ′n)/(2τ
′
n − 1).
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Hence the approximation

log
ξ̂⋆,BR
τ ′n

ξτ ′n
≈
[
log

(
1− τn
1− τ ′n

)
+ log

(
2τ ′n − 1

2τn − 1

)]
(γ̂E,BR

τn − γ) + log
ξ̂τn
ξτn

+ γ̂E,BR
τn log

(
1− E(Y )

ξ̂τn

)
− γ log

(
1− E(Y )

ξτn

)

−

γ̂E,BR
τn log

1− E(Y )(
1−τ ′n
1−τn

)−γ̂E,BR
τn

ξ̂τn

− γ log

(
1− E(Y )

ξτ ′n

) .
We finally write

1

ξτ ′n
− 1(

1−τ ′n
1−τn

)−γ
ξτn

=
1

ξτ ′n

1−
ξτ ′n
qτ ′n

× qτn
ξτn

×
qτ ′n(

1−τ ′n
1−τn

)−γ
qτn


= O

(
1

ξτ ′n

(
O(|A((1− τn)

−1)|) + O(|A((1− τ ′n)
−1)|) + 1

ξτn
+

1

ξτ ′n

))
which is typically very small due to the presence of the factor 1/ξτ ′n (the inverse of an ex-
pectile at the properly extreme level τ ′n). This motivates approximating log(1−E(Y )/ξτ ′n)
by

log

1− E(Y )(
1−τ ′n
1−τn

)−γ
ξτn

 .

This eventually leads to the approximation√
n(1− τn)

log((1− τn)/(1− τ ′n))
log

ξ̂⋆,BR
τ ′n

ξτ ′n
≈
√
n(1− τn)

{
gn(γ̂

E,BR
τn , ξ̂τn/ξτn)− gn(γ, 1)

}
where

gn(x, y) = x

(
1 +

log((2τ ′n − 1)/(2τn − 1))

log((1− τn)/(1− τ ′n))

)
+

log(y)

log((1− τn)/(1− τ ′n))

+
x

log((1− τn)/(1− τ ′n))
log

(
1− E(Y )

ξτny

)

− x

log((1− τn)/(1− τ ′n))
log

1− E(Y )(
1−τ ′n
1−τn

)−x
ξτny

 .

The variance of (
√
n(1− τn)/ log((1 − τn)/(1 − τ ′n))) log(ξ̂

⋆,BR
τ ′n

/ξτ ′n) is then well approxi-
mated by

s2n(J) = (∂1gn(γ, 1))
2MBR

n,11(J) + 2∂1gn(γ, 1)∂2gn(γ, 1)M
BR
n,12(J) + (∂2gn(γ, 1))

2MBR
n,22(J)
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where

∂1gn(γ, 1)

= 1 +
log((2τ ′n − 1)/(2τn − 1))

log((1− τn)/(1− τ ′n))
+

log(1− E(Y )/ξτn)

log((1− τn)/(1− τ ′n))

− log(1− E(Y )/(((1− τ ′n)/(1− τn))
−γ ξτn))

log((1− τn)/(1− τ ′n))
− γE(Y )

((1− τ ′n)/(1− τn))
−γ ξτn − E(Y )

(B.10)

and

∂2gn(γ, 1)

=
1

log((1− τn)/(1− τ ′n))

(
1− γE(Y )

((1− τ ′n)/(1− τn))
−γ ξτn − E(Y )

+
γE(Y )

ξτn − E(Y )

)
.

(B.11)

In order to produce confidence intervals, we estimate γ by γ̂E,BR
τn , ξτn by ξ̂τn , E(Y ) by Y n,

F (ξτn) by F̂n(ξ̂τn), φ
(1)(ξτn) by

φ̂(1)
n (ξ̂τn) =

1

n

n∑
i=1

(Yi − ξ̂τn)1{Yi > ξ̂τn}.

The estimation of φ(2)(ξτn) is more complex, because its naive empirical counterpart

φ̂
(2)
n (ξ̂τn) is unbiased but highly skewed, and therefore tends to vastly underestimate

φ(2)(ξτn). A second-order approximation of the underlying distribution function F in
a neighborhood of infinity suggests the expansion

φ(2)(ξτn) ≈ 2F (ξτn)ξ
2
τnγ

2

(
1

(1− γ)(1− 2γ)

+
bF (ξτn)

−ρ

ρ

{
1

(1− γ − ρ)(1− 2γ − ρ)
− 1

(1− γ)(1− 2γ)

})
.

A simple plug-in then suggests the estimator

φ̃(2)
n (ξ̂τn) = 2F̂n(ξ̂τn)ξ̂

2
τn(γ̂

E,BR
τn )2

(
1

(1− γ̂E,BR
τn )(1− 2γ̂E,BR

τn )

+
b(F̂n(ξ̂τn))

−ρ

ρ

{
1

(1− γ̂E,BR
τn − ρ)(1− 2γ̂E,BR

τn − ρ)
− 1

(1− γ̂E,BR
τn )(1− 2γ̂E,BR

τn )

})

which tends to be much more stable in finite samples than φ̂
(2)
n (ξ̂τn). We deduce from these

calculations a corrected asymptotic Gaussian confidence interval for ξτ ′n at level 1− α as

Î
(2)
τ ′n

(α) = Î
(2)
τ ′n

(α; J) =

[
ξ̂⋆,BR
τ ′n

exp

(
± log((1− τn)/(1− τ ′n))√

n(1− τn)

√
ŝ2n(J)× z1−α/2

)]

where ŝ2n(J) is obtained from s2n(J) by replacing γ by γ̂E,BR
τn , ξτn by ξ̂τn , E(Y ) by Y n,

F (ξτn) by F̂n(ξ̂τn), φ
(1)(ξτn) by φ̂

(1)
n (ξ̂τn) and φ

(2)(ξτn) by φ̃
(2)
n (ξ̂τn).
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B.2 Quantile-based confidence interval construction

B.2.1 Preliminary steps

The quantile-based intermediate expectile estimator is ξ̃τn = (1/γ̂Hτn − 1)−γ̂H
τn q̂τn . Here we

take τn = 1 − kn/n, where kn is a sequence of integers, q̂τn = Yn−⌊n(1−τn)⌋,n = Yn−kn,n is
the corresponding intermediate order statistic, and

γ̂Hτn = γ̂H1−kn/n
=

1

kn

kn∑
i=1

log Yn−i+1,n − log Yn−kn,n

is the usual Hill estimator of γ calculated upon the top kn log-spacings. Then

log

(
ξ̃1−kn/n

(γ−1 − 1)−γq1−kn/n

)
= ϕ(γ̂H1−kn/n

)− ϕ(γ) + log

(
q̂1−kn/n

q1−kn/n

)
. (B.12)

where ϕ(x) = −x log(x−1 − 1). It is known that, if λ1 = limn→∞
√
knA(n/kn) ∈ R,

√
kn

(
γ̂H1−kn/n

− γ, log

(
q̂1−kn/n

q1−kn/n

))
d−→ N

((
λ1

1− ρ
, 0

)
, γ2

(
1 0
0 1

))
(combine e.g. Theorem 2.4.8 p.52, Lemma 3.2.3 p.71 and Theorem 3.2.5 p.74 in de Haan
and Ferreira (2006)). The asymptotic correlation of the second term in (B.12) with the
first one is then exactly 0, and the third term is a bias term that is evaluated by employing
Proposition 1 in Daouia et al. (2020). A straightforward application of the delta-method
with the function g(x, y) = (x, y − x log(x−1 − 1)) leads to:

√
kn

(
γ̂H1−kn/n

− γ, log

(
ξ̃1−kn/n

(γ−1 − 1)−γq1−kn/n

))
d−→ N

(
λ1

1− ρ
(1,m(γ)), V

)
, (B.13)

where λ1 = limn→∞
√
knA(n/kn), λ2 = limn→∞

√
kn/q1−kn/n,

B1 =
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ
and B2 = γ(γ−1 − 1)γE(Y ),

with m(γ) = ϕ′(γ) = (1 − γ)−1 − log(γ−1 − 1), and V is the symmetric matrix having
entries V11 = γ2, V12 = γ2m(γ) and V22 = γ2(1 + (m(γ))2). Write finally

log

(
ξ̃⋆τ ′n
ξτ ′n

)
= (γ̂H1−kn/n

− γ) log

(
kn

n(1− τ ′n)

)
+ log

(
ξ̃1−kn/n

(γ−1 − 1)−γq1−kn/n

)

+ log

(
(γ−1 − 1)−γ qτ ′n

ξτ ′n

)
+ log

([
n(1− τ ′n)

kn

]−γ q1−kn/n

qτ ′n

)
. (B.14)

Convergence (2.4) follows using Proposition 1 in Daouia et al. (2020) (for the first non-
random term in the second line of (B.14)) and the equation at the top of p.139 in the
proof of Theorem 4.3.8 in de Haan and Ferreira (2006) (for the second nonrandom term),
and since b − b = oP(1) and (ρ − ρ) log(n) = oP(1), ξ̃

⋆,BR
τ ′n

satisfies the same asymptotic
normality result but with asymptotic mean 0.
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B.2.2 Detailed calculation

Convergence (2.4) is obtained by neglecting the finite-sample uncertainty in the estimator
ξ̃1−kn/n. Combining (B.13) and (B.14) suggests that the asymptotic variance of

√
kn

log (kn/(n(1− τ ′n)))
log

(
ξ̃⋆τ ′n
ξτ ′n

)

may be better approximated by

V11 + 2
V12

log (kn/(n(1− τ ′n)))
+

V22

log2 (kn/(n(1− τ ′n)))

= γ2
[
1 + 2

m(γ)

log (kn/(n(1− τ ′n)))
+

1 + (m(γ))2

log2 (kn/(n(1− τ ′n)))

]
. (B.15)

This approximation substantially improves upon the expression of the variance obtained
through first-order asymptotics, but behaves somewhat poorly when γ is in a neighborhood
of 1. An even more accurate approximation is possible by using the same trick as in
Section B.1 and writing a formal power series expansion of ϕ instead. Use (B.12) in order
to write

√
kn log

(
ξ̃1−kn/n

(γ−1 − 1)−γq1−kn/n

)

=
√
kn log

(
q̂1−kn/n

q1−kn/n

)
+

∞∑
j=1

ϕ(j)(γ)

j!
k

1−j
2

n

{√
kn(γ̂

H
1−kn/n

− γ)
}j
.

As in Section B.1, we approximate the variance of
√
kn log(ξ̃1−kn/n/((γ

−1 − 1)−γq1−kn/n))

and its covariance with
√
kn(γ̂

H
1−kn/n

− γ) by working with the above right-hand side in

a formal way and truncating the resulting (formal) variance and covariance power series
at an order 1/kJn , for a suitably chosen J ≥ 1. This provides a finite-sample correc-
tion V(J) = Vn(J) for the matrix V = V(0) in (B.13), and hence a further correction
for the asymptotic variance of the extrapolated quantile-based extreme expectile estima-
tor. The resulting matrix V(J) has the following coefficients: the first variance term
V11(J) = V11(0) = γ2, obtained from the asymptotic variance of

√
kn(γ̂

H
1−kn/n

− γ), does

not depend on J . To calculate the second variance term V22(J), obtained by evaluating
the variance of the right-hand side in the above expansion and Equation (B.13), recall
first that

√
kn(γ̂

H
1−kn/n

− γ, q̂1−kn/n/q1−kn/n − 1) converges to a Gaussian random pair

with independent components having variance γ2. We shall then obtain V22(J) after the
calculation of

V22(∞) = γ2 +Var

 ∞∑
j=1

ϕ(j)(γ)

j!
k

1−j
2

n γjZj
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where Z is standard Gaussian. One finds

V22(∞) = γ2 +
∑
i,j≥1

i+j even

ϕ(i)(γ)ϕ(j)(γ)(i+ j − 1)!!

i!j! k
(i+j)/2−1
n

γi+j

−
∑
i,j≥1

i and j even

ϕ(i)(γ)ϕ(j)(γ)

i!j! k
(i+j)/2−1
n

(i− 1)!!(j − 1)!!γi+j

= γ2(1 + (m(γ))2) +
∑
i,j≥1
i+j>2

i+j even

ϕ(i)(γ)ϕ(j)(γ)(i+ j − 1)!!

i!j! k
(i+j)/2−1
n

γi+j

−
∑
i,j≥1

ϕ(2i)(γ)ϕ(2j)(γ)

i!j!2i+jki+j−1
n

γ2(i+j).

Gathering powers of kn together, we find

V22(∞) = γ2(1 + (m(γ))2) +

∞∑
j=1

(2j + 1)!!γ2j+2

kjn

2j+1∑
i=1

ϕ(i)(γ)ϕ(2j+2−i)(γ)

i!(2j + 2− i)!

−
∞∑
j=1

γ2j+2

2j+1kjn

j∑
i=1

ϕ(2i)(γ)ϕ(2j+2−2i)(γ)

i!(j + 1− i)!

= γ2

1 + (m(γ))2 +
∞∑
j=1

γ2j

kjn

(
(2j + 1)!!

2j+1∑
i=1

ϕ(i)(γ)ϕ(2j+2−i)(γ)

i!(2j + 2− i)!

− 1

2j+1

j∑
i=1

ϕ(2i)(γ)ϕ(2j+2−2i)(γ)

i!(j + 1− i)!

))
=:

∞∑
j=0

vj,22

kjn
.

An expression of the formal covariance term V12(∞) is similarly easily derived: if Z is
standard Gaussian,

V12(∞) =
∞∑
j=0

ϕ(j)(γ)

j!
k

1−j
2

n γj+1E(Zj+1) =
∑
j≥0
j odd

ϕ(j)(γ)

j!
k

1−j
2

n γj+1j!!

=

∞∑
j=0

ϕ(2j+1)(γ)

2jj!kjn
γ2j+2 =:

∞∑
j=0

vj,12

kjn
.

Closed-form expressions of the coefficients vj,12 and vj,22, for j ≥ 1, can then be obtained
by remarking that

ϕ′′(γ) = m′(γ) =
1

(1− γ)2
+

1

γ(1− γ)
=

1

γ
+

1

1− γ
+

1

(1− γ)2

and therefore

∀j ≥ 2, ϕ(j)(γ) =
(−1)j−2(j − 2)!

γj−1
+

(j − 2)!

(1− γ)j−1
+

(j − 1)!

(1− γ)j

=
(−1)j−2(j − 2)!

∑j−2
i=0

(
j
i

)
(−1)iγi

γj−1(1− γ)j
.
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In practice we truncate the power series at order 1/kJn , for a given J ≥ 1, so that a
refined approximation to the covariance matrix of

√
kn(γ̂

H
1−kn/n

− γ, log(ξ̃1−kn/n/((γ
−1 −

1)−γq1−kn/n))) is the symmetric matrix V(J), where the elements of V(J) are

V11(J) = γ2, V12(J) =
J∑

j=0

vj,12

kjn
, V22(J) =

J∑
j=0

vj,22

kjn
.

In our implementation we stop the approximation at order 1/k2n, that is, J = 2. A use
of this refinement will be shown to dramatically improve the coverage probabilities of the
asymptotic Gaussian confidence interval, especially in the challenging case when γ is close
to 1 and the right tail of Y is very heavy. The explicit expressions of the coefficients vj,12
and vj,22, for j = 0, 1, 2, are provided in Table 3.

j vj,12/γ
2 vj,22/γ

2

0 m(γ)
(
1 + (m(γ))2

)
1

3γ − 1

2(1− γ)3
(3γ − 1)m(γ)

(1− γ)3
+

1

2(1− γ)4

2
3(10γ3 − 10γ2 + 5γ − 1)

4(1− γ)5
3(10γ3 − 10γ2 + 5γ − 1)m(γ)

2(1− γ)5
+

6γ2 − 4γ + 1

(1− γ)6
+

5(3γ − 1)2

12(1− γ)6

Table 3: First values of the coefficients vj,12/γ
2 and vj,22/γ

2, for j = 0, 1, 2.

We may now proceed with the construction of a confidence interval about ξτ ′n . Recall
Equation (2.6), which can be rewritten as

log
ξ̃⋆,BR
τ ′n

ξτ ′n
= log

(
kn

n(1− τ ′n)

)
(γ̂H,BR

1−kn/n
− γ) + log

(1/γ̂H,BR
1−kn/n

− 1)
−γ̂H,BR

1−kn/n q̂1−kn/n

(1/γ − 1)−γq1−kn/n


+ log

(
(γ−1 − 1)−γ qτ ′n

ξτ ′n

)
+ log

([
n(1− τ ′n)

kn

]−γ q1−kn/n

qτ ′n
(1 + B̃1,n)(1 + B̃3,n)

)
.

Carrying out accurate inference about ξτ ′n based on ξ̃⋆,BR
τ ′n

requires providing a good ap-
proximation of the variance of the right-hand side. For that purpose, as in Section B.1,
we neglect any term proportional to A(n/kn) or A((1− τ ′n)

−1). We therefore:

• Approximate γ̂H,BR
1−kn/n

by γ̂H1−kn/n
,

• Write

log

(
(γ−1 − 1)−γ qτ ′n

ξτ ′n

)
≈ γ log

(
1− E(Y )

ξτ ′n

)
− γ log(2τ ′n − 1),

see Equation (12) in Girard et al. (2022b),

• Neglect log([n(1 − τ ′n)/kn]
−γq1−kn/n/qτ ′n), in virtue of the equation at the top of

p.139 in de Haan and Ferreira (2006),

• Neglect B̃1,n,

• Approximate 1+B̃3,n by (1+ r̃⋆(τ ′n))
−γ̂H

1−kn/n , where 1+ r̃⋆(τ ′n) is itself approximated

by (1− E(Y )/ξ̃⋆τ ′n)/(2τ
′
n − 1).
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This suggests the simpler asymptotic approximation

log
ξ̃⋆,BR
τ ′n

ξτ ′n
≈
(
log

(
kn

n(1− τ ′n)

)
+ log(2τ ′n − 1)

)
(γ̂H1−kn/n

− γ) + log
ξ̃1−kn/n

(γ−1 − 1)−γq1−kn/n

−

(
γ̂H1−kn/n

log

(
1− E(Y )

ξ̃⋆τ ′n

)
− γ log

(
1− E(Y )

ξτ ′n

))
.

We finally write

1

ξτ ′n
− 1(

n(1−τ ′n)
kn

)−γ
(γ−1 − 1)−γq1−kn/n

=
1

ξτ ′n

1− (γ−1 − 1)γ
ξτ ′n
qτ ′n

×
qτ ′n(

n(1−τ ′n)
kn

)−γ
q1−kn/n


= O

(
1

ξτ ′n

(
O(|A(n/kn)|) + O(|A((1− τ ′n)

−1)|) + 1

ξτ ′n

))
which is typically very small due to the presence of the factor 1/ξτ ′n (the inverse of an ex-
pectile at the properly extreme level τ ′n). This motivates approximating log(1−E(Y )/ξτ ′n)
by

log

1− E(Y )(
n(1−τ ′n)

kn

)−γ
(γ−1 − 1)−γq1−kn/n

 .

This eventually leads to the approximation

√
kn

log (kn/(n(1− τ ′n)))
log

ξ̃⋆,BR
τ ′n

ξτ ′n
≈
√
kn

{
hn

(
γ̂H1−kn/n

,
ξ̃1−kn/n

(γ−1 − 1)−γq1−kn/n

)
− hn(γ, 1)

}
where

hn(x, y) =

(
1 +

log(2τ ′n − 1)

log(kn/(n(1− τ ′n)))

)
x+

log(y)

log(kn/(n(1− τ ′n)))

− x

log(kn/(n(1− τ ′n)))
log

1− E(Y )(
n(1−τ ′n)

kn

)−x
(γ−1 − 1)−γq1−kn/n y

 .

This suggests that the variance of (
√
kn/ log(kn/(n(1 − τ ′n)))) log(ξ̃

⋆,BR
τ ′n

/ξτ ′n) is well ap-
proximated by

σ2n(J) = (∂1hn(γ, 1))
2V11(J) + 2∂1hn(γ, 1)∂2hn(γ, 1)V12(J) + (∂2hn(γ, 1))

2V22(J)

where

∂1hn(γ, 1) = 1− γE(Y )(
n(1−τ ′n)

kn

)−γ
(γ−1 − 1)−γq1−kn/n − E(Y )

+
1

log(kn/(n(1− τ ′n)))

log(2τ ′n − 1)− log

1− E(Y )(
n(1−τ ′n)

kn

)−γ
(γ−1 − 1)−γq1−kn/n




(B.16)
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and

∂2hn(γ, 1) =
1

log(kn/(n(1− τ ′n)))

1− γE(Y )(
n(1−τ ′n)

kn

)−γ
(γ−1 − 1)−γq1−kn/n − E(Y )

 .

(B.17)
Note that this is indeed a further refinement of (B.15), since ∂1hn(γ, 1) converges to 1 and
∂2hn(γ, 1) is asymptotically equivalent to 1/ log(kn/(n(1 − τ ′n))) → 0. We deduce from
these calculations a corrected asymptotic Gaussian confidence interval for ξτ ′n at level 1−α
as

Ĩ
(2)
τ ′n

(α) = Ĩ
(2)
τ ′n

(α; J) =

[
ξ̃⋆,BR
τ ′n

exp

(
± log(kn/(n(1− τ ′n)))√

kn

√
σ̃2n(J)× z1−α/2

)]
where

σ̃2n(J) = (∂1ĥn(γ̂
H,BR
1−kn/n

, 1))2(γ̂H,BR
1−kn/n

)2 + (∂2ĥn(γ̂
H,BR
1−kn/n

, 1))2V̂22(J)

+ 2∂1ĥn(γ̂
H,BR
1−kn/n

, 1)∂2ĥn(γ̂
H,BR
1−kn/n

, 1)V̂12(J)

is obtained by replacing γ by γ̂H,BR
1−kn/n

, q1−kn/n by q̂1−kn/n and E(Y ) by Y n in the quantities

V11(J) ≡ γ2, V12(J), V22(J), ∂1hn(γ, 1) and ∂2hn(γ, 1), thus producing their respective
estimators V̂11(J) ≡ (γ̂H,BR

1−kn/n
)2, V̂12(J), V̂22(J), ∂1ĥn(γ̂

H,BR
1−kn/n

, 1) and ∂2ĥn(γ̂
H,BR
1−kn/n

, 1).

C Theoretical results and proofs

C.1 Auxiliary results

All distributions in Table 4 have natural location parameter 0. Some of them, such as the
Burr and Dagum distributions, have scale parameters which never appear in the values of
ρ and b because of the invariance of the ratio of two quantiles by changes of scale. Location
parameters can be handled using the following lemma.

Lemma C.1. Assume that a given distribution has a survival function F and a probability
density function f (with respect to the Lebesgue measure) that satisfies

f(t) = ct−α−1(1 + dt−β(1 + o(1))) as t→ ∞

where α, β, c > 0 and d ̸= 0. Set γ = 1/α.

(i) Then F satisfies condition C2(γ,−β/α,A), where

A(t) =

(
− dβ

α+ β
(c/α)−β/α

)
× 1

α
× t−β/α = bγt−β/α

with b = − dβ

α+ β
(c/α)−β/α.

Assume moreover that

f(t) = ct−α−1(1 + dt−β + d′t−β−β′
(1 + o(1))) as t→ ∞

where α, β, β′, c > 0 and d, d′ ̸= 0. Let m ̸= 0 and define a survival function G having
probability density function g : t 7→ f(t−m). Then:
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(ii) If β < 1, then G satisfies condition C2(γ,−β/α,A), where A is as in (i),

(iii) If β > 1, then G satisfies condition C2(γ,−1/α,B1), where

B1(t) = −m(c/α)−1/α × 1

α
× t−1/α = b1γt

−1/α

with b1 = −m(c/α)−1/α.

(iv) If β = 1 and (α+ 1)m+ d ̸= 0, then G satisfies condition C2(γ,−1/α,B2), where

B2(t) =

(
−(α+ 1)m+ d

α+ 1
(c/α)−1/α

)
× 1

α
× t−1/α = b2γt

−1/α

with b2 = −(α+ 1)m+ d

α+ 1
(c/α)−1/α.

(v) If β = 1 and (α + 1)m + d = 0, but β′ < 1, then G satisfies condition C2(γ,−(1 +
β′)/α,B3), where

B3(t) =

(
− d′(1 + β′)

α+ β′ + 1
(c/α)−(1+β′)/α

)
× 1

α
× t−(1+β′)/α = b3γt

−(1+β′)/α

with b3 = − d′(1 + β′)

α+ β′ + 1
(c/α)−(1+β′)/α.

(vi) If β = 1 and (α+1)m+d = 0, but β′ > 1, then G satisfies condition C2(γ,−2/α,B4),
where

B4(t) =
d2

α+ 1
(c/α)−2/α × 1

α
× t−2/α = b4γt

−2/α

with b4 =
d2

α+ 1
(c/α)−2/α.

(vii) If β = 1, (α + 1)m + d = 0, β′ = 1 and 2d′(α + 1) ̸= d2(α + 2), then G satisfies
condition C2(γ,−2/α,B5), where

B5(t) =

(
− 2

α+ 2

[
d′ − d2

α+ 2

2(α+ 1)

]
(c/α)−2/α

)
× 1

α
× t−2/α = b5γt

−2/α

with b5 = − 2

α+ 2

[
d′ − d2

α+ 2

2(α+ 1)

]
(c/α)−2/α.

Heavy-tailed distributions with negative second-order parameter typically satisfy the third-
order expansion

f(t) = ct−α−1(1 + dt−β + d′t−β−β′
(1 + o(1))) as t→ ∞

where α, β, β′, c > 0 and d, d′ ̸= 0, as well as (depending onm) one of the conditions in (ii)-
(vii). The only exception among the usual families of heavy-tailed distributions seems to
be the Generalized Pareto distribution, for which it can be the case that f(t−m) = ct−α−1

for suitable α, c > 0, and thus no remainder term is present. This, however, represents
the ideal case when the shifted distribution is exactly Pareto and no bias is incurred by
the use of the heavy tail assumption.
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Proof. The assumption

f(t) = ct−α−1(1 + dt−β(1 + o(1))) as t→ ∞

yields

F (t) =
c

α
t−α

(
1 +

dα

α+ β
t−β(1 + o(1))

)
.

In particular, for any x > 0,

F (tx)

F (t)
− x−α =

(
− dβ

α+ β

)
1

α
t−β × x−α x−β − 1

(−β/α)× (1/α)
+ o(t−β).

It is then straightforward to check statement (i). The key to showing statements (ii)–(vii)
is to note that when

f(t) = ct−α−1(1 + dt−β + d′t−β−β′
(1 + o(1))) as t→ ∞,

it similarly holds that

f(t−m)

= c(t−m)−α−1(1 + d(t−m)−β + d′t−β−β′
(1 + o(1)))

= ct−α−1(1−mt−1)−α−1(1 + dt−β(1−mt−1)−β + d′t−β−β′
(1 + o(1)))

= ct−α−1

(
1 + (α+ 1)mt−1 +

(α+ 1)(α+ 2)m2

2
t−2 + o(t−2)

)
× (1 + dt−β + βdmt−β−1 + d′t−β−β′

+ o(t−β−1) + o(t−β−β′
))

= ct−α−1
(
1 + (α+ 1)mt−1 + dt−β

+
(α+ 1)(α+ 2)m2

2
t−2 + (α+ β + 1)dmt−β−1 + d′t−β−β′

+ o(t−2) + o(t−β−1) + o(t−β−β′
)

)
.

We then find that, as t→ ∞:

• In the setup of (ii),

f(t−m) = ct−α−1(1 + dt−β(1 + o(1))).

• In the setup of (iii),

f(t−m) = ct−α−1(1 + (α+ 1)mt−1(1 + o(1))).

• In the setup of (iv),

f(t−m) = ct−α−1(1 + ((α+ 1)m+ d)t−1(1 + o(1))).

• In the setup of (v),

f(t−m) = ct−α−1(1 + d′t−1−β′
(1 + o(1))).

• In the setup of (vi),

f(t−m) = ct−α−1

(
1− d2(α+ 2)

2(α+ 1)
t−2(1 + o(1))

)
.

• In the setup of (vii),

f(t−m) = ct−α−1

(
1 +

(
d′ − d2(α+ 2)

2(α+ 1)

)
t−2(1 + o(1))

)
.

The result then immediately follows from (i).
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The following lemma is a law of large numbers, with rate of convergence, for F̂n and φ̂
(1)
n

at random thresholds. It is the crucial element for our proof of Theorem 1(i), with the
quantification of the rate being a prerequisite for the proof of Lemma C.3 below, which
is itself key to the proof of Theorem 1(ii). Before that we recall the following fact: if
condition C2(γ, ρ,A) is satisfied and γ < 1/k, where k is a positive integer, then

φ(k)(x) = kxkF (x)

(∫ ∞

1
(v − 1)k−1v−1/γ dv +

∫ ∞

1
(v − 1)k−1

{
F (vx)

F (x)
− v−1/γ

}
dv

)
= xkF (x)

(
1

γ
B(k + 1, γ−1 − k)

+
A(1/F (x))

γρ

{
1− ρ

γ
B(k + 1, γ−1(1− ρ)− k)− 1

γ
B(k + 1, γ−1 − k) + o(1)

})
(C.1)

as x→ ∞, using uniform second-order regular variation inequalities: see Theorem B.2.18
in de Haan and Ferreira (2006), which applies since a second-order regularly varying
function is extended regularly varying (this is explicitly stated as Lemma 5 in Daouia
et al. (2020)). In this equation, B(·, ·) denotes the Beta function. In particular,

φ(k)(x) =
B(k + 1, γ−1 − k)

γ
xkF (x)(1 + O(A(1/F (x)))) as x→ ∞. (C.2)

Lemma C.2. Assume that condition C2(γ, ρ,A) is satisfied. Let Y1, . . . , Yn be independent
random variables with distribution function F , and assume that τn ↑ 1 satisfies n(1−τn) →
∞ and

√
n(1− τn)A((1− τn)

−1) = O(1) as n → ∞. Let finally ĉn be a random sequence
converging in probability to a fixed constant c > 0 at the rate 1/

√
n(1− τn), namely,

ĉn − c = OP(1/
√
n(1− τn)).

(i) Then

F̂n(ĉnqτn)

F (cqτn)
=

1

n

n∑
i=1

1{Yi > ĉnqτn}
P(Y > cqτn)

= 1 + OP(1/
√
n(1− τn)).

(ii) If 0 < γ < 1/2 then

φ̂
(1)
n (ĉnqτn)

φ(1)(cqτn)
=

1

n

n∑
i=1

(Yi − ĉnqτn)1{Yi > ĉnqτn}
E((Y − cqτn)1{Y > cqτn})

= 1 + OP(1/
√
n(1− τn)).

Proof of Lemma C.2. (i) Obviously

F̂n(cqτn)

F (cqτn)
= 1 + OP(1/

√
n(1− τn)). (C.3)

This is immediate because the left-hand side is a mean of independent and identically
distributed random variables for each n, having mean 1, and

Var

(
F̂n(cqτn)

F (cqτn)

)
=

1

n
× Var(1{Y > cqτn})

(F (cqτn))
2

=
1

n

(
1

F (cqτn)
− 1

)
is asymptotically equivalent to a multiple of 1/(n(1 − τn)), by the regular variation as-
sumption on F . It then suffices to check that

F̂n(ĉnqτn)

F̂n(cqτn)
= 1 + OP(1/

√
n(1− τn)).
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Write ∣∣∣∣∣ F̂n(ĉnqτn)

F̂n(cqτn)
− 1

∣∣∣∣∣ ≤ 1 + oP(1)

F (cqτn)
× 1

n

n∑
i=1

|1{Yi > ĉnqτn} − 1{Yi > cqτn}|.

It follows from ĉn − c = OP(1/
√
n(1− τn)) and (C.3) that, for any ε > 0, there is M > 0

such that, for n large enough, one has∣∣∣∣∣ F̂n(ĉnqτn)

F̂n(cqτn)
− 1

∣∣∣∣∣
≤ 2

F (cqτn)
× 1

n

n∑
i=1

(1{Yi > c(1−M/
√
n(1− τn))qτn} − 1{Yi > c(1 +M/

√
n(1− τn))qτn})

=
2(F̂n(c(1−M/

√
n(1− τn))qτn)− F̂n(c(1 +M/

√
n(1− τn))qτn))

F (cqτn)

=
2(F (c(1−M/

√
n(1− τn))qτn)− F (c(1 +M/

√
n(1− τn))qτn))

F (cqτn)
+ OP(1/

√
n(1− τn))

with probability larger than 1− ε/2. Now

2(F (c(1−M/
√
n(1− τn))qτn)− F (c(1 +M/

√
n(1− τn))qτn))

F (cqτn)
= O(1/

√
n(1− τn))

using the assumption
√
n(1− τn)A((1−τn)−1) = O(1) and the locally uniform character of

second-order regular variation (see again Theorem B.2.18 in de Haan and Ferreira (2006)).
Conclude that there is M ′ > 0 such that, for n large enough, one has

√
n(1− τn)

∣∣∣∣∣ F̂n(ĉnqτn)

F̂n(cqτn)
− 1

∣∣∣∣∣ ≤M ′

with probability larger than 1− ε. The result follows.

(ii) We mimic the proof of (i) with a couple of adaptations. First of all

φ̂
(1)
n (cqτn)

φ(1)(cqτn)
= 1 + OP(1/

√
n(1− τn)). (C.4)

Indeed, the left-hand side is a mean of independent and identically distributed random
variables for each n, having mean 1, and

Var

(
φ̂
(1)
n (cqτn)

φ(1)(cqτn)

)
=

1

n
× Var((Y − cqτn)1{Y > cqτn})

(φ(1)(cqτn))
2

=
1

n

(
φ(2)(cqτn)

(φ(1)(cqτn))
2
− 1

)

which, by Lemma 3(i) in Stupfler and Usseglio-Carleve (2023), is asymptotically equivalent
to a multiple of 1/(n(1− τn)). It is then enough to prove that

φ̂
(1)
n (ĉnqτn)

φ̂
(1)
n (cqτn)

= 1 + OP(1/
√
n(1− τn)).
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Note then that

φ̂
(1)
n (ĉnqτn)

φ̂
(1)
n (cqτn)

− 1

=
1 + oP(1)

φ(1)(cqτn)
× 1

n

n∑
i=1

(Yi − cqτn)(1{Yi > ĉnqτn} − 1{Yi > cqτn})

− (ĉn − c)
qτnF (cqτn)

φ(1)(cqτn)
× F̂n(ĉnqτn)

F (cqτn)
(1 + oP(1))

=
1 + oP(1)

φ(1)(cqτn)
× 1

n

n∑
i=1

(Yi − cqτn)(1{Yi > ĉnqτn} − 1{Yi > cqτn}) + OP(1/
√
n(1− τn))

by (i) of the present lemma and Lemma 3(i) in Stupfler and Usseglio-Carleve (2023). Then,
for any ε > 0, there is M > 0 such that, for n large enough, one has∣∣∣∣∣ 1

φ(1)(cqτn)
× 1

n

n∑
i=1

(Yi − cqτn)(1{Yi > ĉnqτn} − 1{Yi > cqτn})

∣∣∣∣∣
≤ 1

φ(1)(cqτn)
× 1

n

n∑
i=1

|Yi − cqτn |(1{Yi > c(1−M/
√
n(1− τn))qτn} − 1{Yi > c(1 +M/

√
n(1− τn))qτn})

≤ 1

φ(1)(cqτn)

(
1

n

n∑
i=1

(Yi − c(1−M/
√
n(1− τn))qτn)1{Yi > c(1−M/

√
n(1− τn))qτn}

− 1

n

n∑
i=1

(Yi − c(1 +M/
√
n(1− τn))qτn)1{Yi > c(1 +M/

√
n(1− τn))qτn}

+
M√

n(1− τn)
cqτn × 1

n

n∑
i=1

(1{Yi > c(1−M/
√
n(1− τn))qτn} − 1{Yi > c(1 +M/

√
n(1− τn))qτn})

)

=
φ(1)(c(1−M/

√
n(1− τn))qτn)

φ(1)(cqτn)
−
φ(1)(c(1 +M/

√
n(1− τn))qτn)

φ(1)(cqτn)

+
M√

n(1− τn)
cqτn

{
F (c(1−M/

√
n(1− τn))qτn)

φ(1)(cqτn)
−
F (c(1 +M/

√
n(1− τn))qτn)

φ(1)(cqτn)

}
+OP(1/

√
n(1− τn))

with probability larger than 1−ε/2 (where (C.3) and (C.4) were used again). Using (C.2)
and again the locally uniform character of second-order regular variation, we find that the
upper bound is a OP(1/

√
n(1− τn)), thus completing the proof.

Our final lemma quantifies the error made in the estimation of the various matrices intro-
duced in the construction of our refined confidence interval for the LAWS estimator.

Lemma C.3. Assume that E(|min(Y, 0)|2+δ) <∞ for some δ > 0, and condition C2(γ, ρ,A)
is satisfied with 0 < γ < 1/2, ρ < 0 and A(t) = bγtρ. Let τn ↑ 1 satisfy n(1 − τn) → ∞
and

√
n(1− τn)(1/qτn + A((1 − τn)

−1)) = O(1) as n → ∞. Throughout this lemma, let

M̂φ
n , M̂E

n , M̂ ξ
n, M̂n and M̂n(J) be the random matrices deduced from Mφ

n , ME
n , M ξ

n,
Mn and Mn(J), respectively, by replacing γ by γ̂E,BR

τn , ξτn by ξ̂τn, E(Y ) by Y n, F (ξτn)

by F̂n(ξ̂τn), φ
(1)(ξτn) by φ̂

(1)
n (ξ̂τn) and φ(2)(ξτn) by φ̃

(2)
n (ξ̂τn) (where in the latter, ρ and b
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are consistent estimators of ρ and b such that (ρ − ρ) log(n) = oP(1)), where throughout
αn = F (ξτn). Then, elementwise, for any J ≥ 1,

M̂E
n = M̂φ

n +OP(1/
√
n(1− τn))

=


2γ

1− 2γ

γ

1− γ
γ

1− γ

γ

1− γ

+OP(1/
√
n(1− τn)), (C.5)

M̂ ξ
n =


2γ3

1− 2γ

γ3

1− γ

γ3

1− γ

γ3

1− γ

+OP(1/
√
n(1− τn)), (C.6)

M̂n =


1− γ

γ(1− 2γ)
− γ

1− 2γ

− γ

1− 2γ

2γ3

1− 2γ

+OP(1/
√
n(1− τn)) (C.7)

and M̂n(J) =


γ3(1− γ)

(1− 2γ)

γ3

1− 2γ

γ3

1− 2γ

2γ3

1− 2γ

+OP(1/
√
n(1− τn)). (C.8)

Proof of Lemma C.3. Under the stated assumptions:

• γ̂E,BR
τn is a

√
n(1− τn)−consistent estimator of γ, see Theorem 1 in Girard et al.

(2022b).

• ξ̂τn is a
√
n(1− τn)−relatively consistent estimator of ξτn in the sense that ξ̂τn/ξτn −

1 = OP(1/
√
n(1− τn)), see Theorem 2 in Daouia et al. (2018) or Theorem 1

in Daouia et al. (2020).

• Y n is a
√
n−consistent estimator of E(Y ) by the standard central limit theorem.

• F̂n(ξ̂τn) and φ̂
(1)
n (ξ̂τn) are

√
n(1− τn)−relatively consistent estimators of F (ξτn) and

φ(1)(ξτn), see Lemma C.2.

• φ̃
(2)
n (ξ̂τn) is a

√
n(1− τn)−relatively consistent estimator of φ(2)(ξτn), because

φ̃(2)
n (ξ̂τn) =

2γ2

(1− γ)(1− 2γ)
ξ2τnF (ξτn)(1 + OP(1/

√
n(1− τn)))

= φ(2)(ξτn)(1 + OP(1/
√
n(1− τn))),

see Equation (C.2).

These convergences will be used without further mention throughout the proof. We start
by noting that

ξ̂τn − Y n

2φ̂
(1)
n (ξ̂τn) + ξ̂τn − Y n

− 1 = − 2φ̂
(1)
n (ξ̂τn)

2φ̂
(1)
n (ξ̂τn) + ξ̂τn − Y n

= −2
φ(1)(ξτn)

ξτn
(1 + oP(1))
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by Lemma C.2. By Equation (C.2) then,

ξ̂τn − Y n

2φ̂
(1)
n (ξ̂τn) + ξ̂τn − Y n

− 1 = OP(F (ξτn)) = OP(1− τn) = oP(1/qτn) = oP(1/
√
n(1− τn))

because qτn is asymptotically equivalent to a multiple of (1− τn)
−γ (see the remark below

Example 2.3.11 p.49 in de Haan and Ferreira (2006)), and γ < 1. Consequently M̂E
n,11 =

M̂φ
n,11(1 + oP(1/

√
n(1− τn))) and likewise M̂E

n,12 = M̂φ
n,12(1 + oP(1/

√
n(1− τn))). Now,

since 1− αn = F (ξτn) is estimated by F̂n(ξ̂τn),

M̂φ
n,11 = (1− τn)

(
φ̃
(2)
n (ξ̂τn)

[φ̂
(1)
n (ξ̂τn)]

2
− 1

)
and M̂φ

n,12 = M̂φ
n,22 = (1− τn)

1− F̂n(ξ̂τn)

F̂n(ξ̂τn)
.

Using Equation (C.2) and assumption
√
n(1− τn)(1/qτn + A((1 − τn)

−1)) = O(1), this
entails

M̂φ
n,11 =

2γ

1− 2γ
+OP(1/

√
n(1− τn)) and M̂

φ
n,12 = M̂φ

n,22 =
γ

1− γ
+OP(1/

√
n(1− τn)).

This proves Equation (C.5). Then, similarly,

φ̂
(1)
n (ξ̂τn)(2φ̂

(1)
n (ξ̂τn) + ξ̂τn − Y n)

ξ̂τn(φ̂
(1)
n (ξ̂τn) + F̂n(ξ̂τn)(ξ̂τn − Y n))

= γ +OP(1/
√
n(1− τn))

because of Equation (C.2), and therefore

M̂ ξ
n,11 =

2γ3

1− 2γ
+OP(1/

√
n(1− τn)), M̂

ξ
n,12 =

γ3

1− γ
+OP(1/

√
n(1− τn))

and M̂ ξ
n,22 =

γ3

1− γ
+OP(1/

√
n(1− τn)).

This proves Equation (C.6). As a consequence

M̂n,11 =
1

(γ̂E,BR
τn )2

(
F̂n(ξ̂τn)

1− τn

)2 [
M̂ ξ

n,11 − 2M̂ ξ
n,12 + M̂ ξ

n,22

]
=

1− γ

γ(1− 2γ)
+ OP(1/

√
n(1− τn)),

M̂n,12 =
1

γ̂E,BR
τn

F̂n(ξ̂τn)

1− τn

[
M̂ ξ

n,12 − M̂ ξ
n,11

]
= − γ

1− 2γ
+OP(1/

√
n(1− τn))

and M̂n,22 = M̂ ξ
n,11 =

2γ3

1− 2γ
+OP(1/

√
n(1− τn))
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which is Equation (C.7). Finally, M̂n,22(J) = M̂n,22, and besides

M̂n,11(J) =

(
1 +

F̂n(ξ̂τn)

1− τn

)−4

M̂n,11(1 + OP(1/(n(1− τn))))

=
γ3(1− γ)

1− 2γ
+OP(1/

√
n(1− τn))

and M̂n,12(J) = −

(
1 +

F̂n(ξ̂τn)

1− τn

)−2

M̂n,12(1 + OP(1/(n(1− τn))))

=
γ3

1− 2γ
+OP(1/

√
n(1− τn)).

This proves Equation (C.8) and completes the proof.

C.2 Proofs of the main results

Proof of Theorem 1. Recall from the proof of Lemma C.3 that one has, under the stated
assumptions:

• γ̂E,BR
τn is a

√
n(1− τn)−consistent estimator of γ.

• ξ̂τn is a
√
n(1− τn)−relatively consistent estimator of ξτn .

• Y n is a
√
n−consistent estimator of E(Y ).

• F̂n(ξ̂τn) and φ̂
(1)
n (ξ̂τn) are

√
n(1− τn)−relatively consistent estimators of F (ξτn) and

φ(1)(ξτn).

• φ̃
(2)
n (ξ̂τn) is a

√
n(1− τn)−relatively consistent estimator of φ(2)(ξτn).

We turn to the proof of the desired results.

(i) First of all √
n(1− τn)

log((1− τn)/(1− τ ′n))
log

(
ξ̂⋆,BR
τ ′n

ξτ ′n

)
d−→ N

(
0,
γ3(1− γ)

1− 2γ

)
by Theorem 2(i) in Girard et al. (2022b). By Slutsky’s lemma, it follows that it is sufficient
to prove that ŝ2n(J) → γ3(1 − γ)/(1 − 2γ) in probability. Now, from straightforward
calculations,

∂1ûn((1 + F̂n(ξ̂τn)/(1− τn))
−1, 1) → 1 and ∂2ûn((1 + F̂n(ξ̂τn)/(1− τn))

−1, 1) → 0

in probability as n → ∞, where ûn is obtained from the function un by replacing γ by

γ̂E,BR
τn , ξτn by ξ̂τn , E(Y ) by Y n, F (ξτn) by F̂n(ξ̂τn), φ

(1)(ξτn) by φ̂
(1)
n (ξ̂τn) and φ

(2)(ξτn) by
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φ̃
(2)
n (ξ̂τn). Consequently, by Lemma C.3,

M̂BR
n,11(J) = (∂1ûn((1 + F̂n(ξ̂τn)/(1− τn))

−1, 1))2M̂n,11(J)

+ (∂2ûn((1 + F̂n(ξ̂τn)/(1− τn))
−1, 1))2M̂n,22(J)

+ 2∂1ûn((1 + F̂n(ξ̂τn)/(1− τn))
−1, 1)∂2ûn((1 + F̂n(ξ̂τn)/(1− τn))

−1, 1)M̂n,12(J),

→ γ3(1− γ)

1− 2γ
,

M̂BR
n,12(J) = ∂1ûn((1 + F̂n(ξ̂τn)/(1− τn))

−1, 1)M̂n,12(J)

+ ∂2ûn((1 + F̂n(ξ̂τn)/(1− τn))
−1, 1)M̂n,22(J),

→ γ3

1− 2γ
, and

M̂BR
n,22(J) →

2γ3

1− 2γ

in probability as n → ∞, with the same notational convention. With that convention
again,

∂1ĝn(γ̂
E,BR
τn , 1) → 1 and ∂2ĝn(γ̂

E,BR
τn , 1) → 0

in probability as n→ ∞, so that

ŝ2n(J) = (∂1ĝn(γ̂
E,BR
τn , 1))2M̂BR

n,11(J) + 2∂1ĝn(γ̂
E,BR
τn , 1)∂2ĝn(γ̂

E,BR
τn , 1)M̂BR

n,12(J)

+ (∂2ĝn(γ̂
E,BR
τn , 1))2M̂BR

n,22(J) →
γ3(1− γ)

1− 2γ

in probability as n→ ∞, as required.

(ii) Observe that

exp

(
± log((1− τn)/(1− τ ′n))√

n(1− τn)

√
ŝ2n(J)× z1−α/2

)

− exp

± log((1− τn)/(1− τ ′n))√
n(1− τn)

√
(γ̂E,BR

τn )3(1− γ̂E,BR
τn )

1− 2γ̂E,BR
τn

× z1−α/2


is, in probability, asymptotically equivalent to

± log((1− τn)/(1− τ ′n))√
n(1− τn)

√ŝ2n(J)−
√

(γ̂E,BR
τn )3(1− γ̂E,BR

τn )

1− 2γ̂E,BR
τn

× z1−α/2,

and therefore also to

±1

2

√
1− 2γ

γ3(1− γ)

log((1− τn)/(1− τ ′n))√
n(1− τn)

(
ŝ2n(J)−

(γ̂E,BR
τn )3(1− γ̂E,BR

τn )

1− 2γ̂E,BR
τn

)
× z1−α/2.

This means that

length(Î
(2)
τ ′n

(α; J))− length(Î
(1)
τ ′n

(α))

= ξ̂⋆,BR
τ ′n

√
1− 2γ

γ3(1− γ)

log((1− τn)/(1− τ ′n))√
n(1− τn)

(
ŝ2n(J)−

(γ̂E,BR
τn )3(1− γ̂E,BR

τn )

1− 2γ̂E,BR
τn

)
z1−α/2(1+oP(1)).
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Now

ŝ2n(J)−
(γ̂E,BR

τn )3(1− γ̂E,BR
τn )

1− 2γ̂E,BR
τn

= ((∂1ĝn(γ̂
E,BR
τn , 1))2 − 1)M̂BR

n,11(J)

+ M̂BR
n,11(J)−

(γ̂E,BR
τn )3(1− γ̂E,BR

τn )

1− 2γ̂E,BR
τn

+ 2∂1ĝn(γ̂
E,BR
τn , 1)∂2ĝn(γ̂

E,BR
τn , 1)M̂BR

n,12(J)

+ (∂2ĝn(γ̂
E,BR
τn , 1))2M̂BR

n,22(J).

Equation (B.10) shows that 1− ∂1ĝn(γ̂
E,BR
τn , 1) = oP(1/ log((1− τn)/(1− τ ′n))), and Equa-

tion (B.11) shows that ∂2ĝn(γ̂
E,BR
τn , 1) is asymptotically equivalent to 1/ log((1− τn)/(1−

τ ′n)) in probability. Therefore

ŝ2n(J)−
(γ̂E,BR

τn )3(1− γ̂E,BR
τn )

1− 2γ̂E,BR
τn

= M̂BR
n,11(J)−

γ3(1− γ)

1− 2γ

+
1

log((1− τn)/(1− τ ′n))

(
2γ3

1− 2γ
+ oP(1)

)
. (C.9)

Besides

M̂BR
n,11(J)−

γ3(1− γ)

1− 2γ

= ((∂1ûn((1 + F̂n(ξ̂τn)/(1− τn))
−1, 1))2 − 1)M̂n,11(J) + M̂n,11(J)−

γ3(1− γ)

1− 2γ

+ (∂2ûn((1 + F̂n(ξ̂τn)/(1− τn))
−1, 1))2M̂n,22(J)

+ 2∂1ûn((1 + F̂n(ξ̂τn)/(1− τn))
−1, 1)∂2ûn((1 + F̂n(ξ̂τn)/(1− τn))

−1, 1)M̂n,12(J).

By Equations (B.8) and (B.9), 1−∂1ûn((1+ F̂n(ξ̂τn)/(1−τn))−1, 1) = OP(1/ξτn)+OP(1−
τn) = OP(1/qτn) = OP(1/

√
n(1− τn)) = oP(1/ log((1 − τn)/(1 − τ ′n))), and similarly

∂2ûn((1 + F̂n(ξ̂τn)/(1− τn))
−1, 1) = OP(1/ξτn) = oP(1/ log((1− τn)/(1− τ ′n))). Applying

Lemma C.3 thus yields

M̂BR
n,11(J)−

γ3(1− γ)

1− 2γ
= oP(1/ log((1− τn)/(1− τ ′n))). (C.10)

Combining Equations (C.9) and (C.10) results in

ŝ2n(J)−
(γ̂E,BR

τn )3(1− γ̂E,BR
τn )

1− 2γ̂E,BR
τn

=
1

log((1− τn)/(1− τ ′n))

(
2γ3

1− 2γ
+ oP(1)

)
.

From this one can conclude that

length(Î
(2)
τ ′n

(α; J))− length(Î
(1)
τ ′n

(α)) = 2×
ξ̂⋆,BR
τ ′n√

n(1− τn)

(√
γ3

(1− γ)(1− 2γ)
z1−α/2 + oP(1)

)

= 2×
ξτ ′n√

n(1− τn)

(√
γ3

(1− γ)(1− 2γ)
z1−α/2 + oP(1)

)
.

This completes the proof.
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Proof of Theorem 2. The proof generally follows the ideas of the proof of Theorem 1 with
the necessary adaptations. We discuss the proof in detail below.

(i) First of all
√
kn

log(kn/(n(1− τ ′n)))
log

(
ξ̃⋆,BR
τ ′n

ξτ ′n

)
d−→ N (0, γ2)

by Theorem 2(ii) in Girard et al. (2022b). By Slutsky’s lemma, it follows that it is
sufficient to prove that σ̃2n(J) → γ2 in probability. To this end note that each term vj,12
and vj,22 appearing in the expressions of V12(J) and V22(J) is a continuous function of
γ ∈ (0, 1), because ϕ : x 7→ −x log(x−1 − 1) is infinitely differentiable on (0, 1). As a
consequence, the estimators V̂12(J) and V̂22(J) appearing in σ̃2n(J) converge in probability
to V12(0) = V12 = γ2m(γ) and V22(0) = V22 = γ2(1 + (m(γ))2), respectively. Moreover,
γ̂H,BR
1−kn/n

is a
√
kn−consistent estimator of γ under the stated assumptions (as recalled in

e.g. Girard et al. (2022b)), Y n is a consistent estimator of E(Y ) by the weak law of large
numbers, and

log

[
1

ξτ ′n

(
n(1− τ ′n)

kn

)−γ̂H,BR
1−kn/n

(1/γ̂H,BR
1−kn/n

− 1)
−γ̂H,BR

1−kn/n q̂1−kn/n

]
→ 0

in probability, using the asymptotic proportionality relationship ξτ ′n ∼ (γ−1−1)−γqτ ′n and

the consistency of theWeissman extreme quantile estimator. The estimators ∂1ĥn(γ̂
H,BR
1−kn/n

, 1)

and ∂2ĥn(γ̂
H,BR
1−kn/n

, 1) in σ̃2n(J) thus converge in probability to 1 and 0, respectively, by (B.16)

and (B.17). Conclude that σ̃2n(J) → γ2 in probability, as required.

(ii) The quantity

exp

(
± log(kn/(n(1− τ ′n)))√

kn

√
σ̃2n(J)× z1−α/2

)
− exp

(
± log(kn/(n(1− τ ′n)))√

kn
γ̂H,BR
1−kn/n

× z1−α/2

)
is, in probability, asymptotically equivalent to

± 1

2γ

log(kn/(n(1− τ ′n)))√
kn

(σ̃2n(J)− (γ̂H,BR
1−kn/n

)2)× z1−α/2.

Then clearly

σ̃2n(J)− (γ̂H,BR
1−kn/n

)2

= (γ̂H,BR
1−kn/n

)2((∂1ĥn(γ̂
H,BR
1−kn/n

, 1))2 − 1) + (∂2ĥn(γ̂
H,BR
1−kn/n

, 1))2V̂22(J)

+ 2∂1ĥn(γ̂
H,BR
1−kn/n

, 1)∂2ĥn(γ̂
H,BR
1−kn/n

, 1)V̂12(J)

and it suffices to control this expression to obtain the asymptotic behavior of the difference
in length of the two asymptotic confidence intervals. As in the proof of Theorem 1(ii),
Equations (B.16) and (B.17) show that 1− ∂1ĥn(γ̂

H,BR
1−kn/n

, 1) = oP(1/ log(kn/(n(1− τ ′n))))

and ∂2ĥn(γ̂
H,BR
1−kn/n

, 1) is asymptotically equivalent (in probability) to 1/ log(kn/(n(1−τ ′n))).
As a consequence

σ̃2n(J)− (γ̂H,BR
1−kn/n

)2 = 2γ2m(γ)/ log(kn/(n(1− τ ′n))) + oP(1/ log(kn/(n(1− τ ′n)))).
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Conclude that

length(Ĩ
(2)
τ ′n

(α; J))− length(Ĩ
(1)
τ ′n

(α)) = 2×
ξ̃⋆,BR
τ ′n√
kn

(γm(γ)z1−α/2 + oP(1))

= 2×
ξτ ′n√
kn

(γm(γ)z1−α/2 + oP(1)).

The proof is complete.

D Further finite-sample illustrations and results

D.1 Simulated data

This section contains a complete set of results in our 16 models, for both of our inference
methods (LAWS and quantile-based) and our three sample sizes n = 200, 1,000, 5,000.

D.2 Real data

This section contains extra results about our cyber insurance real data analysis. We
provide estimates of the tail index (Figure D.25), extreme quantile (Figure D.26) and
extreme expectile (Figure D.27) in each cluster formed by stratifying upon the type of
cyber breach.
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Figure D.1: Left panels: Comparison of the empirical variance of (
√
n(1− τn)/ log((1 −

τn)/(1−τ ′n))) log(ξ̂
⋆,BR
τ ′n

/ξτ ′n) (red curve) with boxplots of the asymptotic variance estimate

ŝ2n(1) and the average values of ŝ2,BR
n (dashed curve), ŝ2n(1) (green curve), ŝ2n (dashed-

dotted curve) and s2n (blue curve) as functions of k = kn. Middle panels: coverage

probabilities of the associated 95% confidence intervals Î
(1)
τ ′n

(α), Î
(2)
τ ′n

(α; 1), Î
(3)
τ ′n

(α) and

Î
(4)
τ ′n

(α) (same color code) with the nominal level 0.95 in red. Right panels: Median length

of these confidence intervals (same color code). The underlying distribution is a Burr
distribution with ρ = −5 and γ = 0.1 (first row), γ = 0.2 (second row), γ = 0.3 (third
row), γ = 0.4 (fourth row). The sample size is n = 200 and the target expectile level is
τ ′n = 1− 1/n = 0.995.
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Figure D.2: As in Figure D.1, with n = 1,000 and τ ′n = 1− 1/n = 0.999.
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Figure D.3: As in Figure D.1, with n = 5,000 and τ ′n = 1− 1/n = 0.9998.
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Figure D.4: Left panels: Comparison of the empirical variance of (
√
n(1− τn)/ log((1 −

τn)/(1−τ ′n))) log(ξ̃
⋆,BR
τ ′n

/ξτ ′n) (red curve) with boxplots of the asymptotic variance estimate

σ̃2n(2) and the average values of σ̃2,BR
n (dashed curve), σ̃2n(2) (green curve), σ̃2n (dashed-

dotted curve) and σ2n (blue curve) as functions of k = kn. Middle panels: coverage

probabilities of the associated 95% confidence intervals Ĩ
(1)
τ ′n

(α), Ĩ
(2)
τ ′n

(α; 2), Ĩ
(3)
τ ′n

(α) and

Ĩ
(4)
τ ′n

(α) (same color code) with the nominal level 0.95 in red. Right panels: Median length

of these confidence intervals (same color code). The underlying distribution is a Burr
distribution with ρ = −5 and γ = 0.1 (first row), γ = 0.3 (second row), γ = 0.5 (third
row), γ = 0.7 (fourth row). The sample size is n = 200 and the target expectile level is
τ ′n = 1− 1/n = 0.995.
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Figure D.5: As in Figure D.4, with n = 1,000 and τ ′n = 1− 1/n = 0.999.
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Figure D.6: As in Figure D.4, with n = 5,000 and τ ′n = 1− 1/n = 0.9998.
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Figure D.7: Left panels: Comparison of the empirical variance of (
√
n(1− τn)/ log((1 −

τn)/(1−τ ′n))) log(ξ̂
⋆,BR
τ ′n

/ξτ ′n) (red curve) with boxplots of the asymptotic variance estimate

ŝ2n(1) and the average values of ŝ2,BR
n (dashed curve), ŝ2n(1) (green curve), ŝ2n (dashed-

dotted curve) and s2n (blue curve) as functions of k = kn. Middle panels: coverage

probabilities of the associated 95% confidence intervals Î
(1)
τ ′n

(α), Î
(2)
τ ′n

(α; 1), Î
(3)
τ ′n

(α) and

Î
(4)
τ ′n

(α) (same color code) with the nominal level 0.95 in red. Right panels: Median length

of these confidence intervals (same color code). The underlying distribution is a Burr
distribution with ρ = −1 and γ = 0.1 (first row), γ = 0.2 (second row), γ = 0.3 (third
row), γ = 0.4 (fourth row). The sample size is n = 200 and the target expectile level is
τ ′n = 1− 1/n = 0.995.
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Figure D.8: As in Figure D.7, with n = 1,000 and τ ′n = 1− 1/n = 0.999.
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Figure D.9: As in Figure D.7, with n = 5,000 and τ ′n = 1− 1/n = 0.9998.
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Figure D.10: Left panels: Comparison of the empirical variance of (
√
n(1− τn)/ log((1−

τn)/(1−τ ′n))) log(ξ̃
⋆,BR
τ ′n

/ξτ ′n) (red curve) with boxplots of the asymptotic variance estimate

σ̃2n(2) and the average values of σ̃2,BR
n (dashed curve), σ̃2n(2) (green curve), σ̃2n (dashed-

dotted curve) and σ2n (blue curve) as functions of k = kn. Middle panels: coverage

probabilities of the associated 95% confidence intervals Ĩ
(1)
τ ′n

(α), Ĩ
(2)
τ ′n

(α; 2), Ĩ
(3)
τ ′n

(α) and

Ĩ
(4)
τ ′n

(α) (same color code) with the nominal level 0.95 in red. Right panels: Median length

of these confidence intervals (same color code). The underlying distribution is a Burr
distribution with ρ = −1 and γ = 0.1 (first row), γ = 0.3 (second row), γ = 0.5 (third
row), γ = 0.7 (fourth row). The sample size is n = 200 and the target expectile level is
τ ′n = 1− 1/n = 0.995.
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Figure D.11: As in Figure D.10, with n = 1,000 and τ ′n = 1− 1/n = 0.999.

42



10 46 82 124 166 208 250 292

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Variance estimation − Indirect

k

V
ar

ia
nc

e

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coverage probabilities − Indirect

k

C
ov

. p
ro

b.

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CI length − Indirect

k

Le
ng

th

10 46 82 124 166 208 250 292

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Variance estimation − Indirect

k

V
ar

ia
nc

e

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coverage probabilities − Indirect

k

C
ov

. p
ro

b.

0 50 100 150 200 250 300

0
2

4
6

8
10

12

CI length − Indirect

k

Le
ng

th

10 46 82 124 166 208 250 292

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Variance estimation − Indirect

k

V
ar

ia
nc

e

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coverage probabilities − Indirect

k

C
ov

. p
ro

b.

0 50 100 150 200 250 300

0
20

40
60

80
10

0

CI length − Indirect

k

Le
ng

th

10 46 82 124 166 208 250 292

0
5

10
15

Variance estimation − Indirect

k

V
ar

ia
nc

e

0
5

10
15

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coverage probabilities − Indirect

k

C
ov

. p
ro

b.

0 50 100 150 200 250 300

0
10

00
30

00
50

00

CI length − Indirect

k

Le
ng

th

Figure D.12: As in Figure D.10, with n = 5,000 and τ ′n = 1− 1/n = 0.9998.
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Figure D.13: Left panels: Comparison of the empirical variance of (
√
n(1− τn)/ log((1−

τn)/(1−τ ′n))) log(ξ̂
⋆,BR
τ ′n

/ξτ ′n) (red curve) with boxplots of the asymptotic variance estimate

ŝ2n(1) and the average values of ŝ2,BR
n (dashed curve), ŝ2n(1) (green curve), ŝ2n (dashed-

dotted curve) and s2n (blue curve) as functions of k = kn. Middle panels: coverage

probabilities of the associated 95% confidence intervals Î
(1)
τ ′n

(α), Î
(2)
τ ′n

(α; 1), Î
(3)
τ ′n

(α) and

Î
(4)
τ ′n

(α) (same color code) with the nominal level 0.95 in red. Right panels: Median length

of these confidence intervals (same color code). The underlying distribution is a Burr
distribution with ρ = −1/2 and γ = 0.1 (first row), γ = 0.2 (second row), γ = 0.3 (third
row), γ = 0.4 (fourth row). The sample size is n = 200 and the target expectile level is
τ ′n = 1− 1/n = 0.995.
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Figure D.14: As in Figure D.13, with n = 1,000 and τ ′n = 1− 1/n = 0.999.
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Figure D.15: As in Figure D.13, with n = 5,000 and τ ′n = 1− 1/n = 0.9998.
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Figure D.16: Left panels: Comparison of the empirical variance of (
√
n(1− τn)/ log((1−

τn)/(1−τ ′n))) log(ξ̃
⋆,BR
τ ′n

/ξτ ′n) (red curve) with boxplots of the asymptotic variance estimate

σ̃2n(2) and the average values of σ̃2,BR
n (dashed curve), σ̃2n(2) (green curve), σ̃2n (dashed-

dotted curve) and σ2n (blue curve) as functions of k = kn. Middle panels: coverage

probabilities of the associated 95% confidence intervals Ĩ
(1)
τ ′n

(α), Ĩ
(2)
τ ′n

(α; 2), Ĩ
(3)
τ ′n

(α) and

Ĩ
(4)
τ ′n

(α) (same color code) with the nominal level 0.95 in red. Right panels: Median length

of these confidence intervals (same color code). The underlying distribution is a Burr
distribution with ρ = −0.5 and γ = 0.1 (first row), γ = 0.3 (second row), γ = 0.5 (third
row), γ = 0.7 (fourth row). The sample size is n = 200 and the target expectile level is
τ ′n = 1− 1/n = 0.995.
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Figure D.17: As in Figure D.16, with n = 1,000 and τ ′n = 1− 1/n = 0.999.
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Figure D.18: As in Figure D.16, with n = 5,000 and τ ′n = 1− 1/n = 0.9998.
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Figure D.19: Left panels: Comparison of the empirical variance of (
√
n(1− τn)/ log((1−

τn)/(1−τ ′n))) log(ξ̂
⋆,BR
τ ′n

/ξτ ′n) (red curve) with boxplots of the asymptotic variance estimate

ŝ2n(1) and the average values of ŝ2,BR
n (dashed curve), ŝ2n(1) (green curve), ŝ2n (dashed-

dotted curve) and s2n (blue curve) as functions of k = kn. Middle panels: coverage

probabilities of the associated 95% confidence intervals Î
(1)
τ ′n

(α), Î
(2)
τ ′n

(α; 1), Î
(3)
τ ′n

(α) and

Î
(4)
τ ′n

(α) (same color code) with the nominal level 0.95 in red. Right panels: Median

length of these confidence intervals (same color code). The underlying distribution is
a Fréchet distribution with γ = 0.1 (first row), γ = 0.2 (second row), γ = 0.3 (third
row), γ = 0.4 (fourth row). The sample size is n = 200 and the target expectile level is
τ ′n = 1− 1/n = 0.995.
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Figure D.20: As in Figure D.19, with n = 1,000 and τ ′n = 1− 1/n = 0.999.
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Figure D.21: As in Figure D.19, with n = 5,000 and τ ′n = 1− 1/n = 0.9998.
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Figure D.22: Left panels: Comparison of the empirical variance of (
√
n(1− τn)/ log((1−

τn)/(1−τ ′n))) log(ξ̃
⋆,BR
τ ′n

/ξτ ′n) (red curve) with boxplots of the asymptotic variance estimate

σ̃2n(2) and the average values of σ̃2,BR
n (dashed curve), σ̃2n(2) (green curve), σ̃2n (dashed-

dotted curve) and σ2n (blue curve) as functions of k = kn. Middle panels: coverage

probabilities of the associated 95% confidence intervals Ĩ
(1)
τ ′n

(α), Ĩ
(2)
τ ′n

(α; 2), Ĩ
(3)
τ ′n

(α) and

Ĩ
(4)
τ ′n

(α) (same color code) with the nominal level 0.95 in red. Right panels: Median

length of these confidence intervals (same color code). The underlying distribution is
a Fréchet distribution with γ = 0.1 (first row), γ = 0.3 (second row), γ = 0.5 (third
row), γ = 0.7 (fourth row). The sample size is n = 200 and the target expectile level is
τ ′n = 1− 1/n = 0.995.
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Figure D.23: As in Figure D.22, with n = 1,000 and τ ′n = 1− 1/n = 0.999.
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Figure D.24: As in Figure D.22, with n = 5,000 and τ ′n = 1− 1/n = 0.9998.
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