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Abstract  
 

In this work, we report on the importance of layer distribution after annealing to form a high 

quality ohmic contact on p-type GaN, using nickel (Ni) and gold (Au) thin layer association. 

Both the standard GaN/Ni/Au and its reverse, GaN/Au/Ni on p-type GaN were studied. The 

Au/Ni stack exhibits the most promising results in this study. While the standard Ni/Au contact 

exhibits a quasi-linear current-voltage (I-V) characteristic, its counterpart, Au/Ni, shows pure 

ohmic behavior, with a specific contact resistance (ρc) as low as 2.0×10-4 Ω.cm² after rapid 

thermal annealing (RTA) at 500°C for 5 minutes under air ambient, equivalent to the best 

literature results. X-ray diffraction (XRD) and transmission electron microscopy (TEM) 

analyses demonstrate the incomplete inversion of layers during annealing leading to a 

GaN/Ni/Au/NiO stack that explains why Ni/Au contact shows inferior electrical performance. 

On the other hand, for the Au/Ni contact annealed in the same conditions, the excellent results 

can be attributed to both (i) the presence of the gold layer at the interface with GaN, allowing 

the formation of gallide solid solution (Ga-Au) and (ii) the formation of NiO directly contacted 

with the p-GaN. Those two mechanisms are known to lead to the formation of good ohmic 

contact on p-type GaN. These results demonstrate that although Ni/Au is a standard contact for 

p-GaN layers, the opposite stack (Au/Ni) gives the best Ohmic behavior. This is important for 

achieving the best performance of GaN power diodes or transistors including a p-gate structure.  

 

Keywords: p-GaN; metal deposition; ohmic contact; specific contact resistance; power diode; 

HEMT 

 

1. Introduction 
 

In recent past, III-N semiconductors have gained traction for power electronic applications [1]. 

Due to their excellent properties such as wide band gap and high electrical breakdown field, 

III-N materials are promising for replacing traditional silicon-based devices used for operations 

at high voltages, high frequencies and/or high temperatures. One particularly useful property is 

their ability to create heterojunctions. In particular, the AlGaN/GaN heterostructure results in a 

two-dimensional electron gas (2DEG) at its interface, thanks to the intrinsic polarization 

properties of gallium nitride. As a result, High Electron Mobility Transistors (HEMTs) based 

on AlGaN/GaN can be fabricated with outstanding performances such as, for example, an 

extremely low resistance channel. Among the various devices that may be obtained [2–7], by 

modifying the gate contact, lateral Schottky diodes, using this 2DEG channel, can also be 

fabricated on HEMT fabrication lines. 

In general, GaN-based power Schottky diodes suffer from reliability purposes, especially in 

IFSM (Intensity Forward Surge Maximum) conditions. Indeed, Schottky diodes may face high 
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surge current up to 5 times its nominal current “outside safe operation area”. To overcome this 

problem, hole injection is necessary, which is made possible by locally adding a p-GaN region 

on top of the AlGaN layer [8]. In the case of devices using such p-GaN regions, a good ohmic 

contact, with a low resistance, stable across a wide range of temperatures, is still quite difficult 

to obtain due to the high Schottky barrier height at the metal/p-GaN interface [9]. Another 

obstacle to high quality ohmic contacts is the high ionization energy (≈170 meV) of the Mg 

acceptor in the bandgap, leading to a low free hole concentration [10]. 

The most popular solution to these challenges in the literature is the p-GaN/Ni/Au metallization, 

annealed in air at around 500°C for a few minutes using a Rapid Thermal Annealing (RTA) 

process [11]. The formation of a low resistance ohmic contact can be explained by two different 

effects. First, the oxidation of the nickel layer during the annealing leads to the inversion of Ni 

and Au layers, which induces a final p-GaN/Au/NiO stack [12]. The second explanation is the 

creation of gallium vacancies at the top of the p-GaN, caused by the formation of gallide solid 

solutions, increasing the free hole concentration at the contact interface [13–15].  

In this work, we investigated the formation of ohmic contacts to p-GaN using the standard 

configuration, i.e. Ni/Au contact, as well as Au/Ni, since according to the literature a p-

GaN/Au/NiO stack is necessary after annealing. 

Based on electrical and physical analyses presented here, the importance of the Ni and Au layers 

distribution to form good ohmic contacts to p-GaN will be discussed. 

 

2. Experimental procedure 
 

A 0.5 μm thick Mg-doped GaN layer was grown on a standard GaN/AlGaN buffer on Si 

substrate by metal organic vapor phase epitaxy (MOVPE). In order to activate the acceptors, a 

standard annealing sequence was performed using RTA, and the hole concentration of p-GaN 

was determined to be 4×1017 cm-3 from Hall measurements at room temperature. Several 

samples were then fabricated, starting with surface cleaning. This consisted of immersion in 

Caro’s acid for 10 min, hydrofluoric acid (1% HF concentration) for 30 sec and hydrochloric 

acid for 10 min before being rinsed in deionized water. Next, Circular Transfer Length Method 

(c-TLM) patterns, with an inner radius of 100 μm, were defined using a negative photoresist. 

The spacing between the metal electrodes varied from 12 to 48 μm. Then, 20 nm of Ni followed 

by 20 nm of Au were deposited on the p-GaN by electron beam evaporation to form the Ni/Au 

contact. For the Au/Ni contact, the deposition sequence was inverted. After deposition, the 

photoresist was removed using lift-off and the samples were subsequently annealed at 500°C 

in air using RTA for 5 min. Alternative anneal sequences were also tried, but this gave the best 

electrical results.  

For electrical characterization of the contacts, Current-Voltage (I-V) characteristics were 

extracted at room temperature using a 2636 Sourcemeter Keithley with the four-point probe 

method.  

For structural observations, X-ray diffraction (XRD) analysis was performed using the Cu Kα 

radiation (AXS D8 Discover Bruker) in Bragg-Brentano configuration.  

Transmission Electron Microscopy (TEM) and Scanning Transmission Electron Microscopy - 

Energy Dispersive X-Ray spectroscopy (STEM-EDX) measurements as well as Fast Fourier 

Transform (FFT) analyses were carried out using a JEOL ACCELARM 200 cold FEG 

microscope. This tool has double analytical correction of spherical aberrations (probe and 

image) and was used at 200kV giving a TEM resolution of 1.2Å and a STEM resolution of 

0.8Å. The lamellae for TEM observations were prepared by focused ion beam (FIB) using a 

FEI Helios Nanolab 600i dual beam microscope and they had a thickness of t/λ≈0.4 (ratio 

between the thickness t and the electron mean free path λ).   



3. Results and discussion 

 

Figure 1 displays the I-V characteristics of the two different contacts, Ni/Au and Au/Ni, before 

and after annealing, for voltages varying from -5V to +5V. For the Ni/Au contact, the difference 

between the as-deposited and annealed samples is small and a quasi-linear I-V characteristic is 

observed in both cases. Even though the I-V characteristic is slightly better after annealing, it 

is still not completely ohmic. On the contrary, the Au/Ni contact of the as-deposited sample is 

rectifying while it exhibits pure ohmic behavior across the entire voltage range after annealing. 

This is crucial for a device operation under injection regime, as mentioned before. 

Specific contact resistance (ρC) was obtained using the c-TLM method, by plotting the 

measured total resistance versus the spacing of the c-TLM rings. The specific contact resistance 

was 2.0×10-4 Ω.cm² for the Au/Ni contact after annealing. Despite not being completely ohmic, 

the specific contact resistance of the Ni/Au contacts was extrapolated, and was evaluated as 

2.6×10-3 Ω.cm² and 1.2×10-3 Ω.cm² for the as deposited and after annealing contacts, 

respectively.  

The hole concentration was 4×1017 cm-3, explaining why the maximum current values are not 

very high, at around 2.5 mA at 5V, despite the good quality of the ohmic contact. 

  

Figure 1. I-V characteristics of a 

TLM structure (48 μm spacing) for 

Ni/Au and Au/Ni contacts, both 

before and after annealing at 500°C 

for 5 min in air. 



 

In order to explain this quasi-ohmic behavior of the standard Ni/Au contact TEM analyses were 

performed. The behavior can be explained by an incomplete inversion of layers during the 

annealing. Indeed, we can clearly see on figure 2, showing a TEM micrograph of the annealed 

Ni/Au contact, that the final stack is p-GaN/Ni/Au/NiO and not the p-GaN/Au/NiO expected 

from the literature. Thus, the layer in contact with the p-GaN is Ni, which is known to form a 

poor contact on p-GaN. Greco et al. [12], showed that during the annealing under air, the entire 

Ni layer should diffuse through the Au layer and react with oxygen to form the surface NiO 

layer. However, we did not observe this full inversion in our case, whatever the annealing. 

Hence, the inversion of metal deposition sequence (Au then Ni) to form the required p-

GaN/Au/NiO stack after annealing, which exhibits the lowest resistance contacts in the 

literature [11], was an interesting case to better understand the contact formation.   

Figure 3 shows TEM, STEM-EDX and FFT analyses of the p-GaN/Au/Ni sample after 

annealing. The stack is completely different from that obtained for the Ni/Au sample. Firstly, 

the Au layer is discontinuous on the surface of the p-GaN with some voids, as seen in figures 

3(a) and 3(c). However, the Au remains in contact with the p-GaN, and the NiO is also in 

contact with the p-GaN surface as shown by the STEM-EDX and FFT analyses on figure 3(b) 

and figure 3(d), respectively. This behavior is crucial to understanding the mechanisms of 

ohmic contact formation to p-GaN according to the literature [16,17]. Indeed, crystalline NiO 

is known to be a p-type semiconductor and to act as an intermediate layer reducing contact 

resistivity. It also prevents the outdiffusion of N atoms from the decomposed GaN during 

annealing [18,19], avoiding the creation of N vacancies near the GaN surface which are well-

known to cause poor ohmic contacts to p-GaN [20,21]. 

 

 

  

Figure 2. Cross-sectional micrograph 

for the annealed Ni/Au contact of 

high-resolution TEM viewed from the 

[11̅00] direction of p-GaN. Platinum 

(Pt) comes from the FIB preparation. 



  

Figure 3. Cross-sectional images for the annealed Au/Ni contact of (a) Bright Field 

(BF)-STEM and (b) corresponding STEM-EDX elemental overlay mapping of Au 

(green), Ni (blue), and O (red); (c) high-resolution TEM of the boxed area in (a); 

(d) Fast Fourier Transform (FFT) pattern of (c). These images were viewed from 

the [11̅00] direction of p-GaN. Platinum (Pt) comes from the FIB preparation. 



In addition, structural characterizations of the samples were performed by XRD as shown in 

figure 4. For the Ni/Au contact, prior to annealing both Ni (111) and Au (111) peaks are 

observed. After annealing at 500°C, both peaks increase in intensity and broaden, likely related 

to strain modifications. The existence of a NiO (200) peak at 2θ=43.3° confirms the presence 

of both Ni and NiO after annealing, as seen on the TEM analysis (see Fig.2). The Au/Ni contact 

before annealing is similar to the Ni/Au contact, but after annealing, the XRD spectrum has a 

NiO (111) peak but no peak for pure Ni. This demonstrates that the oxidation of Ni is complete. 

Moreover, we observe the presence of Au (200) at 2θ=44.3° and a broadened peak for the Au 

(111), which suggests that the Au structure is different to the Ni/Au contact. It could also be 

linked to the reaction between Au and GaN during the annealing which indicates the formation 

of a Au-Ga solid solution. In this case, the outdiffusion of Ga is assisted by the annealing in air 

since Ga reacts strongly with oxygen [15].  

This outdiffusion of Ga causes the creation of Ga vacancies in the p-GaN near surface, 

vacancies that as mentioned above act as acceptors, increasing the net hole concentration near 

the interface with the contact. As a consequence, the Schottky barrier height between the GaN 

and the metal is lowered which results in a reduction of the contact resistance. 

 

The excellent electrical results of the Au/Ni contact can therefore be attributed to the formation 

of Ga vacancies but also to the presence of NiO directly in contact with the p-GaN. This 

indicates that both phenomena may occur at the same time increasing contact efficiency.

Figure 4. XRD spectra for the 

Ni/Au and Au/Ni contacts, both 

before and after annealing. 



4. Conclusion 

 
This work investigated ohmic contacts to p-GaN, comparing the standard Ni/Au contact and an 

Au/Ni stack. The Ni/Au samples, as deposited and annealed did not exhibit ohmic behavior. 

However, the Au/Ni contact exhibited pure ohmic behavior, after annealing at 500°C in air, 

with an excellent specific contact resistance of 2.0×10-4 Ω.cm². TEM, STEM-EDX, FFT and 

XRD analyses have been conducted to understand the mechanisms of ohmic contact formation 

to p-GaN. The relatively poor performance of the Ni/Au contact was attributed to incomplete 

inversion of the layers, and an intact Ni layer at the p-GaN surface. The excellent electrical 

performance of the Au/Ni was attributed to the presence of the NiO layer at the interface of the 

p-GaN reducing the contact resistivity. Also, the formation of a Au-Ga solid solution during 

the annealing may lead to the creation of Ga vacancies near the GaN surface, reducing the 

Schottky barrier height of the metal/p-GaN interface. This shows that the layer distribution after 

annealing is crucial to obtain good ohmic contacts to p-GaN. Hence, the Au/Ni deposition 

sequence may be an easier and better solution to obtain low resistance ohmic contacts to p-

GaN. 
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Highlights: 

 

 The influence of layer distribution in Ni and Au based ohmic contacts on 

p-GaN is studied. 

 

 Standard GaN/Ni/Au contact to p-GaN did not show pure ohmic 

behaviour. 

 

 Low resistance ohmic contact is obtained after inversion of the metal 

deposition sequence. 

 

 Presence of NiO and formation of gallide phases are keys to the formation 

of good ohmic contacts. 
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