
HAL Id: hal-04097249
https://hal.science/hal-04097249v1

Submitted on 15 May 2023 (v1), last revised 25 May 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Déduplication sur des types d’attributs hétérogènes
Loujain Liekah, George Papadakis

To cite this version:
Loujain Liekah, George Papadakis. Déduplication sur des types d’attributs hétérogènes. Extraction
et Gestion des Connaissances (EGC) 2023, Jan 2023, Lyon, France. �hal-04097249v1�

https://hal.science/hal-04097249v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Deduplication Over Heterogeneous Attribute
Types (D-HAT)⋆

Loujain Liekah1[0000−0003−1910−5403] and
George Papadakis2[0000−0002−7298−9431]

1 University of Claude Bernard Lyon 1, France loujain.liekah@univ-lyon1.fr
2 National and Kapodistrian University of Athens, Greece gpapadis@di.uoa.gr

Abstract. Deduplication is the task of recognizing multiple representa-
tions of the same real-world object. The majority of existing solutions
focuses on textual data, this means that data sets containing boolean
and numerical attribute types are rarely considered in the literature,
while the problem of missing values is inadequately covered. Supervised
solutions cannot be applied without an adequate number of labelled ex-
amples, but training data for deduplication can only be obtained through
time-costly processes. In high dimensional data sets, feature engineering
is also required to avoid the risk of overfitting. To address these chal-
lenges, we go beyond existing works through D-HAT, a clustering-based
pipeline that is inherently capable of handling high dimensional, sparse
and heterogeneous attribute types. At its core lies: (i) a novel matching
function that effectively summarizes multiple matching signals, and (ii)
MutMax, a greedy clustering algorithm that designates as duplicates the
pairs with a mutually maximum matching score. We evaluate D-HAT on
five established, real-world benchmark data sets, demonstrating that our
approach outperforms the state-of-the-art supervised and unsupervised
deduplication algorithms to a significant extent.

Keywords: Clustering, Entity Matching, Data Quality

1 Introduction
Integrating overlapping and complementary data sets is a common process that
creates new and valuable knowledge [3]. The main task of integration is to iden-
tify duplicate records, which represent the same real-world entity, such as prod-
ucts, institutes, or patients. This task is called deduplication [8], entity matching
[12], entity resolution [18] or record linkage [10]. It constitutes a crucial task that
improves the data quality by repairing and curating data sources [9], reducing
the storage size, and preparing data for downstream applications [8].

Existing solutions for deduplication are based on calculating pairwise simi-
larity scores from one or more attributes [6]. The unsupervised methods create
a similarity graph, where the nodes correspond to records and the edges are
weighted by the matching scores of the adjacent nodes [11]. The graph is then
partitioned into clusters such that all nodes within each cluster correspond to du-
plicate records. These approaches typically calculate matching scores by treating

⋆ This project has received funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement No 875171.

2 L. Liekah et G. Papadakis.

all attributes as textual data [6]. However, real-world data sets involve heteroge-
neous attribute types, i.e., numerical, categorical and boolean attributes. Casting
these types as strings disregards important information and possibly leads to in-
accurate matching scores. For example, the prices “14” and “14.00” are identical
as numbers, but partially similar when compared as sequences of characters and
totally dissimilar when treated as tokens. Hence, unsupervised techniques need
to correctly model and support heterogeneous attribute types.

On the other hand, supervised methods typically model deduplication as a
binary classification task [12]. They convert each pair of records into a feature
vector by applying similarity metrics on different attributes. The vectors are
then labelled to train a classifier that predicts the matching status for unla-
belled pairs. However, these approaches face multiple challenges: (i) The curse
of dimensionality, i.e., tasks become exceedingly difficult with a higher number of
dimensions. (ii) Labeled data is scarce, but obtaining it through crowd-sourcing
is costly and time-consuming [21]. Moreover, its size and quality affects the end
result to a significant extent [16], but are hard to ensure, due to the heavy class
imbalance. (iii) Supervised methods require long training times [16].

To address these shortcomings, we introduce D-HAT (Deduplication with
Heterogeneous Attribute Types), a novel clustering-based pipeline for end-to-end
deduplication. D-HAT goes beyond existing works in three ways: (i) It inherently
supports data sets with heterogeneous types of attributes and a large portion
of missing values (i.e., high sparsity). (ii) It inherently supports and leverages
complex schemata of high dimensionality. (iii) It achieves state-of-the-art results
without requiring any labelled data. Our contributions are the following:

– We propose D-HAT, an automated end-to-end, clustering-based framework for
deduplicating high-dimensional data sets with heterogeneous attribute types
and missing values. Its matching algorithm uses as features a comprehensive
set of signals, coupling them with a novel greedy clustering method that de-
fines as matches the records with mutually maximum matching scores.

– We conduct experiments on established real benchmark data sets, showing
that: (i) In terms of effectiveness, D-HAT outperforms the state-of-the-art
supervised and unsupervised baseline methods. (ii) In terms of time efficiency,
D-HAT has an undeniable advantage over the baseline methods.

– We have publicly released all data and code used in our experiments through
https://github.com/Loujainl/D-HAT.

2 Related Work

The growing research on deduplication reflects its increasing importance, with
numerous methods tackling various aspects [4,6,8].

One of deduplication’s main challenges is its quadratic complexity: in the
worst case, it examines all possible pairs of records. Blocking is typically used
to alleviate this complexity and to scale deduplication to voluminous data sets
[5,18]. Blocking puts together similar records in groups called blocks by apply-
ing blocking schemes or functions. A blocking function extracts signatures from
every record, dividing the input data set into a set of overlapping blocks – com-
parisons are reduced to candidates, i.e., pairs of records sharing at least one

https://github.com/Loujainl/D-HAT

Deduplication Over Heterogeneous Attribute Types (D-HAT) 3

block, reducing the computational cost to a significant extent. Yet, the higher
time efficiency comes with the risk of missing potential matches [19].

After blocking, matching is performed to determine the degree of similarity
between the candidate pairs of records. In essence, it applies similarity functions
to the values of selected attributes of the candidate records, obtaining numerical
matching scores. Next, it determines whether the resulting degree of similarity is
sufficient for designating two records as duplicates. We distinguish the matching
algorithms into unsupervised and supervised ones.

The former category includes a collection of methods that are provided by
JedAI [17,20] and Stringer [11], with ZeroER [23] constituting the state-of-the-
art unsupervised approach; it represents every candidate pair as a feature vector.
Unlike supervised methods, it does not require a training set. Instead, at its
core lies the observation that the distribution of the feature vectors for duplicate
records differs from that of the non-matching records. Based on this idea, it learns
the parameters of the Gaussian distribution of matching vectors by iteratively
applying expectation maximization to compute the posterior probability of a
matching label given the feature vector. A posterior probability higher than 0.5
is considered as an indication of duplicate records.

Among the supervised methods, the most popular one is Magellan [12], a
system that combines a variety of features with the main machine learning clas-
sifiers, such as decision trees, logistic regression and support vector machines.
After providing an annotated sample of candidate pairs T , matching is performed
by training a classifier over T Magellan also offers a set of blocking methods.

DeepMatcher [16] is a space of matching solutions based on neural net-
works with three modules: i) attribute embedding, ii) attribute similarity rep-
resentation, and iii) a classification module. In most cases, the first module re-
lies on pre-trained fastText embeddings [1] to convert every token to a vec-
tor. EMTransformer[2] and DITTO[14] go beyond DeepMatcher by leveraging
attention-based transformers like BERT[7], and RoBERTa[15]. These solutions
perform well on textual data, outperforming Magellan in terms of accuracy
[2,14,16]. We disregard them, as they require large training sets and many hours
of training [16] in order to fine-tune hundreds of thousands of parameters [22].

3 Our Approach
We now delve into our framework, whose pipeline is illustrated in Figure 1.

Step 1: Data Cleaning. The first step prepares the input by determin-
ing the core characteristics of the attributes describing the given data set(s)3,
i.e., it calculates the number of unique values and the data type per attribute.
Attributes that have two unique values are converted to boolean to obtain a
more precise degree of similarity. Attributes with very few unique values (<10)
are treated as categorical variables. Numerical attributes are identified through
regular expressions that detect quantities, possibly accompanied by an optional
unit of measurement. E.g., an attribute value width = ‘‘42.8 in’’ is trans-
formed into width = 42.8 and is marked as a numeric data type. Min-max
normalization is then performed on the values of numeric attributes:

3 In the case of Record Linkage, we assume aligned schemata.

4 L. Liekah et G. Papadakis.

Feature Matrix

Similarity
Functions

4.Feature

Matrix

Threshold Truth

Similarity Graph

5.Calculating

Matching Scores

MutMax

6. Clustering

Key

3.Blocking

Blocks

2.Attribute

Selection

Coverage

Source

Target

1.Cleaning

Input

7.Detected

Matches

OutputTruth

Fig. 1. The end-to-end pipeline of D-HAT.

Step 2: Attribute Selection. Attributes with a majority of missing values
lack valuable information for deduplication and, thus, can be disregarded. The
coverage of an attribute a expresses the portion of non-empty values in a across
all input records; the fewer missing values there are, the higher is the coverage.

We formally define the coverage c of each attribute as: c(a) = 1− |ri.a=N/A:ri∈T |
|T | .

This step discards the attributes with a coverage below a specific threshold.
Preliminary experiments demonstrated that 0.1 constitutes an effective value.

Step 3: Blocking. This step is critical because it determines two things:
1. Time efficiency, because the processing time of the following steps is deter-
mined by the number of candidates in the resulting blocks.
2. Effectiveness, because the recall of D-HAT is bounded by the recall of block-
ing; the false negative pairs of records, which have no block in common, cannot
be detected by the subsequent steps, and are excluded from the final output.

Therefore, it is crucial that blocking balances these two competing goals:
the reduced search space and the high effectiveness. D-HAT is generic enough
to accommodate any blocking method that meets this requirement. Preliminary
experiments indicated that Magellan’s [12] overlap blocker is a robust approach
for creating blocks of high performance (see Section 4 for more details). It defines
as candidate pairs those sharing at least one token in the values of a specific
attribute. D-HAT applies the overlap blocker to all textual attributes in the
given data sets and opts for the one minimizing the number of candidates, while
maximizing coverage – high coverage implicitly signals high recall after blocking.

Step 4: Feature Matrix. Similar to supervised approaches, D-HAT repre-
sents each pair of records as a feature vector by applying type-specific normalized
similarity functions to selected attributes. Unlike supervised approaches, these
vectors are unlabelled. In more detail, after detecting the type of every attribute
in Step 1, D-HAT creates a feature vector Vi,j for each candidate pair of records
(ri, rj) ∈ B, where B is the set of blocks produced by the previous step and the
kth feature/dimension in Vi,j , V

k
i,j , stems from a similarity function that is com-

patible with the type of the kth attribute, ak. If the value of either record for ak
is empty or incorrect (i.e., incompatible with the type of ak), V

k
i,j =‘N/A’, which

stands for a missing feature. Note that this step does not require any domain
knowledge from the user. D-HAT automatically detects the attribute type and
applies the appropriate similarity functions in order to create the features.

In particular, the following functions are used by D-HAT:
• For boolean and categorical attributes, the equality operator.
• For numerical attributes, four similarity functions are used:

Deduplication Over Heterogeneous Attribute Types (D-HAT) 5

1. The equality operator,
2. The Euclidean similarity, V k

i,j = 1− EucDist(ri.ak, rj .ak).

3. The relative similarity, V k
i,j = 1− |ri.ak−rj .ak|

max(ri.ak,rj .ak)
.

4. The normalized Manhattan similarity, V k
i,j =

|ri.ak−rj .ak|
max(ri.ak,rj .ak)

.

• For textual attributes, the following functions are used:
(i) Syntactic similarity measures.
D-HAT distinguishes textual attributes into short strings, if their average

value entails less than five words, and long strings otherwise. For both types, it
employs the following functions:

1. Jaccard similarity: V k
i,j =

|token set(ri.ak)∩token set(rj .ak)|
|token set(ri.ak)∪token set(rj .ak)| .

2. Generalized Jaccard, which extends the previous measure to consider the

bags of tokens: V k
i,j =

|bag(ri.ak)∩bag(rj .ak)|
|bag(ri.ak)∪bag(rj .ak)| .

3. Overlap Coefficient: V k
i,j =

|token set(ri.ak)∩token set(rj .ak)|
min(|token set(ri.ak)|,|token set(rj .ak)|) .

4. Bag: V k
i,j = 1− max(|bag(ri.ak)−bag(rj .ak)|,|bag(rj .ak)−bag(ri.ak)|)

max(|(rj .ak)|,|(ri.ak)|)|)

5. Dice Similarity: V k
i,j = 2× |token set(ri.ak)∩token set(rj .ak)|

|token set(ri.ak)|+|token set(rj .ak)| .

Additionally, D-HAT uses two similarity functions for short strings:
- Levenshtein similarity, the minimum number of edit operations (insert, delete
or substitute) required to transform one string to another.
- Hamming, similar to Levenshtein except that it allows only substitution.

(ii) Semantic similarity measures. D-HAT exploits pre-trained embedding
representations of textual data. Two types of representations are actually used:

a) Word-based models like word2vec and GlobalVectors (GloVe). They sub-
stitute each token (word) by a meaningful numeric vector that is learnt from
training a shallow feedforward neural network on large, external, un-annotated
textual corpora, such as Google News and Wikipedia. In these models, words
with contextual similarity have linearly related vector representations. However,
they cannot produce vector representations for words that are out-of-vocabulary.

b) To address this limitation, skipgram models like fastText [1] represent
each word by the sum of the vector representations of its bag of characters.
Thus, they are capable of learning a recurrent neural network that yields vector
representations for words, independently of their occurrence in the training data.

To extract numeric features/dimensions from the three pre-trained embed-
dings (i.e., word2vec, GloVe and fastText), D-HAT applies three similarity func-
tions to the vectors of two records: the cosine, the Euclidean and the word
mover’s similarity [13]. For the last two functions, the homonymous distance
function d is transformed into a similarity value sim as follows: sim = 1

1+d .
(iii) Hybrid similarity measures. This configuration combines the aforemen-

tioned syntactic similarity measures with the semantic ones, given that they
capture complementary matching evidence.

Overall, D-HAT creates one feature per boolean and categorical attributes,
four per numeric ones as well as nine semantic features and up to seven syntactic
ones per textual attribute.

6 L. Liekah et G. Papadakis.

Step 5: Matching Scores. The goal of this step is to estimate the matching
likelihood for each pair of candidates based on the feature matrix of the previous
step. This is carried out in two steps:

(i) Binarizing the feature vectors. In essence, D-HAT treats each feature as a
vote for a “match” (1) or a “non-match” (0) decision. The dimensions of boolean
and categorical attributes are already binary. The dimensions of numerical and
textual attributes are defined in [0, 1], with higher values indicating a higher
matching likelihood. To binarize them, D-HAT employs a similarity threshold
θ ∈ [0, 1], common to all dimensions, such that all numeric scores above θ are
converted into “match” votes (1), while the rest become “non-match” votes (0).
All dimensions with a “N/A” value are ignored.

(ii) Score estimation. To calculate the matching score mi,j for two candidate

records, ri and rj , we aggregate the dimensions of their binary feature vector ˆVi,j

into a single value through their mean, i.e., mi,j =
∑N

k=1
ˆV k
i,j/(N −n), where N

is the total number of features, n is the number of missing ones and ˆV k
i,j ∈ {0, 1}.

At the end of these two steps, the matching scores of all pairs are calculated
and stored in a matrix M . The records and the matrix define a weighted graph
G(V,M), where the set of nodes V represent the input records, and M is the
adjacency matrix of weights. G(V,M) is referred to as the similarity graph.

Step 6: MutMax Clustering. L’étape finale reçoit en entrée le graphe de
similarité G(V,M) et le partitionne en un ensemble de clusters disjoints, tels
que chaque cluster correspond à une entité unique, contenant tous les enreg-
istrements dupliqués décrivant l’entité. corresponde à une entité unique, con-
tenant tous les enregistrements dupliqués la décrivant. Le partitionnement est
effectué parMutMax, une approche avide qui définit comme doublons les paires
d’enregistrements ayant des scores mutuellement maximaux. Plus précisément,
MutMax fonctionne comme suit : Pour chaque enregistrement ri, tous les can-
didats sont triés par scores de correspondance décroissants et le plus élevé
rimax = rj est sélectionné comme correspondance potentielle. Si ri a été défini
comme correspondance potentielle pour rj , les enregistrements ri et rj sont
désignés comme concordants. Le reste des paires candidates est ignoré.

In terms of time complexity, the cost of Steps 1, 2 and 3 is linear with the
number of attributes in the given data set T , i.e., O(|T.A|). For Steps 4 and 5,
the cost is O(|B|). For Step 6 no sorting is required. Instead, D-HAT merely
iterates once over all cells in the two-dimensional array M . A hash table can be
used to store the estimated similarities in practice. As a result, both the time
and space complexity of Step 6 (and the entire algorithm) are linear with the
number of candidate pairs after blocking, i.e., O(|B|).

4 Experimental Evaluation

Setup. D-HAT is implemented in Python 3.8.5. All experiments were run on an
Ubuntu 18.04.5 server with a 12-core Intel Xeon D-2166NT @2GHz, 64 GB of
RAM and 300 GB HDD. A single core was employed in all time measurements.

Benchmark Data Sets. We employ five established data sets that come
from multiple domains: products, bibliography, restaurants, and healthcare. Im-

Deduplication Over Heterogeneous Attribute Types (D-HAT) 7

Data set |S| |T | |D| #Attributes #Numerical #Bool. & Cat. #Textual #Selected
Amazon-Google 1,363 3,226 1,298 4 1 0 2 3

Abt-Buy 1,081 1,092 1,095 3 1 0 2 3
DBLP-ACM 2,614 2,294 2,223 4 1 1 2 3
Fodors-Zagats 533 331 112 5 0 0 5 5

Immucare 305 310 305 213 32 6 37 75

Table 1. Technical characteristics of the benchmark data sets. |S|, |T | and |D| stand
for the number of source records, target records and duplicate pairs, respectively.

Data set Key Attribute #Candidates Recall Prec. Time
Amazon-Google Name 131,214 0.995 0.010 7.3

Abt-Buy Name 164,072 0.994 0.007 2.6
DBLP-ACM Authors 318,404 0.993 0.007 19.4
Fodors-Zagat Phone 111 0.929 0.936 0.7
Immucare DateofBirth 311 1.000 0.981 26.5

Table 2. Blocking performance. Time in Seconds.

mucare is a healthcare dataset matching two hospital visits of the same patient.
The technical details of these data sets [12,23] are summarized in Table 1.

Baseline Systems. We compare the performance of D-HAT with Magellan
[12] and ZeroER [23]. For the former, we use decision tree as the classification
algorithm, while for the latter, no configuration is needed.

Evaluation Measures. We use the standard measures of recall, precision,
and F1-score, which are defined in Section ??. We also report the overall run-
time, i.e., the time that intervenes between receiving the data set(s) as input
and producing the duplicate pairs as output. We repeat every measurement
three times and report the average.

4.1 Step 3: Blocking

D-HAT applies Magellan’s overlap blocker to all attributes and selects as optimal
the one minimizing the number of candidates, while maximizing coverage. The
resulting performance appears in Table 2. In all cases, the number of candidate
pairs is reduced by whole order of magnitude (i.e., ≫ 90%) in comparison to the
brute-force approach (i.e., |S| × |T |). The only exception is Abt-Buy, where the
candidates drop by 86%, which is a dramatic reduction of the search space, too.
Nevertheless, the recall in all cases remains rather high, above 90%. This means
that the vast majority of duplicate pairs co-occur in at least one block.

Note that precision after blocking remains very low for most data sets. To
raise it to acceptable levels, matching is required. Note also that compared to
the overall run-time of D-HAT and the rest of the methods (in Figure 3), the
overhead of blocking is negligible (< 10% in all cases). The only exception is
Immucare, where the overhead of blocking is high, due to the very large number
of attributes retained after Step 2 (75).

4.2 Steps 4-6: Matching

To ensure fairness, we apply the same blocker to the same key attribute for
both baseline systems, (e.g., we use the ‘phone’ attribute instead of ‘name’ in
Fodors-Zagats). Note that for Amazon-Google, ZeroER could not create its fea-
ture matrix within a time limit of 6 hours. To complete the assessment, we
combined it with the feature vectors created by Magellan instead. As a result,
the performance of ZeroER could be slightly different from that reported in [23].

8 L. Liekah et G. Papadakis.

Data set
D-HAT

Magellan ZeroER
Syntactic Features Semantic Features Hybrid Features
Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

A-G 0.904 0.479 0.626 0.828 0.349 0.534 0.925 0.532 0.675 0.513 0.573 0.542 0.663 0.385 0.487
A-B 0.818 0.402 0.539 0.635 0.174 0.274 0.824 0.346 0.487 0.440 0.443 0.442 0.220 0.601 0.322
D-A 0.992 0.956 0.974 0.995 0.980 0.987 0.997 0.974 0.985 0.980 0.983 0.981 0.936 0.945 0.940
F-Z 0.981 0.929 0.954 0.971 0.911 0.940 0.981 0.929 0.954 0.939 0.969 0.954 1.000 0.312 0.476
CA 0.993 0.987 0.990 0.990 0.987 0.988 0.993 0.987 0.990 0.968 1.000 0.984 1.000 0.487 0.655

Table 3. Matching effectiveness of D-HAT, Magellan and ZeroER across all data sets.
The best F1 per data set is underlined.

The resulting performance of all algorithms with respect to precision (Pr),
recall (Re) and f-measure (F1) appears in Table 3, while the corresponding run-
times are reported in Figure 3. Note that after preliminary experiments, we
set cmin = 0.1 and θ = 0.7 for D-HAT in all cases. Note also that D-HAT is
combined with three different groups of features: (i) The syntactic ones, which
include only the syntactic similarity functions for textual attributes along with
the specialized functions of boolean, categorical and numeric attributes. (ii) The
semantic features, which differ from the previous group in that they replace the
syntactic similarity functions with the semantic ones. (iii) The hybrid features,
which employ all similarity functions for all types of attributes defined in Section
3. In this way, we are able to examine the contribution of the two types of textual
similarity functions, which account for the majority of features used by D-HAT.

Fig. 2. Run-time in seconds.

Data set Non-Textual Syntactic Semantic Hybrid
A-G 4 14 22 32
A-B 4 14 22 32
D-A 4 14 22 32
F-Z 0 35 45 80
CA 78 400 411 733

Table 4. The number of features per group.

Compared to blocking, precision has actually increased by whole orders of
magnitude. This emphasis on precision should be attributed to MutMax clus-
tering, which associates every record only with its most similar candidate.

Comparing the various groups of features between them, we observe that
the syntactic ones consistently outperform the semantic ones. The reason is
that most data sets contain domain-specific terminology. As a result, especially
word2vec and GloVe suffer from a large portion of out-of-vocabulary terms. The
only exception is DBLP-ACM, which involves long textual attributes like venue
names and publication titles; in these settings, the evidence provided by semantic
similarities outperforms the syntactic ones, albeit by just ∼2%.

In terms of time-efficiency, the advantage of syntactic similarity functions is
clear in all cases, as shown in Figure 3. The run-time of D-HAT increases by
a whole order of magnitude in almost all cases, when replacing the syntactic
similarity features with the semantic ones. This is caused by the large number of

Deduplication Over Heterogeneous Attribute Types (D-HAT) 9

lookups and computations that are required for converting every attribute value
into a high-dimensional embedding vector and a similarity score.

It is interesting to examine whether the combination of syntactic and seman-
tic similarities justifies the lower time efficiency by an increase in effectiveness.
This is only true in Amazon-Google, where hybrid features’ F1 is higher than the
syntactic ones by ∼10%. In all other cases, the hybrid features lie between the
two other groups of features, usually closer to the top performing one. Hence,
D-HAT should be exclusively combined with the syntactic group of features.

Compared to ZeroER, Table 3 shows that D-HAT with syntactic features
achieves significantly better effectiveness in most cases. Its f-measure is actually
higher by 50%, on average, across the first five data sets. At the same time, Figure
3 demonstrates D-HAT is consistently faster than ZeroER by whole orders of
magnitude (e.g., 1 min vs 6 hrs over Amazon-Google) – the sole exception is
DBLP-ACM, where D-HAT is slower, due to the computation of 10 syntactic
similarity functions over textual values. D-HAT takes into account 11 attributes
with high level of noises (missing values, heterogeneity of existing values, errors),
which inevitably corrupt some matching signals.

Compared to Magellan, in the first two data sets, D-HAT achieves a higher
f-measure than Magellan by more than 13%, while in the next three data sets
both methods exhibit practically identical performance (i.e., their f-measures
differ by less than 1%). The competitive performance of Magellan stems from its
supervised functionality: in each dataset, 70% of the candidate pairs are used for
training its classification model, leaving only 30% of the pairs as a testing set. In
contrast, D-HAT processes all candidate pairs and its performance is bounded
by blocking. In terms of time-efficiency, we observe in Figure 3 that D-HAT takes
a clear lead in all cases, as its run-time is lower than Magellan even by a whole
order of magnitude (e.g., 35 vs 400 seconds over Abt-Buy).

Overall, D-HAT typically outperforms the state-of-the-art unsupervised dedu-
plication method to a significant extent in all respects. Compared to the state-
of-the-art supervised approach, it exhibits similar effectiveness, if not higher, at
a much lower run-time, despite the lack of labelled instances.

4.3 Sensitivity Analysis

The only configuration parameter that is crucial for the performance of D-HAT
is the similarity threshold θ, whose value depends on the level of noise and
heterogeneity in the data. To assess its impact on the overall performance of
D-HAT, we consider all values in the range [0.5, 1] with a step of 0.1. The results
appear in Figure 3. Due to lack of space, we report three of the five datasets.

We observe that this parameter has no effect on any evaluation measure over
DBLP-ACM. The reason is that the pairs identified as matches in these datasets
exhibit very high similarity (practically 1.0) for most of the features employed
by D-HAT. As a result, the matching decisions of MutMax clustering are not
altered by the value of θ. For Abt-Buy and Amazon-Google, we observe that
up to 0.7, the performance of D-HAT improves (Abt-Buy) or remains the same
(Amazon-Google). For θ > 0.7, a small increase in the similarity threshold yields
slightly lower performance with respect to all measures. The reason is that both

10 L. Liekah et G. Papadakis.

0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0
F1
Precision
Recall

(a) Abt-Buy

0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

F1
Precision
Recall

(b) Amazon-Google

0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

F1
Precision
Recall

(c) DBLP-ACM

Fig. 3. Performance of D-HAT with syntactic features when varying the threshold θ.

data sets are challenging tasks, because they contain many corner cases, i.e.,
records that are close to the decision boundary.

Overall, we can conclude that D-HAT is robust with respect to its similarity
threshold θ, with θ = 0.7 constituting a reliable default value.

5 Conclusions
We presented D-HAT, an efficient, fully automated clustering-based end-to-end
deduplication system. D-HAT can process high dimensional data sets with het-
erogeneous attribute types and missing values without requiring user interven-
tion or any labelled data. The thorough experimental study on benchmark data
sets demonstrates that our system achieves high accuracy across different bench-
mark tasks, and outperforms supervised and unsupervised baselines. The main
benefit of D-HAT over unsupervised methods is the high accuracy on all stan-
dard tasks, whereas compared to supervised methods, D-HAT eliminates the
extra time and effort needed from domain experts to annotate a training set. It
also saves the time required to find and train an efficient classification model.
In the future, we plan to parallelize D-HAT on top of Apache Spark in order to
scale it to huge data sets with millions of records.

References

1. Bojanowski, P., et al. vectors with subword information. Transactions of the As-
sociation for Computational Linguistics 5, 135–146 (2017)

2. Brunner, U., Stockinger, K.: Entity matching with transformer architectures - A
step forward in data integration. In: EDBT. pp. 463–473 (2020)

3. Chen, M., Mao, S., Liu, Y.: Big data: A survey. MONET 19(2), 171–209 (2014)
4. Christen, P.: Data Matching. Springer (2012)
5. Christen, P.: A survey of indexing techniques for scalable record linkage and dedu-

plication. IEEE Trans. Knowl. Data Eng. 24(9), 1537–1555 (2012)
6. Christophides, V., et al. Stefanidis, .K.: An overview of end-to-end entity resolution

for big data. ACM Comput. Surv. 53(6), 127:1–127:42 (2021)
7. Devlin, J., et al. of deep bidirectional transformers for language understanding. In:

NAACL-HLT. pp. 4171–4186 (2019)
8. Dong, X.L., Srivastava, D.: Big data integration. Synthesis Lectures on Data Man-

agement 7(1), 1–198 (2015)
9. Fan, W., Ma, S., Tang, N., Yu, W.: Interaction between record matching and data

repairing. Journal of Data and Information Quality (JDIQ) 4(4), 1–38 (2014)

Deduplication Over Heterogeneous Attribute Types (D-HAT) 11

10. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of the American
Statistical Association 64(328), 1183–1210 (1969)

11. Hassanzadeh, O., et al. evaluating clustering algorithms in duplicate detection.
Proc. VLDB Endow. 2(1), 1282–1293 (2009)

12. Konda, P., Das, S., et al.: Magellan: Toward building entity matching management
systems. Proc. VLDB Endow. 9(12), 1197–1208 (2016)

13. Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embeddings to
document distances. In: ICML. vol. 37, pp. 957–966 (2015)

14. Li, Y., Li, J., Suhara, Y., Wang, J., Hirota, W., Tan, W.: Deep entity matching:
Challenges and opportunities. ACM J. Data Inf. Qual. 13(1), 1:1–1:17 (2021)

15. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Others: Roberta: A robustly opti-
mized BERT pretraining approach. CoRR abs/1907.11692 (2019)

16. Mudgal, S., Li, H., Rekatsinas, T., Doan, A., Park, Y., et al.: Deep learning for
entity matching: A design space exploration. In: SIGMOD. pp. 19–34 (2018)

17. Papadakis, G., et al. Thanos, E., et al.: Three-dimensional entity resolution with
jedai. Information Systems 93, 101565 (2020)

18. Papadakis, G., et al. filtering techniques for entity resolution: A survey. ACM
Computing Surveys (CSUR) 53(2), 1–42 (2020)

19. Papadakis, G., et al. analysis of approximate blocking techniques for entity reso-
lution. Proc. VLDB Endow. 9(9), 684–695 (2016)

20. Papadakis, G., et al. jedai: End-to-end entity resolution for structured and semi-
structured data. Proc. VLDB Endow. 11(12), 1950–1953 (2018)

21. Wang, J., Kraska, T., Franklin, M.J., Feng, J.: Crowder: Crowdsourcing entity
resolution. arXiv preprint arXiv:1208.1927 (2012)

22. Wang, Z., Sisman, B., Wei, H., Dong, X.L., Ji, S.: Cordel: A contrastive deep
learning approach for entity linkage. In: ICDM. pp. 1322–1327 (2020)

23. Wu, R., Chaba, S., Sawlani, S., Chu, X., Thirumuruganathan, S.: Zeroer: Entity
resolution using zero labeled examples. In: SIGMOD. pp. 1149–1164 (2020)

	Deduplication Over Heterogeneous Attribute Types (D-HAT)

