
HAL Id: hal-04097227
https://hal.science/hal-04097227

Preprint submitted on 15 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Z-polyregular functions
Thomas Colcombet, Gaëtan Douéneau-Tabot, Aliaume Lopez

To cite this version:
Thomas Colcombet, Gaëtan Douéneau-Tabot, Aliaume Lopez. Z-polyregular functions. 2023. �hal-
04097227�

https://hal.science/hal-04097227
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ar
X

iv
:2

20
7.

07
45

0v
4

 [
cs

.F
L

]
 1

8
A

pr
 2

02
3

Z-polyregular functions

Thomas Colcombet∗, Gaëtan Douéneau-Tabot∗† and Aliaume Lopez∗‡

∗Université Paris Cité, CNRS, IRIF, F-75013, Paris, France
† Direction générale de l’armement - Ingénierie des projets, Paris, France

‡ENS Paris-Saclay, CNRS, LMF, France

Abstract—This paper studies a robust class of functions from
finite words to integers that we call Z-polyregular functions. We
show that it admits natural characterizations in terms of logics,
Z-rational expressions, Z-rational series and transducers.

We then study two subclass membership problems. First, we
show that the asymptotic growth rate of a function is computable,
and corresponds to the minimal number of variables required to
represent it using logical formulas. Second, we show that first-
order definability of Z-polyregular functions is decidable. To show
the latter, we introduce an original notion of residual transducer,
and provide a semantic characterization based on aperiodicity.

I. INTRODUCTION

Deterministic finite state automata define the well-known

and robust class of regular languages. This class is captured by

different formalisms such as expressions (regular expressions

[1]), logic (Monadic Second Order (MSO) logic [2]), and

algebra (finite monoids [3]). It contains a robust subclass of

independent interest: star-free regular languages, which admits

equivalent descriptions in terms of machines (counter-free

automata [4]), expressions (star-free expressions [5]), logic

(first-order (FO) logic [6]) and algebra (aperiodic monoids [5]).

Furthermore, one can decide if a regular language is star-free,

and the proof relies on the existence (and computability) of

a canonical object associated to each language (its minimal

automaton [4] or, equivalently, its syntactic monoid [5]).

Numerous works have attempted to carry the notion of

regularity from languages to word-to-word functions. This

work led to a plethora of non-equivalent classes (such as

sequential, rational, regular and polyregular functions [7]).

Decision problems, including first-order definability, become

more difficult and more interesting for functions [8], mainly

due to the lack of canonical objects similar to the minimal

automata of regular languages. It was shown recently that

first-order definability is decidable for the class of rational

functions [9] and that a canonical object can be built [10].

This paper is a brochure for a natural class of functions

from finite words to integers, which we name Z-polyregular

functions. Its definition stems from the logical description of

regular languages. Given an MSO formula ϕ(~x) with free first-

order variables ~x, and a word w ∈ A∗, we define #ϕ(w)
to be the number of valuations ν such that w, ν |= ϕ(~x).
The indicator functions of regular languages are exactly the

functions #ϕ where ϕ is a sentence (i.e. it does not have free

variables, hence has at most one valuation: the empty one). We

define the class of Z-polyregular functions, denoted ZPoly, as

the class of Z-linear combinations of functions #ϕ where ϕ
is in MSO with first-order free variables.

The goal of this paper is to advocate for the robustness

of ZPoly. To that end, we shall provide numerous charac-

terizations of these functions and relate them to pre-existing

models. We also solve several membership problems and

provide effective conversion algorithms. This equips ZPoly

with a smooth and elegant theory, which subsumes that of

regular languages.

Contributions: We introduce the class ZPoly as a natural

generalization of regular languages via simple counting of

MSO valuations. This definition can be seen as a restricted

version of the Quantitative MSO introduced in [11]. It also

coincides with the linear finite counting automata of [12].

We first connect Z-polyregular functions to word-to-word

polyregular functions [7], providing a justification for their

name. As a class of functions from finite words to integers, it

is then natural to compare ZPoly with the well-studied class

of Z-rational series (see e.g. [13]). We observe that ZPoly is

exactly the subclass of Z-rational series that have polynomial

growth, i.e. the functions such that |f(w)| = O(|w|k) for some

k ≥ 0, by making effective the results of Schützenberger [12].

As a consequence, we provide a simple syntax of Z-rational

expressions to describe ZPoly as those built without the Kleene

star. We also show how ZPoly can be described using natural

restrictions on the eigenvalues of representations of Z-rational

series. This property is built upon a quantitative pumping

lemma characterizing the ultimate behavior of Z-polyregular

functions as “ultimately N -polynomial” for some N ≥ 0. We

summarize these results in the second column of Table I.

We then refine the description of ZPoly by considering for

all k ≥ 0, the class ZPolyk of functions described using at

most k free variables in the counting MSO formulas. It is

easy to check that if f ∈ ZPolyk then |f(w)| = O(|w|k).
Our first main theorem shows that this property is a sufficient

and necessary condition for a function of ZPoly to be in

ZPolyk (see Figure 1). This result is an analogue of the various

“pebble minimization theorems” that were shown for word-

to-word polyregular functions [14], [15], [16], [17]. We also

prove that the membership problem of ZPolyk inside ZPoly

is decidable.

Our second main contribution is the definition of an almost

canonical object associated to each function of ZPoly. We

name this object the residual transducer of the function, and

show that it can effectively be built. Its construction is inspired

by the residual automaton of a regular language, and heavily

relies on the decision procedure from ZPoly to ZPolyk.

Finally, we define the class ZSF of star-free Z-polyregular

http://arxiv.org/abs/2207.07450v4

Formalism Characterization of ZPoly Characterization of ZSF

Counting formulas Counting valuations in MSO (Definition II.5) Counting valuations in FO (Definition V.1)

Polyregular functions sum ◦ polyregular (Proposition II.13) sum ◦ star-free polyregular (Proposition V.17)

Z-rational expressions Closure of rational languages under Cauchy prod-
ucts, sums, and Z-products (Theorem II.20)

Closure of star-free languages under Cauchy prod-
ucts, sums, and Z-products (Theorem V.4)

Ultimately N -polynomial (Theorem II.31) Ultimately 1-polynomial (Theorem V.13)

Z-rational series that are/have Polynomial growth (Theorem II.31) n/a

Eigenvalues in {0} ∪ U (Theorem II.31) Eigenvalues in {0, 1} (Theorem V.18)

Residual transducer Residual transducer (Corollary IV.19) Counter-free residual transducer (Theorem V.13)

TABLE I: Summary of the characterizations of ZPoly and ZSF expressed in different formalisms.

functions, as the class of linear combinations of #ϕ where ϕ
is a first-order formula with free first-order variables. As in the

case of ZPoly, observe that the indicator functions of star-free

languages are exactly the #ϕ where ϕ is a first-order sentence.

Our third main contribution then applies the construction of

the residual transducer to show that the membership problem

from ZPoly to ZSF is decidable. Incidentally, we introduce for

k ≥ 0 the class ZSFk (defined in a similar way as ZPolyk)

and show that ZSFk = ZSF∩ZPolyk, as depicted in Figure 1.

Furthermore, we show that the numerous characterizations of

ZPoly in terms of existing models can naturally be specialized

to build characterizations of ZSF, as depicted in the third

column of Table I.

Overall, our contribution is the description of a natural the-

ory of functions from finite words to Z, that is the consequence

of a reasonable computational power (polynomial growth, i.e.

less than Z-rational series) and the ability to correct errors

during a computation (using negative numbers). Furthermore,

the theory of Z-polyregular functions is built using new and

non-trivial proof techniques.

Outline: Section II is devoted to the introduction of the

classes ZPoly and ZPolyk. We also compare ZPoly with

polyregular functions and with Z-rational series. We then

devote Section III to a free variable minimization theorem

(Theorem III.3), which is a key result towards the effective

computation of a canonical residual transducer in Section IV.

We then introduce ZSF and ZSFk in Section V, and use the

residual transducer to prove the decidability of ZSF inside

ZPoly (Theorem V.8). We conclude by connecting ZSF to

polyregular functions and Z-rational series. All of the afore-

mentioned results include algorithms to decide membership

and provide effective conversions between the various repre-

sentations.

II. Z-POLYREGULAR FUNCTIONS

The goal of this section is to define Z-polyregular func-

tions. We first define this class of functions using a logical

formalism (monadic second-order formulas with free variables,

Section II-A), then we relate it to (word-to-word) regular and

polyregular functions (Section II-B) and finally we show that

it corresponds to a natural and robust subclass of the well-

known Z-rational series (Sections II-C and II-D).

In the rest of this paper, Z (resp. N) denotes the set of

integers (resp. nonnegative integers). If i ≤ j, the set [i:j] is

{i, i+1, . . . , j} ⊆ N (empty if j < i). The capital letter A
denotes a fixed alphabet, i.e. a finite set of letters. A∗ (resp.

A+) is the set of words (resp. non-empty words) over A. The

empty word is ε ∈ A∗. If w ∈ A∗, let |w| ∈ N be its length,

and for 1 ≤ i ≤ |w| let w[i] be its i-th letter. If I = {i1 <
· · · < iℓ} ⊆ [1:|w|], let w[I] := w[i1] · · ·w[iℓ]. If a ∈ A, let

|w|a be the number of letters a occurring in w. We assume

that the reader is familiar with the basics of automata theory,

in particular the notions of monoid morphisms, idempotents

in monoids, monadic second-order (MSO) logic and first-order

(FO) logic over finite words (see e.g. [18]).

A. Counting valuations on finite words

Let MSOk be the set of MSO-formulas over the signature

(A,<) which have exactly k free first-order variables. We

then let MSO :=
⋃

k∈N MSOk. If ϕ(x1, . . . , xk) ∈ MSOk,

w ∈ A∗ and 1 ≤ i1, . . . , ik ≤ |w|, we write w |= ϕ(i1, . . . , ik)
whenever the valuation x1 7→ i1, . . . , xk 7→ ik makes the

formula ϕ true in the model w.

Definition II.1 (Counting). Given ϕ(x1, . . . , xk) ∈ MSOk,

we let #ϕ : A∗ → N be the function defined by #ϕ(w) :=
|{(i1, . . . , ik) : w |= ϕ(i1, . . . , ik)}|.

The value #ϕ(w) is the number of tuples that make the

formula ϕ true in the model w.

Example II.2. If ϕ ∈ MSO0, then #ϕ is the indicator function

of the (regular) language {w : w |= ϕ} ⊆ A∗.

Example II.3. Let A := {a, b}. Let ϕ(x, y) := a(x) ∧ b(y),
then #ϕ(w) = |w|a × |w|b for all w ∈ A∗. Let ψ(x, y) :=
ϕ(x, y) ∧ x > y, then #ψ(an0ban1 · · ·anp) =

∑p
i=0 i× ni.

Example II.4. Let ϕ ∈ MSOk, and x be a fresh variable.

Then, x = x ∧ ϕ ∈ MSOk+1, and #(x = x ∧ ϕ)(w) = |w| ×
#ϕ(w) for every w ∈ A∗. Similarly, for all w ∈ A∗ and

a ∈ A, #(a(x) ∧ ϕ)(w) = |w|a ×#ϕ(w).

If F is a subset of the set of functionsA∗ → Z and if S ⊆ Z,

we let SpanS (F) := {
∑

i aifi : ai ∈ S, fi ∈ F} be the set

of S-linear combinations of the functions from F . The set

SpanN ({#ϕ : ϕ ∈ MSOk, k ≥ 0}) has been recently studied

Z-rational

Z-polyregular
Star-free

Z-polyregular

ZSF0

ZSF1

ZSF2

ZPoly0

ZPoly1

ZPoly2

Polynomial growth

O(n2) growth

O(n) growth

O(1) growth

w 7→ 1L(w) if L is regular but not star-free

w 7→ |w| × (−1)|w|

w 7→ 1L(w) if L star-free

w 7→ |w|a × |w|b if a, b ∈ A

w 7→ (−2)|w|

Fig. 1: The classes of functions studied in this paper.

by Douéneau-Tabot in [19] under the name of “polyregular

functions with unary output”. In the following, we shall call

this class the N-polyregular functions.

The goal of this paper is to study the Z-linear combinations

of the basic #ϕ functions, which we call Z-polyregular

functions. We shall see that this class is a quantitative coun-

terpart of regular languages that admits several equivalent

descriptions, and for which various decision problems can be

solved. We provide in Definition II.5 a fine-grained definition

of this class of functions, depending on the number of free

variables which are used within the #ϕ basic functions.

Definition II.5 (Z-polyregular functions). For k ≥ 0, let

ZPolyk := SpanZ ({#ϕ : ϕ ∈ MSOℓ, ℓ ≤ k}). We define the

class of Z-polyregular functions as ZPoly :=
⋃

k ZPolyk.

We also let ZPoly−1 := {0}.

Remark II.6. For all k ≥ 0, the class ZPolyk is precisely the

class of functions computable in QMSO(Σkx,⊕,⊙b) of [11,

Section IV.A] over the semiring (Z,+,×).

Remark II.7. For all k ≥ 0, the class ZPolyk is precisely

the class of functions computable by linear finite counting

automata of order k introduced by [12, p. 91].

Example II.8. ZPoly0 is exactly the class of Z-linear combi-

nations of indicators 1L of regular languages L.

Example II.9. Following the construction of Example II.4, for

every k, ℓ ≥ 0, and f ∈ ZPolyℓ, the function g : w 7→ f(w)×
|w|k belongs to ZPolyℓ+k.

Example II.10. Let 1odd and 1even be respectively the indica-

tor functions of words of odd length and even length. For all

k ≥ 0, the function w 7→ (−1)|w|× |w|k is in ZPolyk. Indeed,

it is w 7→ 1even(w) × |w|k − 1odd(w) × |w|k . Observe that it

cannot be written as a single δ#ϕ for some δ ∈ Z, ϕ ∈ MSOℓ,

ℓ ≥ 0, since otherwise its sign would be constant.

The use of negative coefficients in the linear combinations

has deep consequences on the expressive power of ZPoly.

Let us consider the function f : w 7→ (|w|a − |w|b)
2. Be-

cause f(w) = |w|2a − 2|w|a|w|b + |w|2b , we conclude from

Example II.4 that f is in ZPoly2. Although f is non-negative,

f−1({0}) = {w : |w|a = |w|b} is not a regular language,

hence f is not a N-polyregular function.

Remark II.11 (More variables). Let ℓ > k ≥ 0, ϕ ∈ MSOk,

then for all words w ∈ A+ we have:

#ϕ(w) = #(ϕ ∧ xk+1 = · · · = xℓ ∧ ∀y.xk+1 ≤ y)(w)

the latter being an MSOℓ formula. This formula also holds

for w = ε if k > 0, but it may fail for k = 0 because in that

case the right-hand side equals 0 regardless of the formula ϕ
(because there is no valuation), whereas #ϕ(ε) may not be 0.

One can refine Remark II.11 to conclude that for all k ≥ 0,

ZPolyk = SpanZ ({#ϕ : ϕ ∈ MSOk} ∪ {1{ε}}). In the rest

of the paper, 1{ε} will not play any role, and we will safely

ignore it in the proofs so that ZPolyk will often be considered

equal to SpanZ ({#ϕ : ϕ ∈ MSOk}).

B. Regular and polyregular functions

We recall that the class of (word-to-word) functions com-

puted by two-way transducers (or equivalently by MSO-

transductions, see e.g. [20]) is called regular functions. As an

easy consequence of its definition, ZPolyk is preserved under

pre-composition with a regular function.

Proposition II.12. For all k ≥ 0, the class ZPolyk is (effec-

tively) closed under pre-composition by regular functions.

Now, we intend to justify the name “Z-polyregular func-

tions” by showing that this class is deeply connected to the

well-studied class of polyregular functions from finite words to

finite words. Informally, this class of functions can be defined

using the formalism of multidimensional MSO-interpretations.

The reader is invited to consult [21] for its formal definition,

which we skip here. Let sum : {±1}∗ → Z be the sum

operation mapping w ∈ {±1}∗ to
∑|w|

i=1 w[i].

Proposition II.13. The class ZPoly is (effectively) the class

of functions sum ◦f where f : A∗ → {±1}∗ is polyregular.

C. Rational series and rational expressions

The class of rational series over the semiring (Z,+,×), also

known as Z-rational series, is a robust class of functions from

finite words to Z that has been largely studied since the 1960

(see e.g. [13] for a survey). It can be defined using the indicator

functions 1L of regular languages L ⊆ A∗, and the following

combinators given f, g : A∗ → Z and δ ∈ Z:

• the external Z-product δf : w 7→ δ × f(w);
• the sum f + g : w 7→ f(w) + g(w);
• the Cauchy product f ⊗ g : w 7→

∑

w=uv f(u)× g(v);
• if and only if f(ε) = 0, the Kleene star f∗ :=

∑

n≥0 f
n

where f0 : ε 7→ 1, w 6= ε 7→ 0 is neutral for Cauchy

product and fn+1 := f ⊗ fn.

Definition II.14 (Z-rational series). The class of Z-rational

series is the smallest class of functions from finite words to Z

that contains the indicator functions of all regular languages,

and is closed under taking external Z-products, sums, Cauchy

products and Kleene stars.

We intend to connect Z-rational series and Z-polyregular

functions. Let us first observe that not all Z-rational series

are Z-polyregular. We say that a function f : A∗ → Z has

polynomial growth whenever there exists k ≥ 0 such that

|f(w)| = O(|w|k). It is an easy check that every Z-polyregular

function has polynomial growth.

Claim II.15. If k ≥ 0 and f ∈ ZPolyk then |f(w)| =
O(|w|k).

Example II.16. The map f : w 7→ (−2)|w| is a Z-rational

series because f = ((−3)1A+)∗. However f 6∈ ZPoly since it

does not have polynomial growth.

It is easy to see from the logical definition that the class

ZPoly is closed under taking Cauchy products.

Claim II.17. Let k, ℓ ≥ 0. Let f ∈ ZPolyk and g ∈ ZPolyℓ,

then f ⊗ g ∈ ZPolyk+ℓ+1. The construction is effective.

As a consequence, if L ⊆ A∗ is regular and f ∈ ZPolyk,

then 1L⊗ f ∈ ZPolyk+1. The following result states that such

functions actually generate the whole space ZPolyk+1.

Proposition II.18. Let k ≥ 0, the following (effectively) holds:

ZPolyk+1 = SpanZ ({1L⊗ f : L regular, f ∈ ZPolyk}).

Example II.19. The map w 7→ (−1)|w||w| is in ZPoly1 as it

equals 1odd ⊗ 1odd+1even ⊗1even−1even ⊗1odd−1odd ⊗ 1even−
1odd + 1even.

Now, let us show that Z-polyregular functions can be

characterized both syntactically and semantically as a subclass

of Z-rational series. We prove that the membership problem

is decidable and provide an effective conversion algorithm.

Theorem II.20 (Rational series of polynomial growth). Let

f : A∗ → Z, the following are equivalent:

1) f is a Z-polyregular function;

2) f belongs to the smallest class of functions that contains

the indicator functions of all regular languages and

is closed under taking external Z-products, sums and

Cauchy products;

3) f is a Z-rational series having polynomial growth.

Furthermore, one can decide whether a Z-rational series is a

Z-polyregular function and the translations are effective.

Proof. For Item 2 ⇒ Item 1, observe that ZPoly contains

the indicator functions of regular languages, is closed under

external Z-products, sums, and Cauchy products (thanks to

Claim II.17). For Item 1 ⇒ Item 2, we obtain for all k ≥ 0
as an immediate consequence of Proposition II.18:

ZPolyk = SpanZ({1L0
⊗ · · · ⊗ 1Lk

: L0, . . . , Lk regular languages})
(1)

and the result follows.

The equivalence between Item 2 and Item 3 follows (in a

non effective way) from [13, Corollary 2.6 p 159]. Furthermore

polynomial growth is decidable by [13, Corollary 2.4 p 159].

To provide an effective translation, one can start from a Z-

rational series f of polynomial growth, enumerate all the Z-

polyregular functions g, rewrite them as rational series (using

Item 1 ⇒ Item 2) and check whether f = g since this property

can be decided for Z-rational series [13, Corollary 3.6 p 38].

Remark II.21. It follows from Remark II.6, [11, Proposition

6.1], and Theorem II.20, that Z-rational series of polynomial

growth are exactly those computable by weigthed automata

with coefficients in {0, 1,−1} of polynomial ambiguity. We

are not aware of a direct proof of this correspondence.

Remark II.22. [19, Theorem 3.3] gives a similar result when

comparing N-polyregular functions and N-rational series.

Remark II.23. The class of Z-polyregular functions is also

closed under Hadamard product (f × g(w) := f(w)× g(w)).
This can be obtained by generalising Example II.4. Moreover,

f × g ∈ ZPolyk+ℓ whenever f ∈ ZPolyk and g ∈ ZPolyℓ.

Since the equivalence is decidable for Z-rational series [13,

Corollary 3.6 p 38], we obtain the following.

Corollary II.24 (Equivalence problem). One can decide if two

Z-polyregular functions are equal.

D. Rational series and representations

In this section, we intend to provide another description of

Z-polyregular functions among Z-rational series. To that end,

we first recall that rational series can also be described using

matrices (or, equivalently, weighted automata). Let Mn,m(Z)
be the set of all n × m matrices with coefficients in Z. We

equip Mn,m(Z) with the usual matrix multiplication.

Definition II.25 (Linear representation). We say that a triple

(I, µ, F) where µ : A∗ → Mn,n(Z) is a monoid morphism,

I ∈ M1,n(Z) and F ∈ Mn,1(Z), is a Z-linear representation

of a function f : A∗ → Z if f(w) = Iµ(w)F for all w ∈ A∗.

It is well-known since Schützenberger (see e.g. [13, Theo-

rem 7.1 p 17]) that the class of Z-rational series is (effectively)

the class of functions that have a Z-linear representation.

Example II.26. The map w 7→ (−1)|w||w| from

Example II.19 is a Z-polyregular function, hence it is a Z-

rational series. It has the following Z-linear representation:
(

(
−1 0

)
, w 7→

(
−1 1
0 −1

)|w|

,

(
0
1

))

.

Note that the eigenvalues of any matrix in µ(A∗) are 1 or −1.

Example II.27. The function w 7→ (−2)|w| from

Example II.16 is a Z-rational series that is not a Z-polyregular

function. It can be represented via ((1), µ, (1)) where µ(w) =
((−2)|w|) for all w ∈ A∗. Observe that for all n ≥ 1,

there exists a matrix in µ(A∗) whose eigenvalue has modulus

2n > 1.

A Z-linear representation (I, µ, F) of a function f is said to

be minimal, when it has minimal dimension n among all the

possible representations of f . Given a matrix M ∈ Mn,n(Z),
we let Spec(M) ⊆ C be its spectrum, which is the set

of all its (complex) eigenvalues. If S ⊆ Mn,n(Z), we let

Spec(S) :=
⋃

M∈S Spec(M) be the union of the spectrums.

Finally, let B(0, 1) := {x ∈ C : |x| ≤ 1} be the unit disc and

U := {x ∈ C : ∃n ≥ 1, xn = 1} be the roots of unity.

Now, we show that Z-polyregular functions can be character-

ized through the eigenvalues of Z-linear representations. More

precisely, Theorem II.31 will relate the asymptotic growth of

a series to the spectrum of the set of matrices µ(A∗). As a

first step, let us observe that the eigenvalues occurring in a

minimal representation can be revealed by iterating words.

Lemma II.28. Let f : A∗ → Z be a Z-rational series and

(I, µ, F) be a minimal Z-linear representation of f . Let w ∈
A∗ and λ ∈ Spec(µ(w)). There exist coefficients αi,j ∈ C for

1 ≤ i, j ≤ n, and words u1, v1, . . . , un, vn ∈ A∗ such that

λX =
∑n

i,j=1 αi,jf(viw
Xuj) for all X ≥ 0.

Now, we refine the notion of polynomial growth to explicit

the behaviour of a function when iterating factors.

Definition II.29. Let N > 0. A function f : A∗ → Z is ulti-

mately N -polynomial whenever there exists M ≥ 0 such that

for all ℓ ≥ 0, for all α0, w1, α1, . . . , wℓ, αℓ ∈ A∗, there exists

P ∈ Q[X1, . . . , Xℓ], such that f(α0w
NX1

1 α1 · · ·w
NXℓ

ℓ αℓ) =
P (X1, . . . , Xℓ), whenever X1, . . . , Xℓ ≥M .

In this section we only need to have ℓ = 1, but

Definition II.29 has been made generic so that it can be reused

in Section V when dealing with aperiodicity. Now, we observe

that ultimate polynomiality is preserved under taking sums,

external Z-products and Cauchy products. Lemma II.30 also

provides a fine-grained control over the value N of ultimate

N -polynomiality, that will mostly be useful in Section V.

Lemma II.30. Let f, g : A∗ → Z be (respectively) ultimately

N1-polynomial and ultimately N2-polynomial, then:

• f + g and f ⊗ g are ultimately (N1 ×N2)-polynomial;

• δf is ultimately N1-polynomial for δ ∈ Z.

Furthermore, for every regular language L, there exists N > 0
such that 1L is ultimately N -polynomial.

Now, we have all the elements to prove the main theorem

of this section.

Theorem II.31 (Polynomial growth and eigenvalues). Let f :
A∗ → Z, the following are equivalent:

1) f is a Z-polyregular function;

2) f is a Z-rational series that is ultimately N -polynomial

for some N > 0;

3) f is a Z-rational series and for all minimal Z-linear

representations (I, µ, F) of f , Spec(µ(A∗)) ⊆ U ∪ {0}.

4) f is a Z-rational series and for some minimal Z-linear

representation (I, µ, F) of f , Spec(µ(A∗)) ⊆ B(0, 1);

Proof. Item 4 ⇒ Item 1 is a direct consequence of [22,

Theorem 2.6] and Theorem II.20. Item 1 ⇒ Item 2 follows

from Lemma II.30 and Theorem II.20.

For Item 2 ⇒ Item 3, let (I, µ, F) be a minimal represen-

tation of f in Z, of dimension n ≥ 0. Let w ∈ A∗ and λ ∈
Spec(µ(w)). Thanks to Lemma II.28, there exists αi,j , ui, vj
for 1 ≤ i, j ≤ n, such that λX =

∑

1≤i,j≤n αi,jf(viw
Xuj)

for X large enough. By assumption, for all 1 ≤ i, j ≤ n,

there exists Ni,j > 0 such that X 7→ f(viw
Ni,jXuj) is a

polynomial for X large enough. Hence there exists N > 0
(i.e. the product of the Ni,j) such that X 7→ λNX = (λN)X

is a polynomial for X large enough, which therefore must be

a constant polynomial. Hence λN ∈ {0, 1}, which implies that

λ ∈ {0} ∪U. Item 3 ⇒ Item 4 is obvious.

Remark II.32. Item 3 of Theorem II.31 is optimal, in the

sense that for all λ ∈ U ∪ {0}, there exists a Z-rational

series of polynomial growth having a minimal representation

(I, µ, F) with λ ∈ Spec(µ(A∗)) (if λ ∈ U, we let µ(a) be the

companion matrix of the cyclotomic polynomial associated to

λ).

Remark II.33. Leveraging the proof scheme used for the

implication Item 2 ⇒ Item 3 of Theorem II.31, one can ac-

tually show that the following asymptotic polynomial bound

characterizes Z-polyregular functions among Z-rational se-

ries: for all u,w, v ∈ A∗, there exists P ∈ Q[X], such that

|f(uwXv)| ≤ P (X), for X large enough.

Remark II.34. Beware that Spec(µ(A)) ⊆ {0} ∪ U has no

reason to imply Spec(µ(A∗)) ⊆ {0} ∪ U.

III. FREE VARIABLE MINIMIZATION AND GROWTH RATE

In this section, we study the membership problem from

ZPoly to ZPolyk for a given k ≥ 0. As observed in

Claim II.15, if f ∈ ZPolyk then |f(w)| = O(|w|k). We show

that this asymptotic behavior completely characterizes ZPolyk
inside ZPoly. This statement is formalized in Theorem III.3,

which also provides both a decision procedure and an effective

conversion algorithm. It turns out that Theorem III.3 is also a

stepping stone towards computing the residual automaton of

a function f ∈ ZPoly, which is done in Section IV.

This can be understood as a result that “minimizes” the

number of free variables needed to describe a Z-polyregular

function. As such, it is tightly connected with the “pebble

minimization” results that exists for (word-to-word) polyregu-

lar functions [17] and N-polyregular functions [14]. However,

these results cannot be used as black box theorems to mini-

mize the number of free variables of Z-polyregular functions

because the negative coefficients of the latter induce non-trivial

behaviors.

To capture the growth rate of Z-polyregular functions,

we shall introduce a quantitative variant of the traditional

pumping lemmas. Before that, let us extend the O notation

to multivariate functions f, g : Nn → Z as follows: we say

that f = O(g) whenever there exist N,C ≥ 0 such that

|f(x1, . . . , xn)| ≤ C|g(x1, . . . , xn)| for every x1, . . . , xn ≥
N . We similarly extend the notation f(x) = Ω(g(x)) to

multivariate functions.

Definition III.1. A function f : A∗ → Z is k-pumpable

whenever there exist α0, . . . , αk ∈ A∗, w1, . . . , wk ∈ A∗, such

that |f(α0

∏k
i=1 w

Xi

i αi)| = Ω(|X1 + · · ·+Xk|
k).

Example III.2. For all k ≥ 0, for all f ∈ ZPolyk, f is not

(k + 1)-pumpable because |f(w)| = O(|w|k).

The equivalence between Item 1 and Item 2 in

Theorem III.3 is known since [12]. However, the equivalence

with Item 3 and the effectivity of the result are novel.

Theorem III.3 (Free Variable Minimization). Let f ∈ ZPoly

and k ≥ 0. The following conditions are equivalent:

1) f ∈ ZPolyk;

2) |f(w)| = O(|w|k);
3) f is not (k + 1)-pumpable.

Furthermore, the minimal k such that f ∈ ZPolyk is com-

putable, and the construction is effective.

The proof of Theorem III.3 is done via induction on k, and

follows directly from the following induction step, to which

we devote the rest of Section III.

Induction Step III.4. Let k ≥ 1 and f ∈ ZPolyk. The

following conditions are equivalent:

1) f ∈ ZPolyk−1;

2) |f(w)| = O(|w|k−1);
3) f is not k-pumpable.

Moreover this property can be decided and the construction

is effective.

Beware that one must be able to pump several factors at

once to detect the growth rate, as illustrated in the following

example. This has to be contrasted with Remark II.33.

Example III.5. Let f : akbℓ 7→ k × ℓ and w 7→ 0 otherwise.

The function f is Z-polyregular and 2-pumpable, however,

f(α0w
Xα1) = O(X) for every triple α0, w, α1 ∈ A∗.

Our proof of Induction Step III.4 is built upon factorization

forests. Given a morphism µ : A∗ → M into a finite monoid

and w ∈ A∗, a µ-forest of w is a forest that can be represented

as a word over Â := A ⊎ {〈, 〉}, defined as follows.

Definition III.6 (Factorization forest [23]). Given a monoid

morphism µ : A∗ → M and w ∈ A∗, we say that F is a

µ-forest of w when:

• either F = a, and w = a ∈ A;

• or F = 〈F1〉 · · · 〈Fn〉, w = w1 · · ·wn and for all 1 ≤ i ≤
n, Fi is a µ-forest of wi ∈ A+. Furthermore, if n ≥ 3
then µ(w1) = · · · = µ(wn) is an idempotent of M .

We let Fµ be the language of µ-forests inside (Â)∗. Because

forests are (ordered) trees, we will use the standard vocabulary

to talk about the nodes, the sibling/parent relation, the root, the

leaves and the depth of a forest. We let Fµ
d ⊆ (Â)∗ be the set

of µ-forests with depth at most d. Let word : Fµ
d → A∗ be

the function mapping a µ-forest of w ∈ A∗ to w itself.

Example III.7. Let M := ({−1, 1, 0},×). A forest F ∈ Fµ
5

(where µ : M∗ → M maps a word to the product of its

elements) such that word(F) = (−1)(−1)0(−1)000000 is

depicted in Figure 2. Double lines denote idempotent nodes

(i.e. nodes with more than 3 children).

When M is a finite monoid, it is known from Simon’s

celebrated theorem [23] that any word in A∗ has a µ-forest of

bounded depth. Furthermore, this small forest can be computed

by a regular function (notion introduced in Section II-B).

Theorem III.8 ([23], [24]). Given a morphism into a finite

monoid µ : A∗ → M , one can effectively compute some

d ≥ 0 and a regular function forest : A∗ → Fµ
d such that

word ◦ forest is the identity function.

In order to prove Induction Step III.4, we shall consider a

function (f : A∗ → Z) ∈ ZPolyk that is not k-pumpable, and

show how to compute it as a function in ZPolyk−1. To that

end, we shall construct a function g : Â∗ → Z ∈ ZPolyk−1
such that f = g ◦ forest. Since forest is regular thanks

to Theorem III.8, it will follow that f ∈ ZPolyk−1 by

Proposition II.12. Remark that it is only needed to define g
on Fµ

d .

Following the classical connections between MSO-formulas

and regular languages [18], we prove in Claim III.11 that for

every function f ∈ ZPolyk there exist a finite monoid M and

a morphism µ : A∗ →M , such that f(w) can be reconstructed

using “simple” MSO-formulas which are evaluated along

bounded-depth µ-factorizations of w.

Claim III.9. Given a morphism µ : A∗ → M into a finite

monoid and d ∈ N, the following predicates are MSO defin-

able for words over Â. For all F ∈ Fµ
d , and w = word(F),

then:

• F |= isleaf(x) if and only if x is a leaf of F ;

• F |= betweenm(x, y) if and only if x and y are leaves

of F , x ≤ y, and µ(w[x] . . . w[y]) = m;

• F |= leftm(x) if and only if x is a leaf of F , and

µ(w[1] . . . w[x]) = m;

• F |= rightm(x) if and only if x is a leaf of F , and

µ(w[x] . . . w[|w|]) = m.

Whenever F ∈ Â∗ \ Fµ
d , the semantics are undefined.

Definition III.10. The fragment INV is a subset of MSO

over Â, which contains the quantifier-free formulas using only

the predicates betweenm, leftm, and rightm where m ranges

over M , and where every free variable x is guarded by the

predicate isleaf(x). Furthermore, we let INVk := INV∩MSOk.

Claim III.11 ([15], [17]). For all f ∈ ZPolyk, one can build

a finite monoid M , a depth d ∈ N, a surjective morphism

µ : A∗ → M , constants n ≥ 0, δi ∈ Z for 1 ≤ i ≤ n,

formulas ψi ∈ INVk for 1 ≤ i ≤ n, such that for every word

w ∈ A∗, for every factorization forest F ∈ Fµ
d of w, it holds

that f(w) =
∑n
i=1 δi ×#ψi(F).

In the rest of this section, we focus on the number of free

variables in Z-linear combinations of #ψ where ψ ∈ INV.

The crucial idea is that one can leverage the structure of the

forest F ∈ Fµ
d to compute #ψ more efficiently, at the cost of

building a non-INV formula.

For that, we explore the structure of the forest F as follows:

given a node t in a forest F , we define its skeleton to be the

subforest rooted at that node, containing only the right-most

and left-most children recursively. This notion was already

used in [19], [16], [17] for the study of pebble transducers.

Definition III.12. Let F ∈ Fµ and t ∈ Nodes(F), we define

the skeleton of t by:

• if t = a ∈ A is a leaf, then Skel(t) := {t};

• otherwise if t = 〈F1〉 · · · 〈Fn〉, then Skel(t) := {t} ∪
Skel(F1) ∪ Skel(Fn).

Let w ∈ A∗, F be a µ-forest of w, and t ∈ Nodes(F). The

set of nodes Skel(t) defines a µ-forest of a (scattered) subword

u of w: the one obtained by concatenating the leaves of F that

are in Skel(t). See Figure 2 for an example of a skeleton. A

crucial property of Skel(t) seen as a forest is that it preserves

the evaluation:

Claim III.13. For all d ≥ 0, finite monoid M , morphism

µ : A∗ → M , forest F ∈ Fµ
d , node t ∈ F , it holds that

µ(word(Skel(t))) = µ(word(t)).

−1 −1 0 −1 0 0 0 0 0 0

Fig. 2: A forest F with word(F) = (−1)(−1)0(−1)000000
together with a skeleton in blue.

Let F be a forest and x be a leaf in F . Observe that Skel(x)
is exactly x itself. There may exist several nodes t ∈ F

such that x ∈ Skel(t), however only one of them is maximal

thanks to Lemma III.14. As a consequence one can partition

Leaves(F) depending on the maximal skeleton (for inclusion)

which contains a given leaf (Definition III.15).

Lemma III.14. Let F ∈ Fµ
d , x ∈ Leaves(F). There exists

t ∈ Nodes(F) such that x ∈ Skel(t).

Furthermore, for every t, t′ such that x ∈ Skel(t)∩ Skel(t′),
Skel(t) ⊆ Skel(t′) or Skel(t′) ⊆ Skel(t).

Definition III.15. Let skel-root : Leaves(F) → Nodes(F)
map a leaf x to the t ∈ Nodes(F) such that x ∈ Skel(t)
and Skel(t) is maximal for inclusion.

Following the work of [19], we define a notion of depen-

dency of leaves (Definition III.17) based on the relationship

between their maximal skeletons (Definition III.16).

Definition III.16 (Observation). We say that t′ ∈ Nodes(F)
observes t ∈ Nodes(F) if either t

′ is an ancestor of t (this

includes t itself), or the immediate left or right sibling of an

ancestor of t.

Definition III.17 (Dependency). In a forest F , a leaf y
depends on a leaf x, written x depends-ony, when skel-root(y)
observes skel-root(x).

Beware that the relation x depends-on y is not symmetric.

This allows us to ensure that the number of leaves y that

depend on a fixed leaf x is uniformly bounded.

Claim III.18. Given d ≥ 0, there exists a (computable) bound

Nd ∈ N such that for all F ∈ Fµ
d and all leaf x ∈ Leaves(F),

there exist at most Nd leaves which depend on x.

It is a routine check that for every fixed d, one can define the

predicate sym-dep(x, y) in MSO over Fµ
d checking whether

x depends-on y or y depends-onx, that is the symmetrised

version of x depends-on y. We generalize this predicate to

tuples ~x := (x1, . . . , xk) via:

sym-dep(~x) :=

⊤ for k = 0;
⊤ if and only if x1 is the root for k = 1;
∨

i6=j sym-dep(xi, xj) otherwise.

Notice that the independence (or dependence)

of a tuple of leaves ~x only depends on the tuple

skel-root(x1), . . . , skel-root(xn). The notion of dependent

leaves is motivated by the fact that counting dependent

leaves can be done with one variable less, as shown in

Lemma III.19.

Lemma III.19. Let d ≥ 0, M be a finite monoid, µ : A∗ →M ,

k ≥ 1, and ψ ∈ INVk. One can effectively build a function

g : (Â)∗ → Z ∈ ZPolyk−1 such that for every F ∈ Fµ
d ,

g(F) = #(ψ(~x) ∧ sym-dep(~x))(F).

Definition III.20. Let k ≥ 1 and f ∈ ZPolyk, thanks to

Claim III.11 and Theorem III.8, there exists µ : A∗ → M ,

d ≥ 0, δi ∈ Z, ψi ∈ INVk such that:

f =

(
n∑

i=1

δi#ψi(~x)

)

◦ forest

=

(
n∑

i=1

δi#(ψi(~x) ∧ sym-dep(~x))

)

︸ ︷︷ ︸

:=fdep

◦ forest

+

(
n∑

i=1

δi#(ψi(~x) ∧ ¬ sym-dep(~x))

)

︸ ︷︷ ︸

:=findep

◦ forest .

(2)

We say that fdep is the dependent part of f and findep is its

independent part.

Thanks to Lemma III.19 and Proposition II.12, for every

k ≥ 1 and f ∈ ZPolyk, (fdep ◦ forest) ∈ ZPolyk−1 (over

Fµ
d). Hence, whether the function f belongs to ZPolyk−1 only

depends on its independent part. We will actually prove that

in this case, f ∈ ZPolyk−1 if and only if findep = 0. For that,

we will rely on “pumping families” that respect forest.

Definition III.21 (Pumping family). A (µ, d)-
pumping family of size k ≥ 1 is given by words

α0, w1, α2, . . . , αk−1, wk, αk ∈ A∗, together with a family

F
~X of forests in Fµ

d , such that for all 1 ≤ i ≤ k, wi 6= ε,

and F
~X is a µ-forest of w

~X := α0

∏k
i=1(wi)

Xiαi for every
~X := X1, . . . , Xk ≥ 0.

Remark III.22. A (µ, d)-pumping family of size k satisfies

that |w
~X | = Θ(X1+· · ·+Xk), and |F

~X | = Θ(X1+· · ·+Xk)

since the depth of F
~X is bounded by d.

Lemma III.23. Let findep be defined as in Equation (2). Then,

findep 6= 0 if and only if there exists a (µ, d)-pumping family

of size k such that f(F
~X) is ultimately a Z-polynomial in

X1, . . . , Xk with a non-zero coefficient for X1 · · ·Xk.

Moreover, one can decide whether findep = 0.

Now, we are almost ready to conclude the proof of

Induction Step III.4. The only difficulty left is handled by the

following technical lemma which enables to lift a bound on

the asymptotic growth of polynomials to a bound on their

respective degrees. It is also reused in Section V.

Lemma III.24. Let P,Q be two polynomials in

R[X1, . . . , Xn]. If |P | = O(|Q|), then deg(P) ≤ deg(Q).

Proof of Induction Step III.4. The only non-trivial implica-

tion is Item 3 ⇒ Item 1. Let f ∈ ZPolyk satisfying the con-

ditions of Item 3. We can decompose this function following

Equation (2). As observed above, we only need to show that

findep = 0.

Consider a pumping family (w
~X , F

~X) of size k, we have:

|findep(F
~X)| = |f(w

~X)−fdep(F
~X)| = O(|X1+· · ·+Xk|

k−1).

Assume by contradiction that findep 6= 0, Lemma III.23

provides us with a pumping family such that findep(F
~X)

is ultimately a polynomial with non-zero coefficient for

X1 · · ·Xk. As this polynomial is asymptotically bounded by

(X1 + · · ·+Xk)
k−1, Lemma III.24 yields a contradiction.

The constructions of forest, fdep, and findep are effective,

therefore so is our procedure. Moreover, one can decide

whether findep = 0 thanks to Lemma III.23.

IV. RESIDUAL TRANSDUCERS

In this section, we provide a canonical object associated to

any Z-polyregular function, named its residual transducer. Our

construction is effective, and the algorithm heavily relies on

Theorem III.3. This new object has its own interest, and it will

also be used in Section V to decide first-order definability of

Z-polyregular functions, that will extend first-order definability

for regular languages (see e.g. [6] for an introduction).

A. Residuals of a function

We first introduce the notion of residual of a function

f : A∗ → Z under a word u ∈ A∗.

Definition IV.1 (Residual). Given f : A∗ → Z and u ∈ A∗,
we define the function u ⊲ f : A∗ → Z, w 7→ f(uw). We let

Res(f) := {u ⊲f : u ∈ A∗} be the set of residuals of f .

Example IV.2. The residuals of the function w 7→ |w|2 are

the functions w 7→ |w|2 + 2n|w|+ n2 for n ≥ 0.

Example IV.3. The residuals of the function w 7→ (−2)|w|

are the functions w 7→ (−2)n+|w| for n ≥ 0.

It is easy to see that u 7→ u ⊲f defines a monoid action of

A∗ over A∗ → Z. Let us observe that this action (effectively)

preserves the classes of functions ZPolyk.

Claim IV.4. Let k ≥ 0, f ∈ ZPolyk and u ∈ A∗. Then

u ⊲ f ∈ ZPolyk and this result is effective.

Remark IV.5 ([13, Corollary 5.4 p 14]). Let f : A∗ → Z, this

function is a Z-rational series if and only if SpanZ(Res(f))
has finite dimension.

Note that if L ⊆ A∗ and u ∈ A∗, then u ⊲1L is

the characteristic function of the well-known residual lan-

guage u−1L := {w ∈ A∗ : uw ∈ L}. In particular, the set

{u ⊲1L : u ∈ A∗} is finite if and only if L is regular. However,

given f ∈ ZPolyk for k ≥ 1, the set {u ⊲ f : u ∈ A∗} is not

finite in general (see e.g. Example IV.2). We now intend to

show that this set is still finite, up to an identification of the

functions whose difference is in ZPolyk−1.

Definition IV.6 (Growth equivalence). Given k ≥ −1 and

f, g : A∗ → Z, we let f ∼k g if and only if f − g ∈ ZPolyk

Let us observe that ∼k is an equivalence relation, that is

compatible with external Z-products, sums, ⊗ and ⊲ .

Claim IV.7. For all k ≥ −1, ∼k is an equivalence relation

and the following holds for all u ∈ A∗, δ ∈ Z, and f, g : A∗ →
Z:

• if f ∼k g, then u ⊲ f ∼k u ⊲ g;

• u ⊲ (1L⊗ f) ∼k (u ⊲1L)⊗ f for L ⊆ A∗;

• if f ∼k g and f ′ ∼k g
′ then f + f ′ ∼k g + g′;

• if f ∼k g then δ · f ∼k δ · g.

By combining these results with the characterization of

ZPoly via these combinators in Theorem II.20, we can show

that a function f ∈ ZPolyk has a finite number of residuals,

up to ∼k−1 identification.

Lemma IV.8 (Finite residuals). Let k ≥ 0 and f ∈ ZPolyk,

then the quotient set Res(f)/ ∼k−1 is finite.

Remark IV.9. Example IV.3 exhibits a Z-rational series f
such that Res(f)/ ∼k is infinite for all k ≥ 0.

Finally, we note that ∼k is decidable in ZPoly.

Claim IV.10 (Decidability). Given k ≥ −1 and f, g ∈ ZPoly,

one can decide whether f ∼k g holds.

Proof. Let f, g ∈ ZPoly. For k ≥ 0, f ∼k g if and only

if |(f − g)(w)| = O(|w|k) and this property is decidable by

Theorem III.3. For k = −1, we have f ∼k g if and only if

f = g, which is decidable by Corollary II.24.

B. Residual transducers

Now we intend to show that a function f ∈ ZPolyk can

effectively be computed by a canonical machine, whose states

are based on the finite set Res(f)/ ∼k−1, in the spirit of the

residual automaton of a regular language. First, let us introduce

an abstract notion of transducer which can call functions on

suffixes of its input (this definition is inspired by the marble

transducers of [25], that call functions on prefixes).

Definition IV.11 (H-transducer). Let k ≥ 0 and H be

a fixed subset of the functions A∗ → Z. A H-transducer

T = (A,Q, q0, δ,H, λ, F) consists of:

• a finite input alphabet A;

• a finite set of states Q with q0 ∈ Q initial;

• a transition function δ : Q ×A→ Q;

• a labelling function λ : Q×A→ H;

• an output function F : Q→ Z.

Given q ∈ Q, we define by induction on w ∈ A∗ the value

Tq(w) ∈ Z. For w = ε, we let Tq(w) := F (q). Otherwise

let Tq(aw) := Tδ(q,a)(w) + λ(q, a)(w). Finally, the function

computed by the H-transducer T is defined as Tq0 : A
∗ → Z.

Observe that all the functions Tq are total.

Let us recall the standard definition of δ∗ via δ∗(q, ua) :=
δ(δ∗(q, u), a) and δ∗(q, ε) = q. Using this notation, a simple

induction shows that Tq(w) =
∑

uav=w λ(δ
∗(q, u), a)(v) +

F (δ∗(q, w)). As a consequence, H-transducers are closely

related to Cauchy products.

Example IV.12. We have depicted in Figure 3 a ZPoly−1-

transducer and a ZPoly0-transducer computing the function

1aA∗ for A = {a, b}. The first one can easily be identified

with the minimal automaton of 1aA∗ (up to considering that

a state is final if it outputs 1). The second one has a single

state and it “hides” its computation into the calls to ZPoly0.

One can check e.g. that 1 = 1aA∗(aab) = (1 − 1aA∗(ab)) +
(1 − 1aA∗(b))− 1aA∗(ε) + 0.

q0

0

q1 1

q2 0

a | 0

b | 0

a, b | 0

a, b | 0

(a) A ZPoly−1
-transducer computing 1aA∗ .

q0 0

a | 1− 1aA∗

b | − 1aA∗

(b) A ZPoly
0
-transducer computing 1aA∗

Fig. 3: Two transducers computing 1aA∗ .

The reader may guess that every function f ∈ ZPolyk
can effectively be computed by a ZPolyk−1-transducer. We

provide a stronger result and show that f can be computed by

some specific ZPolyk−1-transducer whose transition function

is uniquely defined by Res(f)/ ∼k−1.

Definition IV.13. Let k ≥ 0, let T = (A,Q, q0, δ,H, λ, F) be

a ZPolyk−1-transducer and f : A∗ → Z. We say that T is a

k-residual transducer of f if the following conditions hold:

• T computes f ;

• Q = Res(f)/ ∼k−1;

• for all w ∈ A∗, w ⊲ f ∈ δ∗(q0, w);
• λ(Q,A) ⊆ SpanZ(Res(f)) ∩ ZPolyk−1.

Given a regular language L, the 0-residual transducer of its

indicator function 1L can easily be identified with the minimal

automaton of the language L, like in Example IV.12. However,

for k ≥ 1, the k-residual transducer of f ∈ ZPolyk may not

be unique. More precisely, two k-residual transducers share

the same underlying automaton (A,Q, δ, λ), but the labels λ
of the transitions may not be the same.

Example IV.14. The ZPoly−1-transducer (resp. ZPoly0-

transducer) from Figure 3 is a 0-residual transducer (resp. 1-

residual transducer) of 1aA∗ . Let us check it for the 1-residual

transducer. First note that b ⊲1aA∗ ∼0 a ⊲ 1aA∗ ∼0 1aA∗ ,

hence |Res(1aA∗)/ ∼0 | = 1. Thus a 1-residual transducer

of 1aA∗ has exactly one state q0. Furthermore the labels

of the transitions of our transducer belong to λ(Q,A) ⊆
SpanZ(Resf (a)) since 1− 1aA∗ = (a ⊲1aA∗)− 1aA∗ .

Example IV.15. Let A := {a, b}. The function f : w 7→ |w|a×
|w|b ∈ ZPoly2 has a single residual up to ∼1-equivalence. A

2-residual transducer of f is depicted in Figure 4a.

Example IV.16. Let A := {a}. The function g : w 7→
(−1)|w| × |w| ∈ ZPoly1 has two residuals up to ∼0-

equivalence. A 1-residual transducer of g is depicted in

Figure 4b.

q0 0

a | ((a ⊲ f)− f) : w 7→ |w|b

b | ((b ⊲ f)− f) : w 7→ |w|a

(a) A 2-residual transducer of f : w 7→ |w|a|w|b.

q0

0

q1 −1

a | 0

a | ((aa ⊲ g)− g) : w 7→ 2× (−1)|w|

(b) A 1-residual transducer of g : w 7→ (−1)|w||w|.

Fig. 4: Two residual transducers.

Q O

ε ⊲ f

f(ε)

a ⊲ f

f(a)

b ⊲ f f(b)

aa ⊲ f

f(aa)

a | 0

b | 0

a | 0

a | aa ⊲ f − b ⊲ f

0

1

2

3

f(aa) = [f(aa)− f(b)] + f(b)

Fig. 5: Example of a partial execution of Algorithm 1 to build

a k-residual transducer of a function f : A∗ → Z such that

aa ⊲ f ∼k b ⊲ f . Nodes are labelled by their creation time. At

this stage, Q = {ε ⊲ f},O = {a ⊲f, b ⊲ f}. The red node is not

created, and the blue transition is added instead, corresponding

to the “else” branch line 10 of Algorithm 1.

Now, let us describe how to build a k-residual transducer

for any f ∈ ZPolyk. As an illustration of how Algorithm 1

works, we refer the reader to Figure 5.

Lemma IV.17. Let k ≥ 0. Given f : A∗ → Z such that

Res(f)/ ∼k−1 is finite, Algorithm 1 builds a k-residual trans-

ducer of f . Its steps are effective given f ∈ ZPolyk.

Remark IV.18. In Algorithm 1, we need to “choose” a way

to range over the elements of O and the letters of A. Different

choices may not lead to the same k-residual transducers.

Algorithm 1: Computing a k-residual transducer of

f ∈ ZPolyk

1 O := {ε ⊲ f};

2 Q := ∅;

3 while O 6= ∅ do

4 choose w ⊲f ∈ O;

5 for a ∈ A do

6 if wa ⊲ f 6∼k−1 v ⊲ f for all v ⊲ f ∈ O ⊎Q then

7 O := O ⊎ {wa ⊲ f};

8 δ(w ⊲ f, a) := wa ⊲ f ;

9 λ(w ⊲f, a) := 0;

10 else

11 let f ⊲ v ∈ O ⊎Q be such that

wa ⊲ f ∼k−1 v ⊲ f ;

12 δ(w ⊲ f, a) := v ⊲ f ;

13 λ(w ⊲f, a) := wa ⊲ f − v ⊲ f ;

14 end

15 end

16 O := O r {w ⊲f};

17 Q := Q ⊎ {w ⊲ f};

18 F (w ⊲ f) := f(w);
19 end

We deduce from Lemma IV.17 that ZPolyk−1-transducers

describe exactly the class ZPolyk (Corollary IV.19).

Corollary IV.19. For all k ≥ 0, ZPolyk is the class of

functions which can be computed by a ZPolyk−1-transducer.

Furthermore, the conversions are effective.

Corollary IV.20 (To be compared to Remark IV.5). For all

k ≥ 0, ZPolyk = {f : A∗ → Z : Res(f)/ ∼k−1 is finite}.

V. STAR-FREE Z-POLYREGULAR FUNCTIONS

In this section, we study the subclass of Z-polyregular

functions that are built by using only FO-formulas, that we

call star-free Z-polyregular functions. The term “star-free”

will be justified in Theorem V.4. As observed in introduction,

very little is known on deciding FO definability of functions

(contrary to languages). The main result of this section shows

that we can decide if a Z-polyregular function is star-free.

Our proof crucially relies on the canonicity of the residual

transducer introduced in Section IV. We also provide several

characterizations of star-free Z-polyregular functions, that spe-

cialize the results of Section II.

Definition V.1 (Star-free Z-polyregular). For k ≥ 0, we let

ZSFk := SpanZ ({#ϕ : ϕ ∈ FOℓ, ℓ ≤ k}). Let ZSF :=
⋃

k ZSFk, it is the class of star-free Z-polyregular functions.

We also let ZSF−1 := {0}. Similarly to ZPolyk, ZSFk =
SpanZ({#ϕ : ϕ ∈ MSOk} ∪ {1{ε}}).

Example V.2. ZSF0 is exactly the set of functions of the form
∑

i δi1Li
where the δi ∈ Z and the 1Li

are indicator functions

of star-free languages (compare with Example II.8).

Example V.3. The function w 7→ |w|a × |w|b is in ZSF1.

Indeed, the formulas given in Example II.3 are in FO.

Now, we give an analogue of Theorem II.20 that charac-

terizes ZSF as Z-rational expressions based on indicators of

star-free languages, forbidding the use of the Kleene star.

Theorem V.4. Let f : A∗ → Z, the following are (effectively)

equivalent:

1) f is a star-free Z-polyregular function;

2) f belongs to the smallest class of functions that contains

the indicator functions of all star-free languages and

is closed under taking external Z-products, sums and

Cauchy products.

Proof. We apologize for the inconvenience of looking back at

Proposition II.18 and noticing that the property holds mutatis

mutandis for first-order formulas. In particular, one obtains the

equivalent of Equation (1) of Theorem II.20

ZSFk = SpanZ({1L0
⊗ · · · ⊗ 1Lk

: L0, . . . , Lk star-free languages})
(3)

and the result follows.

Example V.5. The function 1A∗a⊗1A∗ : w 7→ |w|a be-

longs to ZSF1, and the function 1A∗a⊗1A∗ ⊗1bA∗ +
1A∗b⊗1A∗ ⊗1aA∗ : w 7→ |w|a × |w|b belongs to ZSF2.

A. Deciding star-freeness

Now, we intend to show that given a Z-polyregular

function, we can decide if it is star-free. Furthermore,

we provide a semantic characterization of star-free Z-

polyregular functions leveraging ultimate N -polynomiality.

We recall (see Definition II.29) that a function

f : A∗ → Z is ultimately 1-polynomial when, for all

α0, w1, α1, . . . , wℓ, αℓ ∈ A∗, there exists P ∈ Q[X1, . . . , Xℓ],
such that f(α0w

X1

1 α1 · · ·w
Xℓ

ℓ αℓ) = P (X1, . . . , Xℓ), for

X1, . . . , Xℓ large enough. Being ultimately 1-polynomial

generalizes star-freeness for regular languages, as easily

observed in Claim V.6.

Claim V.6. A regular language L is star-free if and only if

1L is ultimately 1-polynomial.

Example V.7. It is easy to see that w 7→ |w|a × |w|b is

ultimately 1-polynomial. As a counterexample, recall the map

f : w 7→ (−1)|w|× |w|. The map f is ultimately 2-polynomial

because X 7→ (−1)2X+1(2X + 1) and X 7→ (−1)2X2X are

both polynomials. However, f is not ultimately 1-polynomial

since X 7→ (−1)XX is not a polynomial.

Now, let us state the main theorem of this section.

Theorem V.8. Let k ≥ 0 and f ∈ ZPolyk. The following

properties are (effectively) equivalent:

1) f ∈ ZSF;

2) f ∈ ZSFk;

3) f is 1-ultimately polynomial.

Furthermore, this property is decidable.

Let us observe that Theorem V.8 implies an analogue of

Theorem III.3 for the classes ZSFk. We conjecture that a direct

proof of Corollary V.10 is possible. However, such a proof

cannot rely on factorizations forests (that cannot be built in

FO), and it would require a (weakened) notion of FO-definable

factorization forest as that proposed in [26].

Corollary V.9. ZSFk = ZSF ∩ ZPolyk.

Corollary V.10 (FO free variable minimization). Let f ∈ ZSF,

then f ∈ ZSFk if and only if |f(w)| = O(|w|k). This property

is decidable and the construction is effective.

Proof. Let f ∈ ZSF be such that |f(w)| = O(|w|k). By

Theorem III.3 we get f ∈ ZPolyk, thus by Theorem V.8,

f ∈ ZSFk. All the steps are effective and decidable.

The rest of Section V-A is devoted to sketching the proof

of Theorem V.8. Given f ∈ ZPolyk, the main idea is to use

its k-residual transducer to decide whether f ∈ ZSFk. Indeed,

this transducer somehow contains intrinsic information on the

semantic of f . We show that star-freeness faithfully translates

to a counter-free property of the k-residual transducer, together

with an inductive property on the labels of its transitions.

Definition V.11 (Counter-free). A deterministic automaton

(A,Q, q0, δ) is counter-free if for all q ∈ Q, u ∈ A∗, n ≥ 1,

if δ(q, un) = q then δ(q, u) = q (see e.g. [4]). We say that

a H-transducer is counter-free if its underlying automaton is

so.

Example V.12. The ZPoly0-transducer depicted in Figure 4b

is not counter-free, since δ(q0, aa) = q0 but δ(q0, a) 6= q0.

Theorem V.8 is a direct consequence of the more pre-

cise Theorem V.13. Note that the semantic characterization

(Item 2) is not a side result: it is needed within the inductive

proof of equivalence between the other items.

Theorem V.13. Let k ≥ 0 and f ∈ ZPolyk, the following

conditions are equivalent:

1) f ∈ ZSF;

2) f is ultimately 1-polynomial;

3) for all k-residual transducer of f , this transducer is

counter-free and has labels in ZSFk−1;

4) there exists a counter-free ZSFk−1-transducer that com-

putes f ;

5) f ∈ ZSFk.

Furthermore, this property is decidable and the constructions

are effective.

The proof of Theorem V.13 will be done by induction

on k ≥ 0. First, let us note that a counter-free transducer

computes a star-free function (provided that the labels are star-

free).

Lemma V.14. Let k ≥ 0, a counter-free ZSFk−1-transducer

(effectively) computes a function of ZSFk.

We show that star-freeness implies ultimate 1-polynomiality.

This result generalizes ultimately 1-polynomiality of the char-

acteristic functions of star-free languages (see Claim V.6).

Lemma V.15. Let f ∈ ZSF, then f is ultimately 1-polynomial.

Proof. From Claim V.6 we get that 1L is ultimately 1-

polynomial if L is star-free. The result therefore immediately

follows from Theorem V.4 and Lemma II.30.

Last but not least, we show that ultimate 1-polynomiality

implies that any k-residual transducer is counter-free.

Lemma V.16 is the key ingredient for showing Theorem V.13.

Lemma V.16. Let k ≥ 0. Let f ∈ ZPolyk which is ultimately

1-polynomial and T be a k-residual transducer of f . Then

T is counter-free and its label functions are ultimately 1-

polynomial.

Proof of Theorem V.13. The (effective) equivalences are

shown by induction on k ≥ 0. For Item 5 ⇒ Item 1, the

implication is obvious. For Item 1 ⇒ Item 2 we apply

Lemma V.15. For Item 2 ⇒ Item 3, we use Lemma V.16

which shows that any k-residual transducer of f is counter-

free and has ultimately 1-polynomial labels. Since these

labels are in ZPolyk−1, then by induction hypothesis they

belong to ZSFk−1. For Item 3 ⇒ Item 4, the result follows

because there exists a k-residual transducer computing f . For

Item 4 ⇒ Item 5 we use Lemma V.14.

It remains to see that this property can be decided, which is

also shown by induction on k ≥ 0. Given f ∈ ZPolyk, we can

effectively build a k-residual transducer of f by Lemma IV.17.

If it is not counter-free, the function is not star-free polyregular.

Otherwise, we can check by induction that the labels belong

to ZSFk−1 (since they belong to ZPolyk−1).

B. Relationship with polyregular functions and rational series

Let us now specialize the multiple characterizations of

ZPoly presented in Section II to ZSF, which completes the

third column of Table I.

Bojańczyk [7, page 13] introduced the notion of first-order

(definable) polyregular functions. It is an easy check that star-

free Z-polyregular functions are obtained by post composition

with sum, in a similar way as Proposition II.13.

Proposition V.17. The class ZSF is (effectively) the class

of functions sum ◦f where f : A∗ → {±1}∗ is first-order

polyregular.

Now, let us provide a description of ZSF in terms of

eigenvalues in the spirit of Theorem II.31. Intuitively, it shows

that a linear representation (I, µ, F) computes a function

in ZSF if and only if Spec(µ(A∗)) contains no non-trivial

subgroup, mimicking the notion of aperiodicity for monoids
1.

Theorem V.18 (Star-free). Let f : A∗ → Z, the following are

(effectively) equivalent:

1Beware: the spectrum of a linear representation may not be a semigroup.

1) f is a star-free Z-polyregular function;

2) f is a Z-rational series and for all minimal linear

representation (I, µ, F) of f , Spec(µ(A∗)) ⊆ {0, 1};

3) f is a Z-rational series and there exists a linear repre-

sentation (I, µ, F) of f such that Spec(µ(A∗)) ⊆ {0, 1}.

Proof. For Item 2 ⇒ Item 3, the result is obvious.

For Item 1 ⇒ Item 2, consider a minimal presentation of

f using (I, µ, F) of dimension n. Then consider a word w, λ
a complex eigenvalue of µ(w). Thanks to Lemma II.28, there

exists w,αi,j , ui, vj ∈ A∗ for 1 ≤ i, j ≤ n such that λX =
∑n
i,j=1 αi,jf(viw

Xuj). Because f ∈ ZSF, f is ultimately

1-polynomial thanks to Theorem V.13. This entails that X 7→
λX is a polynomial for X large enough. Therefore, λ ∈ {0, 1}.

For Item 3 ⇒ Item 1, let us prove that the computed

function is ultimately 1-polynomial, which is enough thanks to

Theorem V.13. Because the eigenvalues of the matrix µ(w) ∈
Mn,n(Z) for w ∈ A∗ are all in {0, 1}, its characteristic

polynomial splits over Q, hence there exists P ∈ Mn,n(Q)
such that T := PMwP

−1 is upper triangular with diagonal

values in {0, 1}. In particular, µ(w)X = P−1TXP , but a

simple induction proves that the coefficients of TX are in

Q[X] for large enough X , hence so does µ(w)X . Pumping

multiple patterns at once only computes sums of products of

polynomials, hence the function is ultimately 1-polynomial.

Thanks to Theorem V.13, it is star-free Z-polyregular.

Remark V.19. When showing Item 3 ⇒ Item 1, we have

in fact shown that the following weaker form of ultimate

1-polynomiality characterizes ZSF among Z-rational series:

for all u,w, v ∈ A∗, there exists P ∈ Q[X], such that

f(uwXv) = P (X), for X large enough.

Beware that Remark V.19 slightly differs from

Remark II.33: the latter deals with a polynomial upper

bound, whereas an equality is needed to characterize

star-freeness.

Example V.20. Let u, v, w ∈ A∗, then |1odd(uw
Xv)| ≤ 1 for

every X ≥ 0. However, 1odd 6∈ ZSF.

As a concluding example, let us observe that our notion

of star-free Z-polyregular functions differs from the functions

definable in the weighted first order logic introduced by Droste

and Gastin [27, Section 4] when studying rational series.

Example V.21. Thanks to [27, Theorem 1], the map f : w 7→
(−1)|w||w| is definable in weighted first order logic (however,

f 6∈ ZSF as shown in Example V.7). Similarly, the indicator

function 1odd is also definable in weighted first order logic,

even though the language of words of odd length is not star-

free.

VI. OUTLOOK

This paper describes a robust class of functions, which

admits several characterizations in terms of logics, rational

expressions, rational series and transducers. Furthermore, two

natural class membership problems (free variable minimization

and first-order definability) are shown decidable. We believe

that these results together with the technical tools introduced

to prove them open the range towards a vast study of Z- and N-

polyregular functions. Now, let us discuss a few tracks which

seem to be promising for future work.

Weaker logics: Boolean combinations of existential first-

order formulas define a well-known subclass of first-order

logic, often denoted B(∃FO). Over finite words, B(∃FO)-
sentences describe the celebrated class of piecewise testable

languages (see e.g. [6]). In our quantitative setting, one could

define for all k ≥ 0 the class of linear combinations of

the counting formulas from B(∃FO)k, as we did for ZPolyk
(resp. ZSFk) with MSOk (resp. FOk). While this class seems

to be a good candidate for defining “piecewise testable Z-

polyregular functions”, it does not admit a free variable

minimization theorem depending on the growth rate of the

functions. Indeed, let A := {a, b} and consider the indicator

function 1aA∗ = #ϕ for ϕ(x) := a(x)∧∀y.y ≥ x ∈ B(∃FO)1.

Even if |1aA∗(w)| = O(1), this function cannot be written

as a linear combination of counting formulas from B(∃FO)0.

Indeed, if we assume the converse, then 1aA∗ could be written
∑n

i=1 δi1Li
for some piecewise testable languages Li, which

implies that aA∗ would be piecewise testable, which is not

the case.

Star-free N-polyregular functions: A very natural question

is, given an N-polyregular function (recall that it is an element

of NPoly := SpanN(#ϕ : ϕ ∈ MSO)) to decide whether it

is in fact a star-free N-polyregular function (i.e. an element

of NSF := SpanN(#ϕ : ϕ ∈ FO)). In this setting, we

conjecture that NSF = NPoly ∩ ZSF. This question seems

to be challenging. Indeed, the techniques introduced in the

current paper cannot directly be applied to solve it, since

the residual automaton (see Section V) of an N-polyregular

function may need labels which are not N-polyregular, or even

not nonnegative. In other words, replacing the output group

by an output monoid seems to prevent from representing the

functions with canonical objects based on residuals.

Star-free Z-rational series: In Figure 1, there is no gen-

eralization of the class ZSF among the whole class of Z-

rational series. We are not aware of a way to define a class

of “star free Z-rational series”, neither with logics nor with

Z-rational expressions. Indeed, allowing the use of Kleene

star for series automatically builds the whole class of Z-

rational series (including the indicator functions of all regular

languages).

From a logical standpoint, it is tempting to go from poly-

nomial behaviors to exponential ones by shifting from first-

order free variables to second-order free variables. While

this approach actually captures the whole class of Z-rational

series, it fails to circumscribe star-freeness. To make the above

statement precise, let us write MSOX (resp. FOX) as the set

of MSO (resp. FO) formulas with free second-order variables,

i.e. of the shape ϕ(X1, . . . , Xk). Given ϕ ∈ MSOX , we let

#ϕ(w) : A∗ → Z be the function that counts second-order

valuations. As an example of the expressiveness of this model,

let us illustrate how to compute w 7→ (−2)|w| 6∈ ZPoly.

Example VI.1. Let ϕ(X) := ⊤, then #ϕ(w) = 2|w|. Let

ψ(X) be the first-order formula stating that X contains the

first position of the word, X contains the last position of the

word, and if x ∈ X , then x+ 1 6∈ X and x+ 2 ∈ X . It is an

easy check that #ψ = 1odd, even though ψ ∈ FOX (but recall

that 1odd is the indicator function of a non star-free regular

language). Now, w 7→ (−2)|w| equals #ϕ× (2#ψ − 1).

We are now ready to explain formally how both FOX and

MSOX capture Z-rational series.

Proposition VI.2. For every function f : A∗ → Z, the

following are equivalent:

1) f is a Z-rational series;

2) f ∈ SpanZ({#ϕ : ϕ ∈ MSOX});
3) f ∈ SpanZ({#ϕ : ϕ ∈ FOX}).

In our setting, it seems natural to say that w 7→ 2|w| should

be a star-free Z-rational series, contrary to w 7→ (−2)|w| (as

observed in Example V.21, this approach contrasts with the

weighted logics of Droste and Gastin [27], for which (−2)|w|

is considered as “star free”). Recall that in Theorem V.18,

we have characterized ZSF as the class of series whose

spectrum falls in {0, 1}. Following this result, we conjecture

that a “good” notion of star-free Z-rational series could be

those whose spectrum falls in the set R+ of nonnegative real

numbers. This way, exponential growth is allowed (e.g. for

w 7→ 2|w|) but no periodic behaviors (e.g. for w 7→ (−2)|w|).

REFERENCES

[1] S. C. Kleene et al., “Representation of events in nerve nets and finite
automata,” Automata studies, vol. 34, pp. 3–41, 1956.

[2] J. R. Büchi, “Weak second-order arithmetic and finite automata,” Math-
ematical Logic Quarterly, vol. 6, no. 1-6, 1960.

[3] M. P. Schützenberger, “On the definition of a family of automata,” Inf.

Control., vol. 4, no. 2-3, pp. 245–270, 1961.
[4] R. McNaughton and S. A. Papert, Counter-Free Automata. The MIT

Press, 1971.
[5] M. P. Schützenberger, “On finite monoids having only trivial subgroups,”

Information and Control, vol. 8, no. 2, pp. 190–194, Apr. 1965.
[6] D. Perrin and J.-E. Pin, “First-order logic and star-free sets,” Journal of

Computer and System Sciences, vol. 32, no. 3, pp. 393–406, 1986.
[7] M. Bojańczyk, “Polyregular Functions,” 2018. [Online]. Available:

https://arxiv.org/abs/1810.08760
[8] D. Scott, “Some definitional suggestions for automata theory,” Journal

of Computer and System Sciences, vol. 1, no. 2, pp. 187–212, 1967.
[9] E. Filiot, O. Gauwin, and N. Lhote, “Aperiodicity of rational functions is

pspace-complete,” in 36th IARCS Annual Conference on Foundations of

Software Technology and Theoretical Computer Science (FSTTCS 2016).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

[10] E. Filiot, O. Gauwin, N. Lhote, and A. Muscholl, “On canonical models
for rational functions over infinite words,” in 38th IARCS Annual

Conference on Foundations of Software Technology and Theoretical

Computer Science (FSTTCS), vol. 122. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2018.

[11] S. Kreutzer and C. Riveros, “Quantitative monadic second-order logic,”
in 2013 28th Annual ACM/IEEE Symposium on Logic in Computer

Science, 2013, pp. 113–122.
[12] M. P. Schützenberger, “Finite counting automata,” Information and

control, vol. 5, no. 2, pp. 91–107, 1962.
[13] J. Berstel and C. Reutenauer, Noncommutative rational series with

applications. Cambridge University Press, 2011, vol. 137.
[14] G. Douéneau-Tabot, “Pebble transducers with unary output,” in 46th

International Symposium on Mathematical Foundations of Computer

Science, MFCS 2021, 2021.
[15] M. Bojańczyk, “Transducers of polynomial growth,” in Proceedings of

the 37th Annual ACM/IEEE Symposium on Logic in Computer Science,
2022, pp. 1–27.

[16] G. Douéneau-Tabot, “Pebble minimization: the last theorems,” in 26th
International Conference on Foundations of Software Science and Com-

putation Structures, FoSSaCS 2023, 2023.
[17] M. Bojańczyk, “The growth rate of polyregular functions,” 2022.

[Online]. Available: https://arxiv.org/abs/2212.11631
[18] W. Thomas, “Languages, automata, and logic,” in Handbook of formal

languages. Springer, 1997, pp. 389–455.
[19] G. Douéneau-Tabot, “Hiding pebbles when the output alphabet is

unary,” in 49th International Colloquium on Automata, Languages, and

Programming, ICALP 2022, 2022.
[20] J. Engelfriet and H. J. Hoogeboom, “MSO definable string transductions

and two-way finite-state transducers,” ACM Transactions on Computa-

tional Logic (TOCL), vol. 2, no. 2, pp. 216–254, 2001.
[21] M. Bojanczyk, S. Kiefer, and N. Lhote, “String-to-String Interpretations

With Polynomial-Size Output,” in 46th International Colloquium on
Automata, Languages, and Programming (ICALP 2019), 2019.

[22] J. P. Bell, “A gap result for the norms of semigroups of matrices,” Linear

Algebra and its Applications, vol. 402, pp. 101–110, 2005.
[23] I. Simon, “Factorization forests of finite height,” Theor. Comput. Sci.,

vol. 72, no. 1, pp. 65–94, 1990.
[24] T. Colcombet, “Green’s relations and their use in automata theory,”

in International Conference on Language and Automata Theory and
Applications. Springer, 2011, pp. 1–21.

[25] G. Douéneau-Tabot, E. Filiot, and P. Gastin, “Register transducers are
marble transducers,” in 45th International Symposium on Mathematical

Foundations of Computer Science, MFCS 2020, 2020.
[26] T. Colcombet, S. van Gool, and R. Morvan, “First-order separation over

countable ordinals,” in Foundations of Software Science and Computa-

tion Structures, ser. Lecture Notes in Computer Science, P. Bouyer and
L. Schröder, Eds. Cham: Springer International Publishing, 2022, pp.
264–284.

[27] M. Droste and P. Gastin, “Aperiodic weighted automata and weighted
first-order logic,” in 44th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2019, vol. 138, 2019.

https://arxiv.org/abs/1810.08760
https://arxiv.org/abs/2212.11631

APPENDIX A

PROOFS OF SECTION II

A. Proof of Proposition II.12

In this section, we show that the functions of ZPolyk are closed by precomposition under

a regular function. This proof is somehow classical and inspired by well-known composition

techniques for MSO-transductions.

Definition A.1 (Transduction). A (k-copying) MSO-transduction from A∗ to B∗ consists in

several MSO formulas over A:

• for all 1 ≤ j ≤ k, a formula ϕDom
j (x) ∈ MSO1;

• for all 1 ≤ j ≤ k and a ∈ B, a formula ϕaj (x) ∈ MSO1;

• for all 1 ≤ j, j′ ≤ k, a formula ϕ<j,j′ (x, x
′) ∈ MSO2.

Let w ∈ A∗, we define the domain D(w) := {(i, j) : 1 ≤ i ≤ |w|, 1 ≤ j ≤ k, w |= ϕDom
j (i)}.

Using the formulas ϕbj(x) (resp. ϕ<j,j′ (x, x
′)), we can label the elements of D(w) with letters

of B (resp. define a relation < on the elements of D(w)). The transduction is defined if and

only if the structure D(w) equipped with the labels and < is a word v ∈ B∗, for all w ∈ A∗.
In this case, the transduction computes the function that maps w ∈ A∗ to this v ∈ B∗.

It follows from [20] that regular functions can (effectively) be described by MSO-

transductions.

Claim A.2. Let ℓ ≥ 0, k ≥ 1, ψ(x1, . . . , xℓ) ∈ MSOℓ be a formula over B and f : A∗ →
B∗ be computed by a k-copying MSO-transduction. Let us write W := {x1, . . . , xℓ}

{1,...,k}.

There exists formulas θρ ∈ MSOℓ over A where ρ ranges in W , such that for all w ∈ A∗,
#ϕ(f(w)) =

∑

ρ∈W #θρ(w).

Proof Sketch. Assume that the transduction is given by formulas ϕDom
j (x), ϕaj (x) ∈ MSO1 for

a ∈ B and ϕ<j,j′ (x, x
′) ∈ MSO2 as in Definition A.1. Let ψ be an MSO formula over B with

first order variables x1, . . . , xℓ and second order variables (X1, . . . , Xk), (Y1, . . . , Yk), Let

ρ be a mapping from {x1, . . . , xℓ} to {1, . . . , k}. We define by induction on ψ the formula ψρ
as follows (it roughly translates the formula from B to A using the transduction):

(∃x.ϕ)ρ :=

k∨

j=1

∃x.ϕDom
j (x) ∧ ϕρ+[x 7→j]

(∃X.ϕ)ρ := ∃X1, . . . , Xk.

k∧

j=1

(∀x ∈ Xj , ϕ
Dom
j (x)) ∧ ϕρ

(¬ϕ)ρ := ¬(ϕρ)

(ϕ ∨ ϕ′)ρ := ϕρ ∨ ϕ
′
ρ

(Pa(x))ρ := ϕaρ(x)(x)

(x < y)ρ := ϕ<ρ(x),ρ(y)(x, y).

(x ∈ X)ρ :=
k∨

j=1

ϕDom
j (x) ∧ (x ∈ Xj)

It is then a mechanical check that the translation works as expected. In the following

equation, we fix w ∈ A∗ and we let pos : D(w) → [1:|f(w)|] be the function that maps

a tuple (i, j) to the corresponding position in the word f(w) ∈ B∗. To simplify notations,

given ρ ∈ W , a word w ∈ A∗, and a valuation τ : {x1, . . . , xℓ} → [1:|w|], we write

pos[τ × ρ](~x) := pos(τ(x1), ρ(x1)), . . . , pos(τ(xℓ), ρ(xℓ)).

#ϕ(f(w)) = #{ν : {x1, . . . , xℓ} → [1:|f(w)|] : f(w) |= ψ(ν(x1), . . . , ν(xℓ))}

=
∑

ρ∈W

#{τ : {x1, . . . , xℓ} → [1:|w|] : f(w) |= ψ(pos[τ × ρ](~x))}

=
∑

ρ∈W

#{ν : {x1, . . . , xℓ} → {1, . . . , |w|} : w |= ψρ(ν) ∧

ℓ∧

i=1

ϕDom
ρ(xi)

(xi)}

We then let θρ := ψρ ∧
∧ℓ
i=1 ϕ

Dom
ρ(xi)

(xi) to conclude.

The result follows immediately since ZPolyℓ is closed under taking sums and Z-external

products.

B. Proof of Proposition II.13

We first show that any Z-polyregular function can be written under the form sum ◦g where

g : A∗ → {±1}∗ is polyregular. This is an immediate consequence of the following claims.

Claim A.3. For all ϕ ∈ MSO, there exists a polyregular function f : A∗ → {±1}∗ such that

#ϕ = sum ◦f .

Proof. Polyregular functions are characterized in [21, Theorem 7] as the functions computed by

(multidimensional) MSO-interpretations. Recall that an MSO-interpretation of dimension k ∈ N

is given by a formula ϕ≤(~x, ~y) defining a total ordering over k-tuples of positions, a formula

ϕDom(~x) that selects valid positions, and formulas ϕa(~x) that place the letters over the output

word [21, Definition 1 and 2]. In our specific situation, letting ϕ≤ be the usual lexicographic

ordering of positions (which is MSO-definable) and placing the letter 1 over every element of

the output is enough: the only thing left to do is select enough positions of the output word.

For that, we let ϕDom be defined as ϕ itself. It is an easy check that this MSO-interpretation

precisely computes 1f(w) over w, hence computes f when post-composed with sum.

Claim A.4. The set {sum ◦f : f : A∗ → {±1}∗ polyregular} is closed under sums and external

Z-products.

Proof. Notice that sum ◦f+sum ◦g = sum ◦(f ·g) where f ·g(w) := f(w)·g(w). As polyregular

functions are closed under concatenation [7], the set of interest is closed under sums. To prove

that it is closed under external Z-products, it suffices to show that it is closed under negation.

This follows because one can permute the 1 and −1 in the output of a polyregular function

(polyregular functions are closed under post-composition by a morphism).

Let us consider a polyregular function g : A∗ → {±1}∗. The maps g+ : w 7→ |g(w)|1 and

g− : w 7→ |g(w)|−1 are polyregular functions with unary output (since they correspond to a

post-composition by the regular function which removes some letter, and polyregular functions

are closed under post-composition by a regular function [7]). Hence g− and g+ are polyregular

functions with unary output, a.k.a. N-polyregular functions. As a consequence, sum◦g = g+−g−
lies in ZPoly.

APPENDIX B

PROOFS OF SECTION II-C

A. Proof of Claim II.17

Let f ∈ ZPolyk and g ∈ ZPolyℓ, we (effectively) show that f ⊗ g ∈ ZPolyk+ℓ+1.

First, observe that if f, g, h : A∗ → Z and γ, δ ∈ Z, then (γf+δg)⊗h = γ(f ⊗ g)+δ(g⊗ h).
Thus it is sufficient to show the result for f = #ϕ and g = #ψ with ϕ(x1, . . . , xk) ∈ MSOk
and ψ(y1, . . . , yℓ) ∈ MSOℓ. For all w ∈ A∗ we have:

(#ϕ⊗#ψ)(w) =
∑

0≤i≤|w|

∑

i1,...,ik≤i

∑

j1,...,jℓ>i

1w[1:i]|=ϕ(i1,...,ik) × 1w[i+1:|w|]|=ψ′(j1,...,jℓ)

= #ϕ(ε) ·#ψ(w)

+
∑

1≤i≤|w|

∑

i1,...,ik≤i

∑

j1,...,jℓ>i

1w[1:i]|=ϕ(i1,...,ik) × 1w[i+1:|w|]|=ψ′(j1,...,jℓ)

= #ϕ(ε) ·#ψ(w) + #(ϕ′(z, x1, . . . , xk) ∧ ψ
′(z, y1, . . . , yl))(w)

where ϕ′(z, x1, . . . , xk) ∈ MSOk+1 is a formula such that w |= ϕ′(i, i1, . . . , ik) if and only if

i1, . . . , ik ≤ i and w[1:i] |= ϕ(i1, . . . , ik) (this is a regular property which is MSO definable),

and similarly for ψ′.

B. Proof of Proposition II.18

Let k ≥ 0, we want to show that ZPolyk+1 = SpanZ ({1L⊗ f : L regular, f ∈ ZPolyk}).
Observe that for all f : A∗ → Z, 1{ε}⊗ f equals f , therefore ZPolyk ⊆
SpanZ ({1L⊗ f : L regular, f ∈ ZPolyk}). As in the proof of Claim II.17, it is sufficient to

show that #ϕ for ϕ(x1, . . . , xk+1) ∈ MSOk+1, can be written as a linear combination of

1L⊗ f where L is a regular language. Observe that for all w ∈ A+, for all valuation i1, . . . , ik
of x1, . . . , xk, we can define P := {1 ≤ j ≤ k : ij = min{i1, . . . , ik}} (i.e. the xj for j ∈ P
are the variables with minimal value). Therefore, for all w ∈ A+:

#ϕ(w) =
∑

∅(P⊆[1:k]

∑

w=uv,u6=ε

#(ϕ ∧
∧

j∈P

xj = |u| ∧
∧

j 6∈P

xj > |u|)(w).

It is an easy check that one can (effectively) build a regular language LP ⊆ A+ and a formula

ψP such that for all u ∈ A+, v ∈ A∗, uv |= ϕ∧
∧

j∈P (xj = |u|)∧ (
∧

j 6∈P xj > |u|) if and only

if u ∈ LP and v |= ψP ((xj)j 6∈P). Thus, for all w ∈ A+:

#ϕ(w) =
∑

∅(P⊆[1:k]

∑

w=uv

1LP (u)×#ψP (v)

=
∑

∅(P⊆[1:k]

(1LP ⊗#ψP)

︸ ︷︷ ︸
:=g

(w) .

Notice that ψP has exactly k − |P | ≤ k − 1 free-variables, thus g belongs to

SpanZ ({1L⊗ f : L regular, f ∈ ZPolyk}). Observe moreover that g(ε) = 0 = #ϕ(ε) because

k + 1 > 0.

APPENDIX C

PROOFS OF SECTION II-D

A. Proof of Lemma II.28

Let f : A∗ → Z be a Z-rational series and (I, µ, F) be a minimal Z-linear representation of

f of dimension n. First note that (I, µ, F) is also a minimal Q-linear representation of f by

[13, Theorem 1.1 p 121] (Q-linear representations are defined by allowing rational coefficients

whithin the matrices and vectors, instead of integers). Let w ∈ A∗, λ ∈ Spec(µ(w)) and

consider a complex eigenvector V ∈ Mn,1(C) associated to λ. We let ||V || := tV V , observe

that it is a positive real number. Because (I, µ, F) is a minimal Q-linear representation of f , then

SpanQ({µ(u)F : u ∈ A∗}) = Qn by [13, Proposition 2.1 p 32]. Hence there exists numbers

αj ∈ C and words uj ∈ A∗ such that V =
∑n
j=1 αjµ(uj)F . Symmetrically by [13, Proposition

2.1 p 32], there exists numbers βi ∈ C and words vi ∈ A∗ such that tV =
∑n
i=1 βiIµ(vi).

Therefore:

λX ||V || = tV µ(w)XV =

n∑

i,j=1

αiβjIµ(viw
Xuj)F =

n∑

i,j=1

αiβjf(viw
Xuj).

The result follows since ||V || 6= 0 (it is an eigenvector).

B. Proof of Lemma II.30

If L is a regular language, the fact that 1L is N -polynomial for some N ≥ 0 follows from the

traditional pumping lemmas. Now let f, g : A∗ → Z be respectively ultimately N1-polynomial

and ultimately N2-polynomial. The fact that f + g and δf for δ ∈ Z are ultimately (N1 ×N2)-
polynomial is obvious. In the rest of Section C-B, we focus on the main difficulty which is the

Cauchy product of two functions. For that, we will first prove the following claim about Cauchy

products of polynomials.

Claim C.1. For every p ∈ N,
∑X

i=0 i
p is a polynomial in X .

Proof. It is a folklore result, but let us prove it using finite differences. If f : N → Q, let

∆f : n 7→ f(n+1)− f(n). Let us now prove by induction that every function f : N → Q such

that ∆pf = 0 for some p ≥ 1 is a polynomial. For p = 1, this holds because f must be constant.

For p + 1 > 1, if we assume that ∆p+1f = 0, then ∆pf is a constant C. Let g := f − C np

p! ,

and remark that ∆pg = 0. By induction hypothesis g is a polynomial, hence so is f .

Finally, a simple induction proves that ∆p+2(X 7→
∑X

i=0 i
p) = 0.

Claim C.2. Let P,Q ∈ Q[X,Y1, . . . , Yℓ] be two multivariate polynomials, then their

Cauchy product P ⊗Q(X,Y1, . . . , Yℓ) :=
∑X
i=0 P (i, Y1, . . . , Yℓ)Q(Y − i, Y1, . . . , Yℓ) belongs

to Q[X,Y1, . . . , Yℓ].

Proof. By linearity of the Cauchy product, it suffices to check that the result holds for products

of the form (XpY p11 · · ·Y pℓℓ)⊗(XqY q11 · · ·Y qℓℓ) = (Xp⊗Xq)×Y p11 · · ·Y pℓℓ Y q11 · · ·Y qℓℓ . Hence,

the only thing left to check is that Xp⊗Xq is a polynomial in X .

Xp⊗Xq(Y) =

Y∑

i=0

ip(Y − i)q

=

Y∑

i=0

ip
q
∑

k=0

(
q

k

)

Y k(−i)q−k

=

q
∑

k=0

(
q

k

)

Y k
Y∑

i=0

ip(−i)q−k

=

q
∑

k=0

(
q

k

)

(−1)q−kY k
Y∑

i=0

ip+q−k

Which is a polynomial thanks to Claim C.1.

Let us now prove that f ⊗ g is ultimately N := (N1×N2)-polynomial. For that, let us consider

α0, u1, α1, . . . , uℓ, αℓ ∈ A∗ and prove that (f ⊗ g)(α0u
NX1

1 α1 · · ·u
NXℓ

ℓ αℓ) is a polynomial for

X1, . . . , Xℓ large enough.

(f ⊗ g)(α0u
NX1

1 α1 · · ·u
NXℓ

ℓ αℓ) = f(α0u
NX1

1 α1 · · ·u
NXℓ

ℓ αℓ)g(ε)

+

ℓ∑

j=0

|αj |−1∑

i=0

f(α0u
NX1

1 α1 · · ·u
NXj

j (αj [1:i]))

× g((αj [i+1:|αj |])u
NXj+1

j+1 · · ·αℓ)

+

ℓ∑

j=1

|uN
j |−1∑

i=0

Xj−1∑

Y=0

f(α0u
NX1

1 α1 · · ·u
NY
j (uNj [1:i]))×

g((uNj [i+1:|uNj |])u
N(Xj−Y−1)
j · · ·αℓ)

From the hypothesis on f , we deduce that the first term of this sum is ultimately N1-

polynomial, hence ultimately N -polynomial. We conclude similarly for the second term of

this sum, because the product of two polynomials is a polynomial.

Let us now focus on the third term. Using the induction hypotheses on f and g,

there exists polynomials Pj,i and Qj,i such that the following equalities ultimately hold,

where (X1, . . . , X̂j, . . . Xℓ) denotes the tuple obtained by removing the j-th element from

(X1, . . . , Xℓ):

f(α0u
NX1

1 α1 · · ·u
NY
j (uNj [1:i])) = Pj,i(Y,X1, . . . , X̂j, . . . Xℓ)

g((uNj [i+1:|uNj |])u
N(Xj−Y−1)
j · · ·αℓ) = Qj,i(Y,X1, . . . , X̂j , . . .Xℓ)

As a consequence, we can rewrite the third term as a Cauchy product of polynomials for

large enough values of X1, . . . , Xℓ:

ℓ∑

j=1

|uN
j |−1∑

i=0

Xj−1∑

Y=0

f(α0u
NX1

1 α1 · · ·u
NY
j (uNj [1:i]))g((uNj [i+1:|uNj |])u

N(Xj−Y−1)
j · · ·αℓ)

=
ℓ∑

j=1

|uj |−1∑

i=0

Xj−1∑

Y=0

Pj,i(Y,X1, . . . , X̂j , . . . , Xℓ)Qj,i(Xj − Y − 1, X1, . . . , X̂j , . . . , Xℓ)

=

ℓ∑

j=1

|uj |−1∑

i=0

Pi,j ⊗Qj,i(Xj − 1)

Thanks to Claim C.2, we conclude that this third term is also ultimately a polynomial.

APPENDIX D

PROOFS OF SECTION III

A. Proof of Lemma III.14

First of all, given a leaf x ∈ Leaves(F), Skel(x) = {x} contains x. Hence, every leaf is

contained in at least one skeleton. It remains to show that if t and t
′ are two nodes such that

x ∈ Skel(t) and x ∈ Skel(t′), then Skel(t) ⊆ Skel(t′) or the converse holds.

As Skel(t) contains only children of t, one deduces that x is a children of both t and t
′. Because

F is a tree, parents of x are totally ordered by their height in the tree. As a consequence, without

loss of generality, one can assume that t is a parent of t′. Because Skel(t) is a subforest of F
containing x, it must contain t

′. Now, by definition of skeletons, it is easy to see that whenever

t
′ ∈ Skel(t), we have Skel(t′) ⊆ Skel(t).

B. Proof of Claim III.18

Let x ∈ Leaves(F), we show that the number of x′ such that x′ depends-onx is bounded

(independently from x and F ∈ Fµ
d). Observe that skel-root(x′) is either an ancestor or the

sibling of an ancestor of skel-root(x). Observe that for all t ∈ Nodes(F), Skel(t) is a binary

tree of height at most d, thus is has at most 2d leaves. Moreover, skel-root(x) has at most d
ancestors and 2d immediate siblings of its ancestors. As a consequence, there are at most 3d×2d

leaves that depend on x.

C. Proof of Lemma III.19

Let d ≥ 0, M be a finite monoid, µ : A∗ → M , k ≥ 1, and ψ ∈ INVk. We want to build a

function g ∈ ZPolyk−1 such that for every F ∈ Fµ
d , g(F) = #(ψ(~x) ∧ sym-dep(~x))(F) (since

Fµ
d is a regular language of Â∗, it does not matter how g is defined on inputs F 6∈ Fµ

d).

First, we use the lexicographic order to find the first pair (xi, xj) that is dependent in the

tuple ~x. This allows to partition our set of valuations as follows:

{~x ∈ Leaves(F) : F, ~x |= ψ ∧ sym-dep(~x)}

=
⊎

1≤i<j≤n

{~x ∈ Leaves(F) : F, ~x |= ψ ∧ sym-dep(xi, xj) ∧
∧

(k,ℓ)<lex(i,j)

¬ sym-dep(xk, xℓ)}

=
⊎

1≤i<j≤n

{~x ∈ Leaves(F) : F, ~x |= ψ ∧ xj depends-onxi ∧
∧

(k,ℓ)<lex(i,j)

¬ sym-dep(xk, xℓ)

︸ ︷︷ ︸

:=ψi→j(~x)

}

∪ {~x ∈ Leaves(F) : F, ~x |= ψ ∧ xi depends-onxj ∧
∧

(k,ℓ)<lex(i,j)

¬ sym-dep(xk, xℓ)

︸ ︷︷ ︸

:=ψi←j(~x)

}

As a consequence, #(ψ ∧ sym-dep) =
∑

1≤i<j≤n#ψi→j +#ψi←j −#ψi→j ∧ ψi←j (the last

term removes the cases when both xi depends-onxj and xj depends-onxi, which occurs e.g.

when xi = xj).
We can now rewrite this sum using ∃=ℓ xj .ψ to denote the fact that there exists exactly ℓ

different values for x so that ψ(. . . , xj , . . .) holds (this quantifier is expressible in MSO at every

fixed ℓ). Thanks to Claim III.18, there exists a bound Nd over the maximal number of leaves

that dependent on a leaf xi (among forests of depth at most d.) Hence:

#(ψ ∧ sym-dep) =
∑

1≤i<j≤n

#ψi→j +#ψi←j −#ψi→j ∧ ψi←j

=
∑

1≤i<j≤n

∑

0≤ℓ≤Nd

ℓ ·#∃=ℓxj .ψi→j

+
∑

1≤i<j≤n

∑

0≤ℓ≤Nd

ℓ ·#∃=ℓxi.ψi←j

−
∑

1≤i<j≤n

∑

0≤ℓ≤Nd

ℓ ·#∃=ℓxi.ψi→j ∧ ψi←j

D. Proof of Lemma III.23

In order to prove Lemma III.23, we consider f such that findep 6= 0. Our goal is to construct

a pumping family to exhibit a growth rate of findep. To construct such a pumping family, we

will rely on the fact that independent tuples of leaves have a very specific behavior with respect

to the factorization forest. Given a node t, we write start(t) := min≤{y ∈ Leaves(F)∩Skel(t)}
and end(t) := max≤{y ∈ Leaves(F) ∩ Skel(t)}.

Claim D.1. Let x1, . . . , xk be an independent tuple of k ≥ 1 leaves in a forest F ∈ Fµ
d

factorizing a word w. Let~t be the vector of nodes such that ti := skel-root(xi) for all 1 ≤ i ≤ k.

One can order the ti according to their position in the word w so that 1 < start(t1) ≤ end(t1) <
· · · < start(tk) ≤ start(tk) < |w|.

Proof. Assume by contradiction that there exists a pair i < j such that start(tj) ≥ end(ti).
We then know that start(ti) ≤ start(tj) ≤ end(ti). In particular, skel-root(start(ti)) = ti is an

ancestor of start(tj), hence ti is an ancestor of tj . This contradicts the independence of ~x.

Assume by contradiction that there exists i such that start(ti) = 1 (resp. end(ti) = |w|). Then

skel-root(xi) must be the root of F , but then ~x cannot be an independent tuple.

Given an independent tuple x1, . . . , xk ∈ Leaves(F), with skel-root(~x) =~t, ordered by their

position in the word, let us define m0 := µ(w[1: start(t1)−1]), mk := µ(w[end(tk)+1:w|w|])
and mi := µ(w[end(tk)+1: start(ti+1)−1]) for 1 ≤ i ≤ k − 1.

Definition D.2 (Type of a tuple of skel-root). Let F ∈ Fµ
d factorizing a word w, ~x be an

independent tuple of leaves in F , and ~t = skel-root(~x). Without loss of generality assume

that the nodes are ordered by start. The type s-type(~t) in the forest F is defined as the tuple

(m0, Skel(t1),m1, . . . ,mk−1, Skel(tk),mk).

At depth d, there are finitely many possible types for tuples of k nodes, which we collect

in the set Typesd,k. Moreover, given a type T ∈ Typesd,k, one can build the MSO formula

has-s-typeT (~t) over Fµ
d that tests whether a tuple of nodes ~t is of type T , and can be obtained

as skel-root(~x) for some tuple ~x of independent leaves. The key property of types is that counting

types is enough to count independent valuations for a formula ψ ∈ INV.

Claim D.3. Let k ≥ 1, d ≥ 0, M be a finite monoid, µ : A∗ → M be a morphism. Let

T ∈ Typesd,k, F ∈ Fµ
d , ~x and ~y be two k-tuples of independent leaves of F such that

s-type(skel-root(x1), . . . , skel-root(xk)) = s-type(skel-root(y1), . . . , skel-root(yk)) = T .

There exists a bijection σ : L1 → L2, where L1 := Leaves(F) ∩
⋃k
i=1 Skel(skel-root(xi)) and

L2 := Leaves(F) ∩
⋃k
i=1 Skel(skel-root(yi)), such that for every z ∈ Lk1 , for every formula

ψ ∈ INVk, F |= ψ(z) if and only if F |= ψ(σ(z)).

Proof Sketch. Because of the type equality, we know that Skel(skel-root(xi)) and

Skel(skel-root(yi)) are isomorphic for 1 ≤ i ≤ k. As the skeletons are disjoint in an independent

tuple, this automatically provides the desired bijection σ.

Let us now prove that σ preserves the semantics of invariant formulas. Notice that this property

is stable under disjunction, conjunction and negation. Hence, it suffices to check the property

for the following three formulas betweenm(x, y), leftm(x), rightm(y) and isleaf(x). For isleaf,

the result is the consequence of the fact that σ sends leaves to leaves.

Let us prove the result for betweenm and leave the other and leave the other cases as an

exercise. Let (y, z) ∈ L2
1. By definition of L1, there exists 1 ≤ i, j ≤ k such that y ∈ Leaves(F)∩

Skel(skel-root(xi)) and z ∈ Leaves(F) ∩ Skel(skel-root(xj)). To simplify the argument, let us

assume that y < z and i + 1 = j. Let w := forest(F), and my,z := µ(w[y : z]). One can

decompose the computation of my,z as follows:

my,z = µ(w[y : z])

= µ(w[y : end(xi)]w[end(xi) + 1 : start(xi+1)− 1]w[start(xi+1) : z])

= µ(w[y : end(xi)])miµ(w[start(xi) : z])

Therefore, µ(w[y : z]) only depends on Skel(skel-root(y)) = Skel(skel-root(xi)), the position

of y in Skel(skel-root(y)), Skel(skel-root(z)) = Skel(skel-root(xi+1)), the position of z in

Skel(skel-root(z)), and mi, all of which are presreved by the bijection σ. Hence, µ(w[y : z]) =
µ(w[σ(y) : σ(z)]). Therefore, F |= betweenm(y, z) if and only if F |= betweenm(σ(y), σ(z)).

It is an easy check that a similar argument works when j 6= i+ 1.

Now, we show that counting the valuations of a INV formula can be done by counting the

number of tuples of each type.

Lemma D.4. Let k ≥ 1, d ≥ 0, M be a finite monoid, µ : A∗ →M be a morphism. For every

ψ ∈ INVk, there exists computable coefficients λT ≥ 0, such that the following functions from

Fµ
d to N are equal:

#ψindep := #(ψ ∧ ¬ sym-dep) =
∑

T∈Typesd,k

λT ·#has-s-typeT

Proof. Using the claim, we can now proceed to prove Lemma D.4.

#ψ ∧ ¬ sym-dep(F) =
∑

~x indep

1F |=ψ(~x)

=
∑

T∈Typesd,k

∑

~t∈Nodes(F)

∑

~x indep

1F |=ψ(~x)1~t=skel-root(~x)1has-s-typeT (~t)

=
∑

T∈Typesd,k

∑

~t∈Nodes(F)

1has-s-typeT (~t)

∑

~x indep

1F |=ψ(~x)1~t=skel-root(~x)

=
∑

T∈Typesd,k

∑

~t∈Nodes(F)

1has-s-typeT (~t)λT

=
∑

T∈Typesd,k

λT#(has-s-typeT (~t))

The coefficient λT does not depend on the specfic ~t such that s-type(~t) = T thanks to

Claim D.3 and the fact that ψ ∈ INV.

The behavior of the formulas has-s-typeT is much more regular and enables us to extract pump-

ing families that clearly distinguishes different types. Namely, we are going to prove that given

k ≥ 1, d ≥ 0, a finite monoidM , and a morphism µ : A∗ →M , {#has-s-typeT : T ∈ Typesd,k}
is a Z-linearly independent family of functions from Fµ

d to Z.

Lemma D.5 (Pumping Lemma). For all T ∈ Typesd,k, there exists a pumping family (w
~X , F

~X)

such that for every type T ′ ∈ Typesd,k, #(has-s-typeT ′)(F
~X) is ultimately a Z-polynomial in

~X that has non-zero coefficient for X1 · · ·Xn if and only if T = T ′.

Proof. Let T ∈ Typesd,k be a type, it is obtained as the type of some tuple ~x of independent

leaves in some F ∈ Fµ
d factorizing a word w. Let ti := skel-root(xi) and Si := Skel(ti) for

1 ≤ i ≤ k. Recall that µ(word(Si)) = µ(word(ti)) thanks to Claim III.13. As a consequence,

Si is a subforest of ti that provides a valid µ-forest of a subword of word(ti).

Now, as ti cannot be the root of the forest F and is the highest ancestor of xi that is not a

leftmost or rightmost child, it must be the immediate inner child of an idempotent node in F .

As a consequence, µ(word(Si)) = µ(word(ti)) is an idempotent. Therefore, for ever Xi ∈ N,

the tree obtained by replacing ti with Xi copies of Si in F is a valid µ-forest. We write F
~X

for the forest F where ti is replaced by Xi copies of Si. This is possible because the tuple

~x is composed of independent leaves, hence ti and tj are disjoint subtrees of F whenever

1 ≤ i 6= j ≤ k.

Hence, F
~X is the factorization forest of the word w

~X := α0(w1)
X1α1 . . . αk−1(wk)

Xkαk
where wi = word(Si), αi = w[end(ti)+1: start(ti)−1] for 2 ≤ i ≤ k − 1, α0 =
w[1: start(t1)−1], and αk = w[end(tk)+1:|w|] are non-empty factors of w.

We now have to understand the behavior of has-s-typeT ′ over F
~X , for every T ′ ∈ Typesd,k.

To that end, let us consider T ′ ∈ Typesd,k. Let us write E for the set of nodes in F
~X that are

not appearing in any of the Xi repetitions of Si, for 1 ≤ i ≤ k. The set E has a size bounded

independently of X1, . . . , Xk. To a tuple ~s such that F
~X |= has-s-typeT ′(s), one can associate

the mapping ρ~s : {1, . . . , k} → {1, . . . , k} ⊎ E, so that ρ~s(i) = si when si ∈ E, and ρ~s(i) = j
when si is a node appearing in one of the Xj repetitions of the skeleton Sj (there can be at

most one j satisfying this property).

Remark D.6. If s-type(~s) = T ′, and ρ~s(i) = j, then si must be the root of one of the Xj copies

of Sj in F
~X . Indeed,~t is obtained as skel-root(~y) for some independent tuple ~y of leaves. Hence,

si = skel-root(yi) which belong to some copy of Sj , hence si must be the root of this copy of

Sj , because Sj is a binary tree.

Given a map ρ : {1, . . . k} → {1, . . . , k} ⊎ E and a tuple ~X ∈ Nk, we let Cρ(~X) be the set

of tuples ~s of nodes of F
~X such that s-type(~s) = T ′, and such that ρ~s = ρ. This allows us to

rewrite the number of such vectors as a finite sum:

#(has-s-typeT ′(~t))(F
~X) =

∑

ρ : {1,...,k}→{1,...,k}⊎E

#Cρ(~X)

Claim D.7. For every ρ : {1, . . . , k} → {1, . . . , k} ⊎E, #Cρ(~X) is ultimately a Z-polynomial

in ~X . Moreover, its coefficient for X1 · · ·Xk is non-zero if and only if ρ(i) = i for 1 ≤ i ≤ k.

Proof. Assume that Cρ(~X) is non-empty. Then choosing a vector ~s ∈ Cρ(~X) is done by fixing

the image of si to ρ(i) when ρ(i) ∈ E, and selecting pj := |ρ−1({j})| non consecutive copies

of Sj among among the Xj copies available. All nodes are accounted for since Remark D.6

implies that whenever si is in a copy of Sj , then si is the root of this copy, and since ~s is

independent, they cannot be direct siblings.

The number of ways one can select p non consecutive nodes in among X nodes is (for large

enough X) the binomial number
(
X−p+1

p

)
, as it is the same as selecting p positions among

X − p+ 1 and then adding p− 1 separators.

As a consequence, the size of Cρ(~X) is ultimately a product of
(
Xj−pj+1

pj

)
for the non-zero pj ,

which is a Z-polynomial in X1, . . . , Xk. Moreover, it has a non-zero coefficient for X1 . . . Xk

if and only if pj 6= 0 for 1 ≤ j ≤ k, which is precisely when ρ(i) = i.

We have proven that #(has-s-typeT ′)(F
~X) is a Z-polynomial in X1, . . . , Xk, and that the

only term possibly having a non-zero coefficient for X1 · · ·Xk is #Cid(~X). Notice that if

#Cid(~X) is non-zero, we immediately conclude that T = T ′.

Claim D.8. Let P ∈ R[X1, . . . , Xn] which evaluates to 0 over Nn, then P = 0.

Proof. The proof is done by induction on the number n of variables. If P has one variable

and P|N = 0, then P has infinitely many roots and P = 0. Now, let P having n + 1
variables, and such that P (x1, . . . , xn, xn+1) = 0 for all (x1, . . . , xn+1) ∈ Nn+1. By induction

hypothesis, P (X1, . . . , Xn, xn+1) = 0 for all xn+1 ∈ N. Hence for all x1, . . . , xn ∈ R,

P (x1, . . . , xn, Xn+1) is a polynomial with one free variable having infinitely many roots, hence

P (x1, . . . , xn, xn+1) = 0 for every xn+1 ∈ R. We have proven that P = 0.

We now have all the ingredients to prove Lemma III.23, allowing us to pump functions built

by counting independent tuples of invariant formulas.

Let k ≥ 1, and findep be a linear combination of #ψi ∧ ¬ sym-dep, where ψi ∈ INVk. Assume

moreover that findep 6= 0. Thanks to Lemma D.4, every #ψi ∧ ¬ sym-dep can be written as a

linear combination of #has-s-typeT (~t), hence findep =
∑

T∈Typesd,k
λT#has-s-typeT , and the

coefficients λT (now in Z) are computable.

Since findep 6= 0, there exists T ∈ Typesd,k such that λT 6= 0. Using Lemma D.5, there exists

a pumping family (w
~X , F

~X) adapted to T . In particular, f(F
~X) is ultimately a Z-polynomial in

~X , and its coefficient in X1 · · ·Xk is the sum of the coefficients in X1 · · ·Xk of the polynomials

#has-s-typeT ′(F
~X) multiplied by λT ′ . This coefficient is non-zero if and only if T = T ′. Hence,

f(F
~X) is ultimately a Z-polynomial with a non-zero coefficient for X1 · · ·Xk.

As a side result, we have proven that a linear combination of #has-s-typeT is the constant

function 0 if and only if all the coefficient are 0, which is decidable since one can enumerate

all the elements of Typesd,k. For the converse implication, one leverages Claim D.8: if one

coefficient is non-zero, then the polynomial f(F
~X) must be non-zero.

E. Proof of Lemma III.24

Let P,Q ∈ R[X1, . . . , Xn] be such that |P | = O(|Q|). We show that deg(P) ≤ deg(Q).
If P = 0, then deg(P) ≤ deg(Q). Otherwise, let us write P = P1 + P2 with P1 containing

all the terms of degree exactly deg(P) in P . Because |P | = O(|Q|), there exists N ≥ 0
and C ≥ 0 such that |P (x1, . . . , xn)| ≤ C|Q(x1, . . . , xn)| for all x1, . . . , xn ∈ N such that

x1, . . . , xn ≥ N .

Because P1 is a non-zero polynomial, there exists a tuple (x1, . . . , xn) ∈ N \ {0} such that

α := P1(x1, . . . , xn) 6= 0 (Claim D.8). Let us now considerR(Y) := P (Y x1, . . . , Y xn) ∈ R[Y],
and S(Y) := Q(Y x1, . . . , Y xn) ∈ R[Y]. Notice that R(Y) has degree exactly deg(P) and its

term of degree deg(P) is αY deg(P). Furthermore, S(Y) is a polynomial in Y of degree at most

deg(Q), with dominant coefficient β 6= 0. We know that for Y large enough, |R(Y)| ≤ C|S(Y)|.
Since |R(Y)| ∼+∞ |α|Y deg(P), and |S(Y)| ∼+∞ |β|Y deg(S) ≤ |β|Y deg(Q), we conclude that

deg(P) ≤ deg(Q).

APPENDIX E

PROOFS OF SECTION IV

A. Proof of Claim IV.4

Let k ≥ 0, f ∈ ZPolyk and u ∈ A∗. We want to show that u ⊲f ∈ ZPolyk. Notice that for

every u, the map u� : w 7→ uw is regular, hence u ⊲ f = f ◦ (u�) belongs to ZPolyk thanks to

Proposition II.12.

B. Proof of Claim IV.7

The fact that ∼k is an equivalence relation is obvious from the properties of ZPoly.

Furthermore if f ∼k g, then f−g ∈ ZPolyk, thus u ⊲ (f−g) = u ⊲ f − u ⊲ g ∈ ZPolyk by

Claim IV.4. Furthermore it is obvious that δ · f ∼k δ · g, and if f ′ ∼k g
′ then f + f ′ ∼k g + g′.

It remains to show that u ⊲ (1L⊗ f) ∼k (u ⊲1L)⊗ f for L ⊆ A∗ and for this we proceed by

induction on |u|. By expanding the definitions we note that a ⊲ (1L⊗ g) = (a ⊲ 1L)⊗ g+1L(ε)×
(a ⊲ g) for all a ∈ A. By Claim IV.4 we get a ⊲ g ∈ ZPolyk, hence a ⊲ (1L⊗ g) ∼k (a ⊲1L)⊗ g.

The result follows since a ⊲1L = 1a−1L and by Theorem II.20.

C. Proof of Lemma IV.8

We first note that u ⊲ (δf + ηg) = δ(u ⊲ f) + η(u ⊲ g), for all f, g : A∗ → Z, δ, η ∈ Z

and u ∈ A∗. Hence it suffices to show that Lemma IV.8 holds on a set S of functions

such that SpanZ(S) = ZPolyk. For k = 0, we can chose S := {1L : L regular}. As

observed above, we have u ⊲1L = 1u−1L and the result holds since regular languages

have finitely many residual languages. For k ≥ 1, we can choose S := {1L⊗ g : g ∈
ZPolyk−1, L regular} by Proposition II.18. Let 1L⊗ g ∈ S. Then by Claim IV.7 we get

u ⊲ (1L⊗ g) ∼k−1 (u ⊲1L)⊗ g = 1u−1L⊗ g. Since a regular language has finitely many

residual languages, there are finitely many ∼k−1-equivalence classes for the (function) residuals

of 1L⊗ g.

D. Proof of Lemma IV.17

Let f : A∗ → Z be a function such that Res(f)/ ∼k−1. We apply Algorithm 1, which

computes the set of residuals of f and the relations between them. The states of our machine

are not labelled by the equivalence classes of Res(f)/ ∼k−1, but directly by some elements

of Res(f). Remark that the labels on the transitions are of the form w ⊲ f − v ⊲ f when

w ⊲f ∼k−1 v ⊲ f , hence are in SpanZ(Res(f)) ∩ ZPolyk−1 by definition of ∼k−1 (observe

that the construction of these labels is effective and that equivalence of residuals is decidable if

we start from f ∈ ZPolyk). Now, let us justify the correctness and termination of Algorithm 1.

First, we note that it maintains two sets O and Q such that O ⊎ Q ⊆ Res(f) and for all

f, g ∈ O⊎Q we have f 6= g ⇒ f 6∼k−1 g. Hence the algorithm terminates since Res(f)/ ∼k−1
is finite and Q increases at every loop. At the end of its execution, we have for all q ∈ Q and

a ∈ A, that δ(q, a) ∼k−1 a ⊲ q and λ(q, a) = a ⊲ q − δ(q, a).
Let us show by induction on n ≥ 0 that for all a1 · · · an ∈ A∗, if q0 →a1 q1 →a2

· · · →an qn is the run labelled by a1 · · · an in the underlying automaton , and g1 · · · gn are

the functions which label the transitions, we have qn ∼k−1 a1 · · · an ⊲ f and for all w ∈ A∗,
f(a1 · · · anw) =

∑n
i=2 gi(ai · · ·anw) + qn(w). For n = 0 the result is obvious because

q0 = f . Now, assume that the result holds for some n ≥ 0 and let a1 · · · anan+1 ∈ A∗. Let

q0 →a1 q1 →a2 · · · →an+1 qn+1 be the run and g1 · · · gn+1 be the labels of the transitions. Since

qn ∼k−1 a1 · · · an ⊲ f (by induction) we get an+1 ⊲ qn ∼k−1 a1 · · · anan+1 ⊲ f by Claim IV.7.

Because qn+1 = δ(qn, an+1) ∼k−1 an+1 ⊲ qn, then qn+1 ∼k−1 a1 · · · anan+1 ⊲ f . Now, let us

fix w ∈ A∗. We have f(a1 · · · anan+1w) =
∑n

i=2 gi(ai · · · anan+1u)+qn(an+1w) by induction

hypothesis. But since gn+1 = λ(qn, an+1) = an+1 ⊲ qn − δ(qn, an+1) = an+1 ⊲ qn − qn+1 we

get qn(an+1w) = gn+1(w) + qn+1(w). We conclude the proof that Algorithm 1 provides a

k-residual transducer for f by considering w = ε and the definition of F .

E. Proof of Corollary IV.19

Lemma IV.17 shows that any function from ZPolyk is computed by its k-residual transducer

(which is in particular a ZPolyk−1-transducer). Conversely, given a ZPolyk−1-transducer

computing f , it is easy to write f as a linear combination of elements of the form 1L⊗ g
(see e.g. Section F-B), where g is the label of a transition, thus f ∈ ZPolyk−1.

F. Proof of Corollary IV.20

Every map in ZPolyk has finitely many residuals up to ∼k−1 thanks to Lemma IV.8. We now

prove the converse implication. Let f such that Res(f)/ ∼k−1 is finite. By Lemma IV.17 there

exists a k-residual transducer of f (which is in particular a ZPolyk−1-transducer). Thanks to

Corollary IV.19, it follows that f ∈ ZPolyk.

APPENDIX F

PROOFS OF SECTION V

A. Proof of Claim V.6

Let L be a regular language such that 1L is ultimately 1-polynomial. Then, for every u,w, v ∈
A∗, there exists a polynomial P ∈ Q[X], such that 1L(uw

Xv) = P (X) for X large enough.

This implies that P is a constant polynomial, and in particular 1L(uw
X+1v) = 1L(uw

Xv) for

X large enough. As a consequence, the syntactic monoid of L is aperiodic, thus L is star-free

[5]. Conversely, assume that L is star-free. It is recognized by a morphism µ into an aperiodic

finite monoid M . Because M is aperiodic, for every x ∈ M , x|M|+1 = x|M|. Hence, for all

α0, w1, α1, . . . , wℓ, αℓ ∈ A∗, 1L(α0w
X1

1 α1 · · ·w
Xℓ

ℓ αℓ) is constant for X1, . . . , Xℓ ≥ |M | since

it only depends on the image µ(α0w
X1

1 α1 · · ·w
Xℓ

ℓ αℓ).

B. Proof of Lemma V.14

Let T = (A,Q, q0, δ, λ) be a counter-free ZSFk−1-transducer computing a function f : A∗ →
Z. Since the deterministic automaton (A,Q, q0, δ) is counter-free, then by [4] for all q ∈ Q the

language Lq := {u : δ(q0, u) = q} is star-free. So is Lqa for all a ∈ A. Now observe that:

f =
∑

q∈Q
a∈A

1Lqa⊗λ(q, a).

We conclude thanks to Equation (3).

C. Proof of Lemma V.16

Let k ≥ 0. Let f ∈ ZPolyk which is ultimately 1-polynomial and T = (A,Q, q0, δ,H, λ, F)
be a k-residual transducer of f . Since ultimate 1-polynomiality is preserved under taking linear

combinations and residuals, the function labels of T are ultimately 1-polynomial (by definition

of a k-residual transducer). It remains to show that T is counter-free.

Let α,w ∈ A∗ and suppose that δ(q0, α) = δ(q0, αw
n) for some n ≥ 1. We want to show

that δ(q0, αw) = δ(q0, α). Since δ(q0, α) = δ(q0, αw
nX) and δ(q0, αw) = δ(q0, ααw

nX+1)
for all X ≥ 1, it is sufficient to show that we have δ(q0, αw

nX+1) = δ(q0, αw
nX) for some

X ≥ 1.

Let M ≥ 1 given by Definition II.29 for the ultimate 1-polynomiality of f . We want to show

that (αwnM+1 ⊲ f) ∼k−1 (αwnM ⊲ f), i.e. |(αwnM+1 ⊲ f)(w)− (αwnM ⊲ f)(w)| = O(|w|k−1)
since the residuals belong to ZPoly. For this, let us pick any α0, w1, α1, · · · , wk, αk ∈ A∗. By

Theorem III.3, it is sufficient to show that:

|(αwnM ⊲ f − αwnM+1 ⊲ f)(α0w
X1

1 · · ·wXk

k αk))|
= O((X1 + · · ·+Xk)

k−1)

Because f is ultimately 1-polynomial, for all X,X1, · · · , Xk ≥M , f(αwXα0w
X1

1 · · ·wXk

k αk)
is a polynomial P (X,X1, . . . , Xk). Our goal is to show that |P (nM,X1, . . . , Xk)− P (nM +
1, X1, . . . , Xk)| = O(|X1 + · · ·+Xk|

k−1). Since f ∈ ZPolyk, we have |P (X,X1, . . . , Xk)| =

O(|X + X1 + · · · + Xk|
k). Thus by Lemma III.24, P has degree at most k, hence it can be

rewritten under the form P0 +XP1 + · · ·+XkPk where Pi(X1, . . . , Xk) has degree at most

k − i. Therefore:

|P (nM,X1, . . . , Xk)− P (nM + 1, X1, . . . , Xk)|

=
∣
∣
∣
∑k

i=1 Pi(X1, . . . , Xk)((nM)i − (nM + 1)i)
∣
∣
∣

≤
∑k
i=1 |Pi(X1, . . . , Xk)|(nM + 1)i

since the term P0 vanishes when doing the subtraction. The result follows since the polynomials

Pi for 1 ≤ i ≤ k have degree at most k−1.

D. Proof of Proposition V.17

The proof of the proposition is essentially the same as Proposition II.13 by noticing that

everything remains FO-definable. We will underline the parts where the two proofs differ, and

in particular when using stability properties of star-free polyregular functions.

We first show that any star free Z-polyregular function can be written under the form sum ◦g
where g : A∗ → {±1}∗ is star-free polyregular. This is a consequence of the following claims.

Claim F.1. For all ϕ ∈ FO, there exists a star-free polyregular function f : A∗ → {±1}∗ such

that #ϕ = sum ◦f .

Proof. Star-free polyregular functions are characterized in [21, Theorem 7] as the functions com-

puted by (multidimensional) FO-interpretations. Recall that an FO-interpretation of dimension

k ∈ N is given by a FO formula ϕ≤(~x, ~y) defining a total ordering over k-tuples of positions, a

FO formula ϕDom(~x) that selects valid positions, and FO formulas ϕa(~x) that place the letters

over the output word [21, Definition 1 and 2]. In our specific situation, letting ϕ≤ be the usual

lexicographic ordering of positions (which is FO-definable) and placing the letter 1 over every

element of the output is enough: the only thing left to do is select enough positions of the output

word. For that, we let ϕDom be defined as ϕ itself. It is an easy check that this FO-interpretation

precisely computes 1f(w) over w, hence computes f when post-composed with sum.

Claim F.2. The set {sum ◦f : f : A∗ → {±1}∗ star-free polyregular} is closed under sums and

external Z-products.

Proof. Notice that sum ◦f + sum ◦g = sum ◦(f · g) where f · g(w) := f(w) · g(w). As star-free

polyregular functions are closed under concatenation [7], the set of interest is closed under

sums. To prove that it is closed under external Z-products, it suffices to show that it is closed

under negation. This follows because one can permute the 1 and −1 in the output of a star-free

polyregular function (star-free polyregular functions are closed under post-composition by a

morphism [7, Theorem 2.6]).

Let us consider a star-free polyregular function g : A∗ → {±1}∗. The maps g+ : w 7→ |g(w)|1
and g− : w 7→ |g(w)|−1 are star-free polyregular functions with unary output (since they

correspond to a post-composition by the star-free polyregular function which removes some letter,

and polyregular functions are closed under post-composition by a regular function [7]). Hence

g− and g+ are star-free polyregular functions with unary output, a.k.a. star-free N-polyregular

functions. As a consequence, sum ◦ g = g+ − g− lies in ZSF.

E. Proof of Proposition VI.2

Item 3 ⇒ Item 2 is obvious. For Item 2 ⇒ Item 1, it is sufficient to show that if

ϕ(X1, . . . , Xn) is an MSOX formula, then #ϕ is a Z-polyregular function. We show the result

for n = 1, i.e. for a formula ϕ(X). Let us define the language L ⊆ (A × {0, 1})∗ such that

(w, v) ∈ L if and only if w |= ϕ(S) where S := {1 ≤ i ≤ |w| : v[i] = 1}. Using the classical

correspondence between MSO logic and automata (see e.g. [18]), the language L is regular,

hence it is computed by a finite deterministic automaton A. Given a fixed w ∈ A∗, there exists

a bijection between the accepting runs of A whose first component is w and the sets S such that

w |= ϕ(S). Consider the (nondeterministic) Z-weighted automaton A′ (this notion is equivalent

to Z-linear representations, see e.g. [13]) obtained from A by removing the second component

of the input, adding an output 1 to all the transitions of A, and giving the initial values 1 (resp.

final values 1) to the initial state (resp. final states) of A. All other transitions and states are

given the value 0. Given a fixed w ∈ A∗, it is easy to see that A′ has exactly #ϕ(w) runs

labelled by w whose product of the output values is 1 (and the others have product 0). Thus A
computes #ϕ. This proof scheme adapts naturally to the case where n ≥ 1.

For Item 1 ⇒ Item 3, let us consider a linear representation (I, µ, F) of a Z-rational series.

Claim F.3. Without loss of generality, one can assume that µ(A∗) ⊆ Mn,n({0, 1}), at the cost

of increasing the dimension of the matrices.

Proof Sketch. Let N := min(1,max{|µ(a)i,j | : a ∈ A, 1 ≤ i, j ≤ n}), we define the new

dimension of our system to be m := n × N × 2. As a notation, we assume that matrices

in Mm,m have their rows and columns indexed by {1, . . . , n} × {1, . . . , N} × {±}. For all

a ∈ A, let us define ν(a) ∈ Mm,m as follows: for all 1 ≤ i, j ≤ n, 1 ≤ v, v′ ≤ N

ν(a)(i,v,+),(j,v′,+) =

{

1 if |µ(a)i,j | ≥ v′ ∧ 0 < µ(a)i,j

0 otherwise

ν(a)(i,v,+),(j,v′,−) =

{

1 if |µ(a)i,j | ≥ v′ ∧ 0 > µ(a)i,j

0 otherwise

ν(a)(i,v,−),(j,v′,−) =

{

1 if |µ(a)i,j | ≥ v′ ∧ 0 < µ(a)i,j

0 otherwise

ν(a)(i,v,−),(j,v′,+) =

{

1 if |µ(a)i,j | ≥ v′ ∧ 0 > µ(a)i,j

0 otherwise

Let us now adapt the final vector by defining for every 1 ≤ i ≤ n, 1 ≤ v ≤ N , F ′(i,v,+)
:=

max(0, Fi), and F ′(i,v,−) := −min(0, Fi). For the initial vector, let us define for every 1 ≤ i ≤ n,

I ′(i,1,+) = Ii and I ′(i,1,−) = −Ii, and let I ′ be zero otherwise. It is then an easy check that

(I ′, ν, F ′) computes the same function as (I, µ, F).

As a consequence, Iµ(w)F =
∑

i,j Iiµ(w)i,jFj , let us now rewrite this sum as a counting

MSO formula with set free variables.

For all 1 ≤ i, j ≤ n, one can write an MSO formula ψi,j(x) such that for all 1 ≤ p ≤ |w|,
w |= ψi,j(p) if and only if µ(w[p])i,j = 1. Furthermore, for all 1 ≤ i, j ≤ n, one can write

an MSO formula θi,j with variables X in
p , X

out
p for 1 ≤ p ≤ n such that a word w satisfies θi,j

whenever for every position x of w there exists a unique pair 1 ≤ p, q ≤ n such that x ∈ X in
p

and x ∈ Xout
q , if x ∈ Xout

p then (x+1) ∈ X in
p , the first position of w belongs to X in

i and Xout
i ,

and the last position of w belongs to X in
j and Xout

j .

µ(w)i,j =
∑

s : {1,...,k−1}→{1,...,n}

µ(w[1])i,s(1)µ(w[|w|])s(k−1),j

|w|−1
∏

k=2

µ(w[k])s(k),s(k+1)

= #

θi,j ∧ ∀x.
∧

1≤i,j≤n

(x ∈ X in
i ∧ x ∈ Xout

j) ⇒ ψi,j(x)

︸ ︷︷ ︸
:=τi,j

(w)

We have proven that Iµ(w)F is a Z-linear combination of the counting formulas τi,j via

Iµ(w)F =
∑

i,j IiFj · #τi,j(w). Notice that all the formulas used never introduced set

quantifiers, hence the formulas belong to FO and have MSO free variables.

	I Introduction
	II Z-polyregular functions
	II-A Counting valuations on finite words
	II-B Regular and polyregular functions
	II-C Rational series and rational expressions
	II-D Rational series and representations

	III Free Variable Minimization and Growth Rate
	IV Residual Transducers
	IV-A Residuals of a function
	IV-B Residual transducers

	V Star-free Z-polyregular functions
	V-A Deciding star-freeness
	V-B Relationship with polyregular functions and rational series

	VI Outlook
	References
	Appendix A: Proofs of sec:prelim
	A-A Proof of prop:precompose
	A-B Proof of prop:polypoly

	Appendix B: Proofs of ssec:expressions
	B-A Proof of claim:vks:cauchyincrease
	B-B Proof of lem:vks:inductcauchy

	Appendix C: Proofs of ssec:matrix
	C-A Proof of lem:capturing-eigenvalues
	C-B Proof of lem:Zpoly-pump-first

	Appendix D: Proofs of sec:pebblemin
	D-A Proof of claim:skel:skeletons-totally-ordered
	D-B Proof of rem:skel:bound-depnodes
	D-C Proof of lem:skel:inv-decomp
	D-D Proof of lem:skel:indep-iter-zero
	D-E Proof of lem:skel:lemmapoly

	Appendix E: Proofs of sec:residual
	E-A Proof of claim:push-pk
	E-B Proof of claim:properties-resi
	E-C Proof of lem:resifini
	E-D Proof of lem:resitrans
	E-E Proof of cor:Vk-trans
	E-F Proof of cor:faux

	Appendix F: Proofs of sec:aperiodic
	F-A Proof of ex:1poly-aperiodic
	F-B Proof of lem:aper:counterfreefo
	F-C Proof of lem:up-cf
	F-D Proof of prop:mikolaj2
	F-E Proof of prop:counting-mso-variables

