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Abstract. Deduplication is the task of recognizing multiple representa-
tions of the same real-world object. The majority of existing solutions
focuses on textual data, this means that data sets containing boolean and
numerical attribute types are rarely considered in the literature, while
the problem of missing values is inadequately covered. Supervised solu-
tions cannot be applied without an adequate number of labelled exam-
ples, but training data for deduplication can only be obtained through
time-costly processes. In high dimensional data sets, feature engineering
is also required to avoid the risk of overfitting. To address these chal-
lenges, we go beyond existing works through D-HAT, a clustering-based
pipeline that is inherently capable of handling high dimensional, sparse
and heterogeneous attribute types. At its core lies: (i) a novel matching
function that effectively summarizes multiple matching signals, and (ii)
MutMax, a greedy clustering algorithm that designates as duplicates the
pairs with a mutually maximum matching score. We evaluate D-HAT on
five established, real-world benchmark data sets, demonstrating that our
approach outperforms the state-of-the-art supervised and unsupervised
deduplication algorithms to a significant extent.
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1 Introduction

Integrating overlapping and complementary data sets is a common process that
creates new and valuable knowledge [3]. The main task of integration is to iden-
tify duplicate records, which represent the same real-world entity, such as prod-
ucts, institutes, or patients. This task is called deduplication [8], entity matching
[13], entity resolution [19] or record linkage [10]. It constitutes a crucial task that
improves the data quality by repairing and curating data sources [9], reducing
the storage size, and preparing data for downstream applications [8].

Existing solutions for deduplication are based on calculating pairwise simi-
larity scores from one or more attributes [6]. The unsupervised methods create
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a similarity graph, where the nodes correspond to records and the edges are
weighted by the matching scores of the adjacent nodes [12]. The graph is then
partitioned into clusters such that all nodes within each cluster correspond to
duplicate records. These approaches typically calculate matching scores by treat-
ing all attributes as textual data [6]. However, real-world data sets involve het-
erogeneous attribute types, i.e., numerical, categorical and boolean attributes.
Casting these types as strings disregards important information and possibly
leads to inaccurate matching scores. For example, the prices “14” and “14.00”
are identical as numbers, but partially similar when compared as sequences of
characters and totally dissimilar when treated as tokens. Hence, unsupervised
techniques need to correctly model and support heterogeneous attribute types.

On the other hand, supervised methods typically model deduplication as a
binary classification task [13]. They convert each pair of records into a feature
vector by applying similarity metrics on different attributes. The vectors are
then labelled to train a classifier that predicts the matching status for unla-
belled pairs. However, these approaches face multiple challenges: (i) The curse
of dimensionality, i.e., tasks become exceedingly difficult with a higher number of
dimensions. (ii) Labeled data is scarce, but obtaining it through crowd-sourcing
is costly and time-consuming [22]. Moreover, its size and quality affects the end
result to a significant extent [17], but are hard to ensure, due to the heavy class
imbalance. (iii) Supervised methods require long training times [17].

To address these shortcomings, we introduce D-HAT (Deduplication with
Heterogeneous Attribute Types), a novel clustering-based pipeline for end-to-end
deduplication. D-HAT goes beyond existing works in three ways: (i) It inherently
supports data sets with heterogeneous types of attributes and a large portion
of missing values (i.e., high sparsity). (ii) It inherently supports and leverages
complex schemata of high dimensionality. (iii) It achieves state-of-the-art results
without requiring any labelled data. Our contributions are the following:

– We propose D-HAT, an automated end-to-end, clustering-based framework
for deduplicating high-dimensional data sets with heterogeneous attribute
types and missing values. Its matching algorithm uses as features a compre-
hensive set of signals, coupling them with a novel greedy clustering method
that defines as matches the records with mutually maximum matching scores.

– We conduct experiments on established real benchmark data sets, showing
that: (i) In terms of effectiveness, D-HAT outperforms the state-of-the-art
supervised and unsupervised baseline methods. (ii) In terms of time efficiency,
D-HAT has an undeniable advantage over the baseline methods.

– We have publicly released all data and code used in our experiments through
https://github.com/Loujainl/D-HAT.

2 Related Work

The growing research on deduplication reflects its increasing importance, with
numerous methods tackling various aspects [4,6,8].

One of deduplication’s main challenges is its quadratic complexity: in the
worst case, it examines all possible pairs of records. Blocking is typically used

https://github.com/Loujainl/D-HAT
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to alleviate this complexity and to scale deduplication to voluminous data sets
[5,19]. Blocking puts together similar records in groups called blocks by apply-
ing blocking schemes or functions. A blocking function extracts signatures from
every record, dividing the input data set into a set of overlapping blocks – com-
parisons are reduced to candidates, i.e., pairs of records sharing at least one
block, reducing the computational cost to a significant extent. Yet, the higher
time efficiency comes with the risk of missing potential matches [20].

After blocking, matching is performed to determine the degree of similarity
between the candidate pairs of records. In essence, it applies similarity functions
to the values of selected attributes of the candidate records, obtaining numerical
matching scores. Next, it determines whether the resulting degree of similarity is
sufficient for designating two records as duplicates. We distinguish the matching
algorithms into unsupervised and supervised ones.

The former category includes a collection of methods that are provided by
JedAI [18,21] and Stringer [12], with ZeroER [24] constituting the state-of-the-
art unsupervised approach; it represents every candidate pair as a feature vector.
Unlike supervised methods, it does not require a training set. Instead, at its
core lies the observation that the distribution of the feature vectors for duplicate
records differs from that of the non-matching records. Based on this idea, it learns
the parameters of the Gaussian distribution of matching vectors by iteratively
applying expectation maximization to compute the posterior probability of a
matching label given the feature vector. A posterior probability higher than 0.5
is considered as an indication of duplicate records.

Among the supervised methods, the most popular one is Magellan [13], a
system that combines a variety of features with the main machine learning clas-
sifiers, such as decision trees, logistic regression and support vector machines.
After providing an annotated sample of candidate pairs T , matching is performed
by training a classifier over T . Magellan also offers a set of blocking methods.

DeepMatcher [17] is a space of matching solutions based on neural networks
with three modules: i) attribute embedding, ii) attribute similarity representa-
tion, and iii) a classification module. In most cases, the first module relies on
pre-trained fastText embeddings [1] to convert every token to a vector. EMTrans-
former [2] and DITTO [15] go beyond DeepMatcher by leveraging attention-
based transformers like BERT [7], and RoBERTa [16]. These solutions perform
well on textual data, outperforming Magellan in terms of accuracy [2,15,17]. We
disregard them, as they require large training sets and many hours of training
[17] in order to fine-tune hundreds of thousands of parameters [23].

3 Preliminaries

A data set T is a collection of records. A record is an object description denoted
by ri, where i is a unique identifier. Records are defined by their attributes. The
set of attributes in T is denoted by T.A, while the value of a specific attribute a
in record ri is symbolized as ri.a; ri.a = N/A indicates that ri lacks a value for
a, i.e., there is a missing or a null value. Two records, ri and rj , that describe
the same real-world object are matching, i.e., duplicates, a situation denoted by
ri ≡ rj . A data set is called clean if it does not contain any duplicates.
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Fig. 1. The end-to-end pipeline of D-HAT.

Deduplication is the task of identifying and linking duplicate records. A char-
acteristic of this task is that the number of duplicate records scales linearly with
the size of the input, unlike its computational cost, which increases quadrati-
cally [11]. As a result, Deduplication constitutes a heavily imbalanced task and
its effectiveness is measured with respect to the following measures:

1. Recall, the portion of existing duplicates that are detected, i.e., Re = TP
TP+FN .

2. Precision, the portion of record pairs characterized as duplicates that are
indeed matching, i.e., Pr = TP

TP+FP .
3. F-Measure, the harmonic mean of Recall and Precision, F1 = 2 × Pr×Re

Pr+Re ,

where TP stands for the true positive pairs, FP for the false positive ones, and
FN for the false negative ones.

In this context, Deduplication can be formally defined as follows:

Problem 1 (Deduplication). Given a data set T , detect the set of duplicate pairs
of records, D = {ri, rj ∈ T : i $= j ∧ ri ≡ rj}, such that Recall, Precision and
F-Measure are maximized.

4 Our Approach

We now delve into our framework, whose pipeline is illustrated in Fig. 1.
Step 1: Data Cleaning. The first step prepares the input by determin-

ing the core characteristics of the attributes describing the given data set(s)1,
i.e., it calculates the number of unique values and the data type per attribute.
Attributes that have two unique values are converted to boolean to obtain a
more precise degree of similarity. Attributes with very few unique values (<10)
are treated as categorical variables. Numerical attributes are identified through
regular expressions that detect quantities, possibly accompanied by an optional
unit of measurement. E.g., an attribute value width = ‘‘42.8 in’’ is trans-
formed into width = 42.8 and is marked as a numeric data type. Min-max
normalization is then performed on the values of numeric attributes:

Step 2: Attribute Selection. Attributes with a majority of missing values
lack valuable information for deduplication and, thus, can be disregarded. The
coverage of an attribute a expresses the portion of non-empty values in a across
1 In the case of Record Linkage, we assume aligned schemata.
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all input records; the fewer missing values there are, the higher is the coverage.
We formally define the coverage c of each attribute as: c(a) = 1− |ri.a=N/A:ri∈T |

|T | .
This step discards the attributes with a coverage below a specific threshold.

Preliminary experiments demonstrated that 0.1 constitutes an effective value.
Step 3: Blocking. This step is critical because it determines two things:

1. Time efficiency, because the processing time of the following steps is deter-
mined by the number of candidates in the resulting blocks.

2. Effectiveness, because the recall of D-HAT is bounded by the recall of block-
ing; the false negative pairs of records, which have no block in common, cannot
be detected by the subsequent steps, and are excluded from the final output.

Therefore, it is crucial that blocking balances these two competing goals:
the reduced search space and the high effectiveness. D-HAT is generic enough
to accommodate any blocking method that meets this requirement. Preliminary
experiments indicated that Magellan’s [13] overlap blocker is a robust approach
for creating blocks of high performance (see Sect. 5 for more details). It defines
as candidate pairs those sharing at least one token in the values of a specific
attribute. D-HAT applies the overlap blocker to all textual attributes in the
given data sets and opts for the one minimizing the number of candidates, while
maximizing coverage – high coverage implicitly signals high recall after blocking.

Step 4: Feature Matrix. Similar to supervised approaches, D-HAT repre-
sents each pair of records as a feature vector by applying type-specific normalized
similarity functions to selected attributes. Unlike supervised approaches, these
vectors are unlabelled. In more detail, after detecting the type of every attribute
in Step 1, D-HAT creates a feature vector Vi,j for each candidate pair of records
(ri, rj) ∈ B, where B is the set of blocks produced by the previous step and the
kth feature/dimension in Vi,j , V k

i,j , stems from a similarity function that is com-
patible with the type of the kth attribute, ak. If the value of either record for ak
is empty or incorrect (i.e., incompatible with the type of ak), V k

i,j =‘N/A’, which
stands for a missing feature. Note that this step does not require any domain
knowledge from the user. D-HAT automatically detects the attribute type and
applies the appropriate similarity functions in order to create the features.

In particular, the following functions are used by D-HAT:

• For boolean and categorical attributes, the equality operator.
• For numerical attributes, four similarity functions are used:

1. The equality operator,
2. The Euclidean similarity, V k

i,j = 1 − EucDist(ri.ak, rj .ak).
3. The relative similarity, V k

i,j = 1 − |ri.ak−rj .ak|
max(ri.ak,rj .ak)

.

4. The normalized Manhattan similarity, V k
i,j =

|ri.ak−rj .ak|
max(ri.ak,rj .ak)

.
• For textual attributes, the following functions are used:

(i) Syntactic similarity measures.
D-HAT distinguishes textual attributes into short strings, if their average
value entails less than five words, and long strings otherwise. For both
types, it employs the following functions:
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1. Jaccard similarity: V k
i,j =

|token set(ri.ak)∩token set(rj .ak)|
|token set(ri.ak)∪token set(rj .ak)| .

2. Generalized Jaccard, which extends the previous measure to consider
the bags of tokens: V k

i,j =
|bag(ri.ak)∩bag(rj .ak)|
|bag(ri.ak)∪bag(rj .ak)| .

3. Overlap Coefficient: V k
i,j =

|token set(ri.ak)∩token set(rj .ak)|
min(|token set(ri.ak)|,|token set(rj .ak)|) .

4. Bag: V k
i,j = 1 − max(|bag(ri.ak)−bag(rj .ak)|,|bag(rj .ak)−bag(ri.ak)|)

max(|(rj .ak)|,|(ri.ak)|)|)

5. Dice Similarity: V k
i,j = 2 × |token set(ri.ak)∩token set(rj .ak)|

|token set(ri.ak)|+|token set(rj .ak)| .
Additionally, D-HAT uses two similarity functions for short strings:
– Levenshtein similarity, the minimum number of edit operations
(insert, delete or substitute) required to transform one string to
another.

– Hamming, similar to Levenshtein except that it allows only substitu-
tion.

(ii) Semantic similarity measures. D-HAT exploits pre-trained embedding
representations of textual data. Two types of representations are actu-
ally used:
a) Word-based models like word2vec and GlobalVectors (GloVe). They

substitute each token (word) by a meaningful numeric vector that is
learnt from training a shallow feedforward neural network on large,
external, un-annotated textual corpora, such as Google News and
Wikipedia. In these models, words with contextual similarity have
linearly related vector representations. However, they cannot produce
vector representations for words that are out-of-vocabulary.

b) To address this limitation, skipgram models like fastText [1] represent
each word by the sum of the vector representations of its bag of char-
acters. Thus, they are capable of learning a recurrent neural network
that yields vector representations for words, independently of their
occurrence in the training data.

To extract numeric features/dimensions from the three pre-trained
embeddings (i.e., word2vec, GloVe and fastText), D-HAT applies three
similarity functions to the vectors of two records: the cosine, the Euclidean
and the word mover’s similarity [14]. For the last two functions, the
homonymous distance function d is transformed into a similarity value
sim as follows: sim = 1

1+d .
(iii) Hybrid similarity measures. This configuration combines the aforemen-

tioned syntactic similarity measures with the semantic ones, given that
they capture complementary matching evidence.

Overall, D-HAT creates one feature per boolean and categorical attributes,
four per numeric ones as well as nine semantic features and up to seven syntactic
ones per textual attribute.

Step 5: Matching Scores. The goal of this step is to estimate the matching
likelihood for each pair of candidates based on the feature matrix of the previous
step. This is carried out in two steps:
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(i) Binarizing the feature vectors. In essence, D-HAT treats each feature as a
vote for a “match” (1) or a “non-match” (0) decision. The dimensions of
boolean and categorical attributes are already binary. The dimensions of
numerical and textual attributes are defined in [0, 1], with higher values
indicating a higher matching likelihood. To binarize them, D-HAT employs
a similarity threshold θ ∈ [0, 1], common to all dimensions, such that all
numeric scores above θ are converted into “match” votes (1), while the
rest become “non-match” votes (0). All dimensions with a “N/A” value are
ignored.

(ii) Score estimation. To calculate the matching score mi,j for two candidate
records, ri and rj , we aggregate the dimensions of their binary feature vector
ˆVi,j into a single value through their mean, i.e., mi,j =

∑N
k=1

ˆV k
i,j/(N − n),

where N is the total number of features, n is the number of missing ones
and ˆV k

i,j ∈ {0, 1}.

At the end of these two steps, the matching scores of all pairs are calculated
and stored in a matrix M . The records and the matrix define a weighted graph
G(V,M), where the set of nodes V represent the input records, and M is the
adjacency matrix of weights. G(V,M) is referred to as the similarity graph.

Step 6: MutMax Clustering. The final step receives as input the similarity
graph G(V,M) and partitions it into a set of disjoint clusters, such that every
cluster corresponds to a unique entity, containing all duplicate records describing
it. The partitioning is performed by MutMax, a greedy approach that defines as
duplicates the pairs of records with mutually maximum scores. More specifically,
MutMax operates as follows: For each record ri, all candidates are sorted in
decreasing matching scores and the top one rimax = rj is selected as the potential
match. If ri was set as the potential match for rj , the records ri and rj are
designated as matches. The rest of the candidate pairs are ignored.

Overall approach. D-HAT algorithm is outlined in Fig. 2. Step 1 (Data
cleaning) is applied first (Line 1). Step 2 (Attribute selection) is performed given
threshold cmin (Lines 2–7). The overlap blocker is applied to each attribute
(Lines 8–10). A performance score is computed per attribute by multiplying
the coverage of attribute a with the reduction ratio [5]: getScore(Ba, a) = c(a) ·
RR(Ba, T ), where |Ba| denotes the total number of candidate pairs in the blocks
Ba. The attribute with the highest score is selected (Lines 11–14), and is applied
to retrieve the final set of blocks (Line 16).

The next loop simultaneously applies Steps 4 and 5. It builds a two-
dimensional array M with a score for each pair of compared records. In more
detail, F ∩ a is the set of functions applicable for attribute a. For each feature
higher than θ, the overall similarity is incremented by one matching vote (Lines
23–25). The average score is finally estimated for the current pair of candidates
(Line 29).

Finally, MutMax is applied to M (Lines 31–36). For each record, the most
similar candidate is specified and stored in array O (Line 31). Using O, D-HAT
identifies the record pairs that are mutually most similar (Lines 32–33), adding
them to the output (Line 34). Note that D is a set and that each output pair is
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Fig. 2. The end-to-end algorithm of D-HAT.

formed with the lowest id in the left part (i.e., i < j in (i, j) in Line 34); as a
result, no duplicate pairs are returned as output.

In terms of time complexity, the cost of Steps 1, 2 and 3 is linear with the
number of attributes in the given data set T , i.e., O(|T.A|). For Steps 4 and 5,
the cost is O(|B|). For Step 6 no sorting is required. Instead, D-HAT merely
iterates once over all cells in the two-dimensional array M . A hash table can be
used to store the estimated similarities in practice. As a result, both the time
and space complexity of Step 6 (and the entire algorithm) are linear with the
number of candidate pairs after blocking, i.e., O(|B|).

5 Experimental Evaluation

Setup. D-HAT is implemented in Python 3.8.5. All experiments were run on an
Ubuntu 18.04.5 server with a 12-core Intel Xeon D-2166NT @2GHz, 64 GB of
RAM and 300 GB HDD. A single core was employed in all time measurements.

Benchmark Data Sets. We employ five established data sets that come
from multiple domains: products, bibliography, restaurants, and healthcare.
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Table 1. Technical characteristics of the benchmark data sets. |S|, |T | and |D| stand
for the number of source records, target records and duplicate pairs, respectively.

Data set |S| |T | |D| #Attributes #Numerical #Bool. & Cat. #Textual #Selected

Amazon-Google 1,363 3,226 1,298 4 1 0 2 3

Abt-Buy 1,081 1,092 1,095 3 1 0 2 3

DBLP-ACM 2,614 2,294 2,223 4 1 1 2 3

Fodors-Zagats 533 331 112 5 0 0 5 5

Immucare 305 310 305 213 32 6 37 75

Immucare is a healthcare dataset matching two hospital visits of the same
patient. The technical details of these data sets [13,24] are summarized in
Table 1.

Baseline Systems. We compare the performance of D-HAT with Magellan
[13] and ZeroER [24]. For the former, we use decision tree as the classification
algorithm, while for the latter, no configuration is needed.

Evaluation Measures. We use the standard measures of recall, precision,
and F1-score, which are defined in Sect. 3. We also report the overall run-time,
i.e., the time that intervenes between receiving the data set(s) as input and
producing the duplicate pairs as output. We repeat every measurement three
times and report the average.

5.1 Step 3: Blocking

D-HAT applies Magellan’s overlap blocker to all attributes and selects as optimal
the one minimizing the number of candidates, while maximizing coverage. The
resulting performance appears in Table 2. In all cases, the number of candidate
pairs is reduced by whole order of magnitude (i.e., ( 90%) in comparison to the
brute-force approach (i.e., |S| × |T |). The only exception is Abt-Buy, where the
candidates drop by 86%, which is a dramatic reduction of the search space, too.
Nevertheless, the recall in all cases remains rather high, above 90%. This means
that the vast majority of duplicate pairs co-occur in at least one block.

Note that precision after blocking remains very low for most data sets. To
raise it to acceptable levels, matching is required. Note also that compared to the

Table 2. Blocking performance. Time in Seconds.

Data set Key Attribute #Candidates Recall Prec Time

Amazon-Google Name 131,214 0.995 0.010 7.3

Abt-Buy Name 164,072 0.994 0.007 2.6

DBLP-ACM Authors 318,404 0.993 0.007 19.4

Fodors-Zagat Phone 111 0.929 0.936 0.7

Immucare Date of Birth 311 1.000 0.981 26.5
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Table 3. Matching effectiveness of D-HAT, Magellan and ZeroER across all data sets.
The best F1 per data set is underlined.

Data set D-HAT Magellan ZeroER

Syntactic Features Semantic Features Hybrid Features

Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

A-G 0.904 0.479 0.626 0.828 0.349 0.534 0.925 0.532 0.675 0.513 0.573 0.542 0.663 0.385 0.487

A-B 0.818 0.402 0.539 0.635 0.174 0.274 0.824 0.346 0.487 0.440 0.443 0.442 0.220 0.601 0.322

D-A 0.992 0.956 0.974 0.995 0.980 0.987 0.997 0.974 0.985 0.980 0.983 0.981 0.936 0.945 0.940

F-Z 0.981 0.929 0.954 0.971 0.911 0.940 0.981 0.929 0.954 0.939 0.969 0.954 1.000 0.312 0.476

CA 0.993 0.987 0.990 0.990 0.987 0.988 0.993 0.987 0.990 0.968 1.000 0.984 1.000 0.487 0.655

overall run-time of D-HAT and the rest of the methods (in Fig. 3), the overhead
of blocking is negligible (< 10% in all cases). The only exception is Immucare,
where the overhead of blocking is high, due to the very large number of attributes
retained after Step 2 (75).

5.2 Steps 4–6: Matching

To ensure fairness, we apply the same blocker to the same key attribute for
both baseline systems, (e.g., we use the ‘phone’ attribute instead of ‘name’ in
Fodors-Zagats). Note that for Amazon-Google, ZeroER could not create its fea-
ture matrix within a time limit of 6 h. To complete the assessment, we combined
it with the feature vectors created by Magellan instead. As a result, the perfor-
mance of ZeroER could be slightly different from that reported in [24].

The resulting performance of all algorithms with respect to precision (Pr),
recall (Re) and f-measure (F1) appears in Table 3, while the corresponding run-
times are reported in Fig. 3. Note that after preliminary experiments, we set
cmin = 0.1 and θ = 0.7 for D-HAT in all cases. Note also that D-HAT is
combined with three different groups of features: (i) The syntactic ones, which
include only the syntactic similarity functions for textual attributes along with
the specialized functions of boolean, categorical and numeric attributes. (ii) The
semantic features, which differ from the previous group in that they replace the
syntactic similarity functions with the semantic ones. (iii) The hybrid features,
which employ all similarity functions for all types of attributes defined in Sect. 4.
In this way, we are able to examine the contribution of the two types of textual
similarity functions, which account for the majority of features used by D-HAT.

Compared to blocking, precision has actually increased by whole orders of
magnitude. This emphasis on precision should be attributed to MutMax clus-
tering, which associates every record only with its most similar candidate.

Comparing the various groups of features between them, we observe that
the syntactic ones consistently outperform the semantic ones. The reason is
that most data sets contain domain-specific terminology. As a result, especially
word2vec and GloVe suffer from a large portion of out-of-vocabulary terms. The
only exception is DBLP-ACM, which involves long textual attributes like venue
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Fig. 3. Run-time in seconds.

Table 4. The number of features per group.

Data set Non-textual Syntactic Semantic Hybrid

A-G 4 14 22 32

A-B 4 14 22 32

D-A 4 14 22 32

F-Z 0 35 45 80

CA 78 400 411 733

names and publication titles; in these settings, the evidence provided by semantic
similarities outperforms the syntactic ones, albeit by just ∼2%.

In terms of time-efficiency, the advantage of syntactic similarity functions is
clear in all cases, as shown in Fig. 3. The run-time of D-HAT increases by a whole
order of magnitude in almost all cases, when replacing the syntactic similarity
features with the semantic ones. This is caused by the large number of lookups
and computations that are required for converting every attribute value into a
high-dimensional embedding vector and a similarity score.

It is interesting to examine whether the combination of syntactic and seman-
tic similarities justifies the lower time efficiency by an increase in effectiveness.
This is only true in Amazon-Google, where hybrid features’ F1 is higher than the
syntactic ones by ∼10%. In all other cases, the hybrid features lie between the
two other groups of features, usually closer to the top performing one. Hence,
D-HAT should be exclusively combined with the syntactic group of features.

Compared to ZeroER, Table 3 shows that D-HAT with syntactic features
achieves significantly better effectiveness in most cases. Its f-measure is actu-
ally higher by 50%, on average, across the five data sets. At the same time,
Fig. 3 demonstrates D-HAT is consistently faster than ZeroER by whole orders
of magnitude (e.g., 1min vs 6 hrs over Amazon-Google) – the sole exception
is DBLP-ACM, where D-HAT is slower, due to the computation of 10 syntac-
tic similarity functions over textual values. D-HAT takes into account attributes
with high level of noises (missing values, heterogeneity of existing values, errors),
which inevitably corrupt some matching signals.

Compared to Magellan, in the first two data sets, D-HAT achieves a higher
f-measure than Magellan by more than 13%, while in the next three data sets
both methods exhibit practically identical performance (i.e., their f-measures
differ by less than 1%). The competitive performance of Magellan stems from its
supervised functionality: in each dataset, 70% of the candidate pairs are used for
training its classification model, leaving only 30% of the pairs as a testing set. In
contrast, D-HAT processes all candidate pairs and its performance is bounded
by blocking. In terms of time-efficiency, we observe in Fig. 3 that D-HAT takes
a clear lead in all cases, as its run-time is lower than Magellan even by a whole
order of magnitude (e.g., 35 vs 400 s over Abt-Buy).

Overall, D-HAT typically outperforms the state-of-the-art unsupervised
deduplication method to a significant extent in all respects. Compared to the
state-of-the-art supervised approach, it exhibits similar effectiveness, if not
higher, at a much lower run-time, despite the lack of labelled instances.
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(a) Abt-Buy (b) Amazon-Google (c) DBLP-ACM

Fig. 4. Performance of D-HAT with syntactic features when varying the threshold θ.

5.3 Sensitivity Analysis

The only configuration parameter that is crucial for the performance of D-HAT
is the similarity threshold θ, whose value depends on the level of noise and
heterogeneity in the data. To assess its impact on the overall performance of
D-HAT, we consider all values in the range [0.5, 1] with a step of 0.1. The results
appear in Fig. 4. Due to lack of space, we report three of the five datasets.

We observe that this parameter has no effect on any evaluation measure over
DBLP-ACM. The reason is that the pairs identified as matches in these datasets
exhibit very high similarity (practically 1.0) for most of the features employed
by D-HAT. As a result, the matching decisions of MutMax clustering are not
altered by the value of θ. For Abt-Buy and Amazon-Google, we observe that
up to 0.7, the performance of D-HAT improves (Abt-Buy) or remains the same
(Amazon-Google). For θ > 0.7, a small increase in the similarity threshold yields
slightly lower performance with respect to all measures. The reason is that both
data sets are challenging tasks, because they contain many corner cases, i.e.,
records that are close to the decision boundary.

Overall, we can conclude that D-HAT is robust with respect to its similarity
threshold θ, with θ = 0.7 constituting a reliable default value.

6 Conclusions

We presented D-HAT, an efficient, fully automated clustering-based end-to-end
deduplication system. D-HAT can process high dimensional data sets with het-
erogeneous attribute types and missing values without requiring user interven-
tion or any labelled data. The thorough experimental study on benchmark data
sets demonstrates that our system achieves high accuracy across different bench-
mark tasks, and outperforms supervised and unsupervised baselines. The main
benefit of D-HAT over unsupervised methods is the high accuracy on all stan-
dard tasks, whereas compared to supervised methods, D-HAT eliminates the
extra time and effort needed from domain experts to annotate a training set. It
also saves the time required to find and train an efficient classification model.
In the future, we plan to parallelize D-HAT on top of Apache Spark in order to
scale it to huge data sets with millions of records.
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