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1. Introduction
Global climate models (GCMs) are the main tool used nowadays to simulate the evolution of the climate system at 
a global scale. Still, when compared to ground-truth observations, they present systematic errors and their spatial 
resolution—typically around hundreds of kilometers—remains insufficient for most practical applications (see 
e.g., Doblas-Reyes et al., 2013 and references therein). Besides dynamical downscaling (Giorgi & Mearns, 1999; 
Laprise et al., 2008; Vaittinada Ayar et al., 2016), statistical downscaling (SD, von Storch et al., 1993) methods 
aim to alleviate this limitation by statistically linking a set of key large-scale predictors, like geopotential or 
winds, to the local surface predictand of interest, like precipitation or temperature. Under the perfect prognosis 
(PP) approach (Bürger & Chen, 2005; Charles et al., 1999; Gutiérrez et al., 2013; Haylock et al., 2006), these 
empirical/statistical relationships are learned from observed data (some reanalysis is used for the predictors) over 
a recent historical reference period. Afterward, they are applied to downscale future GCM large-scale predictors, 
producing projections for the local variable of interest corresponding to the future climate.

Abstract Under the perfect prognosis approach, statistical downscaling methods learn the relationships 
between large-scale variables from reanalysis and local observational records. These relationships are 
subsequently applied to downscale future global climate model (GCM) simulations in order to obtain 
projections for the local region and variables of interest. However, the capability of such methods to produce 
future climate change signals consistent with those from the GCM, often referred to as transferability, is an 
important issue that remains to be carefully analyzed. Using the EC-Earth GCM and focusing on precipitation, 
we assess the transferability of generalized linear models, convolutional neural networks and a posteriori 
random forests (APRFs). We conclude that APRFs present the best overall performance for the historical 
period, and future local climate change signals consistent with those projected by EC-Earth. Moreover, we 
show how a slight modification of APRFs can greatly improve the temporal consistency of the downscaled 
series.

Plain Language Summary Even though they are the main tool to study climate change, global 
climate models (GCMs) still have a limited spatial resolution (around a hundred kilometers) and exhibit 
considerable biases with respect to the observed climate. Statistical downscaling aims to solve this issue by 
learning statistical relationships between large-scale variables, well reproduced by GCMs (e.g., synoptic 
winds or specific humidity), and local observations of the target surface variable (e.g., precipitation). These 
relationships are learned over a historical period, and thus a relevant question is whether they can be transferred 
to the future GCM simulations, that is, whether climate changes produced by GCMs (e.g., changes in mean 
rainfall) are broadly preserved by the downscaling methods. The rationale behind this is that, even though GCM 
simulations are biased, GCMs resolve the physical processes responsible for the evolution of the climate system 
and these changes are thus physically driven. Using the EC-Earth GCM, we assess the transferability of three 
statistical downscaling methods (generalized linear models, convolutional neural networks and a posteriori 
random forests (APRFs)) for precipitation downscaling over Europe. We intercompare them using several 
diagnostic metrics, concluding that APRFs produce reliable projections, with future climate changes consistent 
with those projected by EC-Earth.
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Several statistical and machine learning techniques, including analogs (Lorenz, 1969; Zorita & von Storch, 1999), 
weather generators (Wilby et al., 2002), support vector machines (SVMs) and neural networks (Hastie et al., 2009) 
have been recently applied to the statistical downscaling of climate change scenarios of different meteorological 
variables projected by GCMs (Amblar-Francés et al., 2020; Araya-Osses et al., 2020; Baghanam et al., 2020; 
Fan et al., 2021; Pour et al., 2018; Siabi et al., 2021). Wootten et al. (2020) and Hernanz et al. (2022) performed 
a comprehensive evaluation of different machine learning alternatives, the latter concluding that the choice of 
technique can affect the downscaled results up to the point of producing climate change signals of reverse sign for 
precipitation. Moreover, even for the same SD technique, Manzanas, Fiwa, et al. (2020) showed that the choice of 
predictor variables considered can also lead to dramatically different precipitation projections.

In this context, Legasa et al. (2022) recently introduced a posteriori random forests (APRFs). APRFs are a modi-
fication of the random forest (RF) machine learning technique (Breiman, 2001) similar to quantile random forests 
(Meinshausen, 2006) able to model the whole parametric probability distribution of the target variable. On top 
of their interpretability and their skill capturing non-linear predictor-predictand relationships, RFs automatically 
perform feature/predictor selection, thus avoiding the complex, time-consuming and often human-guided task 
of pre-defining an informative set of predictors. Nevertheless, Legasa et al. (2022) tested APRFs using reanaly-
sis  predictors, thoroughly assessing the calibration/training stage, and thus a relevant next question is whether this 
technique is also suitable for SD of climate change scenarios, that is, using GCM predictors. This issue is often 
referred to as transferability (Dayon et al., 2015; Hernanz et al., 2022). The present article assesses this topic for 
precipitation, a variable notably difficult to model (see, e.g., Gutiérrez et al., 2019; Legasa et al., 2022) due to its 
semi-continuous nature (a continuous probability distribution for wet days with positive mass at 0 accounting for 
dry days) and the limited predictive capability of the large-scale predictors (see Gutiérrez et al., 2019; Themeßl 
et al., 2011; Vaittinada Ayar et al., 2016 and the references in the next paragraphs).

When producing local future scenarios, it is essential that climate change signals projected by the GCM over the 
future scenario with respect to the reference historical period (e.g., change in the number of wet days or mean 
rainfall) are preserved by the statistical downscaling procedure. The rationale behind this is that, even though 
GCM simulations are biased (Vrac & Friederichs, 2015), GCMs resolve the physical processes that are responsi-
ble for the evolution of the climate system and these changes are thus physically driven.

Nevertheless, there is a notable lack of studies focusing on this transferability issue (Baño-Medina et al., 2021; 
Dayon et al., 2015; Manzanas, Fiwa, et al., 2020). This is particularly the case for RFs, whose most common 
recent use in literature has been to build a multi-model ensemble of precipitation projections for different repre-
sentative concentration pathways (RCPs, van Vuuren et al., 2011), as in Ahmed et al. (2020), Homsi et al. (2020), 
and Sa'adi et al.  (2020). RFs were recently compared against other machine learning methodologies in Pham 
et al. (2019) and Xu et al. (2020). Pham et al. (2019) compared linear discriminant analysis, SVMs and RFs, 
concluding that RFs outperformed the other methods when used to downscale rainfall discretized in 3 states 
(dry, non extreme rainfall, extreme rainfall). Xu et al. (2020), instead, assessed three methods (RFs, SVMs, and a 
deep learning architecture) for downscaling future precipitation under two RCPs, concluding that SVMs were the 
preferred option. Nevertheless, these two studies used traditional RFs instead of APRFs, which allow us to model 
the whole distribution of precipitation.

The present article aims to fill this gap of knowledge by assessing the suitability of APRFs to produce local 
climate change scenarios of precipitation over Europe, using 83 meteorological stations and the RCP8.5 scenario 
from EC-Earth. Moreover, APRFs are put in context with two other relevant machine learning methodologies: 
the well-established general linear models (GLMs, Chandler, 2005) and the widely used convolutional neural 
networks (CNNs, Lecun et al., 1998).

The remainder of this article is structured as follows. In Section 2, we describe the data sets, SD methods and 
diagnostic metrics we work with. In Section 3, we analyze the results obtained. Lastly, Section 4 summarizes the 
conclusions drawn from this study.

2. Experimental Framework and Methods
2.1. Data

In this article we follow the experimental framework proposed in the Experiment 2a of the European COST 
(Cooperation in Science and Technology) action VALUE (Maraun et al., 2015), designed to assess the suitability 
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of different SD methods to produce local climate change scenarios. We perform downscaling of daily precip-
itation at the 83 representative locations used in Legasa et  al.  (2022), which are distributed across Europe 
(12° West–32° East, 36° North–72° North, see Figure S1 in Supporting Information S1). We build on the PP 
approach, that is, the three SD techniques considered are trained with ERA-Interim reanalysis (Dee et al., 2011) 
as large-scale predictors and observed precipitation from ECA&D (European Climate Assessment & Dataset 
project, Klein Tank et al., 2002) as local-scale predictand. All the methods are trained over the period 1979–2008, 
and are subsequently applied to downscale precipitation from the EC-Earth GCM, both for the historical and 
future scenarios.

EC-Earth (Döscher et  al.,  2022; Hazeleger et  al.,  2010), a member of the Coupled Model Intercomparison 
Project Phase 5 (see IPCC, 2014), was chosen for the VALUE Experiment 2a due to its consistency reproducing 
key large-scale processes affecting the European climate (Lee, 2015). Here, we use both the historical scenario 
for 1979–2008 (the same period considered to train the three SD methods) and the RCP8.5 (Riahi et al., 2011) 
for 2071–2100 to analyze the future climate change signals. In all cases, the run r12i1p1 is considered. The 
predictors used in this work for both ERA-Interim and EC-Earth are temperature, geopotential, northward 
wind, eastward wind and specific humidity at 1,000, 850, 700, 500 hPa levels. This selection includes circu-
lation variables, which are less affected by orography and model resolution, together with thermodynamic 
ones, which are linked to changes in the radiation budget and need to be considered in climate change studies 
(Huth, 2004).

To avoid the misrepresentation of the annual cycle in the GCM, we corrected the EC-Earth daily predictors, 
according to ERA-Interim, as follows,

�̂�𝑋GCM = 𝑋𝑋GCM − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(

𝑋𝑋
month

HISTORICAL

)

+ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(

𝑋𝑋
month

REANALYSIS

)

, 

for the monthly means 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑋𝑋month) . Note that this simple transformation, applied to both the historical and 
RCP8.5 predictors, brings the first-order moment of the reanalysis and the GCM into agreement, thereby 
providing a better approximation for the perfect prognosis assumption of relying on predictors well repre-
sented by the GCM (Gutiérrez et al., 2019; Manzanas, Fiwa, et al., 2020). EC-Earth was re-gridded from 
its native spatial resolution (1.12°) to the ERA-Interim's grid considered in VALUE (2°) using bilinear 
interpolation.

We consider the predictand, precipitation, to follow a Bernoulli-Gamma distribution (Cannon,  2008) param-
eterized by 𝐴𝐴 𝐴𝐴 (the probability of having a wet day, >1 mm) and 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 (the shape and rate parameters of the 
Gamma distribution of precipitation amounts on wet days, respectively). The probability density function of the 
Bernoulli-Gamma distribution, for precipitation 𝐴𝐴 𝐴𝐴 (in mm), is defined as

𝑓𝑓 (𝑦𝑦) =

⎧

⎪

⎨

⎪

⎩

𝑝𝑝𝑝𝑝𝛼𝛼𝑦𝑦𝛼𝛼−1𝑒𝑒−𝑝𝑝𝑦𝑦

Γ(𝛼𝛼)
𝑦𝑦 𝑦 1

1 − 𝑝𝑝 1 𝑦= 𝑦𝑦 𝑦= 0

 (1)

where 𝐴𝐴 Γ(𝛼𝛼) = ∫
∞

0
𝑧𝑧𝛼𝛼−1𝑒𝑒−𝑧𝑧𝑑𝑑𝑧𝑧 is the Gamma function. The three SD methods used in this work estimate the three 

parameters of this distribution for each day, whose expected value is 𝐴𝐴 𝐴𝐴 ⋅
𝛼𝛼

𝛽𝛽
 .

2.2. Statistical Downscaling Methods

APRFs were introduced and thoroughly assessed in Legasa et al.  (2022) for downscaling precipitation inten-
sity under the PP paradigm. APRFs are a modification of traditional random forests that allows for accurately 
predicting the parametric distribution of any potential variable of interest. In this work we extend the method-
ology presented in the aforementioned reference, which was originally focused on the Gamma distribution, to 
model the Bernoulli-Gamma distribution described in the previous section. For this purpose, we update the split 
function used in Legasa et al. (2022), which is tasked with splitting the predictors' space to provide predictive 
samples of precipitation, to account for the mixed nature of the Bernoulli-Gamma distribution by considering a 
mixture of the Gamma deviance and the binary cross-entropy. Specifically, we define the split function to be, for 
a set  of  predictive precipitation observations 𝐴𝐴 {𝑦𝑦𝑖𝑖} falling on a leaf,
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Bernoulli Entropy

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

−𝑝𝑝log 𝑝𝑝 −
(

1 − 𝑝𝑝
)

log

(

1 − 𝑝𝑝
)

+

Gamma Deviance

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

2

∑

𝑦𝑦
+

𝑖𝑖
∈{𝑦𝑦𝑖𝑖}

(

−log

(

𝑦𝑦+
𝑖𝑖

𝑦𝑦
+

)

+

𝑦𝑦+
𝑖𝑖
− 𝑦𝑦

+

𝑦𝑦
+

)

,
 

where 𝐴𝐴 𝑝𝑝 is the proportion of wet days in 𝐴𝐴 {𝑦𝑦𝑖𝑖} , 𝐴𝐴 𝐴𝐴+
𝑖𝑖
 is the intensity/rainfall on wet days, and 𝐴𝐴 𝑦𝑦

+ the mean precipitation 
intensity for the wet days. This allows us to estimate, using the a posteriori approach, the three parameters of the 
Bernoulli-Gamma distribution. Using a cross-validation scheme (not shown for brevity), we selected the optimal 
configuration of the random forest, corresponding to 200 trees and at least 5 observations in each terminal leaf. 
The interested reader is referred to Legasa et al. (2022) for further details on the APRF methodology. For each 
target location, all the gridpoints in the PRUDENCE zone it falls within (see Figure S1 in Supporting Informa-
tion S1) are used as predictors.

Besides APRFs, two other methodologies which have been used for SD of precipitation in previous studies 
have been considered in this article. The first one corresponds to the widely used GLMs (see e.g., Chandler and 
Wheater, 2002), a generalization of traditional linear models which allow for modeling non-normally distrib-
uted variables. As done in many previous works (e.g., Abaurrea & Asín, 2005; Manzanas, Fiwa, et al., 2020; 
Manzanas, Gutiérrez, et al., 2020; Manzanas et al., 2015; Nikulin et al., 2018; San-Martín et al., 2017) we build 
two independent GLMs: one for modeling precipitation occurrence (𝐴𝐴 𝐴𝐴 ) using the logit link and another one for 
modeling intensity (𝐴𝐴 𝛼𝛼∕𝛽𝛽 ) using the logarithm link. Note that the latter GLM assumes 𝐴𝐴 𝐴𝐴 to be constant conditional 
on the predictors' state and is thus estimated from the residuals (see Chandler, 2005). For each target location, 
both occurrence and intensity GLMs use as predictors the principal components explaining 95% of the variance 
over the PRUDENCE region it falls within (shown in Figure S1 of the Supporting Information S1). This config-
uration corresponds exactly to the GLM method used in Gutiérrez et al. (2019) (row 39 in Table 3).

The second one corresponds to a deep learning technique known as convolutional neural network (CNN, 
Lecun et al., 1998). This methodology was applied to downscale precipitation over E-OBS land-gridpoints in 
Baño-Medina et al. (2021) in Europe, with the same predictors used in this work. Therefore, we use in the present 
article the same configuration: the input layer is convolutionally and sequentially connected to 3 hidden layers 
with 50, 25, and 1 feature maps, with a standard kernel size (3 × 3) in each convolutional layer. We train the CNNs 
with Adam optimizer (adaptive moment estimation, Kingma & Ba, 2015), using early stopping with 10% of the 
data set as validation set. The net is fully connected to the output layer, and, as the APRFs, provides 𝐴𝐴 𝐴𝐴, 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴𝐴 for 
each day by using the same loss function as in Cannon (2008). The interested reader is referred to Baño-Medina 
et al. (2020) and Baño-Medina et al. (2021) for further details of this methodology. We use for CNNs the entire 
geographical domain covering the 83 locations (12° West–32° East, 36° North–72° North) as predictors.

Although we do not show it for the sake of brevity, note that for each of the downscaling methods used in this 
work we have undertaken a thorough search of the optimal configuration. In addition, we also rely on the conclu-
sions drawn in Baño-Medina et al. (2020) and Legasa et al. (2022), which conducted a comprehensive assessment 
of the suitability of different settings for CNNs and APRFs for statistical downscaling, respectively. Therefore, 
the present study provides a representative overview of the merits and demerits of the different techniques consid-
ered for our target task.

Finally, note that both CNNs and GLMs require standardization of the predictors, a usual practice in machine 
learning that avoids issues with the numerical convergence of the algorithms (Hastie et al., 2009). Here, each 
predictor variable was transformed to have standard deviation 1 and mean 0 by substracting its mean and dividing 
by its standard deviation at the gridbox level. APRFs do not require this transformation, since the scale of the 
different predictor variables does not influence the splitting process. In addition, while both APRFs and GLMs 
build a separate statistical model for each location, CNNs downscale all locations simultaneously with a single 
model. Using a CNN for each location yielded no significant difference.

2.3. Diagnostic Metrics

To measure the predictive performance, in Section 3.1, we use the area under the ROC (receiver operating char-
acteristic) curve (AUC, Kharin & Zwiers, 2003); and the Spearman correlation (COR) between the observed and 
predicted time-series. Note that they are computed for the predicted expected values: for the AUC using 𝐴𝐴 𝐴𝐴 , and 
for the correlation using 𝐴𝐴 𝐴𝐴 ⋅

𝛼𝛼

𝛽𝛽
 .
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In addition, a set of diagnostic indicators from the VALUE validation framework has been selected to compre-
hensively assess the distributional performance of the three SD methods considered. R01, SDII, and P98 
address the marginal precipitation distribution: R01 measures the proportion of wet (>1 mm/day) days, SDII 
the mean rainfall on wet days and P98 the 98th percentile of rainfall on wet days, accounting for the tail of the 
distribution. The remaining indicators focus on temporal aspects. In particular, DW and WW measure the  tran-
sition probability from wet to dry and from wet to wet days, respectively. DrySpellMean and WetSpellMean, 
which are only shown in Section 3.4, measure the mean duration of dry and wet spells (≥2 days), respectively. 
All the indicators are computed from 500 simulations drawn from the downscaled probability distributions. 
For each particular indicator, these simulations give place to 500 values which are subsequently averaged.

In the next sections, for each indicator we compute (averaged from 500 simulations), when comparing against the 
reference observed value, we show the relative bias in percentage, computed as 100 × (downscaled − observed)/
observed. To assess the climate change signals produced in each diagnostic indicator, we show the relative change 
in percentage, that is, computed as 100 × (future − historical)/historical.

Note that the standard deviation and the correlation on consecutive wet days were also computed. We found that 
the standard deviation follows a very similar pattern to P98 in all aspects assessed in this work, and thus we do 
not show it here for brevity. The correlation for consecutive wet days is very low (maximum observed correlation 
is 0.32 and median 0.10), and thus we do not assess it in this work.

3. Results
The assessment of the transferability of the three SD methods presented in this work is performed in three steps. 
First, following a 5-fold cross-validation scheme (Hastie et al., 2009) and using only reanalysis predictors (both 
for training and predicting, i.e., in perfect conditions), we assess the performance of the three methodologies using 
the AUC, COR, and the marginal distribution indicators described in the previous section (Section 3.1). Second, 
we apply the SD methodologies, trained using reanalysis for the whole reference historical period, to downscale 
the historical scenario of the EC-Earth. At this point we aim for the SD methods to provide simulations that relia-
bly reproduce the local observed indicators (Section 3.2). Last, we downscale the RCP8.5 scenario, assessing the 
consistency between the climate change signals provided by the raw EC-Earth outputs and those downscaled by 
our three SD methods (Section 3.3). Therefore, in Sections 3.2 and 3.3 the conditions are non-perfect, since we 
apply the relationships learned from reanalysis to the GCM predictors. Section 3.4 is devoted to a small modifi-
cation of APRFs that leads to better performance in reproducing all the temporal indicators.

3.1. Cross-Validation in Perfect Conditions

The same 5-fold cross-validation scheme designed in the Experiment 1a of VALUE and applied in Legasa 
et al. (2022) was considered to assess the performance of the three SD methods in perfect conditions, that is, using 
ERA-Interim data both for the calibration and the prediction phase. We split the calibration period, 1979–2008, 
into 5 sets of 6 consecutive years. To predict precipitation for each 6-year period, each statistical model is trained 
with the remaining 24 years. This way, we assess the performance of the SD methods considered in this work 
when applied on unseen data. The results are shown in Figure 1, which leads to several conclusions.

In terms of predictive performance, measured by the AUC and COR, GLMs fall behind CNNs and APRFs. 
This difference is not evenly distributed across all locations, with some of them exhibiting significantly poorer 
performance than others. In particular, the geographical location with worst performance for the GLM (Karasjok, 
Norway, ECAD ID: 190) has an AUC/COR of 0.74/0.46. APRFs and CNNs significantly outperform GLMs at 
this location, with an AUC/COR of 0.82/0.51 and 0.81/0.54, respectively. Still, the difference in average predic-
tive power (across all locations) is small: the mean AUC/COR equals 0.886/0.662 for the CNN, 0.886/0.657 
for  the APRFs and 0.861/0.63 for the GLMs. The differences found between the GLMs and the other two SD 
methods suggest that capturing non-linear predictor-predictand relationships is particularly relevant at some loca-
tions. Moreover, the fact that CNNs and APRFs perform similarly suggests that the convolutional layers over the 
entire geographical domain do not provide any significant added value.

In terms of distributional performance, the three methodologies reproduce the frequency of wet days reliably, as 
measured by the R01. Regarding the mean rainfall (SDII), CNNs exhibit some biases, whereas GLMs and APRFs 
do reproduce it realistically. Indeed, for this measure, the worst bias is −2.67% (−6.58%) for the APRFs (GLMs), 
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Figure 1. Cross-validated results obtained for the different statistical downscaling methods (in columns) in perfect 
conditions, in terms of some of the diagnostic metrics described in Section 2.3 (in rows). For AUC and COR, the average 
performance over the 83 stations is shown in the colorbar for each statistical downscaling method.
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ranging in between −1.63% and 3.65% for the rest of stations. For the CNNs, 8 locations exhibit a bias in SDII 
between 5% and 10% and another 8 between −5% and −10%.

All three SD methods suffer from some biases in reproducing the 98th percentile of rainfall, but APRFs perform 
slightly better than both CNNs and GLMs. On average across the different locations considered, the absolute 
value of the relative bias (so that negative and positive biases do not compensate) for this indicator is 8.73% for 
GLMs, 5.94% for CNNs and 3.78% for APRFs. Therefore, taking into account R01, SDII, and P98, we conclude 
that APRFs provide the best results in terms of distributional performance.

Figure 2. Relative bias with respect to the observations obtained using the different statistical downscaling methods (in 
columns), computed as 100 × (Downscaled − Observed)/Observed, for the different distributional indicators specified in 
Section 2.3 (in rows). The methods are trained with reanalysis and applied to downscale the EC-Earth historical scenario.
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3.2. Downscaling in Non-Perfect Conditions: EC-Earth Historical Scenario

We assess in this section the three SD methods in non-perfect conditions. This means that they are trained 
with reanalysis predictors (for the period 1979–2008) and are subsequently applied to downscale the historical 
scenario of the EC-Earth for the same period (1979–2008). Ideally, we want them to provide simulations that 
reliably reproduce the observed statistics at the different locations, correcting the bias exhibited by the EC-Earth 
at the nearest gridpoint (shown in Figure S2 of the Supporting Information S1). The results obtained are shown 
in Figure 2.

As opposed to the considerably good performance shown in perfect conditions (Section 3.1), the three SD meth-
ods exhibit more bias when applied to the EC-Earth predictors. Although relatively weak for R01, the effect is 
particularly noticeable for SDII, which reaches more than 25% relative bias for the CNN at some locations, with 
APRFs and GLMs leading to better, similar results. Moreover, APRFs also perform better than GLMs and CNNs 
at capturing the P98, which is generally overestimated by the GLMs and underestimated by the CNNs. The tran-
sitions (WW and DW) are not well reproduced by any of the three SD methods. On average across the different 
locations considered, GLMs, CNNs, and APRFs underestimate WW by −11%, −8.2%, and −10.2% and overes-
timate DW by 9.7%, 8.3%, and 12.9%, respectively. This is the reason motivating the introduction of TAPRFs, a 
small modification to APRFs which improves this aspect, described in Section 3.4.

3.3. Downscaling EC-Earth RCP8.5 Scenario

In this section we address the climate change signals produced by each SD method when downscaling the histor-
ical and future (RCP8.5) EC-Earth scenarios. To do so, we compare the local downscaled relative signals against 
those produced by the raw EC-Earth outputs at the nearest gridpoint, thus assessing whether the changes produced 
by the different methodologies are consistent both with EC-Earth and among them. Figure 3 shows the EC-Earth 
projected changes for 2071–2100 under the RCP8.5 emissions scenario for Europe, along with the comparison of 
the projected/downscaled changes for the different indicators and SD methods used in this work.

Overall, the three SD methods considered yield local climate change signals which are broadly compatible with 
those given by the raw outputs from EC-Earth. However, GLMs and CNNs tend to deviate more from the changes 
projected by EC-Earth than APRFs. This effect is particularly evident for GLMs and the P98 indicator, with a 
clear amplification of the changes expected. Quantitatively, the average difference (across all locations and meas-
ured as the absolute value of the relative changes to avoid negative and positive values compensating) between 
the EC-Earth's raw climate change signal and the signal downscaled by GLMs/CNNs/APRFs is 6.52/4.79/3.54 
for the R01; 7/4.93/4.49 for the SDII and 10.1/7.8/7.73 for the P98. For the transitions, these differences are 
11.66/10.47/6.38 in WW and 4.39/4.7/5.98 in DW.

A potential explanation for these results might be related to how the different SD methodologies extrapolate 
values outside the historical domain: GLMs extrapolate exponentially due to the logarithm link, and CNNs 
response is highly non-linear, by construction. APRFs, instead, estimate distributions from predictive historical 
records, thus leading to more constrained climate change signals.

3.4. Temporal A Posteriori Random Forests

Figure 2 shows that none of the downscaling methodologies is able to accurately reproduce the observed tran-
sitions, neither WW nor DW. Although we do not show it for brevity, this occurs not only when downscaling 
the historical scenario of EC-Earth, but also in perfect conditions. A straightforward way to overcome this limi-
tation is by introducing a small variation to APRFs: instead of estimating the probability 𝐴𝐴 𝐴𝐴 of a wet day, the 
already-trained APRF can be used to produce downscaled estimates of the probability of precipitation for each 
day conditional on the state of the previous day. That is, instead of estimating the probability of precipitation 
over 1 mm, 𝐴𝐴 𝐴𝐴 , we now estimate 𝐴𝐴 𝐴𝐴𝐷𝐷𝐷𝐷  and 𝐴𝐴 𝐴𝐴𝑊𝑊𝑊𝑊  , with 𝐴𝐴 𝐴𝐴𝐷𝐷𝐷𝐷   = Probability(precipitation(t) > 1 mm | precipita-
tion(t − 1) ≤ 1 mm) and 𝐴𝐴 𝐴𝐴𝑊𝑊𝑊𝑊   = Probability(precipitation(t) > 1 mm | precipitation(t − 1) > 1 mm), where precip-
itation(t) and precipitation(t − 1) indicate precipitation on day t and t − 1, respectively. We can then simulate 
precipitation on day t by taking into account if day t − 1 was wet or dry. We call this method temporal a posteriori 
random forest (TAPRF).

Results for the TAPRFs, compared against the APRFs, are shown in Figure 4. Note that only the temporal metrics 
in Section 2.3 are shown, since both APRFs and TAPRFs perform similarly for the rest of diagnostic metrics. 
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Figure 3. The left column shows the climate change signals projected by the EC-Earth for the period 2071–2100 under the 
RCP8.5 scenario, expressed as relative changes (%) across the entire Europe. The right column shows the climate change 
signals produced by each downscaling methodology (y-axis) compared against the changes produced by the EC-Earth at 
the nearest gridpoint (x-axis). These signals are computed in percentage as 100 × (Future − Historical)/Historical, for the 
indicators specified in Section 2.3.
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Although the two configurations lead to similar climate change signals (right column), it can be clearly seen 
that the TAPRFs provide much better results than APRFs in terms of bias for all the temporal indicators (left 
and middle columns): the average (across locations) absolute value of the relative bias is reduced from 10.3%, 
12.9%, 3.1%, and 7.6% for the APRF to 3.8%, 4.7%, 2.7%, and 3.7% for the TAPRF, for the indicators WW, DW, 
WetSpellMean and DrySpellMean, respectively.

This suggests that TAPRFs are preferable over APRFs for the generation of local climate change scenarios, since 
they are expected to provide more reliable projections in terms of temporal structure, which is relevant in impact 
sectors such as hydrology and agriculture.

4. Conclusions
This work presents a comprehensive assessment of the suitability of three perfect prognosis methods 
(GLMs, CNNs, and APRFs) for statistical downscaling of climate change precipitation scenarios at 83 locations 

Figure 4. For the temporal metrics described in Section 2.3, relative bias with respect to the observations for the historical 
scenario, for the APRFs (first column) and TAPRFs (second column). The rightmost column shows, with different symbols 
(see the legend) the climate change signals produced by APRFs and TAPRFs (y-axis) compared against the signals produced 
by EC-Earth at the closest gridpoint (x-axis) for the 2071–2100 period under the RCP85 scenario.
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distributed across Europe. Under the PP assumption, we focus on the transferability issue, that is, on whether the 
relationships learned using reanalysis predictors and observed records can be transferred to downscale climate 
change scenarios projected by GCMs.

Both APRFs and CNNs provide better predictive performance, as measured by the higher correlation with the 
observed series and AUC in perfect conditions, suggesting that capturing non-linear predictor-predictand rela-
tionships is relevant for some geographical locations. In addition, these two SD methods automatically extract 
the relevant information contained in the predictor fields, avoiding the need to conduct an exhaustive predictor/
geographical domain screening, a complex, time-consuming task that has to be typically undertaken in many 
widely used statistical downscaling techniques and, in particular, in GLMs (Manzanas, Fiwa, et al., 2020).

In general, the three machine learning methodologies tested lead to local climate change signals which are 
broadly compatible with those given by the raw outputs from EC-Earth. Nevertheless, GLMs and CNNs tend to 
deviate more from the changes projected by EC-Earth at some locations than APRFs, sometimes considerably 
amplifying the changes. APRFs, instead, yield more stable results, which are in better agreement with those 
projected by EC-Earth, while also performing slightly better than CNNs and GLMs in terms of bias when down-
scaling the historical scenario of the EC-Earth. Moreover, a slight modification of ARPFs that explicitly models 
the transition probabilities from dry/wet to wet days, which we call TAPRF, greatly improves the performance in 
all  the temporal indicators, giving higher confidence about the plausibility of the local scenarios obtained with 
this technique. This modification also illustrates the extensibility of the technique, which we plan to apply to other 
and more complex distributions, including to perform multivariable downscaling, for example, to simultaneously 
produce consistent scenarios of precipitation and temperature; and to other GCMs and regions.

Taking into account that the main limitation of any machine learning method is its limited capability to extrap-
olate outside the predictor values' range, the results presented in this article are promising. Nevertheless, even 
though the climate change signals are overall consistent with those projected by the EC-Earth, a machine learning 
methodology with a properly controlled extrapolation mechanism of the climate change signals is still lacking and 
is an important research perspective.

Data Availability Statement
All the data used in this work (ECA&D observed rainfall, ERA-Interim and EC-Earth predictors), are publicly 
available and can be downloaded from http://www.value-cost.eu/data. The R (R Core Team,  2020) packages 
downscaleR (Bedia et  al.  (2020), https://github.com/SantanderMetGroup/downscaleR), downscaleR.keras 
(Baño-Medina et al. (2021), https://github.com/SantanderMetGroup/downscaleR.keras) and RandomForestDist 
(Legasa et al. (2022), https://github.com/MNLR/RandomForestDist) were used, respectively, to train the general-
ized linear models, convolutional neural networks and a posteriori random forests used in this work.
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