
HAL Id: hal-04097092
https://hal.science/hal-04097092v2

Preprint submitted on 29 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Economic consistency of salvage value definitions
Pierre Haessig

To cite this version:

Pierre Haessig. Economic consistency of salvage value definitions. 2024. �hal-04097092v2�

https://hal.science/hal-04097092v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Economic consistency of salvage value
definitions

Pierre Haessig, April 2023, updated July 2024 with references from the field of Engineering

Economics.

Abstract

This short report analyzes the definition of the salvage value of a component within a wider

project investment analysis. The analysis shows that the classical() definition is *close but not

exactly consistent from an economic point of view. For an exact economic consistency of the

salvage value, we derive an alternate definition using a more complex formula, which we call

the economically consistent salvage value. This formula is equivalent to the classical definition

when the discount factor is zero. The key takeaway of our analysis is that using the classical

definition creates an overestimation of the annualized project cost of up to 30% in the

worst cases (see section 3), even for a small discount factor!

(*) classical definition in the field on energy system optimization at least

One year after the 2023 version of this report, we found references from the Engineering

Economics literature showing that the formula we derived was in fact already known under the

term “implied” (Thuesen 1984) or “imputed” (Jones 1990) salvage value. Notice that we didn't

rewrite the entire document to reflect the preexistence of these references, but comparisons

are done in Appendix 6.2 to verify the equivalence between ours and literature definitions.

Still, all the analyses (graphics, series development and sensitivity to interest rate and

lifetime), presented in this document are, to the best of our knowledge, original. Another

contribution is the generalization in the case of component replacements (section 4.1).

Context and definitions

When computing the present value of a project like a microgrid, there is generally a mismatch

between the economic lifetime (or horizon of analysis) of the project and the lifetime of each

component used in the project. In order to smooth out this mismatch, a salvage value is

substracted from the project cost for each component having some remaining lifetime at the

end of the project.

A key parameter in this analysis is the real discount factor which can be 0 (no discount),

positive (the interest rate for borrowing capital is higher than inflation) or negative (inflation is

higher than the interest rate). The discount factor is assumed constant over the years in this

analysis.

For simplicity, we start by analyzing a project with one single component. The investment cost

of the component is . The component lifetime is . We also assume that the project

i

Cc Tc

horizon is shorter than the component lifetime () so that there is no replacement cost.

We consider zero operation and maintenance (O&M) costs in this analysis since they are just

extras which are independant to this discussion. Therefore, from the component point of view,

considering its own lifetime has the economic analysis horizon, the Net Present Cost of the

component is just the investment:

Then, the annualized cost of the component over its lifetime is:

where is the Capital Recovery Factor (HOMER Software, 2023) which transforms a Net

Present Value of Costs into corresponding annuities:

Now we turn to the economic analysis of the project which includes this component. The Net

Present Cost of the project over its lifetime is:

where is the nominal salvage value of the component, which gets discounted since the

salvage happens at the end of year . The corresponding annualized cost is:

(notice that annuities are computed over the project lifetime, i.e.)

The key subject of this report is: what should be value of the salvage value?

Properties of different salvage values definitions

Possible definitions of the salvage value

There are two possible definitions for the (nominal) salvage value:

a. the classical(*) definition which is proportional to the relative remaining lifetime of the

component at the end of the project:

b. the economically consistent definition which we propose

Tp ≤ Tc

NPCc = Cc

Tc

Cann,c = NPCc × CRF(i,Tc)

CRF

CRF(i,T) =
i(1 + i)T

(1 + i)T − 1

Tp

NPCp = Cc − S
1

(1 + i)Tp

S

Tp

Cann,p = NPCp × CRF(i,Tp)

Tp

Sa = Cc

Tc − Tp

Tc

Sb = Cc

(1 + i)Tc − (1 + i)Tp

(1 + i)Tc − 1

(*) definition e.g. used in the HOMER Pro microgrid design software, see (Lambert 2005) or

(HOMER 3.16 documention)

Remark: the two definitions are quite close, because

so the economically consistent definition falls back to classical one for small discount rate ,

with a difference which is linear in (see illustration below and appendix).

Now we need to specify what we call "economically consistent"…

Economic consistency of salvage value

We say that a definition of the salvage value is economically consistent if it yields an

annualized project cost which is equal to the annualized cost of the component. That is,

there is no financial difference between the analysis of the component alone versus the same

component embedded into the wider scope of the project.

This means that the economically consistent definition is the solution of the following

equation:

Proof: see Appendix.

Notice that this formula was already known in the Engineering Economics literature under the

term “implied” (Thuesen 1984) or “imputed” (Jones 1990) salvage value. It was similary used in

the context of comparing altertive investments with different lifetimes. The “implied” comes

from the fact this salvage value emerges when equating annualized cost computations with

different lifetimes. See Appendix for a proof of equivalence.

Illustration of the two definitions of the salvage value

and see appendix for the proof of the analysis of the difference between the two definitions

for small discount rates.

Key takeaway: for a positive discount rate, the consistent salvage value is greater than the

classical (linear) salvage value, except in the trivial cases when the component is new (

) or to be scrapped ().

Remark: the following code cells which produce the graphs can only be run once the cells in the

appendix are run.

i_list = [0.025, 0.050, 0.075, 0.10, 0.20] # list of discount rates

plot_salvage_Tp(i_list, Tc=20);

Sb ∼ Sa + O(i)

i

i

Cann,p


depends on S

= Cann,c

Tp ≪ Tc Tp = Tc

In [71]:

Illustration of the economic inconsistency of the classical
definition

Choosing the classical salvage value when computing the annualized project cost creates a

positive bias (cost is overestimated compared to the annulized cost of the component alone).

The shape of this effect is more difficult to analyze compared to the shape of the salvage

value. From the following plot we observe that:

the overestimation of annualized project cost is worst (strongest) for short projects (

)

it can reach +20% to +30% for the case below

this overestimation decrease almost linearly with project horizon (and is of course zero for

 since salvage is zero)

the effect of the discount rate is complex:

no overestimation when discount is zero (since in that case)

the overestimation grows quickly with discount rate, as long as it is "small enough"

beyond a certain threshold of discount rate, the overestimation is near constant or

even decreasing

#i_list = [0.025, 0.050, 0.075, 0.100, 0.200] # list of discount rates

i_list = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.20] # list of many

plot_Cann_Tp(i_list, Tc=20);

Tp/Tc → 0

Tp = Tc

Sa = Sb

In [72]:

Now looking only at the start of the curves above, that is for short projects (), we

plot the effect of the discount rate, for different component lifetime. It appears that:

the worst case overestimation is consistently about 1.30, i.e. +30%

this worst case overestimation is attained for a discount rate slightly below

See the appendix for a mixed analytical and numerical proof that the worst case is attained for

 (when). The worst case overestimation is indeed independant of

and and is numerically evaluated at 1.2984... i.e. +29.84%.

Tc_list=[10, 20, 40]

plot_Cann_Tp0_i(Tc_list, i_max=0.20);

Tp/Tc → 0

2/Tc

i ≈ 1.79/Tc Tc ≫ 1.79 Tc

i

In [73]:

Further use of the economically consistent salvage
value

In the above discussion, we have only studied the case a of project with an horizon shorter

than the component lifetime . However, the economic consistency of the salvage value

definition also applies to more complex cases. In particular, we analyze two useful cases:

1. The project horizon is longer than the component lifetime () so that there is a

replacement cost that needs to be accounted for

2. The project is (virtually) sold at mid-project term and bought back immediately after.

In both cases, we show (see appendix for mathematical prooves) that the annualized project

cost in unchanged and equal to the annualized component cost

Project with replacements of the component

with one replacement

With one replacement (occuring at the end of year), the Net Present Cost of the project

over its lifetime is:

Tp

Tc

Sb

Tp > Tc

Tc

Tp

NPCp = Cc + Rc − S
1

(1 + i)Tc
1

(1 + i)Tp

To proove the economic consistency (annualized project cost = annualized component cost) we

must of course assume that , the nomial replacement cost of the component, is equal to the

initial investement cost: .

For the salvage value , we use the above definitions except that the remaining life should be

counted for the second component, which has only been used for time and which end

of life should occur at . This means that in the salvage value definitions become:

The classical salvage value definition becomes:

For the economically consistent definition, there is an ambiguity about which term of the

numerator to update:

should become , that is the component end of life happen twice later ?

should become , that is update the usage duration of the component?

As prooved in the appendix, correct update of the definition is to update the usage duration (

 becomes):

With more than one replacement

If the component is replaced times, the salvage value should be updated by replacing by

. In the appendix, we have the proof for two replacements () and we guess

that it could be prooved for the general case .

Project is sold at mid-term and bought back immediately after

This case is useful when optimizing reinvestment within the project lifetime. Indeed in some

context, it can be easier to model the complete sale of the project which is immediately

bought after (possibly with different capacities) than to model the cost of the capacity change.

To proove the economic consistency (annualized project cost = annualized component cost) we

must of course assume here that the project is bought back unchanged (no capacity expansion)

even if the interest of this formulation is to allow capacity adjustment. For simplicity, we do

not consider replacement (i.e.).

We introduce the year of selling the project at mid project. There are two salvage

values, one for the first sale at mid project () and then the salvage at the real end of the

project () but considering only duration of that second sub-project for the aging of the

component. With these notations, the Net Present Cost of a project, with mid-term sale and

immediate buy back, over its lifetime , is:

Rc

Rc = Cc

S

Tp − Tc

2.Tc

Sa = Cc

2.Tc − Tp

Tc

Tc 2.Tc
Tp Tp − Tc

Tp Tp − Tc

Sb = Cc

(1 + i)Tc − (1 + i)Tp−Tc

(1 + i)Tc − 1

n Tp

Tp − n.Tc n = 2
n ≥ 1

Tp ≤ Tc

Tmid ≤ Tp

Smid

Sfinal

Tp

NPCp = Cc − Smid + Cc − Sfinal

1
(1 + i)Tmid

1
(1 + i)Tmid

1

(1 + i)Tp

The two economically consistent salvage values are the same as the case of a project without

replacement, but with reduced project durations:

the mid project salvage uses as project duration

the final salvage value uses as project duration

Proof: see Appendix

Economic inconsistency of the classical definition with mid-term sale

To study the practical importance of using the above formulaes for salvage, we compute the

annualized project cost when using the classical salvage values. Since there are two salvage

events, this means using the following salvage values:

Like for the first graph of the economic inconsistency of the classical definition without mid-

term sale, the effect is not so easy to analyze. We observe that:

the overestimation of annualized project cost is worst (strongest) when the mid-term sale

happens at half-project life for "small enough" discount rates

it can reach +13%

the maximum is reached for mid-term sale happening before half-project in the case

of "high" discount rates

this overestimation is zero for

the effect of the discount rate is complex, like for the case without mid-term sale:

no overestimation when discount is zero (since in that case)

the overestimation grows quickly with discount rate, as long as it is "small enough"

(already +4% for half-project sale when only)

beyond a certain threshold of discount rate, the overestimation is near constant or

even decreasing

Also, repeating the plot for different values of the component lifetime , it seems that the

worst case overestimation is attained for a discount rate slightly below . This is similar (at

least approximately) to the case without mid-term sale.

#i_list = [0.025, 0.050, 0.075, 0.100, 0.200] # list of discount rates

i_list = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.20] # list of many

plot_Cann_Tmid(i_list, Tc=20);

Tmid

Tp − Tmid

Sb,mid = Cc

(1 + i)Tc − (1 + i)Tmid

(1 + i)Tc − 1

Sb,final = Cc

(1 + i)Tc − (1 + i)Tp−Tmid

(1 + i)Tc − 1

Sa,mid = Cc

Tc − Tmid

Tc

Sa,final = Cc

Tc − (Tp − Tmid)
Tc

Tmid = 0 or Tp

Sa = Sb

i = 1%

Tc

2/Tc

In [74]:

#i_list = [0.025, 0.050, 0.075, 0.100, 0.200] # list of discount rates

i_list = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.20] # list of many

plot_Cann_Tmid(i_list, Tc=10);

In [75]:

#i_list = [0.025, 0.050, 0.075, 0.100, 0.200] # list of discount rates

i_list = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.20] # list of many

plot_Cann_Tmid(i_list, Tc=40);

In [76]:

Salvage value when Operation and Maintenance costs are time-
varying

Throughout this document, we haven't discussed Operation and Maintenance (O&M) costs,

because when they are constant (and this was our implicit assumption, as done in HOMER),

there can be simply added/subtracted from the annualized cost computation as needed.

If interested (Jones 1990) generalizes the formula in the case of time-varying Operation and

Maintenance costs.

References

T. Lambert, P. Gilman, and P. Lilienthal, “Micropower system modeling with HOMER,” in

Integration of Alternative Sources of Energy (F. A. Farret and M. G. Simões, eds.), John Wiley

& Sons, Dec. 2005.

https://www.homerenergy.com/documents/MicropowerSystemModelingWithHOMER.pdf

HOMER Software, “Capital Recovery Factor”, in HOMER Pro 3.16 documentation, 2024.

https://support.ul-renewables.com/homer-manuals-pro/capital_recovery_factor.html

HOMER Software, “Salvage value”, in HOMER Pro 3.16 documentation, 2024.

https://support.ul-renewables.com/homer-manuals-pro/salvage_value.html

P. C. Jones, W. J. Hopp, and J. L. Zydiak, “Generalized Imputed Salvage Values,” The

Engineering Economist, vol. 35, no. 3, pp. 215–229, Jan. 1990, doi:

10.1080/00137919008903018.

https://www.homerenergy.com/documents/MicropowerSystemModelingWithHOMER.pdf
https://support.ul-renewables.com/homer-manuals-pro/capital_recovery_factor.html
https://support.ul-renewables.com/homer-manuals-pro/salvage_value.html
https://doi.org/10.1080/00137919008903018

G. J. Thuesen and W. J. Fabrycky, Engineering economy, 6th ed. Prentice-Hall, 1984.

Available: https://archive.org/details/engineeringecono0000thue_t6g6/

Appendix

Remark: the code cells above can only be run once the cells in this appendix are run.

import sympy

from sympy import symbols, series, simplify, log

import numpy as np

import scipy.optimize as opt

import matplotlib.pyplot as plt

def CRF(i,T):

 'Capital Recovery Factor'

 a = (1+i)**T

 return i*a/(a-1)

In the following, we assume that the investment cost without loss of generality. Only,

the salvage value discussed in the following is fact a relative salvage value (with true value

).

Proof of the economic consistency of salvage value definition b

i, S = symbols('i S', real=True)

Tc, Tp = symbols('T_c T_p', positive=True, integer=True)

integer Tc, Tp needed for (1/x)**T simplification into 1/x**(-T),

because the alternative assumption that x=1+i>=0 cannot be specified in SymPy

The most robust solution would be to introduce a symbol for 1+i, assumed posi

or 1/(1+i) like Jones,

Annualized cost of the component over its lifetime:

Cann_c = CRF(i, Tc)*1

Cann_c

NPCp = 1 - S/(1+i)**Tp

NPCp

Cann_p = CRF(i, Tp) * NPCp

Cann_p

In [1]:

In [2]:

Cc = 1

S = Srelative.Cc

In [3]:

In [4]:

Out[4]: i(i + 1)Tc

(i + 1)Tc − 1

In [5]:

Out[5]: −S(i + 1)−Tp + 1

In [6]:

Out[6]: i(i + 1)Tp (−S(i + 1)−Tp + 1)

(i + 1)Tp − 1

https://archive.org/details/engineeringecono0000thue_t6g6/

We inject the proposed definition into the project annualized cost to show that it indeed gets

equal to the component annualized cost:

Sb = ((1+i)**Tc - (1+i)**Tp)/((1+i)**Tc - 1) * 1

Sb

simplify(Cann_p.subs({S:Sb})) # == Cann_c

simplify(Cann_p.subs({S:Sb}) - Cann_c) # == 0

Comparison with “imputed” or “implied” salvage value

Comparison with formulaes from the Engineering Economics literature.

“Imputed” salvage value formula in (Jones 1990), using their notations:

with:

capital cost investment

discount factor

component lifetime (asset economic life in the article). in our notation.

project study period (). in our notation.

component salvage value at the end of its economic life

Since here we consider technical and not economic component lifetime, we are in the special

case , so the formula simplifies to

and several other factors cancel out:

Implementation note: due to the way SymPy handles powers for complex numbers, the

necessary simplifications needs some strange ways to specify things. In particular, I would

need to specify that so that , but this is not possible with Sympy's per-

In [7]:

Out[7]: (i + 1)Tc − (i + 1)Tp

(i + 1)Tc − 1

In [8]:

Out[8]: i(i + 1)Tc

(i + 1)Tc − 1

In [9]:

Out[9]: 0

ISV = [(p − snδ
n)][] + snδ

n−n∗1 − δ

δ(1 − δn)

δ(1 − δn−n∗
)

(1 − δ)

p

δ = 1/(1 + i)
n Tc

n∗ n∗ ≥ n Tp

sn

sn = 0

ISV = [p][]
1 − δ

δ(1 − δn)

δ(1 − δn−n∗
)

(1 − δ)

ISV = p
1 − δn−n∗

1 − δn

i ≥ −1 1 + i ≥ 0

symbol assumption mechanism. See discussion

https://groups.google.com/g/sympy/c/9HDZLOPHMH4/m/rI4AILbEAQAJ

a = symbols('a')

x = symbols('x', positive=True)

simplify(a**x * (1/a)**x) # subtly different from simplify(a**x * (1/(a**x))) w

simplify(a**x * (1/(a**x)))

Simplification OK if both are positive

a = symbols('a', positive=True)

x = symbols('x', positive=True)

simplify(a**x * (1/a)**x)

Alternative: assume x is an integer

a = symbols('a')

x = symbols('x', integer=True)

simplify(a**x * (1/a)**x)

δ = 1/(1+i)

ISV = (1-δ**(Tc-Tp))/(1-δ**Tc)

ISV

Sb

simplify(Sb - ISV) # == 0

So (Jones 1990) imputed salvage value is indeed the same as our "consistent" one.

Now, (Jones 1990) cites the textbook (Thuesen 1984), where I found a similar discussion in Ch

7 Decision Making Among Alternatives, specifically in section 7.10 Comparison of Alternatives

with Unequal Service Lives. There is introduced the project study period (in our notation)

with (with being the alternative's life, in our notation). The book states there are

several methods:

In [10]:

Out[10]:
ax()

x1
a

In [11]:

Out[11]: 1

In [12]:

Out[12]: 1

In [13]:

Out[13]: 1

In [14]:

Out[14]: 1 − (i + 1)−Tc+Tp

1 − (i + 1)−Tc

In [15]:

Out[15]: (i + 1)Tc − (i + 1)Tp

(i + 1)Tc − 1

In [16]:

Out[16]: 0

n∗ Tp

n∗ ≠ n n Tc

https://docs.sympy.org/latest/guides/assumptions.html
https://groups.google.com/g/sympy/c/9HDZLOPHMH4/m/rI4AILbEAQAJ

Because alternatives being compared must be judged over the same study

period, various assumptions are utilized to places alternatives with unequal lives

within the same study period.

Authors classifies these methods depending on the situation whether or for

one or any of the alternatives under study. They start the discussion with the case Alternative's

life longer than study period (for at least one alternative). Then the economic analysis

of that long lived asset should include an “implied salvage value or unused value” to “be

imputed at the end of the study period”. Thuesen & Fabrycky state that two estimations can

be used:

1. actual market value of the partially used asset (how much can it be sold?)

2. compute annual equivalent amount (AE) of each alternative over its service life (the life of

each asset being different)

Approach 2 “is widely applied because of its ease of calculation” and works for “any study

period less than the life of the shortest lived alternative” (extreme case: year). Indeed,

the study period duration doesn't enter the computation.

However, authors go on to underline that Approach 2 embodies an implied salvage value at

the end of the study period. Notation , which is solution of the annual cost equivalence

equation:

with the component salvage value at the end of its economic life (in Jones 1990) and

using Jones 1990 notation for , the capital cost investment.

(Thuesen 1984) uses the following notations for the conversion to one-time payements to

annual payments (defined in chapter 3):

 present payment, future payment, annual recurring payment

: Equal-payment-series capital-recovery factor, at annual interest rate , over

years (p 42-43)

This is the CRF in this document.

: Equal-payment-series sinking-fund factor (p 41):

As with (Jones 1990), we only focus on the special case where there is zero salvage value at

the end of asset life: , so

S_T84 = -(CRF(i,Tc) - CRF(i,Tp))/(CRF(i,Tp)/(1+i)**Tp)

S_T84 = simplify(S_T84)

S_T84

n∗ > n n∗ < n

n∗ < n

n∗ = 1

Fn∗

−p. (A/P , i,n) + Fn(A/F , i,n)


 AE over actual service life n

= −p. (A/P , i,n∗) + Fn∗(A/F , i,n∗)


 AE over study period n∗

Fn sn

p

P F A

(A/P , i,n) i n

(A/F , i,n) = CRF . 1
(1+i)n

Fn = 0

Fn∗ = −p
(A/P , i,n) − (A/P , i,n∗)

(A/F , i,n∗)

In [17]:

simplify(S_T84 - Sb)

Thuesen discussion goes on with an alternative formula (again rewritten in the special case of

)

that is using our notation:

and Thuesen comment this term as “the single-payment equivalent of the loss of capital that

will be incurred after the study period”

S_T84_bis = CRF(i,Tc)/CRF(i,Tc-Tp)

S_T84_bis = simplify(S_T84_bis)

S_T84_bis

simplify(S_T84_bis - Sb)

Finally, (Thuesen 1984, p 214) comments that the implied salvage value should be compared

with an estimate of the actual salvage value. If there is a significant difference, then the

Annual Equivalent method should not be used. This is where (Jones 1990) disagrees.

Behavior of the economically consistent salvage value
(definition b) for small discount rate

Observation: for small discount rate , tends linearly to :

The corrective term is zero, as expected for:

 (when since the component is new)

 (when since the component is at end of life)

Series expension of around :

Out[17]: (i + 1)Tc − (i + 1)Tp

(i + 1)Tc − 1

In [18]:

Out[18]: 0

Fn = 0

Fn∗ = p. (A/P , i,n). (P/A, i,n − n∗)

S/p =
CRF(i,Tc)

CRF(i,Tc − Tp)

In [19]:

Out[19]: (i + 1)Tp ((i + 1)Tc−Tp − 1)

(i + 1)Tc − 1

In [20]:

Out[20]: 0

i Sb Sa

Sb ∼ Sa + i + O(i2)
Tp. (Tc − Tp)

2.Tc

Tp = 0 S = 1
Tp = Tc S = 0

Sb i = 0

Sb_ser = series(Sb, i, n=2)

simplify(Sb_ser)

SbTc_ser = series(Sb*Tc, i, n=2)

simplify(SbTc_ser)

limit behavior of the difference with the classical definition :

Sa = (Tc-Tp)/Tc

simplify((Sb_ser - Sa))

simplify((SbTc_ser - Sa*Tc))

Decrease of the economically consistent salvage value
(definition b) for small project lifetime

Since the classical definition of salvage value is linear in project lifetime , its derivative is

constant equal to .

Compared to this, the economically consistent salvage value (definition b) is nonlinear in .

Its derivative for small project values is less negative:

Sb.diff(Tp).subs({Tp:0})

simplify(series(Sb.diff(Tp).subs({Tp:0}), i, n=3))

Economic inconsistency of the classical definition

Injecting now the classical salvage value definition into the annual project cost:

Cann_p_rel = Cann_p.subs({S:Sa})/Cann_c

Cann_p_rel = simplify(Cann_p_rel)

Cann_p_rel

In [21]:

Out[21]: Tc (2 + O (i2)) + Tpi (Tc − Tp) − 2Tp

2Tc

In [22]:

Out[22]:
−Tp + + Tc + O (i2)

Tpi (Tc − Tp)
2

Sa

In [23]:

In [24]:

Out[24]: −T 2
p i + TcTpi + O (i2)

2Tc

In [25]:

Out[25]:
+ O (i2)

Tpi (Tc − Tp)
2

Tp

−1/Tc

Tp

In [26]:

Out[26]:
−

log (i + 1)

(i + 1)Tc − 1

In [27]:

Out[27]:
− + − − + O (i3)

1
Tc

i

2
i2

4
Tci

2

12

In [28]:

Inconsistency for short projects

Focus on short projects (we need to take the limit , since the denominator is zero at

):

Cann_p_rel_Tp0 = Cann_p_rel.limit(Tp, 0)

Cann_p_rel_Tp0

To analyze the effect of discount rate (which is not monotonic as visualized with

plot_Cann_Tp0_i), we turn to a series decomposition:

linear effect is positive: , which explaines the increase in overestimation for

small discount rate

quadratic effect is negative which explains the decrease when the discount

rate gets "big enough"

Cann_p_rel_Tp0_ser = simplify(Cann_p_rel_Tp0.series(i, 0, n=3))

Cann_p_rel_Tp0_ser

Cann_p_rel_Tp0_ser.diff(i)

sympy.solve(Cann_p_rel_Tp0_ser.diff(i), i)[0]

And this series is maximal (zero of the derivative) at:

i_worst = 1/(1+4*Tc/3)

simplify(Cann_p_rel_Tp0_ser.diff(i).subs({i:i_worst})) # = 0 + O(...)

Out[28]: (i + 1)−Tc ((i + 1)Tc − 1)(Tc(i + 1)Tp − Tc + Tp)

Tc ((i + 1)Tp − 1)

Tp → 0
Tp = 0

In [29]:

Out[29]: (i + 1)−Tc (Tc log (i + 1) + 1)((i + 1)Tc − 1)

Tc log (i + 1)

+Tc/2 × i

−Tc/4 × i2

In [30]:

Out[30]:
1 + − − + O (i3)

Tci

2
Tci

2

4
T 2
c i

2

3

In [31]:

Out[31]:
− − + O (i2)

Tc

2
Tci

2
2T 2

c i

3

In [32]:

Out[32]: 3 (Tc + O (i2))

Tc (4Tc + 3)

i =
1

1 + 4/3.Tc

In [33]:

In [34]:

Out[34]:
O(;Tc → ∞)

1

T 2
c

However, the maximal value is not a constant:

simplify(Cann_p_rel_Tp0_ser.subs({i:i_worst}))

For further analysis, we simplify the expression Cann_p_rel_Tp0 by recognizing a function

 evaluated at :

x = symbols('x', positive=True)

Cx = (1+log(x))*(x-1)/(x*log(x))

Cx

Check that the expression in is indeed equivalent to Cann_p_rel_Tp0 for :

simplify(Cx.subs({x:(1+i)**Tc}) - Cann_p_rel_Tp0)

Remark: Sympy doesn't see the equality between logs at the denominator, because it needs a

positivity assumption:

simplify(log(x**2) - 2*log(x))

a = symbols('a') # without positive=True

simplify(log(a**2) - 2*log(a))

Now looking at the derivative:

simplify(Cx.diff(x))

num = Cx.diff(x)*x**2*log(x)**2

num = simplify(num)

num

There is no analytical root that SymPy can find:

In [35]:

Out[35]: 12 + 19Tc + O(;Tc → ∞)1

T 2
c

4 ⋅ (4Tc + 3)

x ↦ C(x) x = (1 + i)Tc

In [36]:

Out[36]: (x − 1) (log (x) + 1)

x log (x)

x x = (1 + i)Tc

In [37]:

Out[37]:

− − +
1

log((i + 1)Tc)

(i + 1)−Tc

log((i + 1)Tc)

1

Tc log (i + 1)

(i + 1)−Tc

Tc log (i + 1)

In [38]:

Out[38]: 0

In [39]:

Out[39]: −2 log (a) + log (a2)

In [40]:

Out[40]: −x + log (x)2 + log (x) + 1

x2 log (x)2

In [41]:

Out[41]: −x + log (x)2 + log (x) + 1

sympy.solve(num, x) # NotImplementedError

Only numerical root finding works:

opt.root_scalar(lambda x: 1 - x + np.log(x) + (np.log(x))**2, bracket = (5,10))

 converged: True

 flag: converged

function_calls: 8

 iterations: 7

 root: 6.009142941081862

 method: brentq

And this is coherent with the numerical maximization of :

Cx_fun = lambda x: (1+np.log(x))*(x-1)/(x*np.log(x))

Cx_fun(6.01-0.5), Cx_fun(6.01), Cx_fun(6.01+0.5)

(1.2981372299707084, 1.298425606777053, 1.298198390999316)

Cx_minus_fun = lambda x: -Cx_fun(x)

res = opt.minimize_scalar(Cx_minus_fun, [2,6,10], bounds=[2,10])

Cx_max = -res.fun # 1.2984

Cx_argmax = res.x # 6.0091

print(res)

message: Solution found.

success: True

 status: 0

 fun: -1.298425607525638

 x: 6.009143977032298

 nit: 12

 nfev: 12

np.log(Cx_argmax)

1.793282305296451

Therefore, the worst case economic inconsistency happens for pairs which statisfies:

and this equation can be solved for the discount factor :

and since for most component lifetime values, we can linearize :

This observation is coherent with the graph obtained with plot_Cann_Tp0_i : the worst

case discount factor is about twice the inverse lifetime.

Proof of the economic consistency with replacements

In [42]:

x∗ ≈ 6.0091

In [43]:

Out[43]:

C(x)

In [44]:

Out[44]:

In [45]:

In [46]:

Out[46]:

(i,Tc)

(1 + i)Tc = x∗ ≈ 6.01

i

i = exp () − 1
log(x∗)

Tc

log(x∗) ≈ 1.79 ≪ Tc exp

i ≈ ≈
log(x∗)

Tc

1.79
Tc

with one replacement

That is and assuming that replacement cost is equal to the initial investment.

NPC becomes:

NPCp_1rep = 1 + 1/(1+i)**Tc - S/(1+i)**Tp

NPCp_1rep

Cann_p_1rep = CRF(i, Tp) * NPCp_1rep

Cann_p_1rep

As mentioned in the section Project with one replacement cost, there is an ambiguity about

which term of the numerator to update in the salvage value definition. So we create both

possible expressions and inject them in the project annualized cost.

We show that replacing becomes (i.e. component end of life happen twice later) is

incorrect. The correct update of the definition is to replace becomes (i.e. the usage

duration of the component).

Sb_1rep_incorrect = ((1+i)**(2*Tc) - (1+i)**Tp)/((1+i)**Tc - 1) * 1

Sb_1rep_incorrect

simplify(Cann_p_1rep.subs({S:Sb_1rep_incorrect})) # != Cann_c

simplify(Cann_p_1rep.subs({S:Sb_1rep_incorrect}) - Cann_c) # != 0

Sb_1rep = ((1+i)**Tc - (1+i)**(Tp-Tc))/((1+i)**Tc - 1) * 1

Sb_1rep

simplify(Cann_p_1rep.subs({S:Sb_1rep})) # == Cann_c

Tp ∈ [Tc, 2.Tc]

In [47]:

Out[47]: −S(i + 1)−Tp + 1 + (i + 1)−Tc

In [48]:

Out[48]: i(i + 1)Tp (−S(i + 1)−Tp + 1 + (i + 1)−Tc)

(i + 1)Tp − 1

Tc 2.Tc
Tp Tp − Tc

In [49]:

Out[49]: (i + 1)2Tc − (i + 1)Tp

(i + 1)Tc − 1

In [50]:

Out[50]: i(i + 1)−Tc ((i + 1)Tc (−(i + 1)2Tc + (i + 1)Tp) + (i + 1)Tp ((i + 1)Tc − 1) + (i + 1)Tc+Tp ((i + 1)Tc −

((i + 1)Tc − 1)((i + 1)Tp − 1)

In [51]:

Out[51]: i(i + 1)−Tc (−(i + 1)2Tc + (i + 1)Tp)

(i + 1)Tp − 1

In [52]:

Out[52]: (i + 1)Tc − (i + 1)−Tc+Tp

(i + 1)Tc − 1

In [53]:

simplify(Cann_p_1rep.subs({S:Sb_1rep}) - Cann_c) # == 0

With two replacements

That is and again assuming that replacement cost is equal to the initial

investment.

NPC becomes:

NPCp_2rep = 1 + 1/(1+i)**Tc + 1/(1+i)**(2*Tc) - S/(1+i)**Tp

NPCp_2rep

Cann_p_2rep = CRF(i, Tp) * NPCp_2rep

Cann_p_2rep

The definition of salvage value is updated by replacing by (i.e. the usage duration

of the last component).

Sb_2rep = ((1+i)**Tc - (1+i)**(Tp-2*Tc))/((1+i)**Tc - 1) * 1

Sb_2rep

simplify(Cann_p_2rep.subs({S:Sb_2rep})) # == Cann_c

simplify(Cann_p_2rep.subs({S:Sb_2rep}) - Cann_c) # == 0

Proof of the economic consistency with a mid project sale and
immediate buy back

We introduce the year of selling the project at mid project. There are two salvage

values, one for the first sale at mid project () and then the usual alvage at the end of the

Out[53]: i(i + 1)−Tc ((i + 1)Tc (−(i + 1)Tc + (i + 1)−Tc+Tp) + (i + 1)Tp ((i + 1)Tc − 1) + (i + 1)Tc+Tp ((i + 1)T

((i + 1)Tc − 1)((i + 1)Tp − 1)

In [54]:

Out[54]: 0

Tp ∈ [2.Tc, 3.Tc]

In [55]:

Out[55]: −S(i + 1)−Tp + 1 + (i + 1)−Tc + (i + 1)−2Tc

In [56]:

Out[56]: i(i + 1)Tp (−S(i + 1)−Tp + 1 + (i + 1)−Tc + (i + 1)−2Tc)

(i + 1)Tp − 1

Tp Tp − 2.Tc

In [57]:

Out[57]: (i + 1)Tc − (i + 1)−2Tc+Tp

(i + 1)Tc − 1

In [58]:

Out[58]: i(i + 1)Tc

(i + 1)Tc − 1

In [59]:

Out[59]: 0

Tmid < Tp

Smid

project.

NPC becomes:

T_mid = symbols('T_mid', integer=True, positive=True)

S_mid, S_fin = symbols('S_mid S_fin')

NPCp_1sale = 1 - S_mid/(1+i)**T_mid + 1/(1+i)**T_mid + - S_fin/(1+i)**Tp

NPCp_1sale

Cann_p_1sale = CRF(i, Tp) * NPCp_1sale

Cann_p_1sale

The definitions of the two salvage values are the same as the case of a project without

replacement, but with reduced project duration:

the mid project salvage uses as project duration

the final salvage value uses as project duration

Sb_mid = ((1+i)**Tc - (1+i)**(T_mid))/((1+i)**Tc - 1) * 1

Sb_mid

Sb_fin = ((1+i)**Tc - (1+i)**(Tp-T_mid))/((1+i)**Tc - 1) * 1

Sb_fin

simplify(Cann_p_1sale.subs({S_fin:Sb_fin, S_mid:Sb_mid})) # == Cann_c

simplify(Cann_p_1sale.subs({S_fin:Sb_fin, S_mid:Sb_mid}) - Cann_c) # == 0

Plot functions

def plot_salvage_Tp(i_list, Tc):

 """Salvage value with respect to project lifetime,

 for a given component lifetime Tc, for a list of discount rates

 """

 Tp = np.linspace(0, Tc, num=2*Tc+1)

In [60]:

In [61]:

Out[61]: −Sfin(i + 1)−Tp − Smid(i + 1)−Tmid + 1 + (i + 1)−Tmid

In [62]:

Out[62]: i(i + 1)Tp (−Sfin(i + 1)−Tp − Smid(i + 1)−Tmid + 1 + (i + 1)−Tmid)

(i + 1)Tp − 1

Tmid

Tp − Tmid

In [63]:

Out[63]: (i + 1)Tc − (i + 1)Tmid

(i + 1)Tc − 1

In [64]:

Out[64]: (i + 1)Tc − (i + 1)−Tmid+Tp

(i + 1)Tc − 1

In [65]:

Out[65]: i(i + 1)Tc

(i + 1)Tc − 1

In [66]:

Out[66]: 0

In [67]:

 Sa = (Tc-Tp)/Tc

 fig, ax = plt.subplots()

 ax.axvline(0, color='gray')

 ax.axvline(Tc, color='gray')

 ax.plot(Tp, Sa, 'k--', label='Sa (classical)')

 for i in i_list:

 Sb = ((1+i)**Tc - (1+i)**Tp)/((1+i)**Tc - 1)

 ax.plot(Tp, Sb, label=f'Sb i={i:.1%}')

 ax.grid()

 ax.xaxis.major.locator.set_params(nbins=5)

 ax.yaxis.major.locator.set_params(nbins=5)

 ax.legend(loc='lower left')

 ax.set(

 title=f'Salvage value of a component with lifetime Tc={Tc:.0f} y',

 xlabel='Project lifetime Tp (y)',

 ylabel='Salvage (relative to investment)'

)

 fig.tight_layout()

 return fig, ax

def plot_Cann_Tp(i_list, Tc):

 """Annualized project cost (relative to component's annualized cost),

 with respect to project lifetime,

 when using the classical salvage value definition,

 for a given component lifetime Tc, for a list of discount rates

 """

 Tp = np.linspace(0+1e-3, Tc, num=2*Tc+1)

 Sa = (Tc-Tp)/Tc

 fig, ax = plt.subplots()

 ax.axvline(0, color='gray')

 ax.axvline(Tc, color='gray')

 # reference = 1 (when using economically consistent salvage value)

 ax.hlines(1, 0, Tc, colors='k', linestyles='--', label='')

 for i in i_list:

 Cann_c = CRF(i, Tc)

 NPCp = (1 - Sa/(1+i)**Tp)

 Cann_p = CRF(i, Tp) * NPCp

 Cann_p_rel = Cann_p/Cann_c

 ax.plot(Tp, Cann_p_rel, label=f'i={i:.1%}')

 ax.grid()

 ax.xaxis.major.locator.set_params(nbins=5)

 ax.yaxis.major.locator.set_params(nbins=5)

 ax.legend(loc='upper right')

 ax.set(

 title=f'Annualized project cost of a component with lifetime Tc={Tc:.0f

 xlabel='Project lifetime Tp (y)',

 ylabel='Annualized project cost\n relative to annualized component cost

)

 fig.tight_layout()

 return fig, ax

In [68]:

def plot_Cann_Tp0_i(Tc_list, i_max):

 """Annualized project cost (relative to component's annualized cost),

 with respect to discount rate from 0 to i_max,

 for a list of component lifetime Tc_list,

 when using the classical salvage value definition,

 when the project lifetime is small (Tp/Tc ~ 0)

 """

 Tp = Tc_list[0]/1000

 i_lin = np.linspace(1e-6, i_max, num=100)

 fig, ax = plt.subplots()

 ax.hlines(1, i_lin[0], i_lin[-1], colors='k', linestyles='--', label='')

 for Tc in Tc_list:

 Sa = (Tc-Tp)/Tc

 Cann_c = CRF(i_lin, Tc)

 NPCp = (1 - Sa/(1+i_lin)**Tp)

 Cann_p = CRF(i_lin, Tp) * NPCp

 Cann_p_rel = Cann_p/Cann_c

 ax.plot(i_lin, Cann_p_rel, label=f'Tc={Tc:.0f} y')

 ax.grid()

 ax.xaxis.major.locator.set_params(nbins=5)

 ax.yaxis.major.locator.set_params(nbins=5)

 ax.legend(loc='upper right')

 ax.set(

 title=r'Annualized project cost of a component, for short project ($T_p

 xlabel='Discount rate i',

 ylabel='Annualized project cost\n relative to annualized component cost

)

 fig.tight_layout()

 return fig, ax

def plot_Cann_Tmid(i_list, Tc):

 """Annualized project cost (relative to component's annualized cost),

 with respect to mid-term project sale (with immediate buy back),

 when using the classical salvage value definition,

 with assumption Tp=Tc (no replacement),

 for a given component lifetime Tc, for a list of discount rates.

 """

 Tp = Tc # assumption of no replacement and no salvage if there were no mid-

 Tmid = np.linspace(0, Tc, num=4*Tc+1)

 # Classical salvage values:

 Sa_mid = (Tc-Tmid)/Tc

 Sa_fin = (Tc-(Tp-Tmid))/Tc

 fig, ax = plt.subplots()

 ax.axvline(0, color='gray')

 ax.axvline(Tc, color='gray')

 # reference = 1 (when using economically consistent salvage values)

 ax.hlines(1, 0, Tc, colors='k', linestyles='--', label='')

 for i in i_list:

 Cann_c = CRF(i, Tc) # Component alone, for reference

In [69]:

In [70]:

 NPCp = (1 - Sa_mid/(1+i)**Tmid + 1/(1+i)**Tmid - Sa_fin/(1+i)**Tp)

 Cann_p = CRF(i, Tp) * NPCp

 Cann_p_rel = Cann_p/Cann_c

 ax.plot(Tmid, Cann_p_rel, label=f'i={i:.1%}')

 ax.grid()

 ax.xaxis.major.locator.set_params(nbins=5)

 ax.legend(loc='upper right')

 ax.set(

 title=f'Annualized project cost of a component with lifetime Tc={Tc:.0f

 '\n when project is sold at mid-term and immediately bought back

 xlabel='Project mid-term sale Tmid (y)',

 ylabel='Annualized project cost\n relative to annualized component cost

)

 fig.tight_layout()

 return fig, ax

