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For simplicity, we start by analyzing a project with one single component. The investment cost of the component is . The component lifetime is . We also assume that the project horizon is shorter than the component lifetime ( ) so that there is no replacement cost. We consider zero operation and maintenance (O&M) costs in this analysis since they are just extras which are independant to this discussion. Therefore, from the component point of view, considering its own lifetime has the economic analysis horizon, the Net Present Cost of the component is just the investment:

Then, the annualized cost of the component over its lifetime is:

where is the Capital Recovery Factor (HOMER Software, 2023) which transforms a Net Present

Value of Costs into corresponding annuities:

Now we turn to the economic analysis of the project which includes this component. The Net Present Cost of the project over its lifetime is: where is the nominal salvage value of the component, which gets discounted since the salvage happens at the end of year . The corresponding annualized cost is:

(notice that annuities are computed over the project lifetime, i.e. )

The key subject of this report is: what should be value of the salvage value?

Properties of different salvage values definitions

Possible definitions of the salvage value

There are two possible definitions for the (nominal) salvage value:

a. the classical definition (citation...) which is proportional to the relative remaining lifetime of the component at the end of the project:

b. the economically consistent definition which we propose Remark: the two definitions are quite close, because so the economically consistent definition falls back to classical one for small discount rate , with a difference which is linear in (see illustration below and appendix).

Now we need to specify what we call "economically consistent"…

Economic consistency of salvage value

We say that a definition of the salvage value is economically consistent if it yields an annualized project cost which is equal to the annualized cost of the component. That is, there is no financial difference between the analysis of the component alone versus the same component embedded into the wider scope of the project.

This means that the economically consistent definition is the solution of the following equation:

Proof: see Appendix.

Illustration of the two definitions of the salvage value

S T p C ann,p = N P C p × CRF (i, T p ) T p S a = C c T c -T p T c S b = C c (1 + i) T c -(1 + i) T p (1 + i) Tc -1 S b ∼ S a + O(i) i i C ann,p  depends on S = C ann,c
and see appendix for the proof of the analysis of the difference between the two definitions for small discount rates.

Illustration of the economic inconsistency of the classical definition

Choosing the classical salvage value when computing the annualized project cost creates a positive bias (cost is overestimated compared to the annulized cost of the component alone).

The shape of this effect is more difficult to analyze compared to the shape of the salvage value. From the following plot we observe that:

the overestimation of annualized project cost is worst (strongest) for short projects ( ) it can reach +20% to +30% for the case below this overestimation decrease almost linearly with project horizon (and is of course zero for since salvage is zero)

the effect of the discount rate is complex: no overestimation when discount is zero (since in that case)

the overestimation grows quickly with discount rate, as long as it is "small enough" beyond a certain threshold of discount rate, the overestimation is near constant or even decreasing Further use of the economically consistent salvage value

In the above discussion, we have only studied the case a of project with an horizon shorter than the component lifetime . However, the economic consistency of the salvage value definition also applies to more complex cases. In particular, we analyze two useful cases:

1. The project horizon is longer than the component lifetime ( ) so that there is a replacement cost that needs to be accounted for 2. The project is (virtually) sold at mid-project term and bought back immediately after.

In both cases, we show (see appendix for mathematical prooves) that the annualized project cost in unchanged and equal to the annualized component cost

Project with replacements of the component with one replacement

With one replacement (occuring at the end of year ), the Net Present Cost of the project over its lifetime is:

To proove the economic consistency (annualized project cost = annualized component cost) we must of course assume that , the nomial replacement cost of the component, is equal to the initial investement cost: .

T p T c S b T p > T c T c T p N P C p = C c + R c - S 1 (1 + i) Tc 1 (1 + i) Tp R c R c = C c
For the salvage value , we use the above definitions except that the remaining life should be counted for the second component, which has only been used for time and which end of life should occur at

. This means that in the salvage value definitions become:

The classical salvage value definition becomes:

For the economically consistent definition, there is an ambiguity about which term of the numerator to update: should become , that is the component end of life happen twice later ? should become , that is update the usage duration of the component?

As prooved in the appendix, correct update of the definition is to update the usage duration ( becomes

):
With more than one replacement

If the component is replaced times, the salvage value should be updated by replacing by .

In the appendix, we have the proof for two replacements ( ) and we guess that it could be prooved for the general case .

Project is sold at mid-term and bought back immediately after

This case is useful when optimizing reinvestment within the project lifetime. Indeed in some context, it can be easier to model the complete sale of the project which is immediately bought after (possibly with different capacities) than to model the cost of the capacity change.

To proove the economic consistency (annualized project cost = annualized component cost) we must of course assume here that the project is bought back unchanged (no capacity expansion) even if the interest of this formulation is to allow capacity adjustment. For simplicity, we do not consider replacement (i.e.

).

We introduce the year of selling the project at mid project. There are two salvage values, one for the first sale at mid project ( ) and then the salvage at the real end of the project ( ) but considering only duration of that second sub-project for the aging of the component. With these notations, the Net Present Cost of a project, with mid-term sale and immediate buy back, over its lifetime , is:

The two economically consistent salvage values are the same as the case of a project without replacement, but with reduced project durations:

the mid project salvage uses as project duration the final salvage value uses as project duration

S T p -T c 2.T c S a = C c 2.T c -T p T c T c 2.T c T p T p -T c T p T p -T c S b = C c (1 + i) T c -(1 + i) T p -T c (1 + i) T c -1 n T p T p -n. T c n = 2 n ≥ 1 T p ≤ T c T mid ≤ T p S mid S f inal T p N P C p = C c - S mid + C c - S f inal 1 (1 + i) Tmid 1 (1 + i) Tmid 1 (1 + i) Tp T mid T p -T mid
Proof: see Appendix

Economic inconsistency of the classical definition with mid-term sale

To study the practical importance of using the above formulaes for salvage, we compute the annualized project cost when using the classical salvage values. Since there are two salvage events, this means using the following salvage values:

Like for the first graph of the economic inconsistency of the classical definition without mid-term sale, the effect is not so easy to analyze. We observe that:

the overestimation of annualized project cost is worst (strongest) when the mid-term sale happens at half-project life for "small enough" discount rates it can reach +13% the maximum is reached for mid-term sale happening before half-project in the case of "high" discount rates this overestimation is zero for the effect of the discount rate is complex, like for the case without mid-term sale:

no overestimation when discount is zero (since in that case)

the overestimation grows quickly with discount rate, as long as it is "small enough" (already +4%

for half-project sale when only)

beyond a certain threshold of discount rate, the overestimation is near constant or even decreasing Also, repeating the plot for different values of the component lifetime , it seems that the worst case overestimation is attained for a discount rate slightly below . This is similar (at least approximately) to the case without mid-term sale. 

S b,mid = C c (1 + i) Tc -(1 + i) T mid (1 + i) T c -1 S b,f inal = C c (1 + i) Tc -(1 + i) Tp-Tmid (1 + i) T c -1 S a,mid = C c T c -T mid T c S a,f inal = C c T c
i(i + 1) Tc (i + 1) T c -1
In [9]: simplify(Cann_p.subs({S:Sb}) -Cann_c)

Out[9]: 0 i S b S a S b ∼ S a + i + O(i 2 ) T p . (T c -T p ) 2.T c
The corrective term is zero, as expected for:

(when since the component is new)

(when since the component is at end of life) Series expension of around :

limit behavior of the difference with the classical definition :

Decrease of the economically consistent salvage value (definition b) for small project lifetime

Since the classical definition of salvage value is linear in project lifetime , its derivative is constant equal to .

Compared to this, the economically consistent salvage value (definition b) is nonlinear in . Its for small project values is less negative:

Economic inconsistency of the classical definition

T p = 0 S = 1 T p = T c S = 0 S b i = 0
In [10]: Sb_ser = series(Sb, i, n=2) simplify(Sb_ser)

Out[10]: T c (2 + O (i 2 )) + T p i (T c -T p ) -2T p 2T c
In [11]: SbTc_ser = series(Sb*Tc, i, n=2) simplify(SbTc_ser)

Out[11]:

-T p + + T c + O (i 2 ) T p i (T c -T p ) 2 S a
In [12]: Sa = (Tc-Tp)/Tc

In [13]: simplify((Sb_ser -Sa))

Out[13]: -T 2 p i + T c T p i + O (i 2 ) 2T c
In [14]: simplify((SbTc_ser -Sa*Tc))

Out[14]:

+ O (i 2 ) T p i (T c -T p ) 2 T p -1/T c T p
In [15]: Sb.diff(Tp).subs({Tp:0})

Out[15]:

log (i + 1)

(i + 1) T c -1
In [16]: simplify(series(Sb.diff(Tp).subs({Tp:0}), i, n=3))

Out[16]:

- + - - + O (i 3 ) 1 T c i 2 i 2 4 T c i 2
Injecting now the classical salvage value definition into the annual project cost:

Inconistency for short projects Focus on short projects (we need to take the limit , since the denominator is zero at ):

To analyze the effect of discount rate (which not monotonic as visualized with plot_Cann_Tp0_i ), we turn to a series decomposition: linear effect is positive: , which explaines the increase in overestimation for small discount rate quadratic effect is negative which explains the decrease when the discount rate gets "big enough"

And this series is maximal (zero of the derivative) at:

In [17]: Cann_p_rel = Cann_p.subs({S:Sa})/Cann_c Cann_p_rel = simplify(Cann_p_rel) Cann_p_rel

Out[17]:

(i + 1) -T c ((i + 1) T c -1) (T c (i + 1) T p -T c + T p ) T c ((i + 1) T p -1)
T p → 0 T p = 0

In [18]: Cann_p_rel_Tp0 = Cann_p_rel.limit(Tp, 0) Cann_p_rel_Tp0

Out [18]:

(i + 1) -T c (T c log (i + 1) + 1) ((i + 1) T c -1) T c log (i + 1) +T c /2 × i -T c /4 × i 2
In [19]: Cann_p_rel_Tp0_ser = simplify(Cann_p_rel_Tp0.series(i, 0, n=3)) Cann_p_rel_Tp0_ser

Out [19]:

1 + - - + O (i 3 ) T c i 2 T c i 2 4 T 2 c i 2 3
In [20]: Cann_p_rel_Tp0_ser.diff(i)

Out[20]:

- - + O (i 2 ) T c 2 T c i 2 2T 2 c i 3 In [21]: sympy.solve(Cann_p_rel_Tp0_ser.diff(i), i)[0] Out[21]: 3 (T c + O (i 2 )) T c (4T c + 3) i = 1 1 + 4/3.T c
In [22]: i_worst = 1/(1+4*Tc/3)

In [23]: simplify(Cann_p_rel_Tp0_ser.diff(i).subs({i:i_worst})) # = 0 + O(...)
However, the maximal value is not a constant:

To further analysis, we simplify the expression Cann_p_rel_Tp0 by recognizing a function evaluated at :

Check that the expression in is indeed equivalent to Cann_p_rel_Tp0 for :

Remark: Sympy doesn't see the equality between logs at the denominator, because it needs a positivity assumption:

Now looking at the derivative:

Out[23]: O ( ; T c → ∞) 1 T 2 c
In [24]: simplify(Cann_p_rel_Tp0_ser.subs({i:i_worst}))

Out [24]:

12 + 19T c + O ( ; T c → ∞) 1 T 2 c 4 ⋅ (4T c + 3) x ↦ C(x) x = (1 + i) T c
In [25]: x = symbols('x', positive=True) Cx = (1+log(x))*(x-1)/(x*log(x)) Cx

Out[25]: (x -1) (log (x) + 1)

x log (x)

x x = (1 + i) T c
In [26]: simplify(Cx.subs({x:(1+i)**Tc}) -Cann_p_rel_Tp0)

Out[26]: There is no analytical root that SymPy can find:

- - + 1 log ((i + 1) Tc ) (i + 1) -Tc log ((i + 1) Tc ) 1 T c log (i + 1) (i + 1) -Tc T 
Only numerical root finding works:

converged: True flag: 'converged' function_calls: 9 iterations: 8 root: 6.00914294108186

And this is coherent with the numerical maximization of :

(1.2981372299707084, 1.298425606777053, 1.298198390999316) message: Solution found. success: True status: 0 fun: -1.298425607525638 x: 6.009143977032298 nit: 12 nfev: 12 1.793282305296451 Therefore, the worst case economic inconsistency happens for pairs which statisfies:

and this equation can be solved for the discount factor :

and since for most component lifetime values, we can linearize :

This observation is coherent the graph obtained with plot_Cann_Tp0_i : the worst case discount factor is about twice the inverse lifetime.

Proof of the economic consistency with replacements with one replacement

In [31]: # sympy.solve(num, x) # NotImplementedError

x * ≈ 6.0091

In [32]: opt.root_scalar(lambda x: 1 -x + log(x) + (log(x))**2, bracket = (5,10))

Out[32]:

C(x)
In [33]: Cx_fun = lambda x: (1+np.log(x))*(x-1)/(x*np.log(x)) Cx_fun(6.01-0.5), Cx_fun(6.01), Cx_fun(6.01+0.5) That is and assuming that replacement cost is equal to the initial investment.

Out

NPC becomes:

As mentioned in the section Project with one replacement cost, there is an ambiguity about which term of the numerator to update in the salvage value definition. So we create both possible expressions and inject them in the project annualized cost.

We show that replacing becomes (i.e. component end of life happen twice later) is incorrect. The correct update of the definition is to replace becomes (i.e. the usage duration of the component). 

With two replacements

That is and again assuming that replacement cost is equal to the initial investment.

NPC becomes:

The definition of salvage value is updated by replacing by (i.e. the usage duration of the last component).

Proof of the economic consistency with a mid project sale and immediate buy back

We introduce the year of selling the project at mid project. There are two salvage values, one for the first sale at mid project ( ) and then the usual alvage at the end of the project.

NPC becomes:

i(i + 1)

Tc (i + 1) T c -1
In 

i(i + 1) T p (-S(i + 1) -T p + 1 + (i + 1) -T c + (i + 1) -2T c ) (i + 1) T p -1 T p T p -2.T c
In for i in i_list:

  In [59]: i_list = [0.025, 0.050, 0.075, 0.10, 0.20] # list of discount rates plot_salvage_Tp(i_list, Tc=20); ]: #i_list = [0.025, 0.050, 0.075, 0.100, 0.200] # list of discount rates i_list = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.20] # list of many discount plot_Cann_Tp(i_list, Tc=20);

  ]: #i_list =[0.025, 0.050, 0.075, 0.100, 0.200] # list of discount rates i_list = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.20] # list of many discount plot_Cann_Tmid(i_list, Tc=20); In [81]: #i_list = [0.025, 0.050, 0.075, 0.100, 0.200] # list of discount rates i_list = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.20] # list of many discount plot_Cann_Tmid(i_list, Tc=10); #i_list = [0.025, 0.050, 0.075, 0.100, 0.200] # list of discount rates value discussed in the following is fact a relative salvage value (with true value ). Proof of the economic consistency of salvage value definition b Annualized cost of the component over its lifetime: We inject the proposed definition into the project annualized cost to show that it indeed gets equal to the component annualized cost: Behavior of the economically consistent salvage value (definition b) for small discount rate Observation: for small discount rate , tends linearly to : S = S relative . C c In [3]: i, S = symbols('i S') Tc, Tp = symbols('T_c T_p', positive=True) In [4]: Cann_c = CRF(i, Tc)

  c log (i + 1) In [27]: simplify(log(x**2) -2*log(x)) Out[27]: 0 In [28]: a = symbols('a') # without positive=True simplify(log(a**2) -2*log(a)) ]: num = Cx.diff(x)*x**2*log(x)**2 num = simplify(num) num Out[30]: -x + log (x

  [33]:In[34]: Cx_minus_fun = lambda x: -Cx_fun(x) res = opt.minimize_scalar(Cx_minus_fun, [2,6,10], bounds=[2,10]) Cx_max = -res.fun # 1.2984 Cx_argmax = res.x # 6.0091 print(res) In [35]: np.log(Cx_argmax)

  Sb_1rep_incorrect = ((1+i)**(2*Tc) -(1+i)**Tp)/((1+i)**Tc -1) In [41]: Sb_1rep = ((1+i)**Tc -(1+i)**(Tp-Tc))/((1+i)**Tc -1) * 1 Sb_1rep Out[41]: (i + 1

  [43]: simplify(Cann_p_1rep.subs({S:Sb_1rep}) -Cann_c) # == 0Out[43]: 0 T p ∈ [2.T c , 3.T c ]In[44]:NPCp_2rep = 1 + 1/(1+i)**Tc + 1/(1+i)**(2*Tc) -S/(1+i)In [45]: Cann_p_2rep = CRF(i, Tp) * NPCp_2rep Cann_p_2repOut[45]:

  fig, ax = plt.subplots() ax.axvline(0, color='gray') ax.axvline(Tc, color='gray') ax.plot(Tp, Sa, 'k--', label='Sa (classical)')

  

  

  

  

  

C c = 1

Appendix

Remark: the code cells above can only be run once the appendix is run.

In the following, we assume that the investment cost without loss of generality. Only, the salvage

In [75]: i_list = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.20] # list of many discount plot_Cann_Tmid(i_list, Tc=40);

In """Annualized project cost (relative to component's annualized cost), with respect to mid-term project sale (with immediate buy back), when using the classical salvage value definition, with assumption Tp=Tc (no replacement), for a given component lifetime Tc, for a list of discount rates.