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ABSTRACT

The growing use of wide angle image capture devices and need for fast and accurate image
analysis in computer visions have enforced the need for dedicated under-representation ap-
proaches.Most recent decompositionmethods segment an image into a small number of irregular
homogeneous regions, called superpixels. Nevertheless, these approaches are generally designed
to segment standard 2D planar images, i.e., captured with a 90o angle view without distortion. In
this work, we introduce a new general superpixel method called SphSPS (for Spherical Shortest
Path-based Superpixels)1, dedicated to wide 360o spherical or omnidirectional images. Our
method respects the geometry of the 3D spherical acquisition space and generalizes the notion
of shortest path between a pixel and a superpixel center to this context, to fastly extract relevant
clustering features. We demonstrate that considering the geometry of the acquisition space to
compute the shortest path enables to jointly improve the segmentation performance and the
shape regularity of the superpixels. To evaluate this regularity aspect, we also generalize a global
regularity metric to the spherical space to address the limitations of the only existing spherical
compactness measure. Finally, the proposed SphSPS method is validated on the reference 360o
spherical panorama segmentation dataset and on synthetic road omnidirectional images. Our
method significantly outperforms both planar and spherical state-of-the-art approaches in terms
of segmentation performance and regularity, and we also demonstrate its robustness to noise.

1. Introduction

Many computer vision pipelines now use under-representation or low-level segmentation approaches to overcome

the growth in resolution and quantity of image data, which may lead to an important computational load. Among

existing approaches, irregular image decomposition techniques were mainly popularized with [1], to decompose an

image into superpixels, i.e., small, connected regions having homogeneous colors. The image domain is thus generally

reduced to hundreds of regions instead of millions of pixels. By processing such regions in an under-representation

scale that fit to the image content, the result may be obtained in a very fast manner while being very close to the optimal

result at pixel scale.

Over the years, superpixel methods have been successfully applied for many computer vision tasks such as:

semantic segmentation [43, 47, 34, 12], object tracking [35, 32, 23], optical flow estimation [28, 48] or style transfer
1Available code at: https://github.com/rgiraud/sphsps
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[25]. However, with such under-representation, the structural irregularity between adjacent regions may become an

issue to use standard neighborhood-based tools. Several works have then proposed different methods to address this

setback, e.g., graph-based approach [18], neighborhood structure [15], or hierarchical superpixel decomposition [29].

Additionally to the increase of image resolution, new acquisition devices capturing wide angles, such as fish eyes,

or covering a 360o field of view have become increasingly popular. With these devices, the entire environment can

be captured to offer a global understanding of a scene. Hence, in applications such as autonomous driving, spherical

or omnidirectional images are particularly interesting and may be used for semantic segmentation [54, 55]. Moreover,

with the joint use of a depth-aware system, the captured intensity can be projected on a 3D point cloud, offering

additional modalities. Generally, the captured 360o environment is projected on a discrete 2D plane, generating an

equirectangular image. Naturally, such projection on a rectangular space introduces distortions [59]. In this context,

standard planar superpixels algorithm have been used on such equirectangular images [8, 37]. Nevertheless, they are

not entirely suited since they do not consider the geometry distortions in the projected image, which may limit the

segmentation accuracy and the ease of interpretation once visualized in the spherical acquisition space [58].

The majority of existing superpixel methods concern standard 2D planar images. To achieve such irregular

decompositions, grouping spatially close pixels with homogeneous colors, many approaches have been proposed

using region growing [24], graph-based energy [26], eikonal-based [7], watershed [27], coarse-to-fine [56], or even

bayesian algorithms [44]. Some of these methods may offer interesting properties, in terms of exact control of the

number of generated superpixels or the ability to set the spatial regularity constraint to produce more or less grid-like

decompositions. Among the vast literature of superpixel works, a significant breakthrough was obtained with the SLIC

algorithm [1]. This iterative method applies a pixel-wise K-means algorithm to a small area around each superpixel

barycenter, which are initialized as a regular grid. Pixels are thus naturally grouped according to a trade-off between

distances in the spatial and color spaces (CIELab). The method requires the approximate number of superpixel to

generate and a spatial constraint term to produce a decomposition in a reduced processing time. Nevertheless, SLIC

may fail to jointly capture object borders and provide regular shapes, while being highly sensitive to texture and noise.

Many methods have been proposed based on the SLIC algorithm, introducing boundary constraint [57], advanced

feature space [9], non-iterative clustering [2], or a shortest path approach [17].

More recently, deep learning frameworks have also been proposed to decompose an image into superpixels, e.g.,

[21, 52]. In [21] for instance, the SLIC algorithm ismade differentiable to learn adequate image features. Alongwith the

usual deep learning requirements in terms of computational resources and substantial training time and image dataset,

these methods may have limited applicability to other images, and even fail to handle large ones due to memory issue.

Finally, contrary to most other methods, they may not allow to set the shape regularity which may be an important
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property to set according to the application [16]. Hence, unsupervised approaches remain of interest, while they may

still consider features extracted from deep learning-based pipelines as input.

For spherical images, the segmentation approach of [13] for 2D planar images has been adapted in [53].

Nevertheless, it uses the same graph-based clustering that generates very irregular regions in terms of shape and

size that may not be considered as superpixels. The K-means-based iterative clustering method of SLIC [1] has been

extended in [58] to generate spherically regular superpixels, i.e., having more consistent size and shape in the spherical

domain. The pixel positions are projected on the unit sphere to compute the spatial constraints to gather homogeneous

pixels not spatially too far in the spherical space. With the interest of having visually regular superpixels when working

in the spherical domain, the respect of the acquisition space geometry enables a more accurate segmentation of the

image objects [58]. Recently, based on the same framework, a non-iterative and a hierarchical extension have been

proposed in [11].

These methods use the same features as SLIC, i.e., simple color and spatial distance between the pixel and the

average superpixel features. Therefore, as SLIC, they are very sensitive to highly textured areas and presence of

noise in the images, which can lead to poor segmentation results. These approaches also do not integrate any contour

information, reducing the object segmentation accuracy and leading their algorithm to ignore thin contours. These

limitations due to the simple SLIC clustering framework are tackled in [17] for standard 2D planar image segmentation,

where the notion of shortest path between the pixel and the superpixel is introduced to extract more relevant features

providing higher segmentation accuracy.

Contributions

In this work, we propose an accurate method called SphSPS (Spherical Shortest Path-based Superpixels), to

decompose a 2D equirectangular image into 3D spherically regular superpixels. The pipeline of the SphSPS method,

considering both 2D and 3D positions is summarized in Figure 1. The core of SphSPS is based on the adaptation of

the K-means iterative clustering framework [1] to the spherical space by [58], but addresses its limitations in terms of

accuracy, robustness and computational time.

To this end, we generalize of the notion of shortest path between a pixel and a superpixel [17] to our spherical

case to extract more relevant features during the clustering process. With such path, when comparing a pixel to a

superpixel, the color of the pixels along the path to the superpixel barycenter can be considered to ensure the color

homogeneity. Moreover, contour information provided by any prior contour map can also be integrated to prevent

the segmentation from crossing object contours in our method. With such features, and a fast implementation of the

spherical shortest path, SphSPS is able to converge in very limited processing time and generate accurate and regular

spherical superpixels (see Figure 1).
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Figure 1: Pipeline of the SphSPS method. A projection in the spherical space is computed from the equirectangular image
I to obtain 3D coordinates Xa. Along with 2D positions X and colors C (c channels), a contour map  can be provided
(dotted arrows) to enforce the respect of image contours. SphSPS provides regular superpixels in the spherical space

We also propose a generalization of the global regularity metric [16] to relevantly evaluate the regularity aspect

in the spherical space. The performance of SphSPS is compared to the ones of planar and spherical state-of-the-art

methods on the reference 360o spherical panorama segmentation dataset (PSD) [45] and synthetic omnidirectional road

images from the Omniscape project [39]. SphSPS obtains the highest segmentation and contour detection accuracy

while providing regular superpixels in the spherical space, and is robust to noise, contrary to most state-of-the-art

methods.

This paper is an extension of the work proposed in [14], with significant improvements and extensive additional

experiments. Compared to [14], we provide: (i) more details on our method, with a substantial analysis of its parameters

(e.g., sampling frequency of the shortest path, initialization strategies), (ii) a modification of the Generalized Global

Regularity (G-GR) metric to more relevantly evaluate the smoothness of the superpixel boundaries, along with a

quantitative comparison to the spherical compactness measure proposed in [58]; (iii) an evaluation of the robustness

of methods to noise, including other state-of-the-art approaches (ETPS [56], GMMSP [3] and SphLSC [9, 58]) and

comparison to an implementation of SphSPS using a linear path; (iv) an additional validation on a synthetic 360o road

images [39].

2. Spherical Shortest Path-based Superpixels

In this section, we present the proposed SphSPSmethod. First, we describe the initialK-means clustering algorithm

used in SLIC [1] (Section 2.1). Then, in Section 2.2, we present a brief overview of the spherical geometry system and

equirectangular projection (Section 2.2.1) and the adaptation of theK-means clustering algorithm to spherical images

introduced in [58], which is the basis of our method (Section 2.2.2). Finally, we present the linear path approach of [17],

extracting relevant clustering features on a planar shortest path (Section 2.3.1) and our generalization to the spherical

space (Sections 2.3.2 and 2.3.3).
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2.1. Planar K-means Iterative Clustering

The proposed SphSPS method is based on the Simple Linear Iterative Clustering (SLIC) [1]. The algorithm is

particularly interesting since it only requires as input parameters the approximate number of superpixels to produce

and a shape regularity constant, and it may achieve accurate performance in a few iterations. The iterative K-means

clustering is spatially constrained through the whole process to respect a spatial regularity in the segmentation. First,

superpixels, denoted Si in the following, are initialized over the image domain as square blocks of size s×s. Each

superpixel is described by the average CIELab colors CSi and spatial barycenter position XSi = [xi, yi] of all pixels

withinSi. At each iteration, each superpixelSi is considered and compared to all pixels p = [Cp, Xp], of colorCp having

their position Xp into a (2s+1)×(2s+1) square window Ai around its barycenter XSi . At the end of each iteration, a

pixel p is associated to the superpixel minimizing the distanceD composed of a color dc and a spatial distance ds such

as:

dc(p, Si) = ‖Cp − CSi‖
2
2, (1)

ds(p, Si) = ‖Xp −XSi‖
2
2, (2)

D(p, Si) = dc(p, Si) + ds(p, Si)
m2

s2
, (3)

where m is the trade-off parameter that enables to set the shape regularity. Finally, a post-processing step is applied to

ensure the region connectivity.

2.2. Adaptation to Spherical Images

2.2.1. Spherical Geometry

The correspondence between the planar equirectangular 2D space and the 3D spherical space, can be seen as the

respective projection of vertical and horizontal planar coordinates on the meridians and circles of latitude of the sphere,

resulting in a spherical image having a width w twice superior to its height ℎ. The projection system is illustrated in

Figure 2. Each image pixel X = [x, y] in the 2D planar space, corresponds to a 3D position Xa = [xa, ya, za] in the

spherical acquisition space such as:

X =

⎡

⎢

⎢

⎢

⎢

⎣

x = ⌊

�w
2� ⌋

y = ⌊

�ℎ
� ⌋

⎤

⎥

⎥

⎥

⎥

⎦

↔ Xa =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

xa = sin( y�ℎ )cos( 2x�w )

ya = sin( y�ℎ )sin( 2x�w )

za = cos( y�ℎ )

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (4)

With � = arctan2(ya, xa) the azimuthal angle, and � = arccos(za) the polar angle. Note that when going from 3D

to 2D domain, x ∈ [−w
2 ,

w
2 ]. Hence, to map x to the image domain, we compute x← x +w, if x ≤ 0.
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Figure 2: 2D Equirectangular to 3D spherical space projection system. Vertical and horizontal planar coordinates correspond
to the meridians and circles of latitude of the sphere. The azimuthal angle � and polar angle � are considered in the
projection system (4)

(a) Square grid (b) Hexagonal grid (c) Random

(d) Geodesic (e) Fibonacci (f) Hammersley

Figure 3: Comparison of superpixel seeds initialization strategies in the planar and spherical space

2.2.2. Spherical K-means Iterative Clustering

SphSPS adapts the planarK-meansmethod to the spherical geometry in three steps, in the samemanner as [58]. The

first one is the initialization of the K superpixels, to uniformly sample the 3D sphere. In Figure 3, we compare several

planar and spherical seed initialization strategies for a number K = 400 superpixels. With planar-based sampling

(Figures 3(a) and (b)), the seeds are regularly spaced in the two dimensions in the equirectangular image but only

along the circles of latitude in the spherical space, so many seeds are set close to the poles. A random seed initialization

(Figure 3(c)) may cover the sphere volume but may lead to irregularities, especially with a low number of superpixels.

A geodesic approach, relying on subdivisions of icosahedron, can be used to sample the 3D sphere very regularly

(Figure 3(d)) but the number of seeds is limited to K ∈ {5×22n+1 + 2, with n ∈ ℕ}. Finally, two other approaches

are compared to uniformly sample the 3D sphere using the Fibonacci sequence [42] (Figure 3(e)) or the Hammersley

sampling [49] (Figure 3(f)). Both generate in real-time a sufficiently regular spherical samplingwith the desired number

of superpixels. In Section 4.2, we compare the use of each initialization strategy on the segmentation performance.

According to these results, we use in SphSPS the Hammersley sampling [49], as in [58].

The second step is the adaptation of the definition of the search area, which must consider the position of pixels in

the spherical space. For instance, superpixels near the sphere poles must have larger search areas in the equirectangular
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Figure 4: Examples of spherical search areas for different superpixel barycenter positions with K = 400 superpixels

image. The overall number of superpixels must also be considered to respect the regularity of the segmentation. Hence,

the search area Ai for each superpixel Si of barycenter XSi = [xi, yi], is defined as:

Ai ={[x, y]|xi−
S

sin(�)
≤x≤ xi +

S
sin(�)

, yi−S ≤ y ≤ yi+S}, (5)

where S = w∕
√

K� is the average superpixel size and � = y�∕ℎ is the polar angle corresponding to the y-th row for

an image of height ℎ and widthw. Since we deal with equirectangular images, the 360o aspect must also be handled to

connect the pixels at the horizontal boundaries. This is simply done using a horizontal warping of positions, when the

search region falls outside the image boundaries [58]. The spherical search areas are represented for several superpixel

barycenter positions in Figure 4.

The third modification to implement in the planar algorithm is the computation of the spatial distance ds (3) in

the spherical space. To compute a spatial distance in this 3D space, i.e. using 3D positions Xa (4), we can use the

Euclidean one, defined such as: ds(Xa
p , X

a
Si
) = ‖Xa

p − X
a
Si
‖

2
2. Nevertheless, as proposed in [58], we choose to use in

SphSPS a spherical and computationally costless cosine dissimilarity distance defined as:

ds(Xa
p , X

a
Si
) = 1 −

⟨

Xa
p , X

a
Si

⟩

, (6)

with
⟨

Xa
p , X

a
Si

⟩

, the scalar product between the two position vectors. Note that, although it does not exactly follow

the sphere geometry, the Euclidean and Cosine dissimilarity distances can achieve almost similar performance for [58]

with adjusted parameter m (3) (see Section 4).

2.3. Generalized Shortest Path Method

2.3.1. Feature extraction on a shortest path

In [17], when processing a pixel p, the color and contour information of the pixels q on the planar shortest path Pp,Si
towards the barycenter of the superpixelSi are considered in the clustering distance. By using these additional features,

the clustering accuracy and the respect of object contours are improved. Also, contrary to color-based geodesic paths
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used for instance in [46, 36], the planar shortest path increases the shape regularity which is a desirable property [16],

by enforcing homogeneous star-convex shapes with respect to their barycenters [20]. SphSPS integrates these features

using the same clustering distance D as [17], but with a different shortest path definition since it is defined according

to the spherical space.

First, the color information along the path is compared to the average one of the superpixel to ensure the color

homogeneity. This way, the regularity is increased in a relevant manner, preventing non convex shapes to appear [17].

The color distance of the pixels q on the path Pp,Si is added to the color distance dc (1) such that:

dc(p, Si,Pp,Si )=�dc(p, Si) +
1 − �
|Pp,Si |

∑

q∈Pp,Si

dc(q, Si), (7)

where � is a trade-off parameter between the color of the considered pixel and the ones on the shortest path, which is

usually set to 0.5.

Along the shortest path, a contour information can also be extracted to ensure the respect of objects borders. These

borders may indeed not be in line with the ones obtained following the color homogeneity criteria. Especially for thin

contours, which are not yet captured in the clustering framework. Any contour map, denoted , with normalized values

between 0 and 1, respectively indicating the absence or presence of contours, can be computed and used to define a

contour term d such that:

d(Pp,Si ) = 1 +  max
q∈Pp,Si

(q), (8)

where  ≥ 0 is the parameter penalizing the crossing of a contour. With such term, the pixel p most likely will not be

associated to the superpixel when a high contour intensity is found on the path.

Finally, the clustering distance D of the SphSPS method ensuring more regular regions and respecting the image

object contours, is defined as:

D(p, Si) =
(

dc(p, Si,Pp,Si ) + ds(p, Si)
m2

s2

)

d(Pp,Si ), (9)

where ds is the spherical spatial distance using the cosine dissimilarity (6), and Pp,Si is the proposed spherical shortest

path computed as follows.

2.3.2. Generalized shortest path

For any image to segment, the shortest path should be computed in the acquisition space, to respect the acquisition

geometry. In Figure 5, we illustrate several examples of shortest paths in the planar space as in [17], and in the spherical
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Figure 5: Examples of planar (dotted lines) and spherical shortest paths (full lines) between points in the 2D planar image
space (left) and 3D acquisition space (right). The spherical path follows the shortest geodesic path on the sphere

(a) Equirectangular image (b) Linear shortest (c) Spherical shortest
path distance path distance

Figure 6: Comparison of linear shortest path (dotted line) and spherical shortest path (full line) between an initial (red
cross) and final (purple star) pixel position in (a). In (b) and (c), the average color distance on all points of the path from
the the initial point (star) is represented (lighter color indicates a higher distance). When trying to associate a point to a
superpixel, such distance from the point to the superpixel barycenter is considered (7). Hence, using the spherical shortest
path enables to follow the structure of objects more accurately in the equirectangular image

one as in SphSPS. The difference of using these paths to compute the color distance on the path to the superpixel

barycenter (7) is also illustrated in Figure 6. For a reference point (red cross), the average color distance to all the

other points on linear and spherical shortest paths are respectively represented in Figure 6(b) and 6(c). The spherical

path enables the algorithm to respect, within the equirectangular image, the linear structure of objects in the spherical

space.

For the planar case, the acquisition and image spaces are equivalent. Hence, the shortest path can be reduced to a

linear path that can be easily computed with a discrete algorithm such as [6]. Nevertheless, in the general case with

spherical or even circular devices using fisheyes with different capture angles, distorsions can be introduced between the

acquisition and the image space (ℕ2). Therefore, the shortest path should be first explicitly computed in the acquisition

space, denoted as Pap,Si , and projected back to the planar space to provide the discrete sample positions in the 2D image.
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Hence, the general formulation of the discrete shortest path is defined as:

Pp,Si = Pap,Si
⃖⃖⃖⃖⃖⃗proj {ℕ2}. (10)

2.3.3. Shortest path in the spherical space

The shortest path in the spherical space consists in following the geodesic along the sphere [19]. This geodesic lies

within the great circle (in orange color in Figures 5 and 7), containing the two considered points and the center of the

sphere to form a disc. In the following, we rely on the Slerp (Spherical linear interpolation) formulation of the spherical

geodesic path problem proposed in [40] to sample the points of our shortest path. Note that tangential approaches to

extract way-points on the great circle have been formalized, for instance in [22], but such theoretical methods use many

trigonometric computations that may impact the processing time. To the best of our knowledge, no direct algorithm,

such as [6] for the planar case, has been made explicitly available to extract in an equirectangular image the discrete

shortest path between two pixels in the spherical space.

Spherical geodesic path implementation

The proposed process to compute the spherical shortest path on a great circle is illustrated in Figure 7. For each

comparison of a pixel at position Xa
p to a superpixel of spatial barycenter Xa

Si
, we first compute an orthogonal

coordinate system [X⃗a
p , X⃗

a∗
Si
] that lies within their great circle. To build such system, we use the Gram-Schmidt

orthogonalization process [5] to get the position Xa∗
Si
, an orthogonal vector to Xa

p within the great circle such as:

Xa
Si

∗ =
Xa
Si
−
⟨

Xa
p , X

a
Si

⟩

Xa
p

‖

‖

‖

‖

Xa
Si
−
⟨

Xa
p , X

a
Si

⟩

Xa
p
‖

‖

‖

‖2

. (11)

The cost of computing (11) is greatly reduced since the scalar product
⟨

Xa
p , X

a
Si

⟩

has already been computed for the

spatial distance ds (6). Then, the angle � between the two points is simply obtained with � = arccos
(⟨

Xa
p , X

a
Si

⟩)

.

Finally, � is used to linearly sample the geodesic path Pap,Si , starting from the pixel position and progressively reaching

the superpixel barycenter such as:

Pap,Si = cos(�N)Xa
p + sin(�N)Xa∗

Si
, (12)

with �N = J0,N−1K
N−1 � ∈ ℝN , intermediate angles to linearly sample N points within the coordinate system [X⃗a

p , X⃗
a∗
Si
]

between the pixel and barycenter positions. The geodesic path in the acquisition space, is finally projected to the planar
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1

Figure 7: Computation of the spherical shortest path. The orthogonal coordinate system [X⃗a
p , X⃗

a∗
Si
] is computed from

projection of Xa
Si

on Xa
p (11). The angle � between the positions is then used to sample 3D points on the path (12)

space (4) to get the image pixel positions contained into the path Pp,Si (10). By this way, we compute the discrete

shortest spherical path with simple calculations, dividing the processing time by a factor 2 compared to tangential

approaches.

Fast computation using recursive implementation

Compared to the complexity of the SLIC method [1], a much larger number of pixels are considered in a shortest

path, leading to a significant increase of calculations. Nevertheless, we can reduce the cost of this additional complexity

by using a recursive implementation.

First, as in [17], for each superpixel, we store the color distance dc to each tested pixel, making it directly available

for the next pixels to process. This first optimization reduces the processing time by 50%. Here, we propose a general

optimization framework using the path redundancy with recursive implementation. The principle is that if the path of

a pixel to a superpixel crosses a previously computed path to the same superpixel, the rest of the path should be the

same. In the planar case using the algorithm of [6] this assumption is not exactly accurate, but it becomes true in the

spherical case since all points lie on the same great circle. Using recursive implementation, we can store the average

color distance and maximum contour intensity on the path for each crossed pixel. By this way, within a superpixel

search area, for most pixels, the large quantity of information contained in the shortest path has already been computed

once and is directly available. This recursive scheme also reduces the processing time by a factor 2.

3. Generalized Global Regularity Measure

Most superpixel methods try to decompose the image into regions having approximately the same size, and being

homogeneous in terms of color, so they should naturally be contained into the image objects. This is usually done by
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optimizing a trade-off between color and spatial terms. Giving more weight to color would generally provide more

accurate superpixels in terms of respect of object contours, while increasing regularity would prevent superpixel

borders from following them. Works such as [16] have demonstrated that having regular superpixels may increase

the performances of superpixel-based pipelines. Hence, algorithms should try to produce both accurate and regular

superpixels and dedicated metrics should jointly evaluate object segmentation and shape regularity performances.

Nevertheless, this last aspect is rarely evaluated in the literature. The standard compactness metric [38] is the only

one extended to the spherical space [58], although it was proven very limited [16]. In this section, we propose a more

relevant metric to evaluate the shape regularity in any acquisition space.

3.1. Limitation of the Compactness Measure

The first reference regularity measure in the superpixel literature is the compactness COM [38] that evaluates the

average circularity of each superpixel shape. In [58], the extension of this metric to the spherical case is proposed. The

COM measure independently evaluates each superpixel Si of a segmentation  = {Si} such as:

COM = 1
∑

Si∈
|Si|

∑

Si∈
Qsph(Si)|Si|, (13)

with Qsph the spherical isoperimetric quotient [33] defined as:

Qsph(Si) =
4�|Si| − |Si|2

|P (Si)|2
, (14)

with P (Si) the superpixel perimeter.

Although this metric has been regularly used when evaluating the regularity, it has been proven very limited [16].

It relies on a reduced circularity criteria such that ellipses can obtain higher regularity measures than squares, and

it is highly sensitive to boundary noise and inconsistent with the superpixel size. The same limitations appear for

the extension to the spherical case, to such extent that the COM measure may even fail to differentiate spherical and

planar-based methods [58].

3.2. Generalized Global Regularity Metric

3.2.1. Global regularity metric

To address the issues of the COMmeasure, a global regularity metric (GR) has been introduced in [16], containing

two terms. First, instead of comparing the superpixels to a circle, it robustly evaluates the convexity, the contour

smoothness, and the 2D balanced repartition of each superpixel with the Shape Regularity Criteria (SRC) term. The

convexity and smoothness properties are computed with respect to the discrete convex hull corresponding to the
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superpixel shape:

SRC(Si) =
CC(HSi )
CC(Si)

Vxy(Si), (15)

where Vxy(Si) = min(�x, �y)∕max(�x, �y), evaluates the balanced repartition of the shape with �x and �y the square

root of standard deviations of pixel positions x and y in Si,HSi is the convex hull containing Si, and CC measures the

ratio between the perimeter and the area of the shape.

As for the compactness COM (13), SRC is independently computed for each superpixel. Hence, [16] introduces a

Smooth Matching Factor (SMF) term to also evaluate the consistency of all superpixel shapes. First, each superpixel

Si is registered on its barycenter to obtain S∗
i . Then, these registered superpixel shapes are averaged to compute S∗,

the average superpixel shape, created from the superposition of all superpixels. Finally, each registered superpixel S∗
i

is compared to the average shape S∗ such that:

SMF(Si) = 1 −
‖

‖

‖

‖

‖

S∗

|S∗
|

−
S∗
i

|S∗
i |

‖

‖

‖

‖

‖1

/

2. (16)

Finally, the global regularity is defined with GR combining these two metrics such that:

GR() = 1
∑

Si∈
|Si|

∑

Si∈
|Si|SRC(Si)SMF(Si). (17)

3.2.2. Generalization in the acquisition space

Ideally, the regularity of each discrete superpixel shape Si, should be evaluated in the acquisition space. In our

context, we first deal with a set of 3D points Sai , from the projections of the pixel positions of Si (4). Since the GR

metric relies on the computation of a convex hull for SRC (15), and uses barycenter registration for SMF (16), it cannot

be directly applied to such point clouds in ℝ3.

To be able to use the GR metric, we propose to reduce to 2D shapes relevantly approximating each set of 3D points

of Sai . The whole projection process is illustrated in Figure 8. Firstly, a superpixel Si in the discrete image space is

projected to its acquisition one, giving a spherical point cloud Sai . Secondly, to reduce to a 2D point cloud Sa→{ℝ2}
i ,

we apply a principal component analysis (PCA) on Sai , and project the points on its two most significant eigenvectors.

Finally, to avoid holes in the projection and get a dense discrete shape, a downsampling is performed to obtain a discrete

2D shape Sa→{ℕ2}
i , that is finally filled according to its concave hull. Note that in [14], only a downsampling was used,

with a higher scale, resulting in a smaller and smoothed 2D shape, thus reducing the relevance of the projection and

the ability to measure the the contour irregularities.
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Figure 8: Projection process for the proposed Generalized Global Regularity (G-GR) metric (18). Each superpixel shape
Si from the planar segmentation is projected in its acquisition space to obtain Sa

i . Then, a principal component analysis

(PCA) is performed to project the 3D point cloud on a two dimensional space using (Sa→{ℝ2}
i ). Finally, it is downsampled to

generate a 2D matrix, and the remaining potential holes are filled by considering the concave hull of the shape (Sa→{ℕ2}
i ).

The G-GR metric especially relying on a convex hull can then be applied on each obtained dense 2D shape

This way, each superpixel shape is relevantly projected from the 3D acquisition space into a discrete 2D shape. The

initial SRC and SMF measures can then be used in the proposed Generalized Global Regularity (G-GR) metric as:

G-GR() = 1
∑

Si∈

|

|

|

Sa→{ℕ2}
i

|

|

|

∑

Si∈

|

|

|

|

Sa→{ℕ2}
i

|

|

|

|

SRC(Sa→{ℕ2}
i )SMF(Sa→{ℕ2}

i ). (18)

Regularity results for SphSPS and state-of-the-art methods are compared in Section 4.3. With the proposed G-GR

metric, contrary to the COM measure, a performance gap is now visible such that no planar methods have higher

regularity than spherical ones for a given number of superpixels.

4. Results

4.1. Validation Framework

4.1.1. Dataset

To validate our method, we considered images from the reference 360o equirectangular dataset SUN360 [50].

In [45], 75 images of 512×1024 pixels from SUN360 are selected and accurately manually segmented to provide a

Panorama Segmentation Dataset (PSD). These 75 ground-truth segmentations contain between 115 and 1085 objects

having an average size of 1334 pixels. Examples of PSD images are given in Figure 9.
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Image Labels Contours

Figure 9: Examples of images from the Panorama Segmentation Dataset (PSD) [45]

Image Labels Contours

Figure 10: Examples of images from the Omniscape project [39]

To further demonstrate the applicability of the SphSPS method, we also consider a dataset of 100 synthetic

omnidirectional road images, provided in the frame of the Omniscape project [39]. Examples of these images, of

size 900×1800 pixels and containing up to 13 classes are given in Figure 10.

4.1.2. Metrics

To compare the performance of the SphSPSmethod to the ones of the state-of-the-art, we use the contour detection,

object segmentation and regularity metrics recommended in [16].

In terms of contour detection, the Boundary-Recall (BR) is a commonly employedmetric evaluating the compliance

of the superpixel boundaries () to the ground truth contours () such that:

BR( ,) = 1
|()|

∑

p∈()
�[ min
q∈()

‖p − q‖ < �], (19)

with � a distance threshold set to 2 pixels [16], and �[a] = 1 when a is true and 0 otherwise. With BR, each ground

truth pixel is considered as detected, if a superpixel boundary is at less than an � distance. The issue of the BRmeasure,

is that it does not take into account the number of superpixel borders, so fuzzy methods can have high performances

[16]. Hence, BR results can be compared to the number of pixels of superpixel borders, called Contour Density (CD).

To go further in the evaluation of contour detection performance, the standard Precision-Recall curves can also be

represented. These are computed from a contour probability map ∈ [0, 1] that is generated by averaging the superpixel
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borders obtained at different segmentation scales K ∈ [50, 3000]. This normalized boundary map is then thresholded

by several intensities ∈ [0, 1] to get a binary contour map, and for each threshold, the Precision (PR) (percentage of

accurate detection among the superpixel borders) is computed along with the BR measure. The performance of each

PR/BR curve can be summarized with the maximum standard F-measure defined as:

F = 2.PR.BR
PR + BR

. (20)

Since the dataset provides segmented regions, object segmentation performance can also be evaluated. To do so,

we use the standard Achievable Segmentation Accuracy (ASA) measure [26], which has been proven highly correlated

to the Undersegmentation Error [30] in [16]. The ASA evaluates the overlap of the superpixel segmentation  with

the objects of the ground truth segmentation, denoted , such as:

ASA( ,) = 1
∑

Si∈
|Si|

∑

Si

max
Gj∈

|Si ∩ Gj|. (21)

Finally, the regularity aspect is robustly evaluated in the acquisition space with the proposed G-GR metric (18).

To demonstrate its relevance, we also compare its results to the ones of the spherical COM measure proposed in [58]

in Annex A.

4.1.3. Parameter settings

The SphSPS method was implemented in MATLAB using C-MEX code, on a Linux computer having 12 cores at

2.6 GHz with 64GB of RAM. SphSPS is based on the spherical K-means framework of [58], with 5 iterations, with

a seed initialization following a Hammersley sampling [49], and a cosine dissimilarity spatial distance ds (6). It uses

the 6 dimension CIELab color space of [9], and includes the features of neighboring pixels [17] in its color distance

dc . In its spherical shortest path, by defaultN = 15 pixels are considered (12). The color distance trade-off parameter

� (7), is set to 0.5 as in [17], and when used, i.e.,  ≠ 0, the contour prior is computed from [51] and  is set to 10 (8).

Finally, the regularity parameter m (9) is empirically set to 0.12 to provide a satisfying trade-off between the spatial

regularity of superpixels and their segmentation performance.

4.2. Impact of Contributions

In this section, we show the impact of the contributions introduced in the SphSPS method on contour detection

performance using PR/BR curves with maximum F-measure (20), on segmentation accuracy using ASA metric (21),

and on regularity with the proposed G-GR metric (18). First, in Figure 11, we quantitatively evaluate the impact

of the initialization strategies represented in Figure 3. The spherical seed samplings logically provide much higher
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Figure 11: Impact of the seed initialization strategy on the performance of SphSPS evaluated on the PSD dataset [45].
The different sampling strategies are represented in Figure 3
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Figure 12: Impact of the number of points N in the spherical shortest path (12) on the performance of SphSPS evaluated
on the PSD dataset [45]

accuracy, since superpixels are regularly placed over the acquisition space and can accurately follow object contours.

For instance, for a low number of superpixels, planar initialization would set a large number of seeds on top and bottom

of the image where very few objects generally are. After a few iterations, we observe that the spherical distance of the

SphSPS method is able to provide a spherically regular decomposition with any input method. Nevertheless, with a

high number of superpixels, the two most regular spherical initialization methods, Hammersley and Geodesic clearly

obtain the highest regularity. In the following, due to the complexity and lack of exact control of number of superpixels

with the geodesic approach, we use the Hammersley sampling in the SphSPS method.

Then, in Figure 12, we report the influence of the number of points in the shortest path (12). More sampling points

enable to more accurately follow the spherical shortest path to capture homogeneous colors, so the shape regularity

is enforced with the number of points, and reaches a plateau around N = 15. The same behavior can be observed for

the PR curves where a plateau is obtained with a low number of points thanks to our recursive implementation (see

Section 2.3.2). In the following we use a trade-off number ofN = 15 points in the shortest path.

Finally, we show the impact of the different distance settings in SphSPS on PR/BR, ASA and G-GR curves in

Figure 13, and a zoom on a segmentation example in Figure 14. With a 3 feature dimension space (3-Lab, �=1, and

=0), SphSPS reduces to an implementation of the spherical SLIC algorithm [58]. With the 6 dimension space (6-Lab)
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Figure 13: Impact of the distance parameters on the performance of SphSPS evaluated on the PSD dataset [45]. The
contributions enable to significantly improve the accuracy and regularity performances

(a) Initial image (b) 3-Lab, �=1, =0

(c) 6-Lab, �=1, =0 (d) 6-Lab, �=0.5, =0 (e) 6-Lab, �=0.5, =10

Figure 14: Visual impact of SphSPS parameters. Each contribution relevantly increases the regularity and  = 10 integrates
the contour prior information

SphSPS uses the CIELab color features of [9] with the information of the neighboring pixels as in [17]. With � set

to 0.5, SphSPS considers in its model the average color distance on the path (7), and with  = 10, the maximum

contour information (8). We also compare the results obtained with the SphSPS method using a shortest linear path

(LP), represented in Figure 5.

We observe that each contribution within the SphSPS method improves the segmentation performance. In

particular, we see that the color distance on the shortest path, strengthens the superpixel convexity and homogeneity,

to provide much more regular superpixels in a relevant manner that also increases the segmentation accuracy. Finally,

these results demonstrate the interest of using our spherical path, since the exact same method using the initial 2D

planar shortest path [17] reports lower performance.
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4.3. Comparison with the State-of-the-Art Methods

The performance of the proposed SphSPS method are compared to the ones of state-of-the-art approaches on the

standard PSDdataset [45] and also on a set of synthetic images extracted from theOmniscape project [39] on themetrics

presented in Section 4.1.2. We consider the recent planar methods SLIC [1], ETPS [56], LSC [9], SNIC [2], SCALP

[17], and GMMSP [3]. We also compare our SphSPS to the spherical approach SphSLIC [58], in its two different

settings, i.e., using an Euclidean spatial distance (SphSLIC-Euc) and the same Cosine (SphSLIC-Cos) distance as

SphSPS (6). For further comparison to spherical methods, we also implement the natural extension of the LSC method

[9] to spherical images (SphLSC), i.e., using the SphSLIC framework [58] and the 6 dimension features of [9]. To

ensure fair comparison between methods, results are reported using the default regularity setting recommended by the

authors, providing a good trade-off between accuracy and regularity. Note that only for the SphSLIC-Cos method [58],

no default parameter is provided so we use the one optimizing the segmentation accuracy.

We report the quantitative performance for several numbers of superpixels of SphSPS and the compared state-of-

the-art methods in Figures 15 and 16. First, on the PSD dataset (Figure 15), we observe that SphSPS obtains the

best segmentation and contour detection performance with the highest ASA (21) and the highest F-measure (20)

of F = 0.710, even without using a contour prior ( = 0), i.e., only using color information on the shortest path

(F = 0.706). A significant improvement is obtained over the other spherical methods SphLSC and SphSLIC using

both distances, while producing more regular superpixels. SphSPS indeed succeeds in producing both accurate and

spherically regular superpixels. On the synthetic road images (Figure 16), SphSPS also offers the best trade-off on all

metrics. While SphSPS is ranked 3rd of F-measure, the two better methods on this criteria (ETPS [56] and SNIC [2])

poorly segment the image objects according to the ASA metric. On this last criteria, SphSPS is ranked 3rd, after the

GMMSP method [3] that is the less regular among all methods, and the SphLSC method ([9, 58]) which also produces

very fuzzy superpixels and has a low F-measure.

The proposed G-GR (18) provides a relevant regularity measure able to differentiate planar and spherical methods.

In particular, with a representative number of superpixels, no planar methods have higher regularity than spherical

ones for a given number of superpixels, contrary to the results of the COM metric [58] reported in Annex A. G-GR

results are also better correlated to the evolution of the superpixel scale, which is relevant since, to a certain extent,

smaller superpixels are more likely to have regular shapes.

Examples of segmentation on the 360o equirectangular images, and projected on the unit sphere, with superpixel

borders and labels, for the proposed SphSPS and the best state-of-the-art methods are represented in Figures 17 and 18

for the PSD dataset, and in Figure 19 for the Omniscape images. On both image type, we observe that SphSPS generates

very regular superpixels in the spherical space while it is able to accurately capture the image objects compared to other

methods.
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Figure 15: Quantitative comparison on the PSD images [45], on PR/BR, ASA and G-GR metrics of the proposed SphSPS
method to the state-of-the-art ones
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Figure 16: Quantitative comparison on the synthetic Omniscape images [39] of the proposed SphSPS method to the
state-of-the-art ones

4.3.1. Robustness to noise

To demonstrate the robustness to noise, we also report the results obtained on PSD images affected by the addition

of a white Gaussian noise of variance 20. Performance in terms of PR/BR, ASA and G-GR are reported in Figure 20

with segmentation examples given in Figure 21.

The proposed SphSPS method appears to be significantly robust to noise compared to most other methods that may

suffer a dramatic loss of accuracy when applied to noisy images. Visually, the superpixels generated by SphSPS remain

regular while other methods provide very fuzzy superpixels, or may even severely fail to capture the image objects.

Finally, in Table 1, we report the quantitative results for a given number ofK = 1500 superpixels for both types (initial

and noisy PSD images). In this Table, we also report Boundary Recall performance (BR) (19) with respect to Contour

Adherence (CD), i.e., the percentage of superpixel border among image pixels, to further express the fuzzy behaviour

of several state-of-the-art methods.

4.3.2. Processing time

The computational cost induced from the larger 6 dimensional feature space [9] and the extraction of color and

contour information on the shortest path, is compensated by the fast convergence in a low number of iterations of
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Planar methods Spherical methods

LSC [9] SphSLIC-Euc [58]
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SCALP [17] SphLSC [9, 58]
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LSC [9] SphSLIC-Euc [58]

SNIC [2] SphSLIC-Cos [58]

SCALP [17] SphLSC [9, 58]

GMMSP [3] SphSPS

Figure 17: Visual comparison between SphSPS and the best planar and spherical (underlined) state-of-the-art methods
on PSD images, for two superpixel numbers K = 1200 (top-left) and K = 400 (bottom right). SphSPS produces regular
spherical superpixels with smooth boundaries that adhere well to the image contours
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Figure 18: Visual comparison between SphSPS and the best planar and spherical (underlined) state-of-the-art methods
on PSD images, for two superpixel numbers K = 1200 (top-left) and K = 400 (bottom right). SphSPS produces regular
spherical superpixels with smooth boundaries that adhere well to the image contours

SphSPS. Without using the shortest path, SphSPS generates superpixels in 0.85s per image of size 512×1024 pixels

and already obtains higher accuracy (F = 0.697) than the state-of-the-art methods (see Figure 13).With the information

R. Giraud, R. Borba Pinheiro, Y. Berthoumieu: Preprint submitted to Elsevier Page 22 of 30



Generalization of the Shortest Path Approach for Superpixel Segmentation of Omnidirectional Images

Planar methods Spherical methods

LSC [9] SphSLIC-Euc [58]

SNIC [2] SphSLIC-Cos [58]

SCALP [17] SphLSC [9, 58]

GMMSP [3] SphSPS

LSC [9] SphSLIC-Euc [58]

SNIC [2] SphSLIC-Cos [58]

SCALP [17] SphLSC [9, 58]

GMMSP [3] SphSPS

Figure 19: Visual comparison between SphSPS and the best planar and spherical (underlined) state-of-the-art methods
on Omniscape images, for two superpixel numbers K = 1200 (top-left) and K = 400 (bottom right). SphSPS produces
regular spherical superpixels with smooth boundaries that adhere well to the image contours
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Figure 20: Quantitative comparison on the noisy PSD images [45] (addition of a white Gaussian noise of variance 20),
on PR/BR, ASA and G-GR metrics of the proposed SphSPS method to the state-of-the-art ones

Table 1
Comparison to the state-of-the-art methods on initial|noisy PSD images [45], on the metrics presented in Section 4.1.2.
The ASA (21) and G-GR (13) results are given for K = 1500 superpixels, and CD results for BR = 0.8 (19). Blue (bold)
and red (underlined) respectively indicate best and second results. Some results for the SLIC method on noisy images are
estimated by a linear fitting due to an insufficient number of generated superpixels

Method F (20) ↑ CD/BR (19) ↓ ASA (21) ↑ G-GR (13) ↑
SLIC [1] 0.684|0.542 0.123|0.156 0.883|0.789 0.438|0.340
ETPS [56] 0.695|0.625 0.118|0.194 0.881|0.866 0.426|0.344
LSC [9] 0.668|0.503 0.130|0.313 0.890|0.848 0.407|0.374
SNIC [2] 0.672|0.631 0.125|0.137 0.884|0.866 0.405|0.389
SCALP [17] 0.688|0.623 0.114|0.130 0.887|0.879 0.451|0.409
GMMSP [3] 0.681|0.407 0.129|0.332 0.893|0.856 0.375|0.361
SphSLIC-Euc [58] 0.656|0.629 0.130|0.142 0.884|0.840 0.495|0.423
SphSLIC-Cos [58] 0.656|0.627 0.129|0.141 0.884|0.851 0.501|0.449
SphLSC [9, 58] 0.683|0.557 0.103|0.223 0.895|0.851 0.469|0.390
SphSPS (=0) 0.706|0.645 0.112|0.145 0.895|0.888 0.519|0.449
SphSPS 0.710|0.657 0.111|0.141 0.899|0.894 0.518|0.454

on the shortest path, SphSPS obtains significantly higher accuracy in only 2.30s per image, that is faster than existing

spherical approaches [58].

Hence, the proposed optimizations in Section 2.3.3, enable to consider the large number of pixels contained into

the shortest path, while only increasing the processing time by less than a factor 3. Finally, with basic multi-threading

implementation, we easily reduce the processing time of SphSPS to 0.7s per image.

Further comparison of processing times would necessitate to consider the differences of implementation and

optimization to reflect the computational potential of each method [41]. Nevertheless, since our method uses the same

K-means clustering framework as SLIC [1], it is very likely to be able to perform in real-time, as other works have

already proposed such GPU implementations [31, 10, 4].
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5. Conclusion

In this work, we proposed a new paradigm to compute accurate superpixels directly in the 3D acquisition space

considering the distorsions induced by the spherical projection to the planar image space. To this end, we generalized

the shortest path approach to extract features between a pixel and a superpixel barycenter. To consider the color and

contour feature information on such path enables to increase the segmentation performance and the regularity of the

generated regions. We especially showed that respecting the acquisition space geometry enables to more accurately

capture the image objects.

To evaluate the performance of the proposed SphSPS method, we first addressed the limitation of the existing

spherical regularity measure by introducing a generalized regularity metric measuring the spatial convexity and

consistency in the 3D spherical space.We extensively compared SphSPS to the state-of-the-art methods to demonstrate

its superior performance on both natural and synthetic 360o images, robustness to noise and low computational time.

Since joint border accuracy with high regularity in the acquisition space are crucial for relevant display and

processing of neighboring relationships in computer vision pre-processing, we truly believe that the proposed work

can be of high interest to the community. Future works will focus on extending our method to other acquisition spaces

and omnidirectional video acquisitions.

A. Comparison of proposed G-GR and standard COM metrics

In Figure 22, we report the evaluation of methods on our previous implementation of the G-GR metric [14], and

on the standard compactness measure COM (13), adapted to the spherical space in [58]. As discussed in Section

4.3, the proposed version of the G-GR metric enables to clearly differentiate spherical from planar methods, i.e.,

with a significant number of superpixels, all spherical methods obtain higher regularity measure. Our previous

implementation [14] uses a downscaling instead of a concave hull to obtain the final 2D projection of spherical

superpixel shapes. It appears to be more impacted by fuzzy borders, so that the SphLSC method that produces very

irregular spherical superpixels (see Figures 17, 18 and 19), is measured less regular than the planar SCALP method.

We also observe that the COM metric even fails at differentiating planar and spherical methods. For instance, the

SCALP method [17] gets higher results than the SphSLIC method [58]. It may come from the non robustness of this

criteria, which is only seen as a circularity notion and does not take into account the consistency of shape within

the decomposition, while the proposed G-GR metric (18), evaluates the regularity of shapes and their consistency

according to the acquisition space.

Finally, to further demonstrate the relevance of G-GR over the COM metric, we compute the correlation between

the measured regularity and the number of generated superpixels. As the number of superpixel increases, their shape

is very likely to be more regular, since they less have to stretch to gather homogeneous pixels. Hence, the regularity
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is supposed to increase with the superpixel scale, i.e., the number of superpixels. For all the compared methods in

Section 4, on the PSD dataset, we report an average correlation between the number of superpixels and the regularity

of 0.3725 for COM and of 0.6518 for the proposed G-GR.
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Figure 21: Visual comparison between SphSPS and the best planar and spherical (underlined) state-of-the-art methods on
noisy PSD images, for two superpixel numbers K = 1200 (top-left) and K = 400 (bottom right). The compared methods
may generate very inaccurate superpixels with noisy borders, while SphSPS remains robust to noise and produces regular
superpixels with smooth boundaries that adhere well to the image contours
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Figure 22: Comparison between proposed G-GR (left), our previous implementation of the G-GR metric [14] (center)
and the spherical compactness COM [58] metric (right) on the PSD dataset. The proposed G-GR is able to differentiate
spherical from planar methods while being more correlated to the number of generated superpixels
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