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RELATIVE ENTROPY METHODS IN CONSTRAINED POLYNOMIAL
AND SIGNOMIAL OPTIMIZATION

THORSTEN THEOBALD

Abstract. Relative entropy programs belong to the class of convex optimization problems.
Within techniques based on the arithmetic-geometric mean inequality, they facilitate to compute
nonnegativity certificates of polynomials and of signomials.
While the initial focus was mostly on unconstrained certificates and unconstrained optimization,
recently, Murray, Chandrasekaran and Wierman developed conditional techniques, which provide
a natural extension to the case of convex constrained sets. This expository article gives an
introduction into these concepts and explains the geometry of the resulting conditional SAGE
cone. To this end, we deal with the sublinear circuits of a finite point set in Rn, which generalize
the simplicial circuits of the affine-linear matroid induced by a finite point set to a constrained
setting.

1. Introduction

Relative entropy programs provide a class of convex optimization problems [5]. They are
concerned with optimizing linear functions over affine sections of the relative entropy cone

Kn
rel = cl

{
(x, y, τ) ∈ Rn

>0 × Rn
>0 × Rn : xi ln xi

yi

≤ τi for all i
}

,

where cl denotes the topological closure. Relative entropy programming contains as a subclass
geometric programing and the special case n = 1 of the relative entropy cone can be viewed as a
reparametrization of the exponential cone. Beside applications in fields such as engineering and
information theory, the last years have shown an exciting and powerful application of relative
entropy programming for optimization of polynomials and of signomials (i.e., exponential sums).
Namely, within techniques based on the arithmetic-geometric mean inequality (AM/GM inequal-
ity), relative entropy programs facilitate to compute nonnegativity certificates of polynomials
and of signomials. These techniques can also be combined with other nonnegativity certificates,
such as sums of squares.

A signomial, also known as exponential sum or exponential polynomial, is a sum of the form
f(x) =

∑
α∈T

cα exp(⟨α, x⟩)

with real coefficients cα and a finite ground support set T ⊂ Rn. Here, ⟨·, ·⟩ is the usual
scalar product and we point out explicitly that the definition of a signomial also allows for
negative or non-integer entries in the elements of T . Exponential sums can be seen as a
generalization of polynomials: when T ⊂ Nn, the transformation xi = ln yi gives polynomial
functions y 7→ ∑

α∈T cαyα on Rn
>0. For example, we have f = 5 exp(2x1 + 3x2) − 3 exp(4x2 + x3)
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versus p = 5y2
1y3

2 − 3y4
2y3. When T ⊂ Nn, a signomial f is nonnegative on Rn if and only if its

associated polynomial p is nonnegative on Rn
+, where R+ denotes the set of nonnegative real

numbers.
Signomial optimization has additional modeling power compared to polynomial optimization.

For example, the non-integer exponent 1
2 is possible in signomial optimization, which corresponds

to square roots. This leads to additional applications, for example, in chemical reaction networks
[22], aircraft design optimization [38] or epidemiological models [31].

The following idea connects global nonnegativity certificates for polynomials and for signomials
to the AM/GM inequality. This basic insight goes back to Reznick [34] and was further developed
by Pantea, Koeppl, Craciun [32], Iliman and de Wolff [14] as well as Chandrasekaran and Shah
[4]. For support points α0, . . . , αm ∈ Rn and λ = (λ1, . . . , λm) ∈ Rm

+ with ∑m
i=1 λi = 1 and∑m

i=1 λiαi = α0, the signomial
m∑

i=1
λi exp(⟨αi, x⟩) − exp(⟨α0, x⟩)

is nonnegative on Rn. This is a consequence of the weighted AM/GM inequality, see Section 2.3.
During the early developments of AM/GM-based optimization of polynomials and signomials,

most work concentrated on unconstrained certificates and unconstrained optimization. In the
recent work [25], Murray, Chandrasekaran and Wierman presented an extension of the relative
entropy methods to a conditional setting with a convex constrained set. In this situation, the
constrained approach provides a much more suitable framework than earlier initial approaches
of addressing constraints in AM/GM-based optimization based on a mix with a Krivine-type
Positivstellensatz [4, 9].

The goal of this expository article is to offer an introduction into the relative entropy methods
for unconstrained and for constrained polynomial and signomial optimization. The resulting
cones are called the SAGE cone and the conditional SAGE cone, where SAGE is the acronym
for Sums of Arithmetic-Geometric Exponentials. The geometry of the SAGE cone is governed by
the simplicial circuits of the affine-linear matroid induced by the support T [12, 24, 36]. In order
to exhibit the geometry of the conditional SAGE cone, we spell out and study the sublinear
circuits of a finite point set in Rn, which generalize the simplicial circuits to a constrained
setting [26].

Sublinear circuits of polyhedral sets have specifically been studied in [28]. Meanwhile, the
conditional SAGE approaches has also been extended towards hierarchies and Positivstellensätze
for conditional SAGE [35] and to additional non-convex constraints [10].

2. From relative entropy programming to the SAGE cone

We provide some background on relative entropy programming and explain the main concepts
of the SAGE cone.

2.1. Cones and optimization. Conic optimization is concerned with optimization problems
of the form inf{cT x : Ax = b, x ∈ K} for a convex cone K ⊂ Rn, where A ∈ Rm×n, b ∈ Rm

and c ∈ Rn. Usually, we assume that the cone K is closed, full-dimensional and pointed, where
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Figure 1. The exponential cone.

pointed means that K contains no lines. A closed, full-dimensional and pointed cone is called
a proper cone. If a self-concordant barrier function for K is known, then conic optimization
problems over K can be approached efficiently through interior point methods (see, e.g., [30]).

Prominent special cases of conic programming are linear programming and semidefinite
programming. Linear programming (LP) can be viewed as conic programming over the nonneg-
ative cone K = Rn

+. Linear programming arises in polynomial optimization, for example, in
LP-relaxations via Handelman’s Theorem [13] or in the DSOS approach (diagonally dominant
sums of squares [1]).

Semidefinite programming (SDP) can be viewed as conic programming over the cone S+
n of

positive semidefinite symmetric n × n-matrices. Semidefinite programming is ubiquitous in
polynomial optimization through sums of squares. In particular, with respect to constrained
optimization, semidefinite programming is tightly connected to Lasserre’s hierarchical relaxation
and thus to Putinar’s Positivstellensatz and to moments (see, e.g., [17]). Recent developments
on the use of semidefinite programming in polynomial optimization include the improved
exploitation of sparsity, see [19, 37].

2.2. The exponential cone and the relative entropy cone. The exponential cone and the
relative entropy cone are rather young cones within the development of convex optimization.
The exponential cone is defined as the three-dimensional cone

Kexp = cl
{

z ∈ R × R+ × R>0 : exp
(

z1

z3

)
≤ z2

z3

}
.

In 2006, Nesterov gave a self-concordant barrier function [29], see also [6]. This enables efficient
interior-point algorithms for approximating optimization problems over Kexp. The exponential
cone is depicted in Figure 1.

Remark 1. For any convex function φ : R → R, the perspective function φ̃ : R × R>0 → R is
defined as φ̃(x, y) = yφ

(
x
y

)
. The closure of the epigraph of the perspective function,

cl
{

(t, x, y) ∈ R × R × R>0 : t ≥ yφ

(
x

y

)}
,
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Figure 2. The negative entropy function.

is known to be a closed convex cone. The exponential cone is exactly the cone which arises from
this construction for the exponential function φ : x 7→ exp(x).

The exponential cone is a non-symmetric cone, where ‘symmetric’ means that a cone is
homogeneous and self-dual. Optimization over a Cartesian product of exponential cones
contains as a special case the class of geometric programming, which has many applications
in engineering [3]. Moreover, the exponential cone has applications, for example, in maximum
likelihood estimation or logistic regression [20]. The dual of the exponential cone is

K∗
exp = cl

{
s ∈ R<0 × R+ × R : exp

(
s3

s1

)
≤ −e · s2

s1

}
,

where e denotes Euler’s number. Meanwhile, the exponential cone is implemented in software
tools, such as CVXPY [7], ECOS [8] and MOSEK [20].

The relative entropy cone can be seen as a reparametrized version of the exponential cone.
For a formal definition, we consider the negative entropy function

f : R>0 → R, f(x) = x ln x,

see Figure 2.
The relative entropy function is defined as D : R>0 × R>0 → R, D(x, y) = x ln x

y
. It is a

convex function in z = (x, y), also called a jointly convex function in x and y. To see the joint
convexity, observe that the Hessian of D evaluates to

∇2D(x, y) =
( 1

x
− 1

y

− 1
y

x
y2

)
.

The relative entropy function can be extended to vectors x, y ∈ Rn
>0 by setting D(x, y) =∑n

i=1 xi ln xi

yi
. The relative entropy cone is defined as

K1
rel := cl {(x, y, τ) ∈ R>0 × R>0 × R : D(x, y) ≤ τ} .

Here, the upper index “1” indicates that x, y and τ are scalars. The relative entropy cone can
be viewed as a reparametrization of the exponential cone, because of the equivalences

x ln x

y
≤ τ ⇐⇒ exp

(
−τ

x

)
≤ y

x
⇐⇒ (−τ, y, x) ∈ Kexp.
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More generally, the relative entropy cone can be extended to triples of vectors by defining
Kn

rel ⊂ R3n as

Kn
rel = cl

{
(x, y, τ) ∈ Rn

>0 × Rn
>0 × Rn : xi ln xi

yi

≤ τi for all i
}

.

This allows to model the n-variate relative entropy condition

D((x1, . . . , xn), (y1, . . . , yn)) :=
n∑

i=1
xi ln xi

yi

≤ t

as
∃τ ∈ Rn with (x, y, τ) ∈ Kn

rel and 1T τ = t,

where 1 denotes the all-ones vector.

2.3. The basic AM/GM idea. The following idea, going back to Reznick [34] and further
developed in [4, 14, 32], connects global nonnegativity certificates for polynomials and for
signomials to the AM/GM inequality. Consider support points α0, . . . , αm ∈ Rn such that α0 is
a convex combination of α1, . . . , αm, that is, α0 = ∑m

i=1 λiαi = α0 with ∑m
i=1 λi = 1 and λ ∈ Rm

+ .
Then the signomial

(2.1)
m∑

i=1
λi exp(⟨αi, x⟩) − exp(⟨α0, x⟩)

is nonnegative on Rn. Namely, we can use the following weighted AM/GM inequality, which
can easily be derived from the strict convexity of the univariate function x 7→ − ln x on the
domain (0, ∞).

Theorem 2 (Weighted arithmetic-geometric mean inequality). For each z ∈ Rn
+ and λ ∈ Rn

+
with ∑n

i=1 λi = 1, we have
n∑

i=1
λizi ≥

n∏
i=1

zλi
i .

The nonnegativity of (2.1) follows from the weighted AM/GM inequality through

(2.2)
m∑

i=1
λi exp(⟨αi, x⟩) ≥

m∏
i=1

(exp(⟨αi, x⟩))λi = exp(⟨α0, x⟩)

for all x ∈ Rn. Clearly, sums of such exponential sums of the form (2.1) are nonnegative as
well. We will see later how to generalize this core idea from the unconstrained setting to the
constrained case with respect to a set X.

For the class of signomials, we assume that an underlying finite ground support set T ⊂ Rn

is given. When considering subsets of the ground support, we usually employ the convention
that A refers to terms with positive coefficients and B (or β in case of single elements) refers to
terms with possibly negative coefficients.

Let f be a general signomial whose coefficients except at most one are positive,
(2.3) f(x) =

∑
α∈A

cα exp(⟨α, x⟩) + d exp(⟨β, x⟩) with cα > 0 and d ∈ R.
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Chandrasekaran and Shah [4] have given the following exact characterization of the nonnegativity
of f in terms of the coefficients (cα)α∈A and d. This insight establishes a fundamental connection
from the nonnegativity of signomials (or polynomials) with at most one negative coefficient to
the relative entropy function.

Theorem 3. The signomial f in (2.3) is nonnegative if and only if there exists ν ∈ RA
+ with∑

α∈A ναα = (∑α∈A να)β and D(ν, ec) ≤ d, where D denotes the relative entropy function and e
is Euler’s number.

As revealed by the proof, a natural way to see why the relative entropy function occurs is
through duality theory. For a function g : Rn → R, the conjugate g∗ : Rn → R is defined by

g∗(y) = sup
x

(
yT x − g(x)

)
.

The conjugate function of g(x) = ex is g∗(y) = y ln y − y on the domain R+, where we use
the convention 0 · ln 0 := 0. Using standard computation rules from convex optimization, the
conjugate function of

g(x) =
n∑

i=1
cie

xi with c1, . . . , cn > 0

is D(y, ec), where c := (c1, . . . , cn)T .

Proof. The nonnegativity of the signomial f is equivalent to the nonnegativity of f(x) exp(⟨−β, x⟩)
and thus also equivalent to ∑α∈A cα exp(⟨α, x⟩ − ⟨β, x⟩) ≥ −d for all x ∈ Rn. The function∑

α∈A cα exp(⟨α, x⟩ − ⟨β, x⟩) is, as a sum of convex functions, convex as well. Its infimum can
be formulated as the convex optimization problem

inf
x∈Rn, t∈RA

∑
α∈A

cαtα s.t. exp(⟨α − β, x⟩) ≤ tα ∀α ∈ A,

where the inequality constraints can also be written as ⟨α − β, x⟩ ≤ ln tα. The primal problem
satisfies Slater’s condition from convex optimization, because a Slater point can be constructed
by considering an arbitrary point x ∈ Rn and choosing all tα sufficiently large. For the Lagrange
dual, we obtain, by reducing to the conjugate function together with the computation rules
above,

sup
ν∈RA

+

−D(ν, ec) s.t.
∑
α∈A

ναα = (
∑
α∈A

να)β.

Due to Slater’s condition, we have strong duality and the dual optimum is attained. This shows
the theorem. □

Example 4. We consider the Motzkin-type signomial fδ = e4x+2y + e2x+4y + 1 + δe2x+2y with
some parameter δ ∈ R. In order to determine the smallest δ such that fδ is nonnegative, we can
consider the signomial

gδ(x) := fδ(x) e−2x−2y = e2x + e2y + e−2x−2y + δ.
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Since gδ has at most one negative term, we can formulate the nonnegativity of gδ in terms of
the relative entropy condition

inf δ

ν1

(
2
0

)
+ ν2

(
0
2

)
+ ν3

(
−2
−2

)
= 0,

ν1 ln ν1

e · 1 + ν2 ln ν2

e · 1 + ν3 ln ν3

e · 1 ≤ δ,

ν ∈ R3
+, δ ∈ R.

The minimal δ satisfying this condition is δ = −3 and minx,y fδ=−3 = 0.

In the algorithmic access via conic optimization as described above, it is essential that the
vector ν in Theorem 3 is not normalized to, say, ∑α∈A να = 1. Indeed, normalizing the vector
ν in that theorem gives a formulation of a nonnegativity condition which can be viewed as a
slight generalization of the AM/GM consideration (2.2).

Proposition 5. The signomial f in (2.3) is nonnegative if and only if there exists λ ∈ RA
+ with∑

α∈A
λαα = β, ∑α∈A λα = 1 and

(2.4)
∏

α∈A with λα>0

(
cα

λα

)λα

≥ −d .

Proof. If there exists λ ∈ RA
+ satisfying (2.4), using the weighted AM/GM-inequality with

weights (λα)α∈A gives
∑
α∈A

cα exp(⟨α, x⟩) ≥
∏

λα>0

( 1
λα

cα exp(⟨α, x⟩
)λα

=
∏

λα>0

(
cα

λα

)λα

exp(⟨β, x⟩)

≥ −d exp(⟨β, x⟩)

for all x ∈ R. Hence, f is nonnegative.
Conversely, if f is nonnegative, then, by Theorem 3, there exists ν ∈ RA

+ with ∑α∈A ναα =
(∑α∈A να)β and D(ν, ec) ≤ d. Set λα = να

1T ν
for all α ∈ A and we can assume that cα > 0 for

all α ∈ A. The convex univariate function h : R>0 → R, s 7→ D(sλ, ec) has the derivative
h′(s) = ln s + D(λ, c) and thus takes its minimum at s∗ = e−D(λ,c) with minimal value

h(s∗) = e−D(λ,c) ∑
α∈A

λα ln e−D(λ,c)λα

e · cα

= e−D(λ,c)(D(λ, c) − D(λ, c) − 1)

= −e−D(λ,c) = −
∏

α∈A with λα>0

(
cα

λα

)λα

.

Hence,

d ≥ D(ν, ec) ≥ h(s∗) = −
∏

α∈A with λα>0

(
cα

λα

)λα

.
□
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2.4. The SAGE cone (Sums of Arithmetic-Geometric Exponentials). Building upon the
AM/GM idea, Chandrasekaran and Shah [4] have introduced the following cones of nonnegative
signomials. The elements of these cones admit a nonnegativity certificate based on the AM/GM
inequality. For given A and β ̸∈ A, the AGE cone CAGE(A, β) is defined as

CAGE(A, β) =
{

f : f =
∑
α∈A

cαe⟨α,x⟩ + de⟨β,x⟩ is nonnegative, c ∈ RA
+

}
.

Given a finite set T ⊂ Rn, the SAGE cone C(T ) is then defined as

C(T ) :=
∑
β∈T

CAGE(T \ {β}, β).

It consists of signomials which admit a decomposition as a sum of AGE signomials. The SAGE
cone supports handling sparse signomials. A crucial property is that it allows cancellation-free
representations. This was shown by Wang [36] in the polynomial setting and by Murray,
Chandrasekaran and Wierman [24] in the signomial setting.

Theorem 6. Let f be a signomial with support T . If f ∈ C(T ′) for some T ′ ⊇ T , then
f ∈ C(T ). In words, if a signomial f supported on T has a SAGE certificate with respect to
some larger support set T ′, then the SAGE certificate also exists on the support set T itself.

Membership of a signomial to the SAGE cone can be formulated in terms of a relative entropy
program. For disjoint ∅ ≠ A ⊂ Rn and B ⊂ Rn, write

C(A, B) :=
∑
β∈B

CAGE(A ∪ B \ {β}, β).

Hence, signomials in C(A, B) can only have negative coefficients within the subset B. It holds
C(A, B) = {f = ∑

α∈A cαe⟨α,x⟩ +∑
β∈B cβe⟨β,x⟩ ∈ C(A ∪ B) : cα ≥ 0 for α ∈ A}. This allows

the following relative entropy formulation to decide whether a given signomial

(2.5) f =
∑
α∈A

cα exp(⟨α, x⟩) +
∑
β∈B

cβ exp(⟨β, x⟩)

with cα ≥ 0 for α ∈ A and cβ < 0 for β ∈ B is contained in the SAGE cone.

Theorem 7. [24] The signomial f in (2.5) is contained in C(A, B) if and only for every β ∈ B
there exist c(β) ∈ RA

+ and ν(β) ∈ RA
+ such that∑

α∈A
ν(β)

α α = ( ∑
α∈A

ν(β)
α )β for β ∈ B,

D(ν(β), e · c(β)) ≤ cβ for β ∈ B,∑
β∈B

c(β)
α ≤ cα for α ∈ A.

For combining AM/GM-techniques for polynomials on Rn and Rn
+, Katthän, Naumann and

the current author have developed the S-cone [16]. AM/GM techniques can also be combined
with sums of squares to hybrid methods, see [15]. Moreover, an implementation of the SAGE
cone, called Sageopt was provided by Murray [23].
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3. Conditional nonnegativity over convex sets

Murray, Chandrasekaran and Wierman [25] generalized AM/GM optimization from the
unconstrained setting to the constrained setting over a convex set X ⊂ Rn. Denote by
σX(y) = sup{yT x : x ∈ X} the support function of X from classical convex geometry. σX is a
convex function Rn → R+ ∪ {∞}. If X is polyhedral, then σX is linear on every normal cone of
X. The support function σX arises naturally in optimization as the conjugate function of the
indicator function

1X(x) =

0 x ∈ X,

∞ otherwise
of a convex set X.

We begin with the crucial insight that for a signomial with at most one negative term, the
nonnegativity on X (“conditional nonnegativity”) can be formulated in terms of a relative entropy
program involving also the support function of X. Let T := A∪{β} and f(x) = ∑

α∈T
cα exp(⟨α, x⟩)

with cα ≥ 0 for α ∈ A. As short notation, for a given ν ∈ RT we write T ν := ∑
α∈T ανα.

Theorem 8. [25] The signomial f in (2.3) is nonnegative on X if and only if there exists
ν ∈ RT \ {0} with ∑α∈T να = 0, ν|A ≥ 0 and σX(−T ν) + D(ν|A, ec|A) ≤ cβ. Here, ν|A denotes
to the restriction of the vector ν to the coordinates of A.

Proof. Generalizing the idea of the proof of Theorem 3, we now observe that f is nonnegative
on X if and only if ∑α∈A cα exp(⟨α, x⟩ − ⟨β, x⟩) ≥ −cβ for all x ∈ X. The infimum of the left
convex function can be formulated as the convex program

inf
x∈X, t∈RA

∑
α∈A

cαtα s.t. exp(⟨α − β, x⟩) ≤ tα ∀α ∈ A.

Strong duality holds, and the dual is
max

ν∈RT \{0}
−(σX(−T ν) + D(ν|A, ec|A)) s.t.

∑
α∈T

να = 0, ν|A ≥ 0.

Hence, f is nonnegative if and only if this maximum is larger than or equal to −cβ. □

It is useful to consider also the following alternative formulation of the characterization in
Theorem 8. For β ∈ T , set

Nβ =
{

ν ∈ RT : ν\β ≥ 0,
∑
α∈T

να = 0
}

,

where ν\β refers to the vector ν in which the component β has been removed. The choice of the
name N reflects that the coordinate β is the only coordinate which may be negative.

Corollary 9. The signomial f in (2.3) is nonnegative on X if and only if there exists ν ∈ Nβ\{0}
with σX(−T ν) + D(ν|A, ec|A) ≤ cβ.

The following theorem characterizes nonnegativity in terms of a normalized dual variable and
thus generalizes Proposition 5.
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Figure 3. In the case X = Rn, the exponent vectors of terms with negative
coefficients lie in the convex hull of the exponent vectors of terms with positive
coefficients.

1

1

Figure 4. Left: The graph of the function f(x) = exp(x) − exp(0). Right: The
support point of the negative coefficient (visualized in blue) is not contained in
the convex hull of the set of support points with positive coefficient (visualized in
red).

Theorem 10. [26] The signomial f in (2.3) is nonnegative on X if and only if there exists
λ ∈ Nβ with λβ = −1 and ∏

α∈A with λα>0

(
cα

λα

)λα

≥ −cβ exp(σX(−T λ)).

For given A and β ̸∈ A, define the conditional AGE cone CX,AGE(A, β) as

(3.1)
{

f : f =
∑
α∈A

cαe⟨α,x⟩ + de⟨β,x⟩ nonnegative on X, c ∈ RA
+

}
.

The conditional SAGE cone is defined as
(3.2) CX(T ) =

∑
β∈T

CX,AGE(T \ {β}, β).

These cones are abbreviated as the X-AGE cone and the X-SAGE cone. The result on
cancellation-free representation from Theorem 6 also holds for the constrained situation.

In the transition from the unconstrained optimization to the constrained optimization, the
following key change in geometry and combinatorics takes place. Let f be a signomial of the
form f = ∑

α∈A cαe⟨α,x⟩ + de⟨β,x⟩ with cα ≥ 0 for all α ∈ A. If f is nonnegative over the set
X = Rn, then we have β ∈ conv A. That is, the exponent vector of the term with negative
coefficients lies in the convex hull of the exponent vectors of terms with positive coefficients,
see Figure 3. This property can get lost for other sets X. For example, for X = R+ and
T = {(0), (1)}, the signomial f : R → R, f(x) = exp(x) − exp(0) is contained in CX(T ). The
left picture in Figure 4 shows the graph of f and the right picture the support points.
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Xrec(X)

rec(X)◦ = − rec(X)∗

β

Figure 5. The left picture visualizes the inequality σX(−T ν) < ∞ in terms of
the condition that −T ν is contained in the relative interior of rec(X)◦. The right
picture shows the cone in which the term with negative coefficient has to lie. For
example, the blue dot would be a possible support point for the negative coordi-
nate β.

To characterize this change in geometry and combinatorics, recall that the recession cone
rec(X) of a convex set X is defined as

rec(X) := {y : ∃x ∈ X such that x + λy ∈ X for all λ ≥ 0}.

For a given cone S, let S◦ := {y ∈ Rn : ⟨x, y⟩ ≤ 0 for all x ∈ S} denote the polar cone
of S. Observe that the polar cone and the dual cone are related through S◦ = −S∗. For
T := A ∪ {β} and a given convex set X, the inequality σX(−T ν) < ∞ implies the weaker
condition β ∈ conv A + rec(X)◦ = conv A − rec(X)∗, see Figure 5.

Membership to the conditional SAGE cone can now be formulated as a relative entropy
program as well. For disjoint ∅ ≠ A ⊂ Rn and B ⊂ Rn, write

CX(A, B) :=
∑
β∈B

CX,AGE(A ∪ B \ {β}, β).

It holds CX(A, B) =
{
f = ∑

α∈A cαe⟨α,x⟩ +∑
β∈B cβe⟨β,x⟩ ∈ CX(A ∪ B) : cα ≥ 0 for α ∈ A

}
.

Theorem 11. [25] A signomial

f =
∑
α∈A

cαe⟨α,x⟩ +
∑
β∈B

cβe⟨β,x⟩

with cα ≥ 0 for α ∈ A and cβ < 0 for β ∈ B is contained in CX(A, B) if and only if for every
β ∈ B there exist c(β) ∈ RA

+ and ν(β) ∈ RA
+ such that

σX(−(A ∪ β)ν) + D(ν(β), e · c(β)) ≤ cβ for β ∈ B,∑
β∈B

c(β)
α ≤ cα for α ∈ A.

Since the formulations of the conditional SAGE approach use the support function, efficient
numerical computation requires sets X for which the support function can be computed efficiently.
A natural class where this is possible is provided by polyhedral sets X given by linear inequalities.
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= “+”

Figure 6. The support of f and its summands in Example 12.

4. The circuit view for unconstrained AM/GM optimization

Revealing the structure of the SAGE cone and of the conditional SAGE cone relies on the
decomposition of signomials into simpler signomials. In this section, we present the central ideas
for the case of unconstrained AM/GM optimization. The decomposition property manifests
itself on the level of the dual vector ν in the entropy condition for nonnegativity. The linear
(in-)equalities in the entropy condition offer a polyhedral view and an access through generators
known as simplicial circuits. We begin with an example.

Example 12. The nonnegative function f = 7e0 + 3e2x + e3x + 3e3y − 9ex+y decomposes as

f = 1
2
(
2e0 + 2e3x + 2e3y − 6ex+y

)
+ 1

2
(
12e0 + 6e2x + 4e3y − 12ex+y

)
into two non-proportional nonnegative AGE signomials. The support sets of f and the summands
are depicted in Figure 6.

Denote by 1 the all-ones vector and by supp the support of a vector, i.e., the index set of its
non-zero components.

Definition 13. A nonzero vector ν∗ ∈ {ν ∈ RT : ⟨1, ν⟩ = 0} with T ν∗ = 0 is called a simplicial
circuit if it is minimally supported and has exactly one negative component, named (ν∗)−. Here,
minimally supported means that there does not exist ν ′ ∈ RT \ {0} with supp ν ′ ⊊ supp ν∗,
⟨1, ν ′⟩ = 0 and T ν ′ = 0. A simplicial circuit is called normalized if ν∗

β = −1, where β := (ν∗)−.

From a combinatorial viewpoint, we can consider the support sets of the positive coefficients
of circuits. In matroid theory, these support sets constitute the set of circuits in the affine-linear
matroid on the ground set T . When working with normalized simplicial circuits, we often use
the symbol λ rather than ν. Denote by Λ(T ) the set of normalized simplicial circuits. For every
simplicial circuit λ ∈ Λ(T ) with λβ = −1, Proposition 5 describes a natural set of signomials,
whose nonnegativity is witnessed by λ. Formally, let C(T , λ) be the λ-witnessed AGE cone∑

α∈T
cα exp(⟨α, x⟩) :

∏
α∈A with λα>0

(
cα

λα

)λα

≥ −cβ, cα ≥ 0 for α ∈ T \ {β}

 ,

where β := λ−. The SAGE cone admits the following decomposition as a Minkowski sum of
λ-witnessed AGE cones and of exponential monomials (i.e., signomials whose exponent vector α
has a single nonnegative entry).
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Theorem 14. For Λ(T ) ̸= ∅, the SAGE cone decomposes as
C(T ) =

∑
λ∈Λ(T )

C(T , λ) +
∑
α∈T

R+ · exp(⟨α, x⟩).

As a consequence, every signomial in the SAGE cone C(T ) can be written as a non-negative
sum of circuit-witnessed signomials and of exponential monomials.

This was shown by Wang [36] in the polynomial setting and by Murray, Chandrasekaran,
Wierman [24]. It reveals the two views on the SAGE cone. The first view comes from the
definition of the SAGE cone in terms of AGE signomials. Equivalently, we can regard the SAGE
cone as being non-negatively generated by the circuit-witnessed signomials and by exponential
monomials.
Remark 15. In the polynomial setting, a variety of works used the latter viewpoint in
their definition of a cone for AM/GM optimization. Prominently, Iliman and de Wolff [14]
have employed the notion of the cone of SONC polynomials (“Sums of Non-negative Circuit
polynomial”). When considering polynomials over Rn

>0, the exponential monomials from the
signomial setting become ordinary monomials. In the adaption to polynomials over Rn, which
also has to take into account the signs in other orthants, the monomials become monomial
squares. The dual SONC cone was studied in [11].

In order to give the idea for the decomposition in Theorem 14, we approach the situation
from the linear condition within the relative entropy condition of Theorem 7.
Lemma 16 (Decomposition Lemma). Let

f =
∑
α∈A

cα exp(⟨α, x⟩) + cβ exp(⟨β, x⟩)

be a signomial in CAGE(A, β) and ν satisfy the relative entropy condition for f . If ν can be
written as a convex combination ν = ∑k

i=1 θiν
(i) of non-proportional ν(i) ∈ Nβ, then f has a

decomposition into non-proportional signomials in CAGE(A, β).
Before the proof, we illustrate the statement.

Example 17. We adapt the earlier Example 12, taking f = 2e0 + 3e2x + e3x + 3e3y − 9ex+y.
Here, the dual vector ν = (2, 3, 1, 3, −9) certifies the relative entropy condition. This specific
situation is rather simple, because the coefficients sum to zero, which leads to a root at the
origin. Writing ν = 1

2(2, 6, 0, 4, −12) + 1
2(2, 0, 2, 2, −6) gives the decomposition

f = 1
2
(
2e0 + 6e2x + 4e3y − 12ex+y

)
+ 1

2
(
2e0 + 2e3x + 2e3y − 6ex+y

)
.

The first summand ν ′ := 1
2(2, 6, 0, 4, −12) of ν is a simplicial circuit, so that Lemma 16 does

not apply on ν ′. Indeed, the signomial 1
2(2e0 + 6e2x + 4e3y −12ex+y) cannot be decomposed

into two non-proportional signomials, such that in these two signomials only the exponential
monomial 12ex+y has a negative coefficient and only the exponential monomials e0, 6e2x and
4e3y can have a nonzero, positive coefficient. The same holds true for the second summand of ν
and the second summand of f .
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Proof of Lemma 16. Denote by ν+ := {α ∈ A : να > 0} the positive support of ν and set
T = A ∪ {β}. For the given f = ∑

α∈T cα exp(⟨α, x⟩), construct vectors c(i) for 1 ≤ i ≤ k by

c(i)
α =

(cα/να)ν(i)
α if α ∈ ν+

0 otherwise
for all α ∈ T \ {β}

and by setting c
(i)
β = D(ν(i)

\β , ec
(i)
\β). The coefficient vectors c(i) define nonnegative AGE signomials.

It remains to show that ∑k
i=1 θic

(i) ≤ c.
For indices α ∈ ν+, we have equality by construction, and for indices α ∈ supp c \ supp ν,

we have ∑k
i=1 θic

(i)
α = 0 ≤ cα. Now consider the index β. By construction, ν(i)

α /c(i)
α = να/cα for

α ∈ T \ {β}, which gives
k∑

i=1
θiD(ν(i)

\β , ec
(i)
\β) =

k∑
i=1

θi

∑
α∈A

ν(i)
α ln ν(i)

α

e · c
(i)
α

= D(ν\β, ec\β).

Hence,
k∑

i=1
θic

(i)
β =

k∑
i=1

θiD(ν(i)
\β , ec

(i)
\β) = D(ν\β, ec\β) ≤ cβ.

□

Example 18. We consider circuits in the one-dimensional space R. Let T = {α1, . . . , αm} ⊂ R.
Then the simplicial circuits are recognized as the union of the edge generators of the polyhedral
cones Nβ for β ∈ T . The set of normalized circuits can then be determined as

λ = αk − αj

αk − αi

ei − ej + αj − αi

αk − αi

ek for i < j < k,

where ei denotes the i-th unit vector in Rm. Applying Theorem 14 gives a Minkowski decompo-
sition of the univariate SAGE cone with ground set T .

Using the circuit concept, membership in the SAGE cone can be also certified by a second-order
cone program (see Averkov [2] in the polynomial setting, Magron, Wang [18] for a computational
view and Naumann and the current author [27] for the extension of second-order representability
to the primal and the dual S-cone) or a power cone (Papp [33]).

A principal question is whether further decompositions are possible by employing different
negative terms. This will be treated in Section 6.

5. Sublinear circuits

In the previous sections, we have discussed the circuit concept for unconstrained AM/GM
optimization and we have presented the framework of constrained AM/GM optimization.
Strikingly, a generalized circuit concept can also be established for the case of constrained
AM/GM optimization. These generalized circuits are called sublinear circuits and the setup is
visualized in Figure 7.

Let X ⊂ Rn be a convex set and T ⊂ Rn be the finite ground support, where we assume
that the functions x 7→ exp(⟨α, x⟩), α ∈ T , are linearly independent on X. We consider
the conditional AGE cone CX,AGE(A, β) and the conditional SAGE cone CX(T ) as defined
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Unconstrained −→ Conditional
AM/GM optimization AM/GM optimization

↓ ↓

Circuits −→ Sublinear circuits

Figure 7. The role of the sublinear circuits.

in (3.1) and (3.2). The primary goal of a circuit concept is to decompose signomials into simpler
signomials and thus to decompose a cone under consideration. This will be an essential ingredient
for studying the geometry of the conditional SAGE cone for a given set X and we will achieve
a Minkowski decomposition. Further refinements will then yield irredundant decompositions,
both for the unconstrained and the constrained case, and characterizations of the extreme rays.

In [26], the following concept of sublinear circuits has been developed to resolve these questions.
For β ∈ T , recall the notion Nβ = {ν ∈ RT : ν\β ≥ 0,

∑
α∈T να = 0}. We consider the following

generalization of the circuit notion from Definition 13. Recall that the support function σX

is sublinear, that is, it satisfies σX(µ1z2 + µ2z2) ≤ µ1σX(z1) + µ2σX(z2) for µ1, µ2 > 0 and
z1, z2 ∈ Rn.

Definition 19. A non-zero vector ν∗ ∈ Nβ is called a sublinear circuit of T with respect to X
(for short, X-circuit) if

(1) σX(−T ν∗) < ∞,
(2) whenever a mapping ν 7→ σX(−T ν) is linear on a two-dimensional cone in Nβ, then ν∗

is not in the relative interior of that cone.
Denote by ΛX(T ) the set of all normalized X-circuits of T , i.e., circuits with entry −1 in the
negative coordinate.

In more geometric terms, Definition 19 can be equivalently expressed as follows. For given
β ∈ T , consider the convex cone

P := pos{(ν, σX(−T ν)) : ν ∈ Nβ, σX(−T ν) < ∞}
= {(ν, σX(−T ν)) : ν ∈ Nβ, σX(−T ν) < ∞} ∪ {0},

where pos denotes the positive hull. This cone can be shown to be closed and pointed. Then a
vector ν∗ ∈ Nβ is an X-circuit if and only if (ν∗, σX(−T ν∗)) spans an extreme ray of P . For
the case of polyhedral X, this characterization of X-circuits is straightforward to see and for
non-polyhedral X, the convex-geometric details can be found in [26, Theorem 3.6].

As explained in the following, the structure of the sublinear circuits generalizes the structure
of the affine-linear matroid which appears in the circuits of the unconstrained case.

Example 20. 1. Let X = [−1, 1]2 and T = {(0, 0)T , (1, 0)T , (0, 1)T }. Since X is compact,
the condition σX(−T ν) < ∞ is always satisfied. The set of normalized circuits is ΛX(T ) =
{(−1, 1, 0)T , (−1, 0, 1)T , (1, −1, 0)T , (0, −1, 1)T , (1, 0, −1)T , (0, 1, −1)T }. Namely, for β = (0, 0)T ,
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the closed convex cone

P = pos{(ν, σX(−T ν)) : ν(0,0) < 0, ν(1,0) ≥ 0, ν(0,1) ≥ 0}
= pos{(ν, σX((−ν(1,0), −ν(0,1))T )) : ν(0,0) < 0, ν(1,0) ≥ 0, ν(0,1) ≥ 0}
= pos{(ν, (−1, −1) · (ν(1,0), ν(0,1))T ) : ν(0,0) < 0, ν(1,0) ≥ 0, ν(0,1) ≥ 0}
= pos{(−1, 1, 0, −1)T , (−1, 0, 1, −1)T }

is generated by the vectors (ν, σX(−T ν)), where ν runs over (−1, 1, 0)T and (−1, 0, 1)T . Similarly,
the other elements of ΛX(T ) result from the cases β = (1, 0)T and β = (0, 1)T .

2. While we are mostly interested in polyhedral sets X, it is instructive to consider also
non-polyhedral situations. Let X = B2 = {x ∈ R2 : x2

1 + x2
2 ≤ 1} be the unit disk in R2 and

let T = {(0, 0)T , (1, 0)T , (0, 1)T }. Then the set of circuits is the infinite set N1 ∪ N2 ∪ N3, where

(5.1) Ni = {ν ∈ R3 \ {0} : ν1 + ν2 + ν3 = 0, νj ≥ 0 for j ̸= i}.

3. Let X = B2 ∩ {x ∈ R2 : x2 ≥ 0} be the upper unit half disk in R2 and again
T = {(0, 0)T , (1, 0)T , (0, 1)T }. Then the set of circuits is N1 ∪ N2, where Ni is defined as
in (5.1). Note that (−1, 1/2, 1/2) is not a circuit, because the decomposition into the sum
(−1/2, 1/2, 0)T + (−1/2, 0, 1/2)T shows a violation of the second condition in Definition 19.

In order to illustrate the suitability of Definition 19, recall from Section 3 that the first
condition captures the candidate positions of the support of the negative term. For the
special case X = Rn, the condition σX(−T ν∗) < ∞ means supx∈Rn(−T ν∗)T x < ∞, which
is equivalent to T ν∗ = 0. For ν∗

β = −1, the components (ν∗)α∈T \{β} are the coefficients of a
convex combination of β with respect to T \ {β}. Further, for X = Rn, the second condition in
Definition 19 tells us that ν∗ is a simplicial circuit of the affine matroid with ground set T ⊂ Rn.

In order to explain the relevance of the second condition in Definition 19, let T = A ∪ {β}
and f = ∑

α∈T cα exp(⟨α, x⟩) ∈ CX,AGE(A, β). The Decomposition Lemma 16 can be generalized
to capture also the conditional SAGE situation.

Lemma 21 (Decomposition Lemma for conditional SAGE). Let ν satisfy the relative entropy
condition for a signomial f . If ν can be written as a convex combination ν = ∑k

i=1 θiν
(i) of non-

proportional ν(i) ∈ Nβ and ν̃ 7→ σX(−T ν̃) is linear on conv{ν(i)}k
i=1, then f can be decomposed

as a sum of two non-proportional signomials in CX,AGE(A, β).

Proof of Lemma 21. We generalize the proof of Lemma 16. For the given f = ∑
α∈T cα exp(⟨α, x⟩),

define vectors c(i) by

c(i)
α =

(cα/να)ν(i)
α if α ∈ ν+

0 otherwise
for all α ∈ T \ {β},

and c
(i)
β = σX(−T ν(i)) + D(ν(i)

\β , ec
(i)
\β). The coefficient vectors c(i) define nonnegative X-AGE

signomials. It remains to be shown that ∑k
i=1 θic

(i) ≤ c. For α ∈ ν+ and α ∈ supp c \ supp ν,
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this is immediately done as in the proof of Theorem 16. For the index β, we have

σX(−T ν) = σX

(
−T (∑k

i=1 θiν
(i))
)

=
k∑

i=1
θiσX(−T ν(i)).

Now ν(i)
α /c(i)

α = να/cα, gives ∑k
i=1 θiD(ν(i)

\β , ec
(i)
\β) = D(ν\β, ec\β). Hence,

k∑
i=1

θic
(i)
β =

k∑
i=1

θi

(
σX(−T ν(i)) + D(ν(i)

\β , ec
(i)
\β)
)

= σX(−T ν) + D(ν\β, ec\β) ≤ cβ.
□

Among the basic properties of sublinear circuits are:
Proposition 22. 1. If ν ∈ Nβ is an X-circuit, then ν+ ( = supp ν \{β}) is affinely independent.

2. For polyhedral X, the number of X-circuits is finite.
The following example illustrates that the combinatorial structure of the sublinear circuits

depends on the constraint set X.
Example 23. (Dependency of sublinear circuits on X.) Let X(1) = R, X(2) = R+ and
X(3) = [−1, 1], and let T = {0, 1, 2}. The corresponding sets Λ(1), Λ(2) and Λ(3) of normalized
sublinear circuits are

Λ(1) = (1/2, −1, 1/2)T ,

Λ(2) = Λ(1) ∪ {(0, −1, 1)T , (−1, 0, 1)T , (−1, 1, 0)T },

Λ(3) = Λ(2) ∪ {(0, 1, −1)T , (1, 0, −1)T , (1, −1, 0)T }.

Now we consider the decomposition of the conditional SAGE cone. In generalization of
Section 4, every normalized vector λ ∈ Nβ with σX(−T λ) < ∞ naturally induces a set of
nonnegative signomials and that set of signomials can be described through an explicit condition.
Lemma 24. Let λ ∈ Nβ with λβ = −1 and σX(−T λ) < ∞. Further, let f = ∑

α∈T cα exp(⟨α, x⟩)
with cα ≥ 0 for α ∈ T \ {β} and

(5.2)
∏

α∈λ+

(
cα

λα

)λα

≥ −cβ exp (σX(−T λ)) ,

where β := λ− and λ+ = {α ∈ A : λα > 0} denotes the positive support. Then f is
nonnegative.
Proof. We show that (5.2) is satisfied if and only if there exists some ν ∈ Nβ \ {0} such that
the relative entropy condition in Corollary 9 is satisfied. Using ν = sλ with some s ≥ 0, we
have s = |νβ|. Hence,

D(ν\β, ec\β
) + σX(−T ν) =

∑
α∈λ+

να ln να

ecα

+ |νβ|σX(−T λ)

=
∑

α∈λ+

(
να ln να

ec̃α

)
,(5.3)
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where we have used |νβ| = ∑
α∈A : λα>0 να as well as the scaled coefficients c̃α := cα exp(−σX(−T λ)).

Using the unconstrained version in Theorem 10, we know that there exists some ν = sλ such
that (5.3) is less than or equal to cβ if and only if

∏
α∈λ+

(
c̃α

λα

)λα

≥ −cβ.

Since the left-hand side evaluates to∏
α∈λ+

(
cα

λα

)λα ∏
α∈λ+

exp(−σX(−T λ))λα =
∏

α∈λ+

(
cα

λα

)λα

exp(−σX(−T λ)),

the claim follows. □

Let the λ-witnessed AGE cone CX(T , λ) be defined as the set of signomials ∑α∈T cα exp(⟨α, x⟩)
with cα ≥ 0 for α ∈ T \ {β} and which satisfy (5.2). By Lemma 24, the signomials in CX(T , λ)
are nonnegative X-AGE signomials. For polyhedral X, the conditional SAGE cone can be
decomposed as a Minkowski sum with respect to the λ-witnessed cones of the sublinear circuits.

Theorem 25. [26] For polyhedral X, the conditional SAGE cone decomposes as

CX(T ) =
∑

λ∈ΛX(T )
CX(T , λ) +

∑
α∈T

R+ · exp(⟨α, x⟩).

Using the concept of sublinear circuits, the results on second-order representability and
on power cone representability of the SAGE cone mentioned at the end of Section 4 can be
generalized to the constrained case. If X is a polyhedron, then CX(T ) is power cone representable.
If in addition T T X is rational, then CX(T ) is second-order representable, see [26].

6. Irredundant decompositions

We consider irredundant decompositions both for the SAGE cone and for the conditional
SAGE cone. We begin with the observation that, as a consequence of the definitions, simplicial
circuits and sublinear circuits cannot be further decomposed on their supports. This raises the
question whether a decomposition is possible on a larger support. Somewhat surprisingly, the
answer is yes.

Example 26. The signomial f(x, y) = e0 + e3x + e3y − 3ex+y is globally nonnegative. On the
ground set T = {(0, 0)T , (3, 0)T , (0, 3)T , (1, 1)T }, the vector ν = (1, 1, 1, −3)T is a simplicial
circuit and thus f cannot be decomposed any further into non-proportional nonnegative signo-
mials in the SAGE cone C(T ). If the ground set T also contains the point (0, 1)T , then the
exponential ey (= e0·x+1·y) is available and f can be decomposed into two non-proportional,
nonnegative circuit signomials,

f =
(

e3x + 1
2e3y + 3

2ey − 3ex+y
)

+
(

e0 + 1
2e3y − 3

2ey
)

.
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Figure 8. Reduced circuits.

To see the nonnegativity of the summands, we can verify the condition in Proposition 5
through (

1
1/3

) 1
3

·
(

1/2
1/6

) 1
6

·
(

3/2
1/2

) 1
2

= 3 1
3 · 3 1

6 · 3 1
2 = 3,

(
1

2/3

) 2
3

·
(
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2
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3

·
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2

) 1
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In [16], the concept of reduced simplicial circuits (for short, reduced circuits) has been
introduced.

Definition 27. A simplicial circuit ν is reduced if the support points contain no additional
element of T in their convex hull. For the set of normalized reduced circuits on the ground set
T , we use the notation Λ⋆(T ).

See Figure 8 for an illustration. The concept of reduced circuits provides an irredundant
decomposition:

Theorem 28. [16] For a finite support set T , we have

C(T ) =
∑

λ∈Λ⋆(T )
C(T , λ) +

∑
α∈T

R+ · exp(⟨α, x⟩)

and there is no proper subset Λ ⊊ Λ⋆(T ) such that C(T ) = ∑
λ∈Λ C(T , λ)+∑α∈T R+ ·exp(⟨α, x⟩).

Example 29. Let T = {(0, 0)T , (4, 0)T , (2, 4)T , (1, 1)T , (3, 1)T }. The convex hull of T is a
triangle. The points (1, 1)T and (3, 1)T are contained in the interior of the triangle. There are
four simplicial circuits and all of them are two-dimensional. Two of them have the three vertices
of conv(T ) as outer vertices. Since the two simplicial circuits whose outer vertices are from
conv(T ) are not reduced, only the other two simplicial circuits are reduced.

Example 30. For T = {(0, 0)T , (3, 0)T , (0, 3)T , (1, 1)T , (0, 1)T }, we compute a decomposition of
the non-reduced circuit λ =

(
1
3 , 1

3 , 1
3 , −1, 0

)T
. As initial step, we determine another simplicial

circuit whose positive support is contained in the (positive or negative) support of the given
simplicial circuit. For example, we can choose λ′ = (2

3 , 0, 1
3 , 0, −1)T . Then we determine the
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maximal τ such that λ − τλ′ is a simplicial circuit and the maximal τ ′ such that λ′ − τ ′λ is a
simplicial circuit. The given circuit can be decomposed into these two newly computed circuits.

In our situation, we obtain τ = 1
2 and thus ν := λ−τλ′ = (0, 1

3 , 1
6 , −1, 1

2)T . Further, τ ′ = 0 and
thus ν ′ := λ′ − τλ = (2

3 , 0, 1
3 , 0, −1)T . Using ν and ν ′, we observe the decomposition λ = ν + 1

2ν ′.

Reduced circuits provide an essential tool for studying the SAGE cone. In particular, they
allow to characterize the extreme rays of the SAGE cone.
Theorem 31. [16] The set E(T ) of extreme rays of the SAGE cone C(T ) with support T is

E(T ) =
⋃

λ∈Λ⋆(T )
β:=λ−

 ∑
α∈λ+

cαe⟨α,x⟩ −
∏

α∈λ+

(
cα

λα

)λα

e⟨β,x⟩ : cα > 0 ∀α ∈ λ+


∪

⋃
β∈T

{
ce⟨β,x⟩ : c ∈ R+

}
.

Algebraic aspects of the boundary of the SAGE cone, such as the degree of the algebraic
boundary, have been studied by Forsg̊ard and de Wolff [12]. The reducibility concept and the
irredundant decomposition in Theorem 28 can be generalized to the conditional SAGE cone.
We start with an example.
Example 32. Let X = [0, ∞) and T = {0, 1, 2}.

1) For f = −e0 + e2x, choosing ν = (−1, 0, 1)T works as a dual certificate to certify the
nonnegativity through the entropy condition. Writing ν = 1

2(−2, 2, 0)T + 1
2(0, −2, 2)T gives the

decomposition
f = 1

2(−2e0 + 2ex) + 1
2(−2ex + 2e2x).

2) For f = −ex + e2x, choosing ν = (0, −1, 1)T works to certify the nonnegativity. Writing
ν = 1

2(2, −4, 2)T + 1
2(−2, 2, 0)T gives the decomposition

f = 1
2(2e0 − 4ex + 2e2x) + 1

2(−2e0 + 2ex).

Formally, reduced sublinear circuits are defined as follows.
Definition 33. The reduced X-circuits of T are the X-circuits ν∗ such that (ν∗, σX(−T ν∗))
generates an extreme ray of

pos
({(

ν, σX(−T ν)
)

: λ ∈ ΛX(T )
}

∪ {(0, 1)}
)

.

The set of normalized reduced X-circuits is denoted by Λ⋆
X(T ).

The reduced sublinear circuits are sufficient to generate the full conditional SAGE cone in
the following sense. For a polyhedral set X, this can be stated more simply as an irreducible
Minkowski decomposition.
Theorem 34. [26] For a finite support set T , we have

CX(T ) = cl (conv {CX(T , λ) : λ ∈ Λ⋆
X(T )}) +

∑
α∈T

R+ · exp(⟨α, x⟩).
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For polyhedral X, the conditional SAGE cone decomposes as the finite Minkowski sum
CX(T ) =

∑
λ∈Λ⋆

X(T )
CX(T , λ) +

∑
α∈T

R+ · exp(⟨α, x⟩)

and there does not not exist a proper subset Λ ⊊ Λ⋆
X(T ) such that CX(T ) = ∑

λ∈Λ
CX(T , λ) +∑

α∈T
R+ · exp(⟨α, x⟩).

7. Further developments

Let us mention some further research directions on the SAGE cone and the conditional
SAGE cone. Symmetry reduction for AM/GM-based optimization has been studied and also
computationally evaluated by Moustrou, Naumann, Riener et al. [21]. Recently, extensions of
the conditional SAGE approach towards hierarchies and Positivstellensätze [35] and to additional
non-convex constraints [10] have been given. The latter work also compares the computations
in the software system Sageopt [23] to semidefinite hierarchies based on sum of squares and
moments.

The combinatorial structure of the sublinear circuits is also rather open. For some results
concerning polyhedral sets X see [28]. That work gives some necessary and sufficient conditions
for an element ν to be a (reduced) X-circuit and discusses distinguished classes, such as X = Rn

+
and X = [−1, 1]n. Moreover, further understanding of the conditional SAGE cone, such as
its algebraic boundary, through the sublinear circuits remains to be done. From the practical
point of view, combining the conditional SAGE cone into hybrid techniques with other existing
optimization techniques for nonnegativity certificates, such as sums of squares, appears to be a
relevant task.
Acknowledgement. This expository article took its origin in the presentation material
developed for a minicourse held at the Second POEMA (Polynomial Optimization, Efficiency
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