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Abstract 

Additive manufacturing (AM) techniques are maturing and penetrating every aspect of the industry. 

With more and more design, process, structure, and property data collected, machine learning (ML) 

models are found to be useful to analyze the patterns in the data. The quality of datasets and the 

handling methods are important to the performance of these ML models. This work reviews recent 

publications on the topic, focusing on the data types along with the data handling methods and the 

implemented ML algorithms. The examples of ML applications on AM are then categorized based 

on the lifecycle stages, and research focuses. In terms of data management, the existing public 

database and data management methods are introduced. Finally, the limitations of the current data 

processing methods and suggestions are given. 

1. Introduction 

Additive manufacturing (AM, also known as 3D printing) refers to a process by which a 3D object 

is additively fabricated from a digital design, usually in a layer-by-layer fashion. Due to the nature 

of the AM process, which adds material only at the desired place, the lead-time and material waste 

are kept to a relatively low level. More importantly, since the tooling is no longer needed, AM 

unlocks a significant number of constraints for the designers to design products with complex 

geometry [1]. The technical features of AM make it suitable for industries with small batch sizes 

and complex part geometry, especially for hollow structures and curved surfaces. Thus, AM is 

becoming an important complement to the traditional manufacturing methods.  

American Society for Testing and Materials (ASTM) F42 categorizes all the AM processes into 

seven classes, with several technologies under each category branded by different manufacturers 

[2, 3]. Compared to conventional manufacturing methods, there are more uncertainties in AM 

processes as they usually involve complex designs, phase transformation, and in-process control 

to achieve the desired microstructure and properties. In the meantime, the enormous data generated 

from design, process, structure, and property (PSP) linkage [4, 5] in AM techniques brings 

challenges to researchers, and the traditional trial and error methods are usually not efficient. 

Considering the melt pool size alone, it can change from hundreds of micrometers in powder bed 

fusion (PBF) to several millimeters in directed energy deposition (DED), and this may eventually 

result in very different microstructures and properties. The uncertainties in the PSP are restricting 

the development and application of AM techniques [6], and recognizing the interplay between PSP 

linkage in AM is crucial for quality control and the development of this technology. Modeling 

approaches and numerical simulations are the ideal tools to fill in the gap by saving time and 

experimental costs [7, 8]. However, establishing mechanistic models usually requires domain 

knowledge and model validation process before their reliable applications. In recent years, an 
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increasing number of studies are looking into solutions by directly applying data-driven 

approaches. Machine learning (ML) continuously shows its advantages to deal with the 

uncertainties and multiple types of data from AM for various purposes. First, it avoids solving 

complex equations in many physical models. Second, it fills the gap where traditional theories are 

either non-existent or loss function due to their inability to solve application-specific problems. 

Finally, it is able to make a prediction for a long process range based on the well-tested and reliable 

ML algorithms encoded by open-source software  [9].  

When ML gets involved, datasets are an important matter to be considered as ML models are solely 

driven by data. Current AM datasets for ML are highly case-dependent due to a lack of existing 

standards. Therefore, in Section 2, this work first provides a comprehensive review of the state-

of-art ML applications on AM in terms of the four data types (tabular, graphic, 3D, and spectrum) 

and their corresponding data handling procedures as well as the ML algorithms deployed. Then, 

based on the prediction target of ML models, the application area of ML on AM is summarized in 

Section 3. The existing public datasets are introduced in the following Section 4. Finally, some 

insights and suggestions for further developing trends are discussed in the end. 

All the references come from Scopus including most of the journal papers with the keywords 

“machine learning” and “additive manufacturing” in the recent four years. 144 related journal 

articles have been reviewed. For convenience, the standards from ASTM to categorize the AM 

technology types are used and the list of abbreviations for AM aspect is listed in Table 1. The list 

of abbreviations for the most frequent ML terminology is listed in Table 2. 

Table 1: The abbreviations of AM aspect used in this review 

Abbreviation Definition 

AM Additive manufacturing 

ME Material extrusion 

PBF Powder bed fusion 

MJ Material jetting 

VP Vat photopolymerization 

DED Directed energy deposition 

 

Table 2: The abbreviations of the most frequent ML terminology used in this review 

Abbreviation Definition 

ML Machine learning 

NN Neural network 

MLP Multilayer perception 

ANN Artificial neural network 

CNN Convolutional neural network 

RNN Recurrent neural network 

k-NN k-nearest neighbor 

SVM Support vector machine 

SVR Support vector regressor 

RF Random forest 

GB Gradient boosting 
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LDA Linear discriminant analysis 

DL Deep learning 

LR Linear regression 

GPR Gaussian process regression 

NB Naïve Bayes 

DT Decision tree 

LSTM Long short-term memory 

 

In the literature, there are multiple survey papers on ML and AM. Reviews on ML applications in 

AM can be categorized into two groups: Specific and General. Specific reviews focus on either a 

subtopic in AM (process [10], material [11], monitoring [12, 13]) or in AI (model type [14, 15]). 

General reviews focus on the overall application of ML in AM [16-22]. However, those articles 

mainly focus on the opportunities of ML in AM. None of them provide a summary of the data 

perspective of AM for ML applications such as the most popular data type in AM, the typical data 

preprocessing methodology, data quality and quantity, and AM data management. Therefore, the 

primary objective of this article is to provide a comprehensive review on the data of AM for ML 

application. Specifically, this study contributes to: 

• Introduce the most popular data types and data handling methods in AM studies. 

• Summarize the data types, preprocessing methods, specific application, data quality, and 

selected ML algorithms for 100+ existing studies in terms of AM lifecycle stages of Design, 

Process, and Product. 

• Present the existing public datasets for AM studies and introduce the existing AM database 

management system. 

• Identify the research gaps, current limitations, and future research directions on AM data 

for ML applications. 

 

2. Data types and data handling 

This section discusses the original data types collected from the design, simulation, and 

manufacturing procedures of AM to construct ML models. Original data in this paper refers to the 

collected raw data before any further preparation or preprocessing. The data handling methods and 

popular categories of ML algorithms implemented for ML in AM are also illustrated in this section. 

2.1. Overview 

Research on ML and its applications utilizes many different terminologies for the work with data. 

These terms are often used interchangeably, complicating the transferability of implementations. 

For this paper, data handling is defined as an umbrella term comprising all work with data, from 

the collection of raw data to techniques solely applied to improve algorithm performance. In the 

field of ML-aided AM, data handling can be further divided into the four categories explained in 

the following: 

Feature extraction: raw data acquired from sensors is usually in forms that are difficult to 

statistically analyze and build ML models upon. ML practitioners need to develop salient 

representations from the original data as the input features. Therefore, statistical and geometrical 

features are usually extracted from raw data to facilitate the subsequent analysis [23]. 
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Feature selection and feature learning: after original features are derived from raw data, feature 

selection and feature learning can be performed to improve the performance of ML models. 

Feature selection evaluates and ranks the importance of features to choose a subset from the 

original features [24]. Feature learning, instead, generates new features that are better 

representations of the dataset [25]. 

Discretization: discretization describes the process of transforming continuous objects into 

discrete elements. Vision data such as images and 3D models are commonly discretized to generate 

features suitable for ML. The most popular discretization methods for AM are pixelization and 

voxelization. 

Data preprocessing: data preprocessing summarizes techniques applied to improve the quality or 

suitability of the data for ML algorithms [26]. For AM, preprocessing can be further classified into 

image preprocessing and numerical preprocessing. Images are often processed with techniques 

such as gray-scaling and cropping to reduce computational complexity and enhance the quality of 

data [27]. Numerical preprocessing techniques such as normalization and removal of outliers 

support better performance and faster convergence for the training processes of ML [28]. 

2.2. Tabular data 

Data stored in tabular forms is structured into rows and columns, shown in Figure 1. Each row 

represents an instance, acting as a training example for ML [29]. Each column stands for an 

attribute, also known as a feature in ML, to characterize the instances. The data in cells could be 

continuous such as numerical values, or discrete such as categorical or ordinal values. The cells 

under the same column must exhibit the same category of data. For AM, this data type is 

extensively used to investigate the correlations between build parameters and build quality of the 

print [30-32]. For example, Zhang et al. [30] construct an ML model that predicts the build quality 

with build parameters using tabular data. Each row records one experiment, consisting of build 

parameters as the input features and measurements of build quality as the target variables of the 

ML model. Figure 1 is an example of a tabular form, storing the experimental data of different 

process parameter settings of plastic 3D printing. 

 

Figure 1: Format of tabular data: an example of tabular data form to store the experimental data 

of plastic 3D printing. 

The most frequently used data handling method for tabular data is feature selection [33, 34]. 

Feature selection processes are easily implemented for tabular data because features are well 

defined at the beginning. The most relevant features for target prediction are selected to construct 

ML models to reduce the computational complexity while retaining acceptable accuracy. Feature 

selection also helps discover the most decisive build parameters and remove unnecessary sensors 

to reduce cost. Data preprocessing such as removal of outliers and normalization are also common 

practices to improve the predictive performance of ML models [35]. 
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2.3. Graphics data 

Graphics data refers to data forms that display or present images or drawings [36]. There are 

generally two types of graphics data: bitmap and vector data. Bitmap is a pixelized representation 

of images, where a picture is segregated by a uniform grid and each cell is numerically defined to 

represent its color. Figure 2(a) renders the shape of an I-beam cross-section using one of the bitmap 

data representations: binary image. Each block is a black or white pixel, digitally represented by 1 

or 0, respectively. In-process monitoring and quality inspection on AM are usually performed with 

bitmap data acquired from digital cameras [37, 38], microscopes [39-41], X-ray sensors [42], and 

thermal cameras [43, 44]. For instance, layer-wise images are captured by digital cameras to 

monitor the conformance of geometry, or by microscope to inspect defects and microstructures. 

Commonly used bitmap formats are the joint photographic expert group (JPEG) and Portable 

graphics format (PNG). Vector data stores the key points of a drawing that can be restored with 

connecting lines and guidelines. Figure 2(b) is an example of a sketch reconstructed from vector 

data. The key points are connected with connecting lines following the guidelines such as straight 

line, spline, and arc. Vector data is frequently utilized to characterize the toolpaths and infill 

patterns of AM [45].  

 
 

 

(a) (b) 
Figure 2: Schematics of graphics data: (a) binary image – a type of bitmap data; and (b) a 

sketch restored by vector data 

Pixelization is the most popular data handling method for ML in AM as most examples of image 

analysis in this field adopt bitmap data [46-50]. When an image is pixelized, each pixel is an 

original feature of the dataset. However, they might not be good representations for ML, and thus 

image preprocessing is commonly utilized to improve the datasets. Techniques such as cropping 

[46, 51], resizing [48], gray-scaling [41, 49], and binarization [52] are utilized to reduce the 

computational power required. Image augmentation [53] is also frequently conducted to generate 

more training examples using flipping [51], rotating [54], etc. Image analysis techniques including 

texture analysis [55] and edge detection [56] are implemented to extract geometrical features. An 

example of a monitoring system that employs denoising and edge detection is shown in Figure 3. 
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An image of the melt pool is captured in a pixelized format, then analyzed to generate its 

temperature contour map. Principal component analysis as a feature learning technique has been 

applied to graphics data to reduce the dimensionality of input variables of AM datasets [41, 51].  

 

Figure 3: Example of denoising and edge detection: In-process melt pool monitoring system of 

the fusion zone measured by an infrared camera during DED Ti6Al4V (left), the image data 

gathered (middle), and the processing of denoising and edge detection (right). [57] 

2.4. 3D data 

3D data is a coordinate-based representation of 3D objects with specialized software and has wide 

applications in AM [58]. For example, the part definition of plastic 3D printing is saved in 

Computer-aided design (CAD) files such as STL. The CAD files are processed by slicing software 

that generates toolpaths to guide the extruder. Figure 4 demonstrates how 3D objects can be 

represented by 3D data using tessellation. Tessellation is one of the 3D data techniques that cover 

the surface of a 3D object with polygons to record its shape.[59]. In AM researches, 3D design 

files are utilized to train ML models that perform geometry detection [60], manufacturability 

analysis [60], and build quality prediction [61]. 3D data can also be constructed with stereo 

cameras or X-ray tomography to perform in-process defect detection [50, 62].  

  
(a) (b) 

Figure 4: 3D object represented by 3D data using tessellation: (a) original 3D object; and (b) 

tessellated 3D object. 
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Before input into ML models, 3D data is processed into multi-view images, volumetric, point cloud, 

polygonal mesh, or primitive-based data, while point cloud and volumetric forms are most popular 

for AM. 3D models can also be voxelized into cubes to generate original features. Sparse 

representations are deployed to reduce the memory needed to process huge voxelized data [63]. 

Geometrical features such as relative distances extracted from point clouds can be the input 

features to train ML models [64]. Morphological and crystallographic features can also be 

extracted from volumetric data as input features to ML models [61]. Figure 5 demonstrates an 

example of handling methods for 3D data. The features such as volume, surface area, bounding 

box, number of components, and number of fasteners are extracted from the 3D model and then 

used as ML input features.  

 

Figure 5: Example of feature extraction from 3D model [65] 

2.5. Spectrum data 

Spectrum data is discrete or continuous wavelengths measured from specific radiations. Figure 6 

shows an example of vibration measurement, which belongs to spectrum data. Vibration data is 

usually first recorded in the time domain, then transferred to the frequency domain to reveal more 

information. Frequently measured radiations for AM are temperature [33], acoustic emission (AE) 

[66-68], photon [34, 69], and vibration. The corresponding sensors are typically thermocouples, 

AE sensors, photodiode sensing systems, and vibration sensors, respectively. Thermal sensors can 

help monitor melt pool states and reveal cracks and voids near the part surface by analyzing the 

thermal gradients and history of the target area. AE sensors can be attached to the build platform 

to detect any onset of irreversible deformations such as cracks, warpage, and delamination. 
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Vibration sensors can be installed on extruders to detect machine state errors such as filament 

runout, jamming, and breakage [70]. 

 
Figure 6: Measurement of vibration – one type of spectrum data. The plot on the top is the 

vibration amplitude in the time domain. The plot at the bottom is the vibration amplitude in the 

frequency domain (adapted from [71]). 

Denoising and signal filtering are common techniques to clean spectrum data [41]. For many cases, 

spectrum data collected by the aforementioned sensors is times-series data with temporal 

relationships among data points, adding difficulties to data analysis. Statistical features extracted 

from both time and frequency domains are proven efficient to build data-driven tools with 

spectrum data [43, 72, 73]. Time-frequency analysis such as wavelet packet transform is 

implemented to extract statistical features from spectrum data [67]. LDA and principal component 

analysis as a feature learning method has been applied to AM spectrum datasets to reduce the input 

dimensionality [34, 74]. 

2.6. Machine learning techniques for additive manufacturing 

This paper reviewed the reported ML techniques used in the ML in AM literature and plots the 

percentages by ML type in Figure 7. One differentiating factor of ML is the type of learning. 

Supervised learning algorithms are trained with labeled data and, during test time, seek to identify 

the correct label for a queried instance. With over 90% of the analyzed literature falling into this 

category, supervised learning is prevalent in the field. Less prominent are unsupervised approaches, 

intending to recognize patterns in (unlabeled) data, and reinforcement learning. 
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Figure 7: Popularity of ML techniques in the percentage of the 144 reviewed papers. Grouped by 

(a) types of learning, (b) types of ML architecture, and (c) algorithms or groups of algorithms. 

Note that charts do not sum to 100% as sever 

Furthermore, ML algorithms can be associated with either shallow or deep learning. Deep learning 

algorithms are based on ANN and its adaptations such as CNNs or RNNs. In Figure 7, shallow 

ML describes those algorithms that do not fall into the category of deep learning. It can be seen 

that deep architectures are slightly more common in the field compared to shallow ones. 

Figure 7c visualizes the popularity of certain algorithms or groups of algorithms with similar 

working principles. Basic regression algorithms comprise LR, ridge regression, and lasso 

regression and are implemented in 16 publications. Other conventional ML algorithms deployed 

in the field are NB, GPR, k-NN, and maximum margin algorithms such as SVMs and SVRs. 

Algorithms in the tree/ensemble category are based on decision trees and make use of either single 

trees or ensembles, for example in the case of RF and GB. 

Table 3 displays the popularity of ML types introduced above for each of the four data types. For 

tabular data, it is observed that the proportions do not significantly differ from those reported 

overall (see Figure 7 or the first row of Table 3). Only within the group of deep learning algorithms, 

normal ANNs were more often preferred over CNNs and RNNs. 
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Table 3: Popularity of ML algorithms overall and by data type. Bold cells highlight ML 

categories or algorithms that are significantly more popular for one data type (>10 percentage 

points compared to average). Note that categories and rows do not sum to 100% as several 

review papers employed multiple techniques for one task. 
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all 91.7% 9.0% 53.1% 59.3% 11.0% 9.0% 22.8% 20.0% 10.3% 34.5% 21.4% 4.1% 11.7% 

tabular 95.0% 5.0% 56.7% 58.3% 11.7% 13.3% 26.7% 20.0% 6.7% 48.3% 8.3% 1.7% 11.7% 

graphics 90.9% 9.1% 49.1% 63.6% 7.3% 5.5% 23.6% 18.2% 12.7% 25.5% 36.4% 7.3% 7.3% 

3D 92.0% 8.0% 48.0% 76.0% 12.0% 8.0% 16.0% 16.0% 16.0% 40.0% 32.0% 4.0% 20.0% 

spectrum 78.6% 21.4% 100.0% 57.1% 28.6% 21.4% 42.9% 57.1% 14.3% 42.9% 14.3% 7.1% 14.3% 

 

For graphics data, Similar to tabular data, solely the popularity of deep learning algorithms differs 

from the overall usage in the field. CNNs are significantly more frequently seen in publications 

with graphics data (36.4% compared to 21.4% overall), while ANNs are deployed less (25.5% 

compared to 34.5%). 3D datasets are less frequently combined with shallow ML models. Most of 

the analyzed literature for this data type (76%) utilized deep learning algorithms. Both ANNs and 

CNNs are more common with 3D datasets compared to the field. 

Spectrum data shows various differences when focusing on ML models compared to the other 

three data types. Unsupervised approaches are more popular, deployed in 21.4% of the analyzed 

literature with this data type as opposed to 9% on average over all 4 data types. Furthermore, all 

publications with spectrum data utilized shallow ML algorithms. Particularly popular compared to 

the other data types are tree/ensemble methods and maximum margin methods. Similar to tabular 

data, within the group of deep learning algorithms, ANNs are more often preferred over CNNs. 

2.7. Discussion on data types and data handling techniques 

Table 4 is the pivot table indicating, for all four data types, the number of papers that have utilized 

a data handling technique belonging to the four categories introduced above. Tabular and graphics 

datasets have been extensively researched and utilized to construct ML models for AM, while 3D 

and spectrum datasets appear less frequently. Feature extraction techniques have been widely 

applied to the analysis of all data types, especially for spectrum data. Representations derived from 

feature extraction methods with domain knowledge are better input features than the original 

feature sets in many papers. Discretization is only applicable to bitmap and 3D models. 

Pixelization has been implemented in 84% of the reviewed papers with graphics data, while 

voxelization only appears in 32% of the reviewed paper with 3D data. Image preprocessing 

methods have been extensively utilized to improve the quality of graphics datasets. It is suspected 

by the authors that data preprocessing methods should be more frequently implemented than the 

observations of Table 4, as techniques such as normalization are generally implemented but barely 

mentioned. Feature selection techniques have been applied to more than 25% of the tabular and 

spectrum datasets reviewed. Tabular datasets have original features readily available for feature 
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selection to improve ML model performance. And many spectrum datasets need feature learning 

techniques to reduce their input dimensionality while retaining the most information. 

Table 4: Frequencies of data handling methods utilized to process each data type of AM dataset. 

Color coding is applied to this table to indicate large numbers with red and small numbers with 

green. The total number of papers reviewed is stated at the right-most column, corresponding to 

each data type. 

 

3. Targets/Applications 

Targets represent outputs of ML models and specify the AM application for which an ML model 

is trained and deployed.  ML applications in AM can be classified for lifecycle stages. In this 

section, these applications are broadly categorized into pre-processing, processing, and post-

processing stages. The selection of an appropriate target within a lifecycle stage can expedite the 

modeling process and generate desired results. At the design stage, ML can be used for a range of 

tasks including but not limited to geometry prediction, design optimization, lattice design, and 

design classification. The main focus of ML applications in AM has undoubtedly been on the 

process stage as this can lead to corrective actions before a part is completely printed. At the 

process stage, ML can be used to predict optimal process parameters and identify defective process 

states. Apart from these applications, build and toolpath planning has been optimized according to 

different constraints through the use of ML models. Surrogate modeling of melt pools is gaining 

attraction to replace computationally expensive and time-intensive physical simulations of AM 

processes. In this regard, recent literature highlights the significance of effective surrogate 

modeling by combining ML models with physics-based models. The final category of ML 

applications in AM concerns product characteristics. Product characteristics have been divided 

into macro, micro, and mechanical properties (alongside other characteristics). Macro 

characteristics deal with the macrostructure and include dimensions, surface features, cross-

sectional parameters, and visual defects. Micro characteristics include ML applications where 

microstructural defects are evaluated. A lot of attention is being given to control microstructural 

characteristics through ML models as this leads to overall control on product performance. Product 

properties are also predicted through ML models in some applications. 

AM targets are linked with data types, handling techniques, algorithms, and instances in the form 

of tables.  Trends of data handling techniques and ML algorithms within each data type were the 

focus of attention in the previous section. In this section, data types for specific applications are 

discussed in terms of trends and representative works. AM types are also mentioned in the tables 

 

Feature 

extraction Discretization 

Data 

preprocessing 

Feature 

selection and 

feature learning Total 

Tabular 10 0 11 15 59 

Graphics 18 46 31 7 55 

3D 12 8 9 3 25 

Spectrum 14 0 2 6 20 

Sum 54 54 53 31   
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to indicate the frequency of ML-oriented research in each category. The number of instances 

indicates the comprehensiveness of each dataset and is a focus of discussion in the later sections 

of this survey. These tables have been arranged to depict common AM applications within each 

lifecycle stage. There is a total of seven such tables spanning design (Table 5), process parameters 

and process domains (Table 6), build and toolpath planning (Table 7), surrogate modeling of melt 

pool (Table 8), macro product characteristics (Table 9), micro product characteristics (Table 10), 

and mechanical properties with miscellaneous characteristics (Table 11). 

3.1. Design characteristics 

At the design stage, ML models can aid either in the material's design or structural design. Material 

design can be divided into homogenous and heterogeneous material design. Traditionally, design 

optimization techniques such as topology optimization and generative design have been the 

essential tools for structural design. Recently, ML models have been applied in conjunction with 

these optimization tools to improve their accuracy and reduce computational expense. Apart from 

optimizing structures, ML is being used to cope with AM constraints namely supports and 

overhangs. ML is also gaining attraction in the design of lattice, an active research field in design 

for additive manufacturing (DfAM). Prediction of geometric characteristics is found to be the 

focus of ML applications at this stage. ML applications in AM design are shown in Table 5.  

ML inputs in tabular form account for the majority of selected design targets making it the most 

common data type used at this stage. Tabular data can be extracted from a multitude of sources 

such as process parameters [75], lattice designs [76], spatial parameters [77], and simulations [78]. 

For instance, tabular data is used to explore a new meta-material concept that can adapt concerning 

different properties, base materials, length scales, and processes [78]. Tabular data of performance 

characteristics (stress-strain requirements) is mapped with the design parameters of an ankle brace 

[79]. Several ML models are employed to determine the dimensional features of printed parts by 

using tabular data of spatial parameters from STL and build orientation [77]. Apart from tabular 

data, graphic data is also used to predict design characteristics in AM. Graphic data can be captured 

through in-process vision-based sensors or microscopes and scans in the post-process stage. A 

composite material part's geometry and tool path are reversed engineered using CT scan images in 

an RNN [80]. Similarly, graphic data from lattice designs is also used to predict design-oriented 

targets [76, 81]. Cases, where 3D data is used to predict design characteristics, are found in the 

literature as well. Design files from the upstream section of product informatics are found to be 

the source of 3D data. These design files are either based on native CAD systems or reversed 

engineered through miscellaneous techniques. For example, image segmentation is performed 

using CNN to separate bone and background as a pre-process in medical AM [82]. In another work, 

3D data from CAD models is used to identify parts eligible for AM [65].   

There are several benefits of using ML at AM design phase. A major motivation for applying ML 

at the design stage is the fact that the part has not been printed which leads to empirical modeling 

of different design aspects in a direct (e.g., following the PSP chain) or indirect (e.g., using process 

or product data to model design characteristics) manner. This can result in significant cost and 

time savings. A key application in this regard is AM candidacy evaluation before a CAD file is 

sent downstream in the digital thread to incorporate build and machine information. The notion of 

success at the design phase can guide designers to design parts that are AM compatible for a 

specific application. Another form of designer guidance is through design rules represented in the 
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form of explicit AM knowledge. These rules can be formed using simple data-driven models. 

Finally, design parameters such as dimensions of features can be efficiently predicted using ML. 

Table 5: ML applications at the design stage of AM 

Design Characteristics 

Year AM Data Data Handling ML Algorithm Application Instances Ref 

2021 ME 

 

Tabular data 

from parts and 

process 

None mentioned LR, NN Dimensions 

(LWH) of 

CAD model 

450 [75] 

2020 ME Tabular data of 

stress strain 

values 

Get stress-strain 

response from 

simulation and 

use it in  

ANN DL Geometry 

parameters 

300 [79] 

2020 ME CT-scan image Pixelization RNN Direction of 

fibers 

78,373 [80] 

2019 ME Tabular data 

from FEA 

Sensitivity 

analysis to select 

the critical 

features 

Bayesian 

machine 

learning 

Design 

Classification 

Not clear [78] 

2020 PBF Tabular data of 

spatial 

parameters 

Pearson 

correlation, 

normalization 

LR, MLP, GB Dimensional 

features 

(thickness, 

width and 

length) 

434 

 

[77] 

2021 General 

AM 

Tabular data  

Graphic data 

from lattice 

designs 

None mentioned CNN Final design 

of lattice 

structure 

3,500+ [76] 

2020 General 

AM 

Tabular data 

Graphic data 

of 2D lattice 

structures  

Encode the 

structure then 

decode 

DL Design 

of micro 

lattices 

2,500 [81] 

2020 

 

General 

AM 

3D data from 

CAD models 

Parameter 

extraction using 

customized 

candidacy criteria 

Boosted DT, 

NN, LR, 

decision forest 

regression, 

Bayesian linear 

regression 

To identify 

parts are 

eligible for 

AM or not 

200 [65] 

2018 General 

AM 

3D data from 

bones, Graphic 

data from CT 

images 

Normalization, 

patch selection 

CNN Bone or 

Background 

2,000,000 [82] 

 

3.2. Process characteristics 
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Lack of repeatability has influenced process modeling in AM [83, 84]. Empirical (data-driven) and 

physical (physics-driven) modeling are two main approaches in this regard [85, 86]. Data-driven 

models provide a range of advantages over physics-based numerical or analytical modeling. There 

exist multiple bottlenecks which render physical modeling inefficient. The computational cost and 

time make the use of these models impractical. Another issue with these models can be overly 

simplistic assumptions without the important physical context required to solve complex AM 

processes. As a result, ML has emerged as a popular choice to understand AM processes. ML 

applications span a wide range of targets at the process stage, including process parameters, 

process domains, process planning, and melt pool modeling. These applications are linked with 

data types in the sections below. 

The benefits of applying ML at the process stage can range from as simple as process state 

correction to more sophisticated applications such as operator guidance. Process window 

exploration is analogous to design space exploration where a multitude of factors can influence 

the final success of a process. The application of ML at this stage can help discover the patterns in 

the joint distribution of these factors. These patterns can be related to process parameters to serve 

as a benchmark for future processes. The ML-enabled shift from post-processing to in-process 

monitoring is probably the most significant advantage at this phase. This shortens the printing 

cycle while saving costs spent on product inspection and similar activities. The development of 

reliable AM data-driven models can replace computationally expensive process models. A well-

developed and generalized ML model is efficient to use on the fly which suits its application during 

AM processes. These models can then be linked to operator-friendly GUIs (APIs for inter-

application usage) to support actions such as parameter or path selection for specific applications.  

3.2.1. Process parameters and process states 

Most of the applications in this section are concerned with the process states and process 

parameters. A process state refers to the current state of a process which can be a custom-defined 

label. These targets can range from as simple as good/bad and acceptable/unacceptable to specific 

anomalies such as cyber-attacks or faulty conditions. There are numerous instances of using ML 

to model process anomalies [87-90] and conditions of interest in AM [52, 91]. Process parameters 

are of interest as ML models can help predict and optimize these with respect to various quality 

metrics. As a result, many researchers have focused on parameter prediction or optimization using 

ML techniques [92-94]. Process parameters related to deposition [95], material [40, 96], and 

energy source [39, 54, 97] have been a common target of ML models at this stage of AM lifecycle. 

These applications are highlighted in Table 6. 

Data types used for process parameter and state prediction represent a relatively diverse set as 

compared to data types at the design stage. Tabular data is again found to be the most prevalent 

with 45% of the targets being predicted from this data type. Process information is found to 

constitute a significant portion of tabular data for these predictions. Process information for tables 

is extracted from process parameters [89, 92, 95], process conditions [52], and in-process images 

[97].Tabular data is used to predict diverse parameter and state targets including deposition [95], 

critical velocity [98], cooling time [92], powder spreading quality [96], process conditions [52, 

89], and key parameters of interest [94]. Graphic and spectrum data types have equal representation 

with each being used to predict 25% of AM targets at these stages. Digital cameras and 

microscopes are two main sources of graphic data in this regard. Graphic data in the form of images 
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is used to predict specific conditions [39, 52, 99] and detect process anomalies [87, 100]. Acoustic 

emission sensors appear to generate virtually all spectrum data for this stage. Process state 

prediction is found to be a prominent target of spectrum data. For example, the logistic regression 

model is developed from acoustic signals for identifying the potential of recreating G-codes 

through cyber-attacks [101]. ML applications where 3D data is used to predict process parameters 

are also found in the literature [54]. 

Table 6: ML applications at the process stage of AM – Process parameters and domains 

Process Characteristics - Process parameters and process domains 

Year AM Data Data Handling ML Algorithm Application Instances Ref 

2021 ME 

 

Tabular data on 

printing 

parameters 

Feature 

Standardization 

NN Force in nozzle 20,000 [95] 

2019 ME 

 

Spectrum data 

from 

acceleration and 

temperature 

sensors 

Instance 

Conversion, 

Attribute transf

ormation and 

selection 

SVM, 

NB, 

RF, 

k-NN 

Presence or 

Absence of 

interference 

523,000 [88] 

2019 ME Acoustic 

emission signal 

Extract features 

from signals 

Self-organizing 

map 

Process failure 213 [66] 

2018 ME Acoustic 

emission from 

the process 

and tabular data 

of G-code 

Signal filtering 

and feature 

extraction 

SVM; LR Process 

parameters 

442 [101] 

2016 ME Heterogeneous 

sensor signals  

Convert sensor 

signals to 

underdetermine

d linear system 

of equations 

Online sparse 

estimation-

based 

classification 

Extrusion 

conditions 

2,000+ [91] 

2021 PBF Microscope 

image 

Segmentation CNN Laser polishing 

conditions 

432 [39] 

2021 PBF Tabular data of 

material 

parameters 

Feature filtering 

to eliminate 

irrelevant or 

redundant 

features 

ANN Critical 

velocity 

Not clear [98] 

2020 PBF Tabular data of 

process 

parameters 

None 

mentioned 

LR, stepwise 

linear 

regression, 

quadratic SVM, 

GPR, DT 

Cooling time 30 [92] 

2020 PBF Digital image Pixelization CNN Process 

anomaly 

detection 

Not clear [100] 
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2019 PBF Tabular data of 

powder 

spreading speed 

Extract data 

from physical 

based model 

NN Powder Spread

ing Quality 

35 [96] 

2019 PBF Greyscale image Cropping, 

pixelization 

CNN Defective 

conditions 

1,200 [99] 

2018 PBF Digital image 

and design file 

Image 

preprocessing 

and 

pixelization. 

Extract 

geometry 

information 

from STL file. 

CNN Process 

anomaly 

detection 

10,071 [87] 

2018 PBF Tabular data of 

process 

conditions, 

Graphic data of 

CT scans, and 

DSLR images 

Binarization, 

complementatio

n, noise 

reduction, 

spectral graph 

theory, 

multifractal 

analysis 

SVM, LDA, k-

NN, Ensemble 

(bagged trees), 

NN 

Process 

conditions 

3,132 [52] 

2017 PBF Microscope 

image 

Adjusting 

contrast level, 

denoising, 

segmentation, 

background 

suppression, 

feature selection 

by K-means 

clustering, 

interest point 

localization, 

scale-invariant 

feature 

transform 

SVM Powder types 282 [40] 

2018 DED Tabular data for 

part geometries 

None 

mentioned 

ANN Optimal 

processing 

parameters 

120 [94] 

2020 VP Matrix and 

signal data 

Principal 

component 

analysis, 

sensitivity 

analysis 

Shallow NN Energy 

consumption 

657 [93] 

2020 VP 3D data from 

printed structures 

Transformation 

(Microscope 

to binary 

NN Digital masks 

with optimized 

900 [54] 
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image) and 

image rotation 

light exposure 

dose 

2019 VP Tabular data of 

process 

parameters 

None 

mentioned 

NN Success or 

Failure wrt. 

Speed 

6,000 + 

180 

 

[89] 

2018 MJ Tabular data of 

image extracted 

features 

Extract features 

from real-time 

monitoring 

images 

NN Process 

parameter 

(voltage level) 

800 [97] 

 

3.2.2. Build and toolpath planning 

Deposition strategies in AM influence product structure and, subsequently, its properties and 

performance. ML models can ignore underlying physics and relate path strategies with structure, 

property, and performance characteristics. It helps avoid certain toolpaths that are prone to failure 

with respect to these characteristics before a part is completely printed. The reviewed references 

in build and toolpath planning are summarized in Table 7. 

Among the available data types at this stage, 3D data is found to be the predominant input for build 

and toolpath predictions. This data type can be collected from different phases of AM processes 

such as design [102] and post-process [103]. In a relevant application, 3D data from sliced lattice 

models is used in an SVM model to predict optimal filling paths for lattice structures [104]. X-ray 

computed tomography (XCT) generates 3D volumes of parts that are sliced to 2D, cropped, and 

de-noised before being fed to a CNN for the prediction of build orientation [103]. Features of 3D 

junction geometries are employed in a NN to find optimal path length value to avoid material 

deficit [102]. Tabular data is another type that is used to predict build and tool path characteristics. 

The example applications that use tabular data have process parameters as their source. For 

example, tabular data of process parameters is also used to determine desired printing pattern [105]. 

In another example, a feed-forward NN improved the quality of the connection between two 

consecutively deposited paths using process parameters as inputs in tabular form [32].  

Table 7: ML applications at the process stage of AM – Build and toolpath characteristics 

Process Characteristics - Build and toolpath characteristics 

Year AM Data Data Handling ML Algorithm Application Instances Ref 

2020 ME Tabular data for 

processing 

parameters 

None 

mentioned 

ANN Connection 

status 

between 

paths 

400 [32] 

2020 PBF The raw XCT-

generated 3D 

volumes 

Sliced to 2D, 

then cropped 

and finally 

denoised 

3D-ResNET Build 

orientation 

192 [103] 

2020 DED 3D data from 

junction 

geometries 

Geometric 

features 

extraction 

NN Path length 

value to 

avoid 

63 

 

[102] 
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material 

deficit 

2021 General 

AM 

3D data of 

polygons from 

sliced lattice 

models 

Geometry-

based feature 

value 

extraction 

SVM Double-

spiral, 

Counter-

parallel 

offset, or 

Straight 

skeleton 

1,500 [104] 

2019 General 

AM 

(robotic 

arm) 

Tabular data of 

system 

parameters  

None 

mentioned 

NN desired 

printed 

pattern 

200 [105] 

 

3.2.3. Surrogate modeling of the melt pool 

As a sub-category of data-driven approaches, ML models are perfect candidates to serve as 

surrogates of complex multi-phase and multi-physics process simulations in AM. There are 

multiple ways to develop these surrogate models. ML models can be trained completely on 

experimental data where no simulation results are needed. In some cases, process simulations are 

used to inform ML models partially or completely. There are also instances where physical 

knowledge is incorporated in ML models at the structural level i.e. a physics-based error function 

to learn model parameters [106]. Melt pool characteristics are of key interest in surrogate modeling. 

Accurate prediction of these characteristics can help pick an adaptive approach to process control. 

There has been extensive interest in predicting the thermal distribution of melt pools as this can be 

a good representative of future structures and properties [107-111]. Melt pool topography [31, 38, 

112, 113] and other characteristics [48, 49] have been the target of some research works. The 

related research articles are briefed in Table 8. 

Tabular, graphic, and 3D data types are seen as potential inputs for ML-based surrogate modeling. 

Tabular data comprising process [31], material [106], geometry [108], and temperature parameters 

[114] is widely used to model melt pool characteristics. It roughly accounts for 60% of all data 

types employed for surrogate modeling. Finite element (FE) generated tabular data is a clear 

addition to existing trends at this stage [107, 109, 111, 112]. Specific applications of tabular data 

include melt pool geometry and thermal distribution prediction. The thermal history of a metal 

additive manufacturing (MAM) process is computed using an unsupervised clustering technique 

applied to input geometry and scan parameters in tabular form [114]. Graphic data from digital 

cameras and microscopes is found to be the second-best choice for melt pool modeling. Melt pool 

is monitored through these sensors and the resulting images/videos are used in ML models to 

predict characteristics of interest. Digital images from simulations are used in a CNN to predict 

melting conditions in a PBF process [48]. 3D data is also used in ML models at this stage of AM 

process flow. Features of 3D data are employed in deep models to predict thermal field of a wire 

DED process [110].  

Table 8: ML applications at the process stage of AM – Surrogate modeling of the melt pool 

Process Characteristics - Surrogate modeling of the melt pool 



19 

 

Year AM Data Data Handling ML Algorithm Application Instances Ref 

2020 ME Tabular data 

of part 

geometry 

Extract features 

from tabular 

data (relative 

distances from the 

cooling surfaces, 

from the heat 

sources, and a set 

of deposition 

times influencing 

the thermal 

behavior) 

ANN Thermal 

distribution 

11 [108] 

2021 PBF Tabular data 

of FE results 

Extract features 

from tabular 

data ([Node, X, Y, 

Z, Temperature]) 

GPR Thermal 

distribution 

Not clear [107] 

2021 PBF Tabular 

data for build 

parameters an

d microscope 

image 

Pixelization, gray-

scale, binary filter, 

connected 

component 

labeling algorithm, 

extraction of 

material 

descriptors, label 

encoding, 

normalization, 

cropping 

RF, deep NN, 

SVR, GB 

Creep rate 512 [49] 

2021 PBF Tabular data 

of FE results 

Extract features 

from the tool path 

RNN Thermal 

distribution 

340 [111] 

2021 PBF or 

DED 

Tabular data 

of process, 

material, and 

geometry 

None mentioned NN Temperature, 

Melt pool 

dynamics, and 

dimensions, 

Cooling rates 

Not clear [106] 

2020 PBF Tabular data 

of FE results 

Generate a matrix 

to store the laser 

scanning pattern 

from the tabular 

data 

RNN+ANN Thermal 

distribution 

100 [109] 

2020 PBF Digital image 

of melt pool 

None mentioned Polynomial 

regression 

Melt pool area 20,902 [38] 

2020 PBF Tabular data 

of simulations 

Extract features 

from tabular data 

GPR Melt pool 

geometry 

200 [112] 

2020 PBF Digital 

image from 

the simulation 

Resizing, 

pixelization, 

normalization 

CNN Melting 

conditions 

1,412 [48] 
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2020 PBF Tabular 

data for 

thermal 

history 

Dimensionality 

reduction 

k-means 

clustering 

Zoned maps 

of thermal 

history 

Not clear [114] 

2019 PBF Tabular 

data for 

processing 

parameters 

and material 

properties 

Sensitivity 

analysis 

RF, SVM Melt pool 

geometry 

472 [31] 

2018 PBF Graphic data 

of in-situ 

videos from 

the melt pool 

Center Cropping CNN Track width, 

Track width 

standard 

deviation, and 

Track 

continuity 

870 

 

[113] 

2021 DED 3D Matrix, 

Model, 

representation 

Extract features 

from numerical 

simulation 

RNN, deep NN, 

and CNN 

Thermal field 15,000+ [110] 

 

3.3. Product characteristics 

The last category of ML applications in AM is related to product characteristics. There are 

numerous parameters of interest that relate to printed parts. These can be classified with respect to 

product structure and properties. In AM, quality and business constraints require parts to be 

checked at both macro and micro levels. Macro-level deals with geometrical and visual aspects, 

whereas micro-level deals with anomalies and defects in the microstructure of printed parts. ML 

models are also employed to predict products' properties and other aspects (cost, time, life, etc.). 

These applications are discussed in detail in the subsequent sections. 

ML applications concerning AM product characteristics offer unique benefits as well. Data-driven 

models for macro and micro characteristics can replace labor-intensive tasks such as measurements, 

characterizations, and microstructural evaluations. Given the complex nature of such 

characteristics (e.g., the microstructure of composite material systems), reliable physics-driven 

models are often impossible to develop. ML models on the other hand can extract key input-output 

relations in the context of given applications. This can relieve practitioners from expensive 

alternatives to deduct such complex characteristics. This applies to both macro (e.g., deviations in 

the printed parts) and micro (e.g., defects in the microstructure) characteristics of AM products. 

Similar to design and process spaces, property spaces can be established to guide designers and 

operators. Regions of desired properties can be linked to either design or process parameters. All 

of this is possible from base ML models correctly capturing the geometry, microstructural, and 

property traits of AM printed parts.  

3.3.1. Macro level 

The majority of ML applications in AM deal with product characteristics at the macro or micro 

level. Macro-level targets usually concern with the visual characteristics of printed products and 
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are often the first category of quality metrics against which products are checked. Geometric 

dimensions and visual defects are two main targets in this regard. These can relate to the macro 

characteristics of a single path, single layer, or multiple layers. As a result, several works focused 

on predicting geometry deviations in AM printed parts [115-119]. Inspecting visual defects has 

been a common way to judge product quality and is used in several ML models with tabular [63], 

graphic [120, 121], spectrum [74] data as inputs. Regression-based ML models are a popular 

choice to determine the exact geometry of products in AM  [122-124]. There are cases where the 

domain or expert-defined labels are used to make decisions on the macro-level quality of AM parts 

[125, 126]. The reviewed references for macro structure characteristics are outlined in Table 9. 

Graphic, tabular, and 3D data types have more or less similar proportions for macro level targets 

with each representing 36%, 30%, and 30% of datasets respectively. The majority of graphic data 

come from digital cameras that capture images at different stages of AM process [115, 119, 120, 

127]. Microscopes [41] and infrared cameras [128] are also employed to capture AM process. 

These images are then used to predict a range of macro characteristics such as dimensional 

variations and visual defects.  Digital images of the process are employed in different ML models 

to detect visual defects in a ME process [120]. Simulation and camera images are used to detect 

real-time cyber-attacks resulting in malicious defects using ML models [129]. Tabular data from 

design [122] and process [123] stages is used to model macro structure anomalies. Tabular data 

alongside a design file is used in a CNN to predict visual flaws of ME printed parts [90]. 3D data 

from design files and point clouds is also used to predict macro structure targets [118, 130-132]. 

In one application, spectrum data of acoustic signals is used to predict geometric defects in PBF 

printed parts [74]. 

Table 9: ML applications at the product stage of AM – Macro structure characteristics 

Product Characteristics - Macro Structure Characteristics 

Year AM Data Data Handling ML 

Algorithm 

Applicatio

n 

Instance

s 

Ref 

2021 ME Digital 

image of 

layer 

Pixelization CNN Over 

extrusion 

and under 

extrusion 

(macro) 

1,400 [127] 

2021 ME 

 

Tabular data 

of process 

parameters 

Randomization GPR, SVM Geometric 

deviation 

288 [117] 

2021 ME Digital 

image of 

layer 

Image 

preprocessing and 

filtering 

NN, GB, 

SVM, 

cluster chartin

g 

Visual 

defects 

during 

process 

(Macro 

scale) 

6,000 [120] 

2021 ME Design file Generate 3D point 

cloud based on 

design file and 

preprocessing to 

Bagging of 

Trees, GB, 

RF, k-NN, and 

Linear SVM 

Geometrica

l defect 

detection 

50 [130] 
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extract critical 

features 

2021 ME Digital 

image from 

coaxial 

camera 

Editing and 

normalizing the 

data and then 

pixelization 

CNN Geometrica

l anomalies 

Not clear [119] 

2020 ME Digital 

image 

cross-

sectional 

images 

Image processing to 

extract geometry 

data 

ANN Geometry 

deformatio

n 

270 [115] 

2020 ME Vector data 

in tabular 

format 

Extract critical 

features based on 

domain knowledge 

Multi-linear 

regression, k-

NN, SVM, 

RF, NN, and 

DL 

Printability

 in shape 

145 [133] 

2020 ME 

 

Graphic 

data from 

GoPro 

camera 

images 

Transformations 

(resize and reshape) 

CNN Part 

Success or 

Failure bas

ed on 

different 

macro-

structural 

defects 

200 [125] 

2020 ME Digital 

Image of 

printed part 

Pixelization, grey 

scaling 

CNN Warping 

defect 

674 [37] 

2019 ME Tabular data 

and design 

file 

The features are 

generated from the 

STL file, toolpath 

locations and 

parameter settings 

CNN + GB Visual 

flaws 

144 [90] 

2018 ME 3D point 

cloud 

Downsampling Self-

organizing 

map 

Geometric 

accuracy 

12 [118] 

2018 ME 3D data 

from as-

designed 

shapes 

None mentioned GPR Shape 

variations 

Not clear 

 

[131] 

2017 ME 

 

Graphic 

data from 

simulations 

and camera-

based 

images 

Image 

segmentation, 

feature extraction 

k-NN, RF Malicious 

defect from 

cyber 

attack 

3,887 [129] 
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2021 PBF Tabular data 

of part 

location and 

surface 

orientation 

None mentioned DT Surface 

height 

648 [122] 

2021 PBF Tabular data 

of 

microstructu

re 

Min-max 

normalization 

Self-

organizing 

map 

Elongation 360 [134] 

2021 PBF Design file 

and tabular 

data 

Voxelization and 

hot encoding 

for tabular data 

CNN+ANN Geometry 

(shape and 

dimensions

) 

Functional 

(visual 

defects) 

characterist

ics 

245 [60] 

2021 PBF Video of 

process 

Get images from 

Video and 

pixelization 

CNN Visual 

powder 

bed defects 

8,514 [121] 

2021 PBF Design file 

and tabular 

data 

Convert the design 

file to the sparse 

matrix 

Sparse CNN + 

ANN 

Visual 

defects 

245 [63] 

2021 PBF Spectrum 

data of 

acoustic 

signals 

Projecting the 

original data matrix 

into a lower-

dimensional space 

LDA Geometry 

defects 

(missing 

struts) in 

lattice 

structures 

210 [74] 

2021 PBF 3D CAD 

models 

Voxelization, 

feature learning 

Auto encoder-

generative 

adversarial 

network 

Cell 

structure 

manufactur

ability 

50 [132] 

2020 PBF Tabular 

data for 

processing 

parameters 

and tool 

path, 

and 3D 

model from 

simulations 

Voxelization k-NN, CNN Geometry 9,000 [123] 

2020 PBF Thermal 

images of 

melt pool 

Resizing and 

pixelization 

Depthwise-sep

arable CNN 

Delaminati

on and 

splatter 

4,314 [128] 
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2020 PBF Melt pool 

images 

The real-time 

function of sensor 

data 

K-Clustering Defect 

detection 

from melt 

pool size 

monitoring 

2,000+ [135] 

2020 PBF Tabular data 

of rule 

metrics 

The features are 

calculated by the 

defined design rules 

Singular-value 

decomposition 

and Euclidean 

distance 

measurement 

techniques 

Manufactur

ability in 

shape 

Not clear [136] 

2020 PBF 3D Matrix Feature extraction SVM, RF Visual 

defects 

1,250 [137] 

2018 PBF Microscopic 

images of 

surface 

Pixelization, 

denoising, gray-

scaling, brightness 

threshold, statistical 

features, PCA 

RF Detect 

fused track 

boundaries 

Not clear [41] 

2018 PBF Tabular data 

of process 

parameters 

Critical feature 

selection 

LDA Cracking 

caused by 

delaminati

on 

47 [138] 

2018 PBF Tabular data 

of part and 

process 

parameters 

Elbow method and 

K means clusters 

RF Good or 

Defective 

part based 

on 

inspection 

of defects 

1,000 [126] 

2021 DED Tabular 

data of weld 

bead 

Signal denoising 

filter, curve fitting 

process 

SVM Bead 

profile 

Not clear [124] 

2020 DED 3D point 

cloud data, 

Tabular data 

of extracted 

features 

Filtering, 

segmentation, 

surface-to-point 

distance 

calculation, point 

clustering 

SVM, KNN, 

GPR, DT, NB, 

ANN, RF and 

AdaBoost 

Surface 

defect 

identificati

on 

Not clear [139] 

2020 Gene

ral A

M 

Thermal 

measuremen

t signals in 

graphic 

form 

Feature selection LR, GPR, RF, 

ANN, SVM 

Defect 

geometries 

600 [33] 

2020 Gene

ral 

AM 

3D data for 

lattice infill 

pattern 

Surface 3D 

coordinates 

extraction 

NN Symmetric

al 

deviation 

4,800 [116] 
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surface 

coordinates 

2017 Gene

ral 

AM 

3D point 

cloud 

Spectral graph 

theory approach 

k-NN, NN, 

NB, SVM, 

and DT 

Dimension

al Variatio

n 

12 [140] 

 

3.3.2. Micro level 

Porosity, lack of fusion, micro-cracks, and balling are some of the most frequent defects in AM 

printed parts' microstructure. Porosity has been a common target of ML models in this category. 

In this regard, ML models have been employed for a range of tasks including pore detection [34, 

42, 44, 68, 141-144], pore classification [50, 57, 67, 145, 146], and pore size prediction [93]. Some 

ML applications also deal with the classification of specific microstructure types [51]. Lack of 

fusion and balling defects have also been considered as targets in several ML models. The 

references are summarized in Table 10. 

Datasets for predicting micro characteristics fall in all four general types introduced in this survey. 

Graphic data stands out as a clear choice when it comes to predicting micro characteristics of AM 

parts. 59% of the available data in this section belongs to the graphic category. The sources of 

graphic data are found to be diverse as well. Digital cameras [147, 148], thermal cameras [42, 44], 

and microscopes [145, 149] are used for in-process graphic data generation to predict micro 

characteristics. This data type is mainly used to predict microstructural defects. Graphic data of 

melt pool images is used to classify balling, keyholing, porosity, under-melting, and desirable 

conditions in an SVM classifier [150]. Layer-wise images of a PBF process are cropped and used 

in a deep learning model to distinguish the lack of fusion defects from standard cases [151]. 3D, 

spectrum and tabular data types are found to be relatively less common and account for 10%, 14%, 

and 17% of data share respectively. XCT-based 3D data and microscopic images are used to cluster 

different types of pores [50].  Spectrum data from acoustic signals is used in a NN to predict 

porosity-based quality (poor, medium, high) of PBF printed parts [67]. A few other applications 

of spectrum data also employ acoustic sensor data in ML models and are listed in Table 10. Tabular 

data from diverse sources can be found to predict porosity [143, 152] and grain growth in AM 

[153]. 

Table 10: ML applications at the product stage of AM – Micro structure characteristics 

Product Characteristics - Micro Structure Characteristics 

Year AM Data Data Handling ML 

Algorithm 

Application Instance

s 

Ref 

2021 ME 

 

3D data of 

as-designed 

and as-built 

models 

Visual extraction of 

geometric features 

NN, k-NN Flow 

resistivity, 

Porosity, 

Tortuosity, 

Thermal 

length, 

Viscus 

length, and 

Permeability 

500 [64] 
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2020 ME 

 

Tabular 

data of 

process 

parameters 

Normalization NN Bond 

quality, 

porosity 

1,525 [152] 

2021 PBF Microscope 

image of 

bead cross 

section 

Image preprocessing 

to eliminate the 

noise and highlight 

defects 

RF Ex-situ 

porosity 

195 [149] 

2021 PBF Graphic 

data from 

layer-wise 

images 

Image Cropping CNN, NN Lack of 

fusion or 

Normal 

Not clear [151] 

2021 PBF Layer-wise 

part data in 

tabular form 

Extract physical 

effects from 

machine setting 

parameters 

LR, GPR, 

SVR 

porosity 549 [143] 

2020 PBF Infrared 

image 

thermal 

profile, X-

ray image 

melt pool 

dynamics, 

and porosity 

Time window, 

denoising, manual 

selection of 

statistical features 

LR, RF, GPR, 

GB 

Porosity 15 [42] 

2020 PBF Infrared 

image of 

surface 

temperature 

Denoising K-means Porosity Not clear [44] 

2020 PBF Photodiode 

sensing 

system 

signal 

Graph Fourier 

Transform features, 

time window, 

sensitivity analysis, 

PCA 

k-NN, SVM, 

DT, LDA, 

NN, SVM 

Porosity 440 [34] 

2020 PBF 3D X-ray 

tomography 

and 

microscope 

image of 

parts 

Voxelization/pixeliz

ation, segmentation, 

statistical features, 

scaling 

K-means Pore types 3,142 [50] 

2020 PBF 3D X-ray 

tomography 

of parts 

Voxelization, 

cropping, 

normalization 

CNN Porosity 

segmentatio

n 

1,100 [62] 

2020 PBF Digital 

image of 

build plate 

Get texture from 

images (The 

quantified powder 

bed 

NB 

classification 

Microstructu

ral defects - 

online 

205 [147] 
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3D-DIC data, 

alongside ex situ 

identification of 

physical defect 

locations) 

2020 PBF Graphic 

data from 

electron-

optical 

images 

Miscellaneous 

image processing 

techniques 

CNN Good, 

porous, or 

bulging 

16,000 [154] 

2020 PBF Graphic 

data of 

optical 

tomography 

images 

Cropping and 

background removal 

k-means and 

k-NN 

Drift (melt 

pool 

hotspots) or 

No-drift at 

the layer-

level 

240 [155] 

2020 Laser 

PBF 

IR images 

of surface 

temperature 

distribution 

Signal denoising 

filter 

Neural 

Learning 

Pore 

detection 

100 [144] 

2020 PBF Pyrometer 

signal from 

build 

chamber, 

XCT of part 

Image preprocessing K-d tree Porosity 10,597 [141] 

2020 PBF Tabular 

data of 

energy and 

temperature 

N/A NN Nanoparticle 

sizes 

Not clear [93] 

2020 Laser 

PBF 

Layer-wise 

Images 

Texture analysis hybrid deep 

NN 

Porosity 

defect 

3,000+ [55] 

2019 DED Digital 

camera and 

spectromete

r for melt 

pool 

monitoring 

Graph Kronecker 

product analysis 

SVM The average 

length of 

lack-of-

fusion 

defects 

Not clear [148] 

2019 PBF 

 

 

Graphic 

data of melt 

pool images 

Bag of Words with 

SIFT features 

SVM Balling, 

Severe 

Keyholing, 

Keyhole 

Porosity, 

Under-

Melting, or 

Desirable 

24,385 [150] 
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2019 PBF Acoustic 

emission 

signal 

Extract wavelet 

spectrograms from 

signals 

Reinforcement 

learning 

Porosity 180 [68] 

2019 Laser 

PBF 

Acoustic 

emission 

signal 

Spectral 

Convolution Neural 

Network 

DL Real-time 

Printing Qua

lity based on 

porosity (3 

levels) 

Not clear [146] 

2018 PBF Digital 

Images of 

powder bed 

Apply filters to 

images, Selection of 

training images 

Bag-of-

keypoints (uns

upervised) 

Anomaly 

detection 

(micro) 

2,400+ [156] 

2018 PBF Spectrum 

data of 

acoustic 

signals 

Wavelet packet 

transform 

NN Porosity-

based quality 

(Poor, 

Medium, 

High) 

600 [67] 

2020 DED Tabular 

data of 

thermal 

gradient, 

crystal 

orientation, 

and 

Marangoni 

effect 

Crystal orientation 

reconstruction and 

into a 2D vector 

ANN Regression 

of the 

competitive 

grain growth 

behavior 

50 [153] 

2020 DED Digital 

image of the 

microstruct

ure 

Cropping, random 

horizontal, vertical 

flipping, PCA 

CNN, SVM Microstructu

res classifica

tion 

1,801 [51] 

2020 DED Pyrometer 

images of 

melt pool 

Pixelization CNN Porosity 1,557 [142] 

2020 DED Microscopic 

image of 

part 

Image denoising, 

smoothing, and 

unblurring to 

highlight the areas 

with pores 

RF Porosity 

classification 

6,000+ [145] 

2018 DED Thermal 

images of 

melt pool 

Functional principal 

component analysis 

KNN Porosity 

classification 

60 [57] 

2020 BJ CT images 

of defect 

data 

Reconstruction and 

feature extraction  

Gaussian 

mixture 

model  

clustering 

Pore 

evolution 

Not clear [157] 
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3.3.3. Mechanical properties and other characteristics  

Properties lie at the end of the process-structure-property chain of AM process flow. The future 

performance of products is based on the underlying properties. Mechanical properties have been a 

target of immense interest for ML models in AM [47, 56, 158-161]. The representative examples 

are tensile strength [43, 45, 61, 69, 162], elongation [161], hardness [163], fatigue [30, 164, 165], 

and surface roughness [73, 166-168]. Some works also focus on ML-based modeling of residual 

stress [169, 170] and density [72, 168, 171] in printed parts. Quality metrics are based on specific 

properties and serve as labels in ML models [172, 173].  Finally, miscellaneous applications where 

business-related characteristics of printing cost and time are computed using ML modes can be 

found in AM literature [174]. Table 11 summarizes the existing articles that fall in this category. 

ML-based prediction of mechanical properties has a clear winner in tabular data with 61% share 

of all datasets. Tabular data of material [175], deposition [45], process [162], fatigue [164], and 

geometry [160] parameters is frequently used to model diverse mechanical properties. Process 

parameters have a major share among all sources of tabular data at this stage [159, 165, 167, 168, 

172, 176, 177]. For instance, process parameters alongside mechanical properties in tabular form 

are used in an adaptive neuro-fuzzy inference system to estimate the fatigue life of AM printed 

metal parts [30]. 17% of the available data falls in the graphic category making it an attractive 

choice after tabular data. Similar to tabular data, graphic data has been used to predict a range of 

mechanical properties. Digital cameras are a common source of graphic data at this stage [56, 178, 

179]. Spectrum and 3D data types are found to have an equal contribution of 11%. Spectrum data 

from optical signals was used to classify density levels (low, medium, and high) of PBF printed 

parts in an SVM classifier [72]. 3D data of microstructures is used in a CNN model to predict the 

effective yield strength of parts manufactured by MAM processes [61]. Spectrum and 3D data 

types are also employed to determine several other properties as referenced in Table 11. 

Table 11: ML applications at product stage of AM – Mechanical properties and other 

characteristics 

Product Characteristics - Mechanical Properties and other characteristics 

Year AM Data Data Handling ML Algorithm Application Instances Ref 

2021 ME 

 

Graphic data 

for X-

sectional 

images 

Sobel and Canny 

edge finding 

algorithm, Hough 

line finding 

algorithm 

NN Mechanical 

compression 

curve values 

250 [56] 

2021 ME Tabular data 

of 3D 

printed 

carbon fiber 

composites  

None mentioned GPR Mechanical 

properties 

30 [161] 

2020 ME 

 

Tabular data 

of three 

material 

parameters 

Normalization NN Force 

displacement 

curve (FDC) 

error difference 

20,000 [175] 
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what

a202

0 

ME Tabular 

data for infill 

patterns 

None mentioned ensemble 

learning with k-

NN, SVM, etc. 

Flexural 

strength 

162 [45] 

2020 ME 

 

Tabular data 

of 3D 

printing 

parameters 

None mentioned Lasso, XGBoos

t, and SVR 

Tensile 

strength 

192 [162] 

2019 ME Thermocoup

le and 

acceleromete

r signals 

Statistical features RF, SVR, 

ridge, lasso 

Surface 

roughness 

27 [73] 

2019 ME Tabular data 

of process 

parameters 

Critical feature 

selection 

Knowledge-

based ANN 

Part quality Not clear [176] 

2019 ME Sensor 

signal of 

temperature 

and 

vibrations 

Feature extraction 

and feature 

selection using 

random forest 

Classification 

and regression 

trees, Random 

vector 

functional link 

network, Ridge 

regression, 

SVR, RF, 

AdaBoost 

Surface 

roughness 

81 [166] 

2019 ME IR sensor, 

thermocoupl

e, and 

acceleromete

r signals, 

and tabular 

data for 

processing 

parameters, 

mechanical p

roperties and

 part geomet

ries 

Statistical features 

(mean, std dev 

and RMS) 

LSTM+ANN Tensile 

strength 

144 [43] 

2019 ME 3D Design 

file 

Voxelization CNN Part mass, 

support mass 

and build time 

72,000 [180] 

2021 PBF Tabular data 

of process 

parameters 

Standard Scaler 

method 

ANN Density ratio 

and surface 

roughness. 

2,048 [177] 

2019 PBF Tabular data 

of build 

orientation 

Feature filter and 

selection 

GB, DT, 

AdaBoost Regr

essor 

Mechanical 

properties 

434 [158] 



31 

 

2021 PBF Tabular data 

of AM 

fatigue 

parameters 

None mentioned 

 

NN, RF Fatigue life 

cycles 

3*500 [164] 

2021 PBF Tabular data 

of process 

parameters 

Feature selection 

and filtering 

GB Magnetic 

characteristics (

iron loss and 

permeability) 

780 [159] 

2021 PBF Tabular data 

of process 

parameters 

Chi-merge and 

Statistical 

ANOVA 

NB Density and 

Hardness 

181 [171] 

2021 PBF Tabular data 

of process 

parameters  

None mentioned ANN, RF, 

SVM 

Fatigue life 600 [165] 

2021 PBF Tabular data 

of process 

parameters  

None mentioned 

 

Multivariate 

Gaussian 

process 

Density and 

surface 

roughness 

15 [168] 

2021 PBF Tabular data 

of 

production 

parameters  

Feature scaling LR, SVM, DT, 

RF, 

XGBoost, 

MLP, k-NN, 

LDA 

Quality 

repeatability 

based on 

mechanical 

properties 

251 [181] 

2020 PBF Spectrum 

data from 

optical 

signals 

Statistical features 

extraction 

SVM, MLP Density classes 

(low medium 

high) 

4,402 [72] 

2020 Laser 

PBF 

Vector 

(tabular 

format) 

Scaling Hybrid 

Bayesian 

network 

Part quality 

characteristics 

300+ [182] 

2020 PBF 3D data of 

lattice 

structures 

Image windowing, 

image transforms 

CNN Deformation 

work 

3*4,095 [183] 

2020 PBF Tabular 

data for part 

geometries 

None mentioned ANN Mechanical 

properties 

15 [160] 

2020 Laser 

PBF 

Tabular data 

of process 

parameters  

Kernel Density 

Estimation 

Stochastic 

optimization 

Failure wrt 

ultimate 

strength, yield 

strength, and 

elongation 

Not clear [172] 

2020 Laser 

PBF 

Vector and 

images of 

thermal 

histories 

Dimensionality 

Reduction 

SVR Printing 

quality based 

on energy 

efficiency and 

shape factor 

100 [173] 
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2020 Laser 

PBF 

Videos 

(graphical 

format) of 

met pool 

None mentioned MLR, k-NN, 

SVM, RF, NN 

and DL 

Quality 

assurance 

1,000+ [178] 

2020 PBF Tabular data 

of process 

parameters 

Normalization GPR Relative 

density 

82 [184] 

2020  PBF 

or 

DED 

3D data of 

microstructu

re  

Morphological 

and 

crystallographic 

feature extraction, 

feature 

standardization  

CNN  Effective Yield 

Strength  

7,680   

  

[61] 

2019 PBF Tabular 

data for 

processing 

parameters 

and 

mechanical 

properties 

None mentioned Adaptive 

neuro-fuzzy 

inference 

system 

Fatigue life 139 [30] 

2019 PBF Photodiode 

sensing 

system 

signal 

Downsampling, 

singular value 

decomposition 

Gaussian 

mixture model 

Ultimate tensile 

strength 

49 [69] 

2021 DED Tabular data 

of FE results 

Extract features 

from tabular 

data (thermal 

history and spatial 

coordinates of the 

elements/nodes) 

ANN Residual stress 

distribution 

Not clear [169] 

 

2021 DED Tabular data 

of process 

parameters  

None mentioned Adaptive 

neuro-fuzzy 

inference 

system 

Surface 

roughness 

27 [167] 

2021 DED Tabular data 

of process 

parameters 

ANOVA, 

correlation matrix 

LR, quadratic 

polynomial 

regression 

Hardness Not clear [163] 

2020 DED Tabular data 

of properties 

and process 

variables 

Feature 

importance and 

hierarchical 

influence 

RF, NN Residual 

stresses and 

Delamination 

243 [170] 

2020 VP Videos of 

part 

fabrication 

Get images from 

Video 

CNN+LSTM Part quality 1,832 [179] 
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2018 Gener

al AM 

Microscope 

image from 

simulation 

Segmentation, 

pixelization 

CNN Mechanical 

properties 

10,000 [47] 

2018 Gener

al AM 

3D data of 

CAD models 

Extraction of 

geometric/non-

geometric features 

from G-code 

LR Printing cost 135 [174] 

 

4. Public AM databases 

This section briefly introduces the major existing public databases containing datasets for AM 

studies. 

• National Institute of Standards and Technology (NIST) 

The engineering laboratory of NIST offers a database system named the additive manufacturing 

materials database (AMMD). It is built to provide open data access and material data sharing to 

the AM community. Their datasets include testing data, machine data, part design data, build part 

process data, and material data. Though their database is designed for all seven typical AM 

processes, only PBF data is collected at the current stage [185]. This database can be used to 

applications such as prediction of mechanical performance, material selections in AM, and real-

time quality monitoring.   

• Mendeley Data  

Mendeley Data is a cloud-based repository where users can store and search research data. It is 

hosted by Elsevier. As Elsevier is a publishing company specializing in science and technology, 

they collect all the uploaded datasets for the published research articles from their flagship journals. 

Users can also store their datasets by uploading files of any type. By researching “additive 

manufacturing” in their search tool and narrowing down the data types to “dataset”, 2020 datasets 

are found at the current stage. Users can easily download the datasets and export the citations as 

well [186].  

• DOE Data Explorer  

DOE Data Explorer is supported by the U.S. Department of Energy and the Office of Scientific 

and Technical Information. It is a search tool for finding their supported projects and included 

dataset records. By searching “additive manufacturing”, 67 datasets can be found. All the links to 

download datasets are provided as well [187].  

• DATA.GOV  

DATA.GOV is a searching tool founded by the U.S. government to support finding data and 

research. Users can narrow down the target data via the search engine. At the time of this writing, 

930 datasets can be found under the term ‘additive manufacturing. However, some of them are 

solely brief introductions to the research project. Users should filter the search and find the 

potential useful information and datasets for their research [188].  

• DataCite  
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DataCite is a non-profit organization that provides persistent identifiers (DOIs) for research data 

and other research output. Their members include data centers, libraries, research universities, and 

governments over the world. They also offer the service to look for reliable data shared by the 

research community and reuse the data for other research studies. By searching “additive 

manufacturing” and filter the works to “dataset” type, 225 downloadable datasets are found [189].  

• IEEEDataPort 

IEEEDataPort is developed by IEEE. This platform provides free uploads of datasets and free 

downloads of the open-access datasets shared by IEEE members and users. There are over 1,500 

datasets and most of them are in the artificial intelligence, machine learning, computer vision, and 

image processing aspects. By searching “additive manufacturing” in their dataset library, only one 

dataset is available. However, more datasets are expected in the coming future [190].       

5. Existing data management approaches in AM 

There are countless AM studies in the literature, and they have been continuously published every 

year. This trend has gained momentum in recent years resulting in enormous data for ML 

applications in AM.  As a result, the management, storage, and accessibility of this data have 

become a challenge. 

For most data-search engines, they use keywords as the first step to filter the search. After that, the 

most common filter options are data types including datasets, documents, images, videos, etc., and 

sources including universities over the world, journals, etc. Finally, users should use their 

knowledge to open the results in order and read the descriptions to determine whether the selected 

result is suitable for their needs. As most data-search engines include datasets from various 

research areas, they cannot offer specific filter options for AM. In this case, finding the target data 

is still difficult for AM researchers. 

There are also some systematic studies to establish data management strategies specifically for 

AM. One of the representative researches is from Liu et al [154]. They proposed a cloud-based 

digital twin-enabled data management framework for MAM. It contains AM data in different 

product lifecycle stages including product design, quality measurement, process planning, 

manufacturing, and post-processing. Data items of each lifecycle stage are listed with sub-

categories, common measurement methods, and data format. Lu et al. [191] provided a similar 

approach on the collaborative AM data management system. Their data management system aims 

to establish the correlations between processes, materials, and parts. A web interface is available 

to store, explore and download data which has been introduced in Section 4.1. In their database, 

material data, machine data, design data, process data, and test data are collected. Both approaches 

provide a well-organized data structure to store and manage data. However, none of them is 

sufficient in data searching and sharing. They are more appropriate for institutes, industries, or 

organizations to internally store and manage data. When sharing to the public, datasets are 

expected to be easy to access. In their current version of the data management system, it is either 

hard for external users to understand the system or hard to find suitable filters to search datasets 

of interest. The existing effort on this topic is very limited, which motivates more future interests 

and developments in AM data management systems.                  

6. Limitations and challenges 
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The above sections presented the existing ML applications in AM with details of their data types, 

data handling approach, and applications. It can be seen that the current data in ML-assisted AM 

studies still has some problems including quantity and diversity of datasets, the guarantee of the 

manual label accuracy, reproducibility and standardization of data-driven research, and the need 

for a simple, easy-access, and systematic database. The following section will provide a detailed 

discussion on the limitations and challenges. 

6.1. Quantity and diversity of datasets 

Diversity and the data size are extremely important characteristics in a well-developed dataset that 

can directly affect the quality of the dataset and the performance of the ML model. Figure 8 shows 

the frequency of the number of instances used in the research articles reviewed in this paper. Most 

of the existing research falls in the group of 100-1,000 instances, and only 13 out of 144 research 

articles include 10,000+ instances in their datasets. Determination of whether the size of the dataset 

is large enough depends on the applications and the complexity of the ML model. However, the 

evaluation for data size and diversity is absent in most studies, and the datasets for some studies 

are limited in quantity and diversity.  

 

Figure 8: Frequency of the number of instances used in the reviewed research articles 

The ideal method to identify the size of data is to generate a learning curve for the model 

performance on datasets [192]. The required number of data size can be obtained when the learning 

curve reaches the saturation point. To make it simple, there are some common rules from the ML 

community to identify the ideal size of the dataset. These rules are generally a factor of certain 

characteristics of the prediction problem. For example, some researchers indicate that the data size 

needs to be at least 50 to 1000 times the number of prediction classes [193]. Another rule states 

that the data size needs to be at least 10 to 100 times the number of the features [194, 195]. The 

most common method is to include at least 10 times the number of weights in the network if neural 

network models are used [196, 197]. However, a later study [192] states that the factor of 10 is 

insufficient, and they conclude that the data size needs to be at least 27 to 31 times the number of 

weights in the network. Even though the data size may also vary on the different applications, 

those common rules can provide a general idea of how many samples are enough for their studies.  
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6.2. Guarantee of the manual label accuracy 

Another limitation of the current ML-assisted AM studies is to ensure the accuracy of the 

label/ground truth and how to increase the ease of the manual labeling process. At the current stage, 

most existing studies utilize the supervised learning approach which requires labeling. The 

performance of ML models is always restricted by the available data. As introduced in Section 3, 

the most common ML applications in AM include design-related, process-related, and product-

related applications. The label/ground truth can also be categorized into experimental results, 

computational results, and manual labeling. In terms of label accuracy, the experimental results 

such as mechanical properties and computational results such as thermal distribution obtained from 

the finite element method (FEM) model are more promising. Manual labeling such as the location 

of pores, visual defects determination, mark of the failure area, etc. is less reliable. Mislabeling 

errors may occur during the labeling process. Most of the existing studies reviewed in this paper 

assume manually labeled data to be authentic. There is no such annotation tool developed for 

labeling AM data and ensure the quality of the manually labeled data. Some of them may acquire 

manual votes from several AM experts. Moreover, the manual labeling process is extremely time-

consuming.  

There are some annotation tools available in the literature for computer vision and natural language 

processing [198-200]. The annotation tool can help users on labeling maps, attributes, classes, etc. 

For example, for images and videos, the annotation tool can provide functions to easily mark the 

area with different shapes for segmentation tasks. The users can even do real-time labeling of the 

segmentation target and justify their strategy based on the performance of ML models. This is 

much more efficient than the traditional trial-and-error methods by applying different filters. The 

annotation tool can also help to convert audio to text automatically. Another advantage of the 

annotation tool is the control of quality. It can offer the function for users to provide feedback on 

the accuracy of the label. ML studies in AM can take the benefits from the existing annotation tool, 

and a specific annotation tool for AM can be developed in future work as well.   

6.3. Reproducibility and standardization of data-driven research in AM 

As a major principle of the scientific method, it is important to keep the reproducibility of the 

research. Reproducibility generally refers to obtaining consistent results when the study is 

replicated by using the same input data, methodology, codes, and experimental conditions [201]. 

Recently, with more and more ML studies conducted in AM applications, reproducibility becomes 

a challenge due to a lack of shared datasets. Less than half of the articles shared their datasets 

unless making the request personally. Unlike other ML applications, there are no standard datasets 

that can be used in the literature such as MNIST (handwritten digit database) [202], IMDB datasets 

(50k movie reviews), MIMIC (datasets for computational physiology) [203], ShapeNet (3D model 

repository) [204], etc. Moreover, AM is a relatively complex application for ML. Even for the 

same AM technology, the different machine has various printing performances. Using the same 

brand of machine and material is always recommended for fabrication. AM techniques have not 

been standardized maturely which leads to difficulties in building a general database or dataset for 

AM.  

AM has various research areas including design, process, and manufacturing. It even contains 

seven different types of technology. It is challenging to build a dataset including all the critical 

characteristics for AM.  However, building a general dataset for a specific application such as 

visual defects, porosity, thermal distribution, etc. for a specific AM technology such as LPBF and 
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ME is possible. As summarized in Table 5 to Table 11, the most popular AM techniques are LPBF 

and ME. A small number of studies focus on DED and VP. With the guarantee of diversity, 

quantity, non-duplication, and accuracy, multiple stand-alone datasets can be combined together 

to establish a standard and rich dataset for use of multiple research studies. 

6.4. Simple, easy-access, and systematic database for AM 

There are still few well-developed AM databases and there is no well-known or commonly used 

dataset in AM studies. A small portion of AM datasets is duplicated which results in a waste of 

time. Most of them are private and hard to access. The existing databases are either not designed 

for AM or more suitable for an organization to manage its internal data. There is no simple data 

port designed for sharing and accessing AM data publicly. A database for AM is required, and it 

is expected to be simple, easy-access, and systematic. Therefore, datasets from different studies 

can be collected. Researchers can save time on collecting data and data sharing can encourage the 

connection and collaboration between researchers. Moreover, some small datasets can be 

combined together to generate a larger and richer dataset which can be beneficial for all the AM 

researchers.  

Hence, based on the best understanding of the authors, a potential simple data port is proposed 

here and ready for data uploading and query. This data port is expected to be web-based and shared 

with the public. Everyone is welcome to provide their open data or download and reuse the data. 

For each dataset, the donator needs to fill five required fields and five optional fields. The required 

fields include AM technique type, raw input data type, application/targets, whether the data is 

labeled or not, and the zip file for data. The optional fields include Raw output data type, reference 

source, contact information, machine type, and material type. Machine type and material type 

include the brand and series information for selected machines and materials. This information can 

be viewed in the “more details” panel. The preliminary design for the AM data port is shown in 

Figure 9. On the left of the page, users have the option to filter the database to what they are 

looking for based on ‘AM technique type’, ‘applications/target’, ‘raw data type’, and ‘labeled or 

not?’. This simple and informative AM data port is aimed to increase data sharing in the AM 

community and accelerate the ease of data gathering as well. This data port will not recommend 

any data handling process or ML algorithm to users. Raw datasets are provided, and users have 

unlimited freedom to process the data. The data is expected to be used in various research.   
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Figure 9: Preliminary design for the AM data port 

7. Conclusions and future perspectives 

This paper presents a comprehensive review on ML data processing and management for AM 

research and applications. Based on the reviewed papers that are published in the recent four years, 

the utilized data handling methods are summarized for four major data types: tabular data, graphic 

data, 3D data, and spectrum data. The major handling methods include feature extraction, 

discretization, data processing, feature selection, and feature learning. It has been noticed that the 

ML approaches have been applied to various AM applications. At the current status, most of the 

ML applications in AM focus on product characteristics such as printability, porosity, and surface 

roughness. The existing studies have demonstrated promising performances. Moreover, the ML 

approaches are already shown to be suitable and valid for investigating the PSP linkage in AM and 

the potentials in design for AM. However, there are still some challenges when applying ML in 

practice including the quantity and diversity of the dataset, the accuracy of the manual labeling, 

reproducibility, and standardization of data-driven research, and the limitation of the existing 

databases and management systems. These challenges need future investigations and could 

motivate some potential research directions including: 

1. Most of the existing studies use a single type of data as their input to a single ML model. 

Multiple types of data can be combined together to develop a more comprehensive hybrid 

ML model. 

2. A systematic AM database is critical in ML-assisted AM studies as well as the investigation 

on the role of AM in industry 4.0. However, there are few studies related to AM database 

in the literature. A database framework to organize and store AM data including both 

structured data and unstructured data can be a potential research direction. 
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3. Drawing analogies from the field of AI, knowledge transfer can be an important next step 

in data-driven AM. Recently, some researchers have applied the idea of transfer learning 

to the models developed in the same study [205]. Managing data systematically will 

support data-based transfer learning from existing ML applications to new ML applications 

in AM. This can be an important research direction.  

4. 91.7% of reviewed articles select supervised machine learning as their approach. 9% of 

them use unsupervised learning and only 0.7% select reinforcement learning. Unsupervised 

learning has the advantage of solving problems by learning the data and classifying it 

without any labels. Also, it can be really helpful in finding patterns in data. Reinforcement 

learning learns by the modeling self by making and correcting mistakes. It has the potential 

to solve very complex problems and create a perfect model for a particular problem. More 

studies on the potential of applying unsupervised learning and reinforcement learning in 

AM can be conducted in the future. 

5. Only a small portion of existing studies focus on the design characteristics of AM. More 

studies on how ML can help on design for AM can be conducted. For example, ML can 

help with design idea generation based on the functional needs of the product. Also, ML 

can help in generating a design more suitable for AM processes with the consideration of 

functions and cost. 
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