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ABSTRACT
Most real world problems are multiobjective by nature and ex-
pensive to evaluate. We propose in this work a surrogate assisted
approach for multiobjective evolutionary algorithms by building a
surrogate model on each objective. However, integrating a surro-
gate model within an optimization process generates complexity
with additional hyper-parameters to tune. Empirical validation
on standards MOO benchmark problems of a use case based on
NSGA-II and surrogates using SVM regression shows a significant
improvement of the optimization cost in terms of true objectives
evaluations, especially for low budget. We also discuss the behavior
of the proposed algorithm using different values of the parameter
calibrating the use of the surrogate model.
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1 INTRODUCTION
Many real world optimization problems are multi-objective by na-
ture, involving the optimization of contradictory objectives (e.g.,
typically, cost and quality). In most cases, these objectives are not
differentiable and noisy, making difficult the use of traditional op-
timization methods such as gradient descent. Hence, heuristics
methods, like multi-objective evolutionary algorithms (MOEAs)
[3] are good candidates for tackling such problems thanks to their
robustness and efficiency in solving black-box optimization prob-
lems. Unfortunately, the main drawback of evolutionary algorithms
(EAs) is their high cost in terms of number of function evaluation
required to reach a satisfactory solution. This drawback can become
prohibitive for those real world problems that generally require
the use of heavy numerical simulations to compute a single value
of the objective function and/or the constraints. To deal with this
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issue, several works have focused in the last two decades on using
surrogate modeling to reduce the global optimization cost, allowing
the use of computationally expensive methods like evolutionary
algorithms. In the literature, several machine learning techniques
have been considered to build these surrogate models such as :
quadratic models, Gaussian processes (or Kriging [7]) or support
vector machine. The reader in referred to [5] for a comprehensive
survey of surrogate assisted evolutionary optimisation. However,
these works concern in their majority single objective optimization,
the case of multi-objective optimization which suffers more from
computational issues, remains less explored. In last years, the de-
velopment of surrogate assisted multi-objective optimization have
received a growing interest. (see [6] for more details on metamodels
for multiobjective optimization). Several techniques for surrogate
multiobjective optimization have been explored they can be catego-
rized into two main strategies. The first one is based on optimizing
a surrogate model built on the original problem, without any up-
date during the optimization. The implementation of such strategy
is straightforward, however the quality of the obtained solutions
depends only on the quality of the surrogate model initially built
on randomly generated solutions. The second strategy, commonly
proceeds by replacing the objective function with the surrogate
model, computing the true objectives on carefully selected points,
and retraining the model from time to time using recently evaluated
individuals. In [10] several approximation techniques (linear regres-
sion, SVM regression and neural networks) have been tested on two
state-of-the art MOEAs namely NSGA-II and IBEA. in [9] a mono
surrogate approach based on SVM classifiers was used within stat-
of-the-art MOEA to reduce the number of evaluation of objective
function. Recently, a generalized probabilistic surrogate-assisted
framework was proposed in [2] that covers both single and multi
objective evolutionary optimization. However, the main challenge
of surrogate-assisted optimization in general, and evolutionary
multi-objective optimization in particular, is to find a good trade-off
between the expected gain in terms of optimization global cost and
the quality of obtained solutions. On the one hand, an excessive
use of the surrogate model will certainly lead to a lower quality of
obtained solutions that the original algorithm. On the other hand,
reducing dramatically the call to the surrogate model will call into
question the usefulness of its use within the optimization process.
At the same time, the performance assessment the surrogate-based
optimization should not lose sight of the basic assumption behind
using surrogate which is that the original objective functions is com-
putationally expensive and hence the global number of functions
evaluation is limited. Consequently, the assessment of surrogate
contribution in improving the cost of the optimization should be
considered at several stages of the optimization process, especially
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Figure 1: Left: Hypervolume evolution of the ZDT1 function. Right: successive fronts at different evaluations number.

at the first stages, to match with limited budget contexts. For ex-
ample, for the ZDT1 function (a bi-objective function test with
a convex Pareto front), the Pareto Front is almost reached after
5000 evaluations (see figure 1). While the hypervolume quality in-
dicator will continue to improve after 5000 evaluations, this will
not correspond to any discovery of a new region of the optimal
Pareto set, but only to a better distribution of the points over the al-
ready reached front. This is yet another instance of the well known
exploration/exploitation dilemma, specific to the multiobjective
context. For those real world problems with expensive evaluation
function, improving the distribution of solutions on an already
reached Pareto-Front may not be of interest compared with discov-
ering new regions toward optimal solutions.
The goal of this paper is to experimentally study the influence of
using surrogate models within MOEAs to reduce the global opti-
mization cost. A special focus will be made on the first stage of
the optimization which may correspond better to expensive real
world optimization problems with a limited evaluation budget. The
next section will present briefly the proposed framework for surro-
gate assisted multiobjective optimization. Section 3 will discuss the
obtained results. Finally, section 4 concludes this paper.

2 PROPOSED FRAMEWORK
We present in this section the general framework that we propose
for surrogate-assisted MOEAs, which is summarized in algorithm
1. This framework can be instantiated using any MOEA and any
machine learning technique for regression. To simplify the notation,
the parent population size is set to be equal to the offspring popu-
lation size and is equal to (𝑁 ). The algorithm begins by initializing
an initial population 𝑃0 of size 𝑁 , and evaluating it using the real
(expensive) evaluation function. An Archive𝐴 is initialized by mak-
ing a deep copy of 𝑃0, and a surrogate model based on a regression
model is built on each objective 𝑚. For each generation 𝑡 , 𝑁𝐼𝑡𝑒𝑟

iterations are performed using the surrogate model: an offspring
population 𝑄𝑖 is generated from the parent population 𝑃𝑖 and eval-
uated based on the surrogate. Then, the replacement procedure will
determine the next parent population 𝑃𝑖+1. The 𝑄𝑎𝑙𝑙 population

will store all generated points based on the surrogate evaluation
during the 𝑁𝐼𝑡𝑒𝑟 iterations. Then, a clustering approach is applied
on the𝑄𝑎𝑙𝑙 population (of size 𝑁 ∗𝑁𝐼𝑡𝑒𝑟 ) and 𝑁 clusters are created.
This procedure is detailed in algorithm 2, and was inspired by the
work published in [2], in which the use of clustering has improved
the preservation of diversity during the surrogate-based iterations.
The K-means algorithm is used to identify the N clusters based the
𝑄𝑎𝑙𝑙 population. For each cluster, the dominance based ranking
is performed to determine a winner per cluster that will join the
offspring population 𝑄𝑡 . Doing so, we obtain the 𝑄𝑡 population of
size 𝑁 with surrogate influenced solutions, that we hope are more
promising than those generated directly without using surrogate
iterations. The Replacement procedure is then applied based on the
real evaluation function to obtain the next parent population of the
MOEA 𝑃𝑡+1. Before moving to the next generation, the archive 𝐴 is
updated with the newly evaluated solutions of𝑄𝑡 and the surrogate
is updated for each objective𝑚. This procedure is repeated until
the stopping criteria of the MOEA is met, typically a fixed number
of evaluations of the real objective function.

3 EXPERIMENTS
3.1 Experimental Settings
The experiments were conducted on two bi-objectives test suites
namely : ZDT [12] and LZ09 [8]. For all instances, the number of
variables was set to 10. All reported results are averages (or ag-
gregations) over 11 independent runs. All runs were stopped after
15000 evaluations with the real (expensive) objective function. We
use NSGA-II [4] as a baseline MOEA algorithm, and Support Vec-
tor Regression (SVR) [11] as a surrogate approach. For SVR, we
use RBF as a kernel function. The parent population size was set
to 𝑁 = 100 and is equal to the offspring population size. Several
experiments were conducted with different values of the 𝑁𝐼𝑡𝑒𝑟 pa-
rameter : 1, 3, 6 and 10. For the case with 𝑁𝐼𝑡𝑒𝑟 = 1 we don’t use
the clustering approach at the end of the surrogate iterations, the
offspring population generated based on the surrogate evaluation
𝑄𝑖=1 will directly be used to infill the offspring population 𝑄𝑡 . The
performance measurement considered for all experiments is the
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Algorithm 1 Reg-Surrogate-MOEA

1: 𝑡 ← 0, 𝑃0 ← 𝐷𝑜𝐸 (), |𝑃0 | ← 𝑁 (Initial population)
2: 𝐴←∅ (Initialize Archive)
3: Real-Eval (𝑃0)
4: 𝐴← 𝐴 ∪ 𝑃0 (Initialize Archive)
5: 𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝑚 .𝑓 𝑖𝑡 (𝐴) for𝑚 ∈ 1, ...𝑀
6: for t=1 ... 𝑁𝑔𝑒𝑛 do
7: 𝑃𝑖=0← 𝑐𝑜𝑝𝑦 (P𝑡 )
8: for i=0 ... 𝑁𝐼𝑡𝑒𝑟 do
9: 𝑄𝑖 ← 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛(𝑆𝑒𝑙𝑒𝑐𝑡 (𝑃𝑖 ))
10: Surrogate-Eval(𝑄𝑖 )
11: 𝑃𝑖+1← 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (Q𝑖 ∪ 𝑃𝑖 )
12: 𝑄𝑎𝑙𝑙 ← 𝑄𝑎𝑙𝑙 ∪𝑄𝑖

13: end for
14: 𝑄𝑡 ← 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔𝐵𝑎𝑠𝑒𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(Q𝑎𝑙𝑙 , 𝑠𝑖𝑧𝑒 (𝑄𝑡 ))
15: Real-Eval(𝑄𝑡 )
16: 𝑃𝑡+1← 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (Q𝑡 ∪ 𝑃𝑡 )
17: 𝐴← 𝐴 ∪𝑄𝑡

18: 𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝑚 .𝑓 𝑖𝑡 (𝐴) for𝑚 ∈ 1, ...𝑀
19: end for

Algorithm 2 ClusteringBasedSelection(𝑃, 𝑁 )
Require: Population 𝑃 , 𝑇 = 𝑠𝑖𝑧𝑒 (𝑃), N= number of clusters
1: 𝑆 ←∅
2: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑛 ← 𝐾𝑚𝑒𝑎𝑛𝑠 (𝑃). 𝑛 = 1, ...𝑁
3: for 𝑛 = 1...𝑁 do
4: 𝑊𝑖𝑛𝑛𝑒𝑟𝑛 ← 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒𝑅𝑎𝑛𝑘𝑖𝑛𝑔(Cluster𝑛)
5: 𝑆 = 𝑆 ∪ (𝑊𝑖𝑛𝑛𝑒𝑟𝑛)
6: end for
7: return 𝑆

Hypervolume indicator [13], known to be consistent with Pareto
dominance. Other performance indicators such as the epsilon indi-
cator or IGD were considered in preliminary experiments, and they
lead to the same conclusions. Consequently, they are not reported
in this paper. For the baseline NSGA-II algorithm used in this se-
ries of experiments, we used the implementation of the JmetalPy
framework [1] with a tournament size of 2.

3.2 Results
The final results obtained on ZDT and LZ09 by the variants of sur-
rogate assisted NSGA-II instances are summarized in table 1. We
report the average hypervolume indicator as well as the standard
deviation at different stages of the optimization process: 1000, 5000
and 15000 evaluation respectively. We compare different values of
the 𝑁𝐼𝑡𝑒𝑟 parameter, which indicates the number of iterations (or
generations) performed using the surrogate model as an evaluator
instead of the real evaluation function. For each line in the table,
the cells of best obtained results are colored gray. A first global
observation that can be made from these results is that at 1000 eval-
uations the surrogate assisted versions significantly outperforms
the original version for almost all instances, except ZDT2 and ZDT6
functions, for which the baseline NSGA-II and the surrogate-based
variants are equivalent. This general observation confirms the con-
tribution of the surrogate in accelerating the convergence process

Algo SVMregNSGA-II NSGA-II
𝑁𝐼𝑡𝑒𝑟 1 3 6 10

ZDT1
1000 5.09𝑒 − 01 ± 7.62𝑒 − 02 4.15𝑒 − 01 ± 6.60𝑒 − 02 4.28𝑒 − 01 ± 8.43𝑒 − 02 4.87𝑒 − 01 ± 9.12𝑒 − 02 5.05𝑒 − 01 ± 6.36𝑒 − 02
5000 1.37𝑒 − 02 ± 2.13𝑒 − 03 1.81𝑒 − 02 ± 2.77𝑒 − 03 2.66𝑒 − 02 ± 3.89𝑒 − 03 4.46𝑒 − 02 ± 1.08𝑒 − 02 1.32e-02 ±1.20𝑒 − 03
15000 5.58𝑒 − 03 ± 1.67𝑒 − 04 6.35𝑒 − 03 ± 2.94𝑒 − 04 7.92𝑒 − 03 ± 8.81𝑒 − 04 1.19𝑒 − 02 ± 2.30𝑒 − 03 5.56𝑒 − 03 ± 2.78𝑒 − 04

ZDT2
1000 3.33𝑒 − 01 ± 5.55𝑒 − 17 3.31𝑒 − 01 ± 5.10𝑒 − 03 3.33𝑒 − 01 ± 5.55𝑒 − 17 3.24𝑒 − 01 ± 2.46𝑒 − 02 3.33𝑒 − 01 ± 5.55𝑒 − 17
5000 2.37𝑒 − 02 ± 1.76𝑒 − 02 1.29e-02 ±3.92𝑒 − 03 2.69𝑒 − 02 ± 2.66𝑒 − 02 1.53𝑒 − 01 ± 1.30𝑒 − 01 7.24𝑒 − 02 ± 1.12𝑒 − 01
15000 5.33𝑒 − 03 ± 1.55𝑒 − 04 5.36𝑒 − 03 ± 2.57𝑒 − 04 5.59𝑒 − 03 ± 4.00𝑒 − 04 5.92𝑒 − 03 ± 6.77𝑒 − 04 5.28𝑒 − 03 ± 2.08𝑒 − 04

ZDT3
1000 6.52𝑒 − 01 ± 1.17𝑒 − 01 4.85𝑒 − 01 ± 7.99𝑒 − 02 4.90𝑒 − 01 ± 9.15𝑒 − 02 5.25𝑒 − 01 ± 1.52𝑒 − 01 6.43𝑒 − 01 ± 6.13𝑒 − 02
5000 2.59𝑒 − 02 ± 2.61𝑒 − 02 2.36𝑒 − 02 ± 1.48𝑒 − 02 1.73𝑒 − 02 ± 3.50𝑒 − 03 2.32𝑒 − 02 ± 9.17𝑒 − 03 2.01𝑒 − 02 ± 1.65𝑒 − 02
15000 7.86𝑒 − 03 ± 1.55𝑒 − 02 3.80𝑒 − 03 ± 3.30𝑒 − 04 3.96𝑒 − 03 ± 3.79𝑒 − 04 4.14𝑒 − 03 ± 3.87𝑒 − 04 2.81𝑒 − 03 ± 1.16𝑒 − 04

ZDT6
1000 3.26𝑒 − 01 ± 0.00𝑒 + 00 3.26𝑒 − 01 ± 0.00𝑒 + 00 3.26𝑒 − 01 ± 0.00𝑒 + 00 3.26𝑒 − 01 ± 0.00𝑒 + 00 3.26𝑒 − 01 ± 0.00𝑒 + 00
5000 3.26𝑒 − 01 ± 0.00𝑒 + 00 3.26𝑒 − 01 ± 0.00𝑒 + 00 3.26𝑒 − 01 ± 0.00𝑒 + 00 3.26𝑒 − 01 ± 0.00𝑒 + 00 3.26𝑒 − 01 ± 0.00𝑒 + 00
15000 4.68𝑒 − 02 ± 1.21𝑒 − 02 1.82𝑒 − 01 ± 3.74𝑒 − 02 2.02𝑒 − 01 ± 4.41𝑒 − 02 1.90𝑒 − 01 ± 2.62𝑒 − 02 4.95𝑒 − 02 ± 1.04𝑒 − 02

LZ09-F1
1000 1.68𝑒 − 01 ± 3.01𝑒 − 02 1.10𝑒 − 01 ± 1.45𝑒 − 02 9.56𝑒 − 02 ± 1.08𝑒 − 02 1.00𝑒 − 01 ± 7.89𝑒 − 03 1.71𝑒 − 01 ± 1.72𝑒 − 02
5000 4.29𝑒 − 02 ± 6.26𝑒 − 03 5.02𝑒 − 02 ± 6.69𝑒 − 03 5.86𝑒 − 02 ± 9.72𝑒 − 03 6.61𝑒 − 02 ± 8.15𝑒 − 03 4.06𝑒 − 02 ± 7.15𝑒 − 03
15000 1.85𝑒 − 02 ± 2.74𝑒 − 03 3.16𝑒 − 02 ± 4.86𝑒 − 03 4.23𝑒 − 02 ± 9.58𝑒 − 03 4.95𝑒 − 02 ± 7.18𝑒 − 03 1.79𝑒 − 02 ± 1.03𝑒 − 03

LZ09-F2
1000 6.38𝑒 − 01 ± 2.47𝑒 − 02 5.44𝑒 − 01 ± 7.11𝑒 − 02 5.17𝑒 − 01 ± 7.32𝑒 − 02 4.96𝑒 − 01 ± 7.54𝑒 − 02 6.48𝑒 − 01 ± 1.77𝑒 − 02
5000 1.99𝑒 − 01 ± 4.58𝑒 − 02 1.90𝑒 − 01 ± 5.42𝑒 − 02 2.85𝑒 − 01 ± 7.98𝑒 − 02 2.99𝑒 − 01 ± 1.08𝑒 − 01 2.74𝑒 − 01 ± 9.70𝑒 − 02
15000 1.57𝑒 − 01 ± 3.96𝑒 − 02 1.51𝑒 − 01 ± 3.98𝑒 − 02 2.06𝑒 − 01 ± 7.31𝑒 − 02 2.21𝑒 − 01 ± 1.12𝑒 − 01 1.85𝑒 − 01 ± 5.51𝑒 − 02

LZ09-F3
1000 4.13𝑒 − 01 ± 2.57𝑒 − 02 2.93𝑒 − 01 ± 2.22𝑒 − 02 2.26𝑒 − 01 ± 2.13𝑒 − 02 2.12𝑒 − 01 ± 1.69𝑒 − 02 4.24𝑒 − 01 ± 4.38𝑒 − 02
5000 1.44𝑒 − 01 ± 1.20𝑒 − 02 1.32𝑒 − 01 ± 8.07𝑒 − 03 1.43𝑒 − 01 ± 9.58𝑒 − 03 1.61𝑒 − 01 ± 1.87𝑒 − 02 1.38𝑒 − 01 ± 1.38𝑒 − 02
15000 8.65𝑒 − 02 ± 6.79𝑒 − 03 1.01𝑒 − 01 ± 4.77𝑒 − 03 1.15𝑒 − 01 ± 7.82𝑒 − 03 1.30𝑒 − 01 ± 1.69𝑒 − 02 9.62𝑒 − 02 ± 1.33𝑒 − 02

LZ09-F4
1000 4.11𝑒 − 01 ± 3.73𝑒 − 02 2.79𝑒 − 01 ± 4.17𝑒 − 02 2.11𝑒 − 01 ± 3.33𝑒 − 02 2.11𝑒 − 01 ± 2.38𝑒 − 02 3.78𝑒 − 01 ± 2.21𝑒 − 02
5000 1.20𝑒 − 01 ± 7.04𝑒 − 03 1.14𝑒 − 01 ± 1.30𝑒 − 02 1.33𝑒 − 01 ± 1.84𝑒 − 02 1.44𝑒 − 01 ± 1.33𝑒 − 02 1.16𝑒 − 01 ± 6.04𝑒 − 03
15000 7.23𝑒 − 02 ± 3.04𝑒 − 03 8.78𝑒 − 02 ± 9.97𝑒 − 03 9.88𝑒 − 02 ± 7.91𝑒 − 03 1.08𝑒 − 01 ± 8.32𝑒 − 03 7.23𝑒 − 02 ± 3.57𝑒 − 03

LZ09-F5
1000 4.06𝑒 − 01 ± 3.01𝑒 − 02 2.41𝑒 − 01 ± 2.48𝑒 − 02 1.91𝑒 − 01 ± 9.68𝑒 − 03 1.72𝑒 − 01 ± 1.65𝑒 − 02 4.01𝑒 − 01 ± 2.93𝑒 − 02
5000 1.09𝑒 − 01 ± 7.59𝑒 − 03 1.06𝑒 − 01 ± 6.92𝑒 − 03 1.17𝑒 − 01 ± 8.56𝑒 − 03 1.22𝑒 − 01 ± 1.24𝑒 − 02 1.13𝑒 − 01 ± 7.95𝑒 − 03
15000 7.21𝑒 − 02 ± 9.59𝑒 − 03 7.80𝑒 − 02 ± 6.12𝑒 − 03 8.62𝑒 − 02 ± 5.21𝑒 − 03 9.79𝑒 − 02 ± 8.89𝑒 − 03 6.72𝑒 − 02 ± 2.92𝑒 − 03

LZ09-F7
1000 6.66𝑒 − 01 ± 1.11𝑒 − 16 6.66𝑒 − 01 ± 1.11𝑒 − 16 6.62𝑒 − 01 ± 1.11𝑒 − 02 6.47𝑒 − 01 ± 4.00𝑒 − 02 6.66𝑒 − 01 ± 1.11𝑒 − 16
5000 3.71𝑒 − 01 ± 1.04𝑒 − 01 3.96𝑒 − 01 ± 8.10𝑒 − 02 3.69𝑒 − 01 ± 5.46𝑒 − 02 4.65𝑒 − 01 ± 9.38𝑒 − 02 4.08𝑒 − 01 ± 8.39𝑒 − 02
15000 2.84𝑒 − 01 ± 5.59𝑒 − 02 3.00𝑒 − 01 ± 9.47𝑒 − 02 2.51𝑒 − 01 ± 1.72𝑒 − 02 3.28𝑒 − 01 ± 3.93𝑒 − 02 2.53𝑒 − 01 ± 6.65𝑒 − 02

LZ09-F8
1000 6.66𝑒 − 01 ± 1.11𝑒 − 16 6.62𝑒 − 01 ± 7.05𝑒 − 03 6.54𝑒 − 01 ± 1.70𝑒 − 02 6.24𝑒 − 01 ± 3.19𝑒 − 02 6.66𝑒 − 01 ± 1.11𝑒 − 16
5000 4.70𝑒 − 01 ± 4.87𝑒 − 02 4.49𝑒 − 01 ± 6.84𝑒 − 02 4.46𝑒 − 01 ± 4.62𝑒 − 02 4.37𝑒 − 01 ± 3.04𝑒 − 02 4.87𝑒 − 01 ± 8.04𝑒 − 02
15000 2.64𝑒 − 01 ± 4.04𝑒 − 02 3.21𝑒 − 01 ± 4.00𝑒 − 02 3.13𝑒 − 01 ± 4.39𝑒 − 02 3.43𝑒 − 01 ± 3.82𝑒 − 02 2.63𝑒 − 01 ± 3.30𝑒 − 02

LZ09-F9
1000 3.32𝑒 − 01 ± 2.17𝑒 − 03 3.29𝑒 − 01 ± 8.38𝑒 − 03 3.23𝑒 − 01 ± 1.73𝑒 − 02 3.12𝑒 − 01 ± 1.96𝑒 − 02 3.32𝑒 − 01 ± 1.64𝑒 − 05
5000 1.98𝑒 − 01 ± 4.04𝑒 − 02 2.28𝑒 − 01 ± 3.51𝑒 − 02 2.40𝑒 − 01 ± 5.75𝑒 − 02 2.27𝑒 − 01 ± 6.42𝑒 − 02 2.66𝑒 − 01 ± 6.36𝑒 − 02
15000 1.54𝑒 − 01 ± 3.49𝑒 − 02 1.93𝑒 − 01 ± 3.62𝑒 − 02 1.98𝑒 − 01 ± 5.97𝑒 − 02 1.86𝑒 − 01 ± 7.40𝑒 − 02 2.21𝑒 − 01 ± 5.93𝑒 − 02 height

Table 1: Mean and Standard deviation of hypervolume indica-
tor over 11 trials after 1000, 5000 and 15000 real evaluations.

toward optimal solutions. After 5000, the baseline NSGA-II seems
to catch up the surrogate based variants for some instances (ZDT1,
LZ09-F1 and LZ09-F4) and at 15000 evaluations, NSGA-II and at
least one of the surrogate variants seems to reach the same Pareto
front, except for LZ09-F9 for which NSGA-II is outperformed by the
surrogate variants. Regarding the 𝑁𝐼𝑡𝑒𝑟 parameter, we can observe
that we can not draw a clear recommendation about its best value.
Depending on the instance, the value of 𝑁𝐼𝑡𝑒𝑟 that gives the best
result may differ. We can even clearly observe that a simple change
in 𝑁𝐼𝑡𝑒𝑟 parameter can change the ranking between the baseline
NSGA-II algorithm and the surrogate-based approach. Moreover,
another observation can be made regarding the hypervolume in-
dicator and its evolution over the optimization process: for some
instances, the best choice regarding the 𝑁𝐼𝑡𝑒𝑟 parameter may be
different according to the number of real evaluations reached. For
example for LZ09-F1 and LZ09-F5 functions (see figure 2), at the
first stage of the optimization process (before 2000 evaluation), set-
ting 𝑁𝐼𝑡𝑒𝑟 at a high value (6 or 10) seems to be better than lower
values (1 or 3). However, as the optimization proceeds, and after
2500 evaluations, lower values of 𝑁𝐼𝑡𝑒𝑟 allow to get most promis-
ing solutions and the variant with 𝑁𝐼𝑡𝑒𝑟=1 is competitive with the
baseline NSGA-II at 15000 evaluations.

3.3 Discussion
The use of performance indicators like Hypervolume, IGD or Ep-
silon indicator is very important to compare MOEAs with more
than one objective. However, the simple comparison of these indi-
cators after a fixed number of function evaluations, often very high,
might not be appropriate to compare surrogate-based approaches.
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Figure 2: Mean Hypervolume (lines) and standard deviation (shaded regions) for surrogate assisted variants and baseline
NSGA-II on LZ09-F1 and LZ09-F5 functions. Plots of other instances are available in Appendix.

Observing the evolution of the performance indicators over the
evolutionary process allows to better understand the impact of the
choices made on the quality of obtained solutions. From the results
reported in the previous section, it is clear that the parameters
calibrating the use of the surrogate have to be set dynamically, as
the best value of the 𝑁𝐼𝑡𝑒𝑟 parameter change over the optimization
process. Also, we cannot predict beforehand the behaviour of the
algorithm when the surrogate parameters are set dynamically. This
opens on the challenging question of designing an efficient self-
adaptive approach to make the best choices and avoid an off-line
arbitrary setting. On the other hand, as discussed in section 1, the in-
terpretation of the performance indicator like hypervolume, should
be considered with a certain precaution. After a certain number of
evaluations, the improvement of the hypervolume indicator will
not necessarily reflect a discovery of new promising points toward
the Pareto front. Hence, for real world problems with expensive
evaluation functions, spending a considerable computational time
(two thirds of the total evaluation budget for ZDT1 as illustrated in
figure 1) in finding a good distribution of an already reached Pareto
front may not be of great interest, even using a good fined-tuned
surrogate-based approach within the MOEA.

4 CONCLUSION
This paper has empirically studied the behaviour of surrogate
assisted MOEAs. Investigations have been conducted using the
well known state-of-the-art algorithm NSGA-II, on standard MOO
benchmarks namely : ZDT and LZ09. The proposed approach builds
a surrogate model for each objective using the SVM regression ap-
proach. Experimentswere conducted using different hyper-parameter
settings to calibrate the use of the surrogate. The results demon-
strate a significant acceleration when using the surrogate model,
especially at relatively low budgets in terms of evaluation number
(1000 evaluations). However, the setting of parameters calibrating
the use of the surrogate model remains a challenging issue, and
reported results show that no conclusive recommendation can be

made, as the best values change from an instance to another. On-
going and future work is to propose an on-line tuning approach to
calibrate the surrogate model. The design of such approach will re-
quire to extend the comparative study by considering other MOEAs,
and by comparing with other surrogate techniques, such as neural
network, and to other surrogate approaches, such as building a sin-
gle surrogate model for all objectives at once. Another perspective
is to extend all of the above to benchmarks with three and more
objective functions, such as the DTLZ benchmark.
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