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Analysis and Discontinuous Galerkin approximation of the

Boussinesq system with Navier-type boundary condition

Afaf Bouharguane∗, Nour Seloula†

Abstract

In this work, we study the nonlinear coupled Navier–Stokes/temperature (or Boussinesq) equa-
tions with Navier-type boundary condition for the velocity. The well-posedness of the continuous
problem is achieved by using a fixed-point strategy. Next, we propose a discontinuous Galerkin
(DG) scheme for discretizing the equations. Existence, uniqueness and stability of numerical so-
lutions are shown for the DG method under a small data condition and by using the Brouwer
fixed point theorem. We provide a priori error estimates in terms of a natural energy norms
for the velocity, the pressure and the temperature. To our knowledge, it is the first time that
a discontinuous Galerkin approximation for the full nonlinear coupled Bousinessq system, with
Navier-type boundary condition for the velocity, is proposed and completely analyzed in both,
continuous and discrete settings.

Key words: Stationary Boussinesq equations; discontinuous Galerkin method; Navier boundary
condition; fixed point theory, existence, a priori error estimate, discrete inequality.

Mathematics subject classifications (2020): 65N12, 65N15, 65N22 65N30, 35Q30, 35Q79.

1 Introduction

Over the past few decades, the community of numerical analysts of partial differential equations has
extensively focused on developing precise and efficient new finite element methods for the Boussinesq
problem. This model is well-known for its relevance in engineering sciences as it deals with fluid motion
generated by density differences caused by temperature gradients. Mathematically, it is a nonlinear
system of PDEs which is composed of the stationary incompressible Navier–Stokes equations for
the velocity and pressure variables and a convection–diffusion equation for the temperature variable.
Such coupling is done by means of a buoyancy term in the Navier-Stokes equations depending on the
temperature and convective term in the heat equation depending on the velocity of the fluid. The
Boussinesq approximation was justified and used to study several applications such as in geophysics
to model climate prediction [12], in oceanography for studying oceanic flows [20, 22] and also in
magnetohydrodynamic flows, see [10]. Moreover, simulations that combine fluid flow and temperature
are invaluable in predicting the performance of physical designs across a wide range of engineering
applications. By conducting these simulations before the manufacturing process, it becomes possible
to significantly reduce the costs associated with the developement of new products [27,29].

Various numerical methods have been investigated for the stationary Boussinesq system. Existing
discretizations mostly deal with Dirichlet boundary condition for the fluid. Let us describe some of
these contributions. Bernardi et al. [3], proved existence and uniqueness of the weak solution for the
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Boussinesq system and proposed a finite element approximation. Farhfoul et al. [13] proposed a new
mixed formulation for the two-dimensional Boussinesq system where the existence of solutions and
convergence of the numerical scheme have been proved near a non-singular solution. Colmenares et
al. [24] analyzed a new finite element method with exactly divergence-free velocities for the numerical
simulation of a generalized Boussinesq problem where the viscosity and the thermal conductivity
depend on the temperature of the fluid. More recently, Colmenares et al. [23] proposed another new
divergence-Conforming DG-Mixed Finite Element Method for the Stationary Boussinesq Problem.

However, it has been showed that the Dirichlet boundary condition for the fluid is inadequate in
some situations such as in the mechanics of thin films, multiple interfaces problems, the flow of rarefied
fluids, the flow of a fluid in perforated domains, flow of blood through blood vessels (see e.g. [19]). In
these cases, the French engineer Claude Navier ( [21]) proposed that the tangential velocity should
be proportional to the tangential stress on the boundary together with the impermeability condition
u · n = 0. These conditions are known as the Navier boundary conditions. A generalization of the
Navier condition can be written as:

u · n = 0 and 2[D(u)n]τ + αuτ = 0 on Γ, (1.1)

where α ≥ 0 is the coefficient of friction and

D(u)ij =
1

2

( ∂ui
∂xj

+
∂uj
∂xi

)
, 1 6 i, j 6 3.

The subscript τ denotes the vectorial tangential trace of any vector, defined by vτ := v − (v · n)n.
Note that, when α tends to infinity, we formally recover the Dirichlet conditions. In the case of
a flat boundary and zero friction coefficient α, this Navier condition is equivalent to the following
Navier-type conditions:

u · n = 0 and curlu× n = 0 on Γ, (1.2)

Concerning the study of Boussinesq system with the above boundary conditions, the literature is
rather scarce. The idea is originally described in [1], where the steady Boussinesq problem with
Navier boundary condition (1.1) has been investigated and the existence of weak solutions in the
Hilbertian case and the Lp-regularity of these weak solutions are proved. In [30], the authors study
the time-dependent 2D Boussinesq equations with the Navier type boundary conditions (1.1) and prove
the global existence and uniqueness under minimal regularity assumptions on the initial data. To our
knowledge, there has been no numerical analysis for the Boussinesq system with such a Navier-type
boundary condition (1.2).

In the current paper, we propose and analyze an interior penalty discontinuous Galerkin method for
the Boussinesq model with Navier-type boundary conditions (1.2) for the velocity and homogeneous
boundary condition for the temperature. More precisely, given a fluid occupying the region Ω, a force
per unit mass g and a heat source f , the model of interest reads: Find a velocity field u, a pressure
field p and a temperature field θ such that:

−ν curl curlu+ curlu× u+∇p− θg = 0 in Ω, (1.3a)

divu = 0, in Ω, (1.3b)

−κ ∆θ + u · ∇θ = f in Ω, (1.3c)

u · n = 0 and curlu× n = 0 on Γ, (1.3d)

θ = 0 on Γ, (1.3e)

Here Ω ⊂ R3 is an open convex domain. ν is the kinematic viscosity of the fluid, κ is the thermal
diffusivity of the fluid.
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DG method is a type of finite element method where the solution is approximated by a piecewise
polynomial function that is discontinuous across element boundaries. These methods are attractive
because they are element-wise conservative, easily implementable on unstructured meshes and they
are high-order methods.

The main difficulty is to prove the stability of the bilinear forms arising from the Navier-Stokes
convection term Oh (see definition in (3.3)) and the coupling term Ch (see definition in (3.5)) on the
discrete spaces.

To give the reader an idea of the main features of our DG method, let us compare it with other
discontinuous Galerkin methods that have been used to approximate the Bousinessq system or related
problems.

In a recent work [9], the authors proposed an analysis of a DG scheme for the Boussinesq system
where the boundary conditions are of Dirichlet type for the velocity field and of mixed type for the
temperature. The general case of a Lipschitz domain Ω is considered. Since the solution u (respectively
θ) belongs to H1(Ω) (respectively to H1(Ω)) and hence to L6(Ω) (respectively to L6(Ω)) by Sobolev
embedding, they show the continuity of the nonlinear terms by applying an L2-L4-L4 argument.
To this end, they apply the discrete inequality derived in [17, 18] (see also [11]) in two and three
dimensional bounded domains with Lipschitz boundary., which states that the L6 norm is controlled
by the following DG norm denoted by ‖·‖h:

‖vh‖L6(Ω) ≤ C ‖vh‖h := C
( ∑
T∈Th

‖∇vh‖20,T +
∑
e∈Fh

γ

he
‖[[vh]]‖20,e

)1/2

. (1.4)

This approach is not suitable for the problem that we propose to study. Indeed, in the case of a non-
smooth domain and given the boundary conditions considered for the velocity field u, the solution
u of the system (1.3) is only in H1/2(Ω) and hence in L3(Ω) by Sobolev embedding. Therefore, the
previous argument can be again applied to show the continuity of the form Ch in the heat equations
but cannot be applied to show the continuity of the nonlinear form Oh in the Navier-Stokes equations.
Additional regularity assumptions on the exact solution are therefore necessary.

Moreover, due to the boundary conditions considered in this work for the velocity, the DG energy
norm for u is different from that defined in (1.4). In [25,26], a discrete functional analysis is established
and the authors show a new discrete inequality analogous to (1.4) on discontinuous spaces provided
that the boundary of the domain is sufficiently regular. More precisely, for 1 ≤ p ≤ 6, they show that
the Lp norm is controlled by the following DG norm:

‖vh‖2Lp(Ω) ≤ C|||vh|||
2

:= C
∑
T∈Th

(
‖div vh‖20,T+‖curlvh‖20,T

)
+
∑
e∈Fh

σ

he
‖[[vh]]N‖

2
0,e

+
∑
e∈FI

h

σ

he
‖[[vh]]T ‖

2
0,e
,

This new discrete inequality allows the application of an L4-L4-L2 argument to show the continuity
of the nonlinear forms associated with our DG scheme and then to prove the existence of a solution
to the discrete problem.

The rest of the paper is structured as follows. In Section 2, we introduce and show the well-
posedness of the continuous variational problem by applying the Leray-Schauder’s theorem. A dis-
continuous Galerkin formulation based on the classical interior penalty (IP) symmetric method is
presented in Section 3 where the existence and uniqueness of approximate solutions are proved. In
Section 4, we state and prove the convergence and our a priori error estimates for velocity, the pressure
and temperature in energy norms.
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2 Analysis of the continuous problem

2.1 Preliminaries and notations

Let Ω be a bounded connected domain in R3 with a boundary Γ of class C1,1 or convex. For p ∈ [1,+∞],
we denote by Lp(Ω) the usual Lebesgue space endowed with the norm ‖·‖Lp(Ω) and L2

0(Ω) is the space

consisting of functions q ∈ L2(Ω) that hold
∫

Ω
q = 0. We adopt standard notation for the Sobolev

spaces Hs(Ω) and Hs
0(Ω). In addition, according to the boundary conditions in (1.3d), and in view

of deriving a weak formulation for (1.3), we introduce the following functional space:

H1
T (Ω) = {v ∈H1(Ω); v · n = 0 on Γ} (2.1)

We recall that the space H1
T (Ω) is continuously embedded in H1(Ω) if Ω is convex or the boundary

of Ω is of class C1,1 (c.f. [16, Theorem 3.7] and [2, Theorem 3.4]). In addition we recall the following
Poincaré inequalities, needed for proving the existence of a weak solutions: there exist CP > 0 and
C̃P > 0 such that [16]

‖φ‖H1(Ω) ≤ CP ‖∇φ‖L2(Ω) , ∀φ ∈ H1
0 (Ω), (2.2a)

‖v‖H1(Ω) ≤ C̃P
(
‖curl v‖L2(Ω) + ‖div v‖L2(Ω)

)
, ∀v ∈H1

T (Ω). (2.2b)

We also recall that the space H1(Ω) is compactly embedding within in Lq(Ω) for any exponent
1 ≤ q < 6 and we have

‖v‖Lq(Ω) ≤ δ ‖v‖1,Ω , (2.3)

where δ is a positive constant depending on the domain Ω.

Next, we introduce the following Banach space

H 3, 32 (curl,Ω) = {v ∈ L3(Ω); curlv ∈ L3/2(Ω)} (2.4)

provided with the norm

‖v‖
H 3, 3

2 (curl,Ω)
= ‖v‖L3(Ω) + ‖curlv‖L3/2(Ω) .

The space D(Ω) is dense in H 3, 32 (curl,Ω). The proof of this density result is very much similar to
(cf. [28, Proposition 1.0.2] and [2, Remark 5.4]). Moreover, we prove the following Green formula to

define the tangential traces of functions which belong to H 3, 32 (curl,Ω).

Lemma 2.1 The linear mapping γ : v 7→ v × n|Γ defined on D(Ω) can be extended to a linear
continuous mapping

γ : H 3, 32 (curl,Ω) −→W − 1
3 ,3(Γ).

Moreover, we have the Green formula: for any v ∈H 3, 32 (curl,Ω) and ϕ ∈W 1,3/2(Ω),∫
Ω

curlv ·ϕ dx−
∫

Ω

v · curlϕ dx = 〈v × n, ϕ〉
W− 1

3
,3(Γ)×W

1
3
, 3
2 (Γ)

. (2.5)

Proof. Let v ∈ D(Ω) and ϕ ∈W 1,3/2(Ω), then the Green Formula (2.5) obviously holds. Moreover,
we can easily verify that

∣∣〈v × n, ϕ〉
W− 1

3
,3(Γ)×W

1
3
, 3
2 (Γ)

∣∣ ≤ C ‖v‖
H 3, 3

2 (curl,Ω)
‖ϕ‖W 1,3/2(Ω) .
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On the other hand, for every µ ∈W
1
3 ,

3
2 (Γ), there exists a function ϕ ∈W 1, 32 (Ω) such that ϕ = µτ

on Γ with the estimate
‖ϕ‖

W 1, 3
2 (Ω)

≤ C ‖µ‖
W

1
3
, 3
2 (Γ)

,

where the subscript τ denotes the tangential component i.e. µτ = µ− (µ ·n)n for any vector field µ.
Consequently,∣∣〈v × n, µ〉

W− 1
3
,3(Γ)×W

1
3
, 3
2 (Γ)

∣∣ =
∣∣〈v × n, µτ 〉W− 1

3
,3(Γ)×W

1
3
, 3
2 (Γ)

∣∣ =
∣∣〈v × n, ϕ〉

W− 1
3
,3(Γ)×W

1
3
, 3
2 (Γ)

∣∣
≤ C ‖v‖

H 3, 3
2 (curl,Ω)

‖ϕ‖
W 1, 3

2 (Ω)

≤ C ‖v‖
H 3, 3

2 (curl,Ω)
‖µ‖

W
1
3
, 3
2 (Γ)

,

which implies that
‖v × n‖

W− 1
3
,3(Γ)

≤ C ‖v‖
H 3, 3

2 (curl,Ω)
.

Thus the linear mapping γ : D(Ω) −→W− 1
3 ,3(Γ) is continuous for the norm of H 3, 32 (curl,Ω). Since

D(Ω) is dense in H 3, 32 (curl,Ω), γ can be extended by continuity to a linear continuous mapping from

H 3, 32 (curl,Ω) to W− 1
3 ,3(Γ) and the Green Formula (2.5) holds for all v ∈H 3, 32 (curl,Ω) and for all

ϕ ∈W 1, 32 (Ω). �

2.2 Weak Formulation

The weak formulation of (1.3) reads : Find (u, p, θ) ∈H1
T (Ω)× L2

0(Ω)×H1
0 (Ω) such that

A(u ,v) +O(u ;u,v) +B(v, p) = D(θ,v), (2.6a)

B(u, q) = 0 (2.6b)

M(θ, ψ) + C(u; θ, ψ) = F (ψ), (2.6c)

for all (v, q, ψ) ∈H1
T (Ω)× L2

0(Ω)×H1
0 (Ω), where the bilinear forms are defined by

A(u,v) = ν
(∫

Ω

curlu · curlv dx+

∫
Ω

(divu) (div v) dx
)
,

M(θ, ψ) = κ

∫
Ω

∇θ · ∇ψ dx, D(θ,v) =

∫
Ω

θg · v dx

O(w;u,v) =

∫
Ω

(curlw × u) · v dx, C(u; θ, ψ) =

∫
Ω

(u · ∇θ)ψ dx,

B(v, q) = −
∫

Ω

(div v)q dx, F (ψ) =

∫
Ω

fψ dx.

(2.7)

We describe a fixed point strategy that allows to solve the problem (2.6). First, we eliminate the
pressure from the problem by restricting to the subspace

K = {v ∈H1
T (Ω); B(v, q) = 0, ∀q ∈ L2

0(Ω)}

We then consider the equivalent problem: Find (u, θ) ∈K ×H1
0 (Ω), such that

A(u,v) +O(u,u,v) = D(θ,v), ∀v ∈K, (2.8a)

M(θ, ψ) + C(u, θ, ψ) = F (ψ), ∀ψ ∈ H1
0 (Ω). (2.8b)

The bilinear form B is continuous in H1
T (Ω)×L2

0(Ω) and satisfies the following inf-sup condition:
there exists a constant β > 0 such that

sup
v∈H1

T (Ω)

B(v, q)

‖v‖H1(Ω)

> β ‖q‖L2(Ω) , (2.9)
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which is a direct consequence of its analogue with H1
T (Ω) replaced by H1

0(Ω) (see [4, 5]).

As a consequence, it is easy to see that problems (2.6) and (2.8) are equivalent. In fact, we have
the following standard result [16].

Lemma 2.2 If (u, θ) ∈ K × H1
0 (Ω) is a solution of (2.8), then there exists p ∈ L2

0(Ω) such that
(u, p, θ) is a solution of (2.6). Conversely, if (u, p, θ) ∈ H1

T (Ω) × L2
0(Ω) × H1

0 (Ω) is a solution of
(2.6), then u ∈K and (u, θ) ∈K ×H1

0 (Ω) is a solution of (2.8).

We construct a map S by linearizing the term D and the convection terms O and C in problem
(2.8) and show existence of a fixed point of S . Define S as follows:

S : K ×H1
0 (Ω)→K ×H1

0 (Ω)

(w, φ) 7→ S (w, φ) = (u, θ),
(2.10)

where (u, θ) satisfies the linearized problem: Find (u, θ) ∈K ×H1
0 (Ω) such that

A(u,v) +O(w;u,v) = D(φ,v), ∀v ∈K,

M(θ, ψ) + C(w; θ, ψ) = F (ψ), ∀ψ ∈ H1
0 (Ω).

(2.11)

Observe that, thanks to Lemma 2.2, a fixed point (u, θ) of the map S is the component of a solution
(u, p, θ) of problem (2.6). The well posedness of (2.6) will be addressed in Subsection 2.4 by applying
the Leray-Schauder theorem. It requires some stability properties of the forms defined above.

2.3 Stability properties of the forms

In this subsection, we show some crucial stability properties of the forms that are used to prove the
well posedenss of the problem (2.6). First, we discuss the coercivity properties of the forms A, M , O
and C. We have the following result.

Proposition 2.1 There exist positive constants α
A

and α
M

depending on Ω such that

A(v,v) ≥ να
A
‖v‖2H1(Ω) , ∀v ∈K, (2.12)

M(ψ,ψ) ≥ κα
M
‖ψ‖2H1(Ω) , ∀ψ ∈ H1

0 (Ω), (2.13)

Furthermore, the following results hold:

(i) Let w,v ∈H1(Ω). Then we have
O(w;v,v) = 0. (2.14)

(ii) Let w ∈K and φ ∈ H1
0 (Ω). Then we have

C(w;ψ,ψ) = 0 (2.15)

Proof. The coercivity of the froms A and M follows from the Poincaré-Friedrichs inequalities (2.2a)
and (2.2b). The property in (2.14) is obvious. It follows from the definition of O and the fact that
the vector curlw × v is orthogonal to v. The property in (2.15) is a consequence of the following
well-known skew-symmetry property of the form C with respect to the last two components:

C(w; θ, ψ) = −C(w;ψ, θ), ∀w ∈K, ∀(θ, ψ) ∈ H1
0 (Ω)×H1

0 (Ω).

�

We also need to study the continuity of the forms involved in the variational formulation (2.6).
We have the following results where the proof is obtained by applying Cauchy–Schwarz’s inequality
to the different forms.
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Proposition 2.2 There exist positive constants C
A

, C
M

, C
B

and C
F

depending on Ω such that

A(u,v) ≤ νC
A
‖u‖H1(Ω) ‖v‖H1(Ω) , (2.16)

M(θ, ψ) ≤ κC
M
‖θ‖H1(Ω) ‖ψ‖H1(Ω) , (2.17)

B(q,v) ≤ C
B
‖q‖L2(Ω) ‖v‖H1(Ω) , (2.18)

F (ψ) ≤ C
F
‖f‖L2(Ω) ‖ψ‖H1(Ω) , (2.19)

for all u,v ∈H1
T (Ω), ∀q ∈ L2

0(Ω) and θ, ψ ∈ H1(Ω).

The next results show that the nonlinear forms O, C and D are continuous.

Proposition 2.3 There exist positive constants C
O

, CC and C
D

depending on Ω such that

O(w;u,v) ≤ C
O
‖w‖H1(Ω) ‖u‖H1(Ω) ‖v‖H1(Ω) (2.20)

C(w; θ, ψ) ≤ CC ‖w‖H1(Ω) ‖θ‖H1(Ω) ‖ψ‖H1(Ω) , (2.21)

D(θ,v) ≤ C
D
‖θ‖H1(Ω) ‖g‖L2(Ω) ‖v‖H1(Ω) , (2.22)

for all w,u,v ∈H1
T (Ω) and θ, ψ ∈ H1(Ω).

Proof. Applying Hölder’s inequality, we have

|O(w;u,v)| ≤ ‖curlw‖L2(Ω) ‖u‖L4(Ω) ‖v‖L4(Ω) .

Estimate (2.20) follows from the compact imbedding (2.3) with q = 4. The proof of the continuity of
C and D uses essentially the same techniques as for the form O, so we skip the details. �

2.4 A priori estimates and solvability

In this subsection, we prove the existence and uniqueness of solutions for the (2.6). We will apply
the Leray-Schauder theorem, see [14, Theorem 11.3, p. 280]. For this, we must prove that S is
well-defined, a compact operator on K ×H1

0 (Ω) and that the set

Z = {(u, θ) ∈K ×H1
0 (Ω) : (u, θ) = λS (u, θ) for some 0 ≤ λ ≤ 1}

is bounded. For the convenience of the subsequent analysis, setting the following product norm on
the space K ×H1

0 (Ω):

‖(u, θ)‖ =
(
‖u‖2H1(Ω) + ‖θ‖2H1(Ω)

)1/2
.

The main result of this subsection is stated as follows.

Theorem 2.1 Let g ∈ L2(Ω), f ∈ L2(Ω). Then the problem (2.6) has at least one weak solution
(u, p, θ) ∈H1

T (Ω)× L2
0(Ω)×H1

0 (Ω) satisfying

‖(u, θ)‖ ≤ κ−1α−1
M
C

F
‖f‖L2(Ω)

(
1 + ν−1α−1

A
C

D
‖g‖L2(Ω)

)
. (2.23)

Moreover, if min(να
A
, κν

M
)K3 < 1 with K3 the constant given in (2.50), the solution is unique.

Since solving (2.6) is equivalent to finding a fixed point of the map S defined in (2.10), we start
by checking that the map S is well-defined, i.e. that there exists a unique solution (u, θ) to the
linearized problem (2.11).
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Lemma 2.3 There exists a unique (u, θ) ∈ K ×H1
0 (Ω) satisfying the linearized problem (2.11). In

addition, we have the following bound

‖(u, θ)‖ ≤ α−1
A

(
C

D
‖g‖L2(Ω) ‖(w, φ)‖+ C

F
‖f‖L2(Ω)

)
(2.24)

Proof. First, we write the mixed system (2.11) in the following equivalent compact form:

Find (u, θ) ∈K ×H1
0 (Ω) such that:

A((w, φ); (u, θ), (v, ψ)) = L((w, φ), (v, ψ)), ∀(v, ψ) ∈K ×H1
0 (Ω), (2.25)

where the forms A and L are defined as

A((w, φ); (u, θ), (v, ψ)) = A(u,v) +M(θ, ψ) +O(w;u,v) + C(w; θ, ψ), (2.26)

and
L((w, φ), (v, ψ)) = D(φ,v) + F (ψ). (2.27)

It follows from Proposition 2.1 that

A((w, φ); (u, θ), (u, θ)) ≥ να
A
‖u‖2H1(Ω) + κα

M
‖θ‖2H1(Ω) ≥ αA ‖(u, θ)‖

2
, (2.28)

where
αA = min(να

A
, κα

M
). (2.29)

Moreover, employing the continuity results in (2.16)-(2.17), (2.20)-(2.21) together with the inequality
(a+ b) ≤ 21/2(a2 + b2)1/2, we can check that the trilinear form A verifies the estimate:

A((w, φ); (u, θ), (v, ψ)) ≤ |A(u,v)|+ |M(θ, ψ)|+ |O(w;u,v)|+ |C(w; θ, ψ)|,

≤
(
νC

A
+ κC

M
+ (C

O
+ CC ) ‖w‖H1(Ω)

)(
‖u‖2H1(Ω) + ‖θ‖2H1(Ω)

)1/2( ‖v‖2H1(Ω) + ‖ψ‖H1(Ω)

)1/2
≤ CA ‖(u, θ)‖ ‖(v, ψ)‖ ,

with CA =
(
νC

A
+κC

M
+ (C

O
+CC ) ‖w‖H1(Ω)

)
. Thus, we showed that A is coercive and continuous

in K ×H1
0 (Ω). In addition, thanks to (2.22) and (2.19), we have

L((w, φ), (v, ψ)) ≤ C
D
‖φ‖H1(Ω) ‖g‖L2(Ω) ‖v‖H1(Ω) + C

F
‖f‖L2(Ω) ‖ψ‖H1(Ω) ≤ CL ‖(v, ψ)‖ , (2.30)

with CL = C
D
‖g‖L2(Ω) ‖(w, φ)‖ + C

F
‖f‖L2(Ω). So, the form L((w, φ), ·) is an element of (K ×

H1
0 (Ω))′. Therefore, by Lax-Milgram’s theorem, there exists a unique (u, θ) ∈ K × H1

0 (Ω) solution
of (2.25) and equivalently to (2.11). The estimate (2.24) follows by combining the estimates in (2.28)
and (2.30). �

Proof of Theorem 2.1. In order to prove the existence of the velocity u and the temperature
θ, we proceed in two steps.

Step 1 : Let us show that the operator S is compact. Suppose (wn, φn) ∈K ×H1
0 (Ω), n ∈ N such

that (wn, φn) ⇀ (w, φ) weakly in K ×H1
0 (Ω). Define (un, θn) = S (wn, φn) and (u, θ) = S (w, φ).

We will show that (un, θn)→ (u, θ) strongly in K ×H1
0 (Ω).

We have (un − u, θn − θ) ∈K ×H1
0 (Ω) and satisfies the problem:

A(un − u,v) +O(wn;un,v)−O(w;u,v) = D(φn − φ,v), ∀v ∈K, (2.31a)

M(θn − θ, ψ) + C(wn; θn, ψ)− C(w; θ, ψ) = 0, ∀ψ ∈ H1
0 (Ω). (2.31b)

Taking v = un − u in (2.31a), we obtain

A(un − u,un − u) +O(wn;un,un − u)−O(w;u,un − u) = D(φn − φ,un − u) (2.32)
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We can split up the nonlinear terms in the left hand side of (2.32) as

O(wn;un,un − u)−O(w;u,un − u) = O(wn −w;un,un − u)−O(w;u− un,un − u)︸ ︷︷ ︸
=0

.

Applying the coercivity of A (c.f. (2.12)) and the continuity of D (c.f. (2.22), we obtain

να
A
‖un − u‖2H1(Ω) ≤ O(wn −w;un,un − u) +D(φn − φ,un − u). (2.33)

By definition, we have

O(wn −w;un,un − u)

=

∫
Ω

(
curl(wn −w)× un

)
· (un − u) dx =

∫
Ω

curl(wn −w) ·
(
un × (un − u)

)
dx

(2.34)

Since un,u belong to H1(Ω) ↪→ L6(Ω), we have un × (un − u) ∈ L3(Ω). Moreover, because
divun = div(un − u) = 0, we have

curl(un × (un − u)) = ((un − u) · ∇)un − (un · ∇)(un − u). (2.35)

Since un,u ∈ L6(Ω) and∇un ∈ L2(Ω), we have ((un−u)·∇)un ∈ L3/2(Ω). Similarly, (un·∇)(un−u)

belongs to L3/2(Ω). So, the two terms in the rignt hand side of the relation (2.35) belong to L3/2(Ω).

We deduce that also curl(un × (un − u)) belongs to L3/2(Ω). Then, un × (un − u) belongs to the

space H 3, 32 (curl,Ω) defined in (2.4). Thanks to Lemma 2.1, the tangential trace of un × (un −u) is

well-defined and belongs to W− 1
3 ,3(Γ) ↪→H−1/2(Γ). On the other hand, we have(

un × (un − u)
)
× n = (un − u)(un · n︸ ︷︷ ︸

=0

)− un((un − u) · n︸ ︷︷ ︸
=0

) = 0, on Γ

Applying Green formula (2.5) with v = un×(un−u) ∈H 3, 32 (curl,Ω) and ϕ = (wn−w) ∈H1(Ω) ↪→
W 1, 32 (Ω), we can rewrite the term O in (2.34) as

O(wn −w;un,un − u) =

∫
Ω

curl(wn −w) · (un × (un − u)) dx

=

∫
Ω

(wn −w) · curl(un × (un − u)) dx−
〈
wn −w, (un × (un − u))× n

〉︸ ︷︷ ︸
=0 W− 1

3
,3(Γ)×W

1
3
, 3
2 (Γ)

.

Using again the relation (2.35), we obtain

O(wn −w;un,un − u) =

∫
Ω

(wn −w) · ((un − u) · ∇)un dx−
∫

Ω

(wn −w) · (un · ∇)(un − u) dx.

By Hölder inequality, we derive

O(wn −w,un,un − u)

≤ ‖wn −w‖L3(Ω) ‖un − u‖L6(Ω) ‖∇un‖L2(Ω) + ‖wn −w‖L3(Ω) ‖un‖L6(Ω) ‖∇(un − u)‖L2(Ω) .

Then, since H1(Ω) is continuously embedded in L6(Ω), we have

O(wn −w;un,un − u) ≤ C ‖wn −w‖L3(Ω) ‖un‖H1(Ω) ‖un − u‖H1(Ω) . (2.36)

Similarly, we have

D(φn − φ,un − u) ≤ ‖φn − φ‖L3(Ω) ‖g‖L2(Ω) ‖un − u‖L6(Ω)

≤ C ‖φn − φ‖L3(Ω) ‖g‖L2(Ω) ‖un − u‖H1(Ω)

(2.37)
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Combining the inequalities (2.36) and (2.37) into (2.33), we obtain

να
A
‖un − u‖H1(Ω) ≤ C ‖wn −w‖L3(Ω) ‖un‖H1(Ω) + C ‖φn − φ‖L3(Ω) ‖g‖L2(Ω) . (2.38)

Now, taking ϕ = θn − θ in (2.31b), using the coercivity of M (c.g. (2.13)) together with Hölder
inequality, we derive

κα
M
‖θn − θ‖2H1(Ω) ≤ C(w; θ, θn − θ)− C(wn; θn, θn − θ)

:= C(wn −w; θn, θn − θ)− C(w; θn − θ, θn − θ)︸ ︷︷ ︸
=0

≤ ‖wn −w‖L3(Ω) ‖∇θn‖L2(Ω) ‖θn − θ‖L6(Ω)

Using again the continuous embedding of H1(Ω) in L6(Ω), we obtain

κα
M
‖θn − θ‖H1(Ω) ≤ C ‖wn −w‖L3(Ω) ‖θn‖H1(Ω) (2.39)

Since wn ⇀ w weakly in H1(Ω) and φn ⇀ φ weakly in H1(Ω), therefore wn ⇀ w strongly in
L3(Ω) and φn → φ strongly in L3(Ω). Moreover, we note that the sequence {(wn, φn)}n is bounded.
Since (un, θn) and (u, θ) satisfy (2.24), they are also bounded in the corresponding H1 norm. By
(2.38) and (2.39), we conclude that (un, θn) → (u, θ) strongly in K × H1(Ω). Hence, we obtain
compactness of the operator S .

Step 2 : We show that there exists a constant C∗ > 0 such that ‖(u, θ)‖ ≤ C∗ for any (u, θ) ∈
K ×H1

0 (Ω) and for any λ ∈ [0, 1] such that (u, θ) = λS (u, θ).

By the definition of S , we have:

A(u,v) = D(λθ,v)−O(λu;u,v), ∀v ∈K,

M(θ, ψ) = F (ψ)− C(λu; θ, ψ), ∀ψ ∈ H1
0 (Ω).

(2.40)

Choosing (v, ψ) = (u, θ) and using the properties (2.14) and (2.15), we obtain

A(u,u) = D(λθ,u) and M(θ, θ) = F (θ) (2.41)

From the coercivity of A and M (c.f. (2.12) and (2.13)) and the continuity of D and F (c.f. (2.22)
and (2.19)), we have immediately that

‖u‖H1(Ω) ≤ λν
−1α−1

A
C

D
‖θ‖H1(Ω) ‖g‖L2(Ω) and ‖θ‖H1(Ω) ≤ κ

−1α−1
M
C

F
‖f‖L2(Ω) .

Then, using the fact that λ ≤ 1, it follows

‖u‖H1(Ω) ≤ K1(ν, κ, g, f) and ‖θ‖H1(Ω) ≤ K2(κ, f), (2.42)

where K1(ν, κ, g, f) and K2(κ, f) are the following positive constants independent of (u, θ) and λ:

K1(ν, κ, g, f) = ν−1α−1
A
C

D
K2(κ, f) ‖g‖L2(Ω) and K2(κ, f) = κ−1α−1

M
C

F
‖f‖L2(Ω) . (2.43)

It follows from (2.42) that ‖(u, θ)‖ ≤ C∗ with C∗ = K1(ν, κ, g, f) + K2(κ, f) is a positive constant
independent of (u, θ) and λ. Finally, by Leray-Schauder fixed point theorem, there exists a fixed point
(u, θ) ∈K×H1

0 (Ω) for the operator S wich is a solution of (2.8). The estimate (2.23) follows directly
from (2.42) and (2.43).

Now, we show the uniqueness of the solution of (2.6). Suppose that (u1, θ1, p1) and (u2, θ2, p2)
are two solutions of (2.6). We set u = u1 − u2, θ = θ1 − θ2, p = p1 − p2 and we want to prove that

10
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u = 0, θ = 0 and p = 0. Since (u1, θ1) and (u2, θ2) are solutions of (2.8), substituting (u1, θ1) and
(u2, θ2) in (2.8) and subtracting corresponding equations, we obtain

A(u,v) = −O(u;u1,v) +O(u2;u,v) +D(θ,v), ∀v ∈K, (2.44a)

M(θ, ψ) = C(u; θ2, ψ)− C(u2; θ, ψ), ∀ψ ∈ H1
0 (Ω). (2.44b)

Choosing v = u in (2.44a) and ψ = θ in (2.44b), summing up the two relations, we obtain :

A(u,u) +M(θ, θ) = −O(u;u1,u) + C(u; θ2, θ) +D(θ,u).

Applying Proposition (2.1), we obtain

min(να
A
, κν

M
)−1
(
‖u‖2H1(Ω) + ‖θ‖2H1(Ω)

)
≤ |O(u;u1,u)|+ |C(u; θ2, θ)|+ |D(θ,u)| (2.45)

Let us bound the nonlinear terms on the right hand side of (2.45). Using the continuity of the form
O from (2.20) and the estimate (2.42) for u1, we obtain:

|O(u;u1,u)| ≤ C
O
‖u1‖H1(Ω) ‖u‖

2
H1(Ω)

≤ C
O
K1(ν, κ, g, f) ‖u‖2H1(Ω) . (2.46)

After using the continuity of the form C from (2.21), the Hölder inequality and the estimate (2.42) for
θ2, we derive :

|C(u; θ2, θ)| ≤ C
C
‖u‖H1(Ω) ‖θ2‖H1(Ω) ‖θ‖H1(Ω)

≤ 1

2
C

C
K2(κ, f)

(
‖u‖2H1(Ω) + ‖θ‖2H1(Ω)

)
(2.47)

Similarly, using the continuity of the form D from (2.22) and the Hölder inequality, we obtain

|D(θ,u)| ≤ C
D
‖θ‖H1(Ω) ‖g‖L2(Ω) ‖u‖H1(Ω)

≤ 1

2
C

D
‖g‖L2(Ω)

(
‖u‖2H1(Ω) + ‖θ‖2H1(Ω)

)
(2.48)

Collecting the above inequalities into (2.45), we derive

min(να
A
, κν

M
)−1
(
‖u‖2H1(Ω) + ‖θ‖2H1(Ω)

)
≤ max

(
C

O
‖u1‖H1(Ω) ,

1

2
C

C
K2(κ, f),

1

2
C

D
‖g‖L2(Ω)

)(
‖u‖2H1(Ω) + ‖θ‖2H1(Ω)

) (2.49)

Setting

K3 = max
(
C

O
K1(ν, κ, g, f),

1

2
C

C
K2(κ, f),

1

2
C

D
‖g‖L2(Ω)

)
, (2.50)

this implies that if min(να
A
, κν

M
)K3 < 1, we have u = 0 and θ = 0.

Next, since (u1, θ1, p1) and (u2, θ2, p2) are two solutions of (2.6), it follows that

B(v, p1 − p2) = D(θ,v)−A(u ,v)−O(u ;u1,v) +O(u2;u,v) = 0.

We then conclude by using the inf-sup condition in (2.9) that p1 − p2 = 0. This completes the proof.
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3 The DG finite element approximation

In this section, we introduce a mixed DG approximation for the Boussinesq system (1.3). We provide
the solvability and stability of the discrete scheme. To this end, let us introduce some notations. We
assume the domain Ω is discretized by a discrete family of conforming meshes Th made of tetrahedra.
The index h is indicative of the mesh size h which is defined as h = max

T∈Th
hT , where hT is the diameter

of T . The family is supposed to be regular in Ciarlet’s sense [7], i.e. there exists ς > 0 independent
of h such that the ratio

hT
ρT
≤ ς, ∀T ∈ Th, (3.1)

where ρT is the diameter of the inscribed ball in T . We shall use the assumption (3.1) throughout
this work. Let us denote by FIh the set of internal faces and by FΓ

h the set of external faces on Γ. We
set Fh = FIh ∪ FΓ

h . We denote by he the diameter of each face e. Let T+ and T− be two adjacent
elements of Th and let n+ (respectively n−) be the outward unit normal vector on ∂T+ (respectively
∂T−). For a vector field u, we denote by u± the trace of u from the interior of T±. We define jumps

[[v]]T := n+×v+ +n−×v−, [[v]]N := v+ ·n+ +v− ·n−, [[q]] := q+n+ +q−n−, [[v]] = v+−v−,

and averages

{{v}} :=
1

2
(v+ + v−), {{q}} :=

1

2
(q+ + q−),

and adopt the convention that for boundary faces e ∈ FΓ
h , we set [[v]]T = v×n, [[v]]N = v ·n, [[q]] = qn,

{{v}} = v and {{q}} = q. Let Pk(T ) denotes the space of polynomials of total degree at most k on T
with k = 1, 2 or 3. The corresponding vector-valued function space is denoted by Pk(T ).

3.1 Defining discrete problem

Now, we introduce the following finite element spaces which respectively approximate u, θ and p:

Xh :=
{
vh ∈ L2(Ω); vh|T ∈ Pk(T ) , ∀T ∈ Th

}
,

Zh :=
{
ψh ∈ L2(Ω); ψh|T ∈ Pk(T ) , ∀T ∈ Th

}
,

Qh :=
{
qh ∈ L2

0(Ω); qh|T ∈ Pk−1(T ) , ∀T ∈ Th
}
.

We denote by W h the product space Xh × Zh. The norm ‖·‖L2(Th) is defined by

‖·‖L2(Th) =
∑
T∈Th

‖·‖0,T , for any T ∈ Th,

with ‖·‖0,T = ‖·‖L2(T ). Similarly, we use the notation ‖·‖0,e = ‖·‖L2(e) for any e ∈ Fh.

The mixed DG scheme reads: Find ((uh, θh), ph) ∈W h ×Qh such that

Ah(uh,vh) +Oh(uh;uh,vh) +Bh(vh, ph) = Dh(θh,vh), (3.2a)

Bh(uh, qh) = 0, (3.2b)

Mh(θh, ψh) + Ch(uh; θh, ψh) = Fh(ψh), (3.2c)

for all (vh, ψh) ∈W h and qh ∈ Qh.
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The bilinear form Ah is defined by

Ah(uh,vh) := ν
∑
T∈Th

∫
T

curluh · curl vh dx+ ν
∑
T∈Th

∫
T

(div uh)(div vh) dx

− ν
∑
e∈FI

h

(∫
e

{{curl uh}} · [[vh]]T ds+

∫
e

{{curlvh}} · [[uh]]T ds
)

− ν
∑
e∈Fh

(∫
e

{{div uh}}[[vh]]N ds+

∫
e

{{div vh}}[[uh]]N ds
)

+ ν
∑
e∈FI

h

σ

he

∫
e

[[uh]]T · [[vh]]T ds+ ν
∑
e∈Fh

σ

he

∫
e

[[uh]]N [[vh]]N ds

with σ > 0 a stabilization parameter that will be chosen large enough. The two last terms in the
definition of Ah involving the tangential and normal jumps of the discrete vector fields across the
edges are necessary to ensure the coercivity of the bilinear form Ah.

We define the convective term in the Navier-Stokes equations with :

Oh(wh;uh, vh) :=
∑
T∈Th

∫
T

(curlwh × uh) · vh dx (3.3)

The divergence constraint on the velocity is represented by Bh :

Bh(vh, qh) := −
∑
T∈Th

∫
T

(div vh)qh dx+
∑
e∈Fh

∫
e

{{qh}}[[vh]]N ds. (3.4)

The coupling form Dh is defined by

Dh(θh,vh) =
∑
T∈Th

∫
T

(θhg) · vh

The bilinear form Mh is defined by:

Mh(θh, ψh) := κ
∑
T∈Th

∫
T

∇θh · ∇ψh dx− κ
∑
e∈Fh

(∫
e

{{∇θh}} · [[ψh]] +
∑
e∈Fh

∫
e

{{∇ψh}} · [[θh]]
)

+
∑
e∈Fh

κγ

he

∫
e

[[θh]] · [[ψh]] ds

with γ > 0 is a stabilization parameter that will be chosen large enough to ensure the coercivity of
the bilinear form Mh.

We use the upwinding of Lesaint-Raviart [17] to discretize the convection term u · ∇θ. So, the
coupling form Ch using upwind fluxes is defined by :

Ch(wh; θh, ψh) : =
∑
T∈Th

(∫
T

(wh · ∇θh)ψh dx+

∫
∂T−

| {{wh}} · nT |(θinth − θexth )ψinth ds
)
,

+
1

2

∑
T∈Th

∫
T

(divwh)θh · ψh dx−
1

2

∑
e∈Fh

∫
e

[[wh]]N {{θh · ψh}} ds,
(3.5)

where θinth , ψinth (respectively θexth ) refers to the trace of θh and ψh (respectively of θh) on a side of
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T taken from the interior of T (respectively taken from the exterior of T on that side). ∂T− denotes
the inflow boundary of T defined by

∂T− = {x ∈ ∂T : {{u}} · n < 0}.

Finally, the form Fh is defined by

Fh(ψh) =

∫
Ω

fψh dx.

3.2 Preliminary results

We need to introduce the following semi-norms

|vh|21,h :=
∑
T∈Th

‖div vh‖20,T +
∑
T∈Th

‖curlvh‖20,T , ∀vh ∈Xh.

and

|||vh|||2 := |vh|21,h +
∑
e∈Fh

σ

he
‖[[vh]]N‖

2
0,e

+
∑
e∈FI

h

σ

he
‖[[vh]]T ‖

2
0,e
, ∀vh ∈Xh.

‖ψh‖2h :=
∑
T∈Th

‖∇ψh‖20,T +
∑
e∈Fh

γ

he
‖[[ψh]]‖20,e , ∀ψh ∈ Zh.

‖qh‖2Qh
:= ‖qh‖20,Ω , ∀qh ∈ Qh.

The proof of the following Lemma follows along the same lines as Lemma 10.2.1 in [28]. We carry
out the details for the sake of completeness.

Lemma 3.1 For σ and γ large enough, there exists positive constants α
Ah

, α
M

h
independent of h

such that:

Ah(uh,uh) > α
Ah
ν|||uh|||2, ∀uh ∈Xh, (3.6a)

Mh(θh, θh) > α
M

h
κ ‖θh‖2h , ∀θh ∈ Zh. (3.6b)

Proof. For the proof of (3.6a), we use similar arguments in [25]. Let uh ∈Xh, we have:

Ah(uh,uh) = ν
∑
T∈Th

(‖curluh‖20,T + ‖divuh‖20,T )

− 2ν
∑
e∈FI

h

∫
e

{{curluh}} · [[uh]]T ds− 2ν
∑
e∈Fh

∫
e

{{divuh}}[[uh]]N ds (3.7)

+ ν
∑
e∈FI

h

σ

he
‖[[uh]]T ‖

2
0,e

+ ν
∑
e∈Fh

σ

he
‖[[uh]]N‖

2
0,e
.

Using the Cauchy-Schwarz inequality, we have:

2ν
∑
e∈FI

h

∫
e

{{curluh}} · [[uh]]T ds ≤ 2C1ν
( ∑
T∈Th

‖ curl uh‖20,T
)1/2( ∑

e∈FI
h

h−1
e ‖[[uh]]T ‖

2
0,e

) 1
2
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≤ 2C1ν|||uh|||
( ∑
e∈FI

h

h−1
e ‖[[uh]]T ‖

2
0,e

) 1
2

.

In the same way, we get

2ν
∑
e∈Fh

∫
e

{{divuh}}[[uh]]N ds ≤ 2C2ν|||uh|||
( ∑
e∈Fh

h−1
e ‖[[uh]]N‖

2
0,e

) 1
2

,

where C1 and C2 are a positive constants independent of h.

Applying now Young’s inequality, we obtain

Ah(uh,uh) ≥ ν
(

1− C

σ

)
|||uh|||2,

with C = C1 + C2. Therefore, the estimate (3.6a) follows by assuming that σ > C.

For the proof of (3.6b), we refer the reader to [8, 17]

�

We will need the following inf-sup condition on Bh, where the proof can be found in [25,28].

Lemma 3.2 There exists β > 0 only depending on Ω such that :

inf
qh∈Qh

sup
vh∈Xh

Bh(vh, qh)

|||vh||| ‖qh‖Qh

> β. (3.8)

Lemma 3.3 Let uh, vh ∈ Xh, θh, ψh ∈ Zh and ph ∈ L2
0(Ω) . Then, we have :

|Ah(uh,vh)| 6 CA
h
ν |||uh||| |||vh|||, (3.9a)

|Mh(θh, ψh)| 6 CMh
κ ‖θh‖h ‖ψh‖h , (3.9b)

|Bh(vh, ph)| 6 CBh
|||vh||| ‖ph‖0,Ω , (3.9c)

|Fh(ψh)| 6 CFh
‖f‖L2(Ω) ‖ψh‖h , (3.9d)

where CAh
, CMh

, CBh
and C

Fh
are positive constants independent of h.

Proof. The proof of the continuity properties (3.9b), (3.9c) can b found in [8,17,23] and the continuity
of Ah and Fh follows from the Cauchy-Schwarz inequalityhas been proved in [25]. �

Next, we recall the following discrete Sobolev inequality for discontinuous finite element spaces
(see [17, Lemma 3.1]) :

∀ψh ∈ Zh, ‖ψh‖L6(Ω) ≤ C ‖ψh‖h , (3.10)

where the constant C > 0 is independent of h. This inequality is not still valid when the norm
‖·‖h is replaced by |||·||| without supposing more regularity on the boundary Γ. When it is Lipschitz
polyhedral, we have the following discrete Poincaré-Friedrichs inequality (see [31, Lemma 3.1])

∀vh ∈Xh, ‖vh‖L2(Ω) ≤ C|||vh|||. (3.11)

When the boundary Γ is of class C2,1, an extention of the previous inequality is proved in [26, Lemma
3.4.2] for the Lp norm with p ∈ (1, 6]:

∀vh ∈Xh, ‖vh‖Lp(Ω) ≤ C|||vh|||. (3.12)

The discret Sobolev inequlity (3.12) plays an important role in the stability of our DG sheme. Indeed,
with p = 4, this ineqlity allows to apply an L4 − L2 − L4 to bound the terms on T in the nonlinear
formes Oh and Ch. So, starting now, we shall make the additional smoothness assumptions on Ω.
Indeed, we suppose that the domain Ω has a boundary of class C2,1.
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Lemma 3.4 We have

∀θh ∈ Zh,∀uh ∈Xh |Dh(θh,uh)| 6 C
Dh
‖g‖0,Ω ‖θh‖h |||vh|||, (3.13a)

∀wh,uh,vh ∈Xh, |Oh(wh;uh,vh)| 6 C
Oh
|||wh||| |||uh||| |||vh||| (3.13b)

∀wh ∈Xh,∀θh, ψh ∈ Zh, |Ch(wh; θh, ψh)| 6 CCh |||wh||| ‖θh‖h ‖ψh‖h (3.13c)

where C
Dh

, C
Oh

and CCh are positive constants independent of h.

Proof. Using Hölder’s inequality, we can easily obtain

|Dh(θh,vh)| ≤ ‖g‖0,Ω ‖θh‖L6(Ω) ‖vh‖L3(Ω) . (3.14)

Thanks to (3.10) and to (3.12) with p = 3, we have (3.13a).

Applying Cauchy-Schwarz inequality, we obtain

|Oh(wh;uh,vh)| =
∣∣∣ ∑
T∈Th

∫
T

(curlwh × uh) · vh dx
∣∣∣ ≤ 2 ‖curlwh‖L2(Th) ‖uh‖L3(Ω) ‖vh‖L6(Ω) .

By virtue of (3.12), the estimate (3.13b) follows immediately.

Now, applying the Sobolev embedding (3.12) with p = 4 and the trace inequalities (see for instance
[8, Proposition 4.2]), we get (3.13c). �

We define the space

Kh = {vh ∈Xh; Bh(uh, qh) = 0, ∀qh ∈ Qh}

and the discrete energy norm on Kh × Zh :

‖(uh, θh)‖h =
(
|||uh|||2 + ‖θh‖2h

)1/2

.

It is well-known (see, e.g., [17], [18]) that

Ch(wh; θh, θh) :=
1

2

∑
T∈Th

∫
∂T−

| {{wh}} · nT |‖θinth − θexth ‖2 ds+
1

2

∫
Γ+

|wh · nT |‖θh‖2 ds ≥ 0. (3.15)

Moreover, since the vector curlwh×vh is orthogonal to vh, it is clear that for any wh, vh in Xh:

Oh(wh;vh,vh) =
∑
T∈Th

∫
T

(curlwh × vh) · vh dx = 0, (3.16)

To establish the well posedness of the DG scheme, we first eliminate the pressure from the problem by
restricting ourselves to the space Kh. So, we consider the following problem: Find (uh, θh) ∈Kh×Zh
such that

Ah(uh,vh) +Oh(uh;uh,vh) = Dh(θh,vh), ∀vh ∈Kh, (3.17a)

Mh(θh, ψh) + Ch(uh; θh, ψh) = Fh(ψh), ∀ψh ∈ Zh. (3.17b)

We define the operator Sh by:

Sh : Kh × Zh →Kh × Zh
(wh, φh) 7→ Sh(wh, φh) = (uh, θh),

16
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where (uh, θh) is the solution of the linearized problem: Find (uh, θh) ∈Kh × Zh such that

Ah(uh,vh) +Oh(wh;uh,vh) = Dh(φh,vh), ∀vh ∈Kh, (3.18a)

Mh(θh, ψh) + Ch(wh; θh, ψh) = Fh(ψh), ∀ψh ∈ Zh. (3.18b)

Then, the problem (3.17a)-(3.17b) can be rewritten equivalently as the following fixed-point prob-
lem:

Find (uh, θh) ∈Kh × Zh such that Sh(wh, φh) = (uh, θh). (3.19)

3.3 Solvability of the fixed-point problem

In this subsection, we proceed analogously to Subsection 2.4 and prove the well-posedness of problem
(3.17) by means of a fixed point argument. We will apply Brower’s fixed point theorem (c.f. [6,
Theorem 9.9-2]) instead of Shauder’s theorem for the existence and the uniqueness of (uh, θh). The
existence and uniqueness of ph follow from the discrete inf-sup condition for the incompressibility form
Bh. The classical Brouwer’s fixed point theorem is stated as follows: let W be a nonempty compact
convex subset of a finite-dimensional normed space, and let S : W → W be a contraction from W
into itself. Then S has a unique fixed point in W .

We begin by the following result, where we show that the operator Sh is defined correctly.

Lemma 3.5 Assuming the stabilization parameters σ and γ sufficiently large, there exists a unique
solution (uh, θh) ∈ Kh × Zh for the linearized problem (3.18). Moreover, we have the following
estimates:

|||uh||| ≤ α−1
Ah
ν−1C

Dh
‖φh‖h ‖g‖L2(Ω) and ‖θh‖h ≤ α

−1
Mh
κ−1C

Fh
‖f‖L2(Ω) . (3.20)

Proof. Since (3.18a)-(3.18b) consists of a linear system, it suffices to establish the uniqueness. As-
suming that the data are homogeneous f = 0 and g = 0, we can choose (vh, ψh) = (uh, θh) as test
functions. This leads to

α
Ah
ν|||uh|||2 + α

Mh
κ ‖θh‖2h = 0,

implying that uh = 0 and θ = 0. The estimates in (3.20) follow as a consequence of the coercivity of
Ah and Mh in (3.6) together with the continuity of Dh and Fh in (3.13a) and (3.9d). �

Theorem 3.1 Assume that

M := max
(√

2
(C

Oh
C1(ν, κ, f, g)

α
Ah
ν

+
CChC2(κ, f)

α
Mh
κ

)
,
√

2
C

Dh

α
Ah
ν
‖g‖L2(Ω)

)
< 1 (3.21)

Then, the problem (3.17) has a unique solution (uh, θh) ∈Kh × Zh satisfying

ν|||uh|||2 + κ ‖θh‖2h ≤ α
−2
Mh
C2

Fh
‖f‖2L2(Ω)

(
κ−2α−2

Ah
C2

Dh
‖g‖2L2(Ω) + 1

)
(3.22)

Proof. The well-posedness of (3.17) follows by using the Brouwer’s fixed point theorem and showing
that operator Sh has a unique fixed-point. Setting (vh, ψh) = (uh, θh) in (3.17) and applying the
coercivity of the forms Ah and Mh, the continuity of the form Dh and Fh, we obtain that

|||uh||| ≤ α−1
Ah
ν−1C

Dh
‖θh‖h ‖g‖L2(Ω) and ‖θh‖h ≤ α

−1
Mh
κ−1C

Fh
‖f‖L2(Ω)

17
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and then,
|||uh||| ≤ C1(ν, κ, f, g) and ‖θh‖h ≤ C2(κ, f), (3.23)

where

C1(ν, κ, f, g) =
C

Fh
C

Dh

νκα
Ah
α

Mh

‖g‖L2(Ω) ‖f‖L2(Ω) and C2(κ, f) =
C

Fh

κα
Mh

‖f‖L2(Ω) . (3.24)

Inspired by this, define the compact and convex subset BR of Kh × Zh :

BR =
{

(uh, θh) ∈Kh × Zh : ‖(uh, θh)‖h ≤ R
}
,

where R = α−1
Mh
κ−1C

Fh
‖f‖L2(Ω)

(
α−1

Ah
ν−1C

Dh
‖g‖L2(Ω) + 1

)
. Let us check that Sh maps BR into

itself. For a given (wh, φh) ∈ BR, we set (vh, ψh) = S (wh, φh). Thanks to the estimate (3.20),
(vh, ψh) satisfies

|||vh||| ≤ α−1
Ah
ν−1C

Dh
‖φh‖h ‖g‖L2(Ω) and ‖ψh‖h ≤ α

−1
Mh
κ−1C

Fh
‖f‖L2(Ω) . (3.25)

Combining (3.25) with the fact that (wh, φh) ∈ BR, we obtain that (vh, ψh) belongs also to BR. Now,
we show that the operator Sh is a contraction on BR. To that end, let (u1

h, θ
1
h), (u2

h, θ
2
h) ∈ BR and

(u1
h, θ

1
h) = S (w1, φ1), (u2

h, θ
2
h) = S (w2, φ2). Setting uh := u1

h −u2
h, θh := θ1

h − θ2
h, by definition, we

deduce that
Ah(uh,vh) +Mh(θh, φh) +Oh(w1;uh,vh) + Ch(w1; θ, ψh)

= −Oh(w1 −w2;u2
h,vh)− Ch(w1 −w2; θ2

h, ψh) +Dh(φ1 − φ2,vh).

Taking (vh, ψh) = (uh, θh), using (3.6) and (3.13), we obtain

|||uh|||2 + ‖θh‖2h ≤ α−1
Ah
ν−1C

Oh
|||w1 −w2||| |||u2

h||| |||uh|||+ α−1
Mh
κ−1CCh |||w1 −w2|||

∥∥θ2
h

∥∥
h
‖θh‖h

+ α−1
Ah
ν−1C

Dh
‖g‖L2(Ω) ‖φ1 − φ2‖h |||uh|||

Applying Young’s inequality and using the fact that (u2
h, θ

2
h) ∈ BR, we derive that

|||uh|||2 + ‖θh‖2h ≤ 2
(
α−2

Ah
ν−2C2

Oh
C2

1 (ν, κ, f, g) + α−2
Mh
κ−2C2

Ch
C2

2 (κ, f)
)
|||w1 −w2|||2

+ 2α−2
Ah
ν−2C2

Dh
‖g‖2L2(Ω) ‖φ1 − φ2‖2h ,

and then

‖(uh, θh)‖h ≤ M ‖(w1, φ1)− (w2, φ2)‖h ,

with

M = max
(√

2
(
α−1

Ah
ν−1C

Oh
C1(ν, κ, f, g) + α−1

Mh
κ−1CChC2(κ, f)

)
,
√

2α−1
Ah
ν−1C

Dh
‖g‖L2(Ω)

)
. (3.26)

So, if M < 1 that is, if the smallness condition (3.21) is satisfied, the mapping Sh is a contraction.
Consequently, an application of Brower’s fixed point theorem shows that Sh has a unique fixed point
in BR, which is the solution of problem (3.17). Besides, the stability bound for (uh, θh) follows
immediately. �

Remark 3.1 We note that the hypothesis (3.21) is not necessary to get the existence of solution
(uh, θh). Indeed, We can use only the fact that Sh is Lipschitz continuous on Kh × Zh.

Now, in order to recovering the pressure, we have the following Corollary.
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Corollary 3.1 Let (uh, θh) the solution of the problem (3.17) given by Theorem 3.1. Then, there
existes a unique ph ∈ Qh such that ((uh, θh), ph) ∈Xh ×Zh ×Qh is the solution of (3.2). Moreover,
we have the following estimate:

‖ph‖0,Ω ≤ C3(ν, κ, f, g) (3.27)

where

C3(ν, κ, f, g) = β−1C
Ah
C1(ν, κ, f, g) + β−1C

Oh
C2

1 (ν, κ, f, g) + β−1C
Dh
C2(κ, f) ‖g‖L2(Ω) (3.28)

and C1(ν, κ, f, g), C2(κ, f) are the constants in (3.23).

Proof. Analogously to the continuous case (see Lemma (2.2)), due to the inf-sup condition (3.8)
and the continuity properties of Ah, Oh and Dh, here we also obtain that both (3.2) and (3.17) are
equivalent. Indeed, the pressure is uniquely solvable by the following problem

Bh(vh, ph) = −Ah(uh,vh)−Oh(uh;uh,vh) +Dh(θh,vh). (3.29)

Then, it suffices to prove the estimate (3.27) to conclude the proof. To do that, using the inf sup-
condition (3.8) and the continuity of the forms Ah, Oh and Dh, we obtain

β ‖ph‖Qh
≤ sup

vh∈Xh

Bh(vh, ph)

|||vh|||

= sup
vh∈Xh

{−Ah(uh,vh)−Oh(uh;uh,vh) +Dh(θh,vh)

|||vh|||

}
≤ C

Ah
|||uh|||+ C

Oh
|||uh|||2 + C

Dh
‖g‖L2(Ω) ‖θh‖h

Recalling that (uh, θh) ∈ BR and satisfies (3.23), then we obtain the estimate (3.27) from the latter
estimate which concludes the proof. �

4 Error analysis

Let us begin by introducing an approximation result for the space Xh (see [15]). For k = 1, 2, 3, there
exists a continuous interpolation operator Ih defined from H1(Ω) to Xh such that, for all T ∈ Th and
e ∈ Fh:

∀v ∈H1(Ω), ∀qh ∈ Pk−1(T ),

∫
T

qh div(Ih(v)− v) dx = 0, (4.1)

∀v ∈H1
T (Ω), ∀e ∈ Fh, ∀qh ∈ Pk−1(e),

∫
e

qh [[Ih(v)]] ds = 0. (4.2)

Moreover, for s ∈ [1, k + 1] the following interpolation estimate holds:

∀v ∈Hs(Ω), ‖Ih(v)− v‖1,T 6 Ch
s−1
T ‖v‖s,∆T

, (4.3)

where ∆T is a suitable macro-element containing T.

We use the L2-projection of degree k−1 onto Qh (respectively of degree k onto Zh) to approximate
the pressure p (respectively the temperature θ). So there exists approximationz ΠQp ∈ Qh and
ΠZθ ∈ Zh (see [17]), defined on each T ∈ Th by

∀q ∈ Pk−1(T ),

∫
T

q(p−ΠQp) dx = 0. (4.4a)

∀ψ ∈ Pk(T ),

∫
T

ψ(θ −ΠZθ) dx = 0. (4.4b)
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and satisy the following approximations properties for every integer s ∈ [0, k] :

‖p−ΠQp‖0,T ≤ Ch
s
T ‖p‖s,T , ∀p ∈ Hs(Ω) ∩ L2

0(Ω). (4.5)

Theorem 4.1 Let (u, θ, p) ∈Hk+1(Ω)×Hk+1(Ω)×Hk(Ω) be a solution of the continuous problem
(1.3). Let (uh, θh, ph) be the solution in Xh ×Qh ×Ch of the DG problem (3.2). We assume that

C
Oh
K1(ν, κ, g, f)

να
Ah

+
C

Dh
‖g‖0,Ω

να
Ah
κα

Mh

≤ 1

2
. (4.6)

Then, there exists positive constant C > 0, independent of h, such that, the following estimates hold
true:

|||u− uh|||+ ‖θ − θh‖h 6 Chk
(
‖u‖k+1,Ω + ‖θ‖k+1,Ω + ‖p‖k,Ω

)
(4.7)

‖p− ph‖0,Ω ≤ Ch
k
(
‖u‖k+1,Ω + ‖θ‖k+1,Ω + ‖p‖k,Ω

)
(4.8)

Proof. We denote the corresponding errors by

eu := u− uh, eθ := θ − θh, ep := p− ph.

We decompose these errors into

eu = ηu + χu, eθ = ηθ + χθ, ep = ηp + χp, (4.9)

with

ηu := u− Ihu, χu := Ihu− uh
ηθ := θ −ΠZθ, χθ := ΠZθ − θh
ηp := p−ΠQp, χp := ΠZp− ph

From the approximation properties of operators Ih, ΠQ and ΠZ (see (4.3), (4.4a) and (4.4b) respec-
tively) combined with inverse inequality, it can be readily seen that

|||eu||| ≤ Chk ‖u‖k+1,Ω + |||χu|||, (4.10a)

‖eθ‖h ≤ Ch
k ‖θ‖k+1,Ω + ‖χθ‖h , (4.10b)

‖ep‖0,Ω ≤ Ch
k ‖p‖k,Ω + ‖χp‖0,Ω , (4.10c)

To estimate the error it is therefore sufficient to estimate the terms |||χu|||, ‖χθ‖h and ‖χp‖0,Ω .

We begin by proving the error on (u, θ). We note that the solution (u, p, θ) of the continuous
problem (1.3) satisfies

Ah(u,vh) +Oh(u;u,vh) +Bh(vh, p) = Dh(θ,vh),

Bh(u, qh) = 0,

Mh(θ, ψh) + Ch(u; θ, ψh) = Fh(ψh),

for all (vh, qh, ψh) ∈ Xh × Qh × Zh. Subtracting the above equations from the discrete formulation
(3.2), we obtain the error equations

Ah(eu,vh) +Oh(u;u,vh)−Oh(uh;uh,vh) +Bh(vh, ep) = Dh(eθ,vh), (4.11a)
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Bh(eu, qh) = 0, (4.11b)

Mh(eθ, ψh) + Ch(u; θ, ψh)− Ch(uh; θh, ψh) = 0, (4.11c)

for all (vh, qh, ψh) ∈Xh ×Qh × Zh, which gives using (4.9) and (4.11a) with vh = χu

Ah(χu,χu) +Oh(u;u,χu)−Oh(uh;uh,χu) +Bh(χu, ep) = Dh(eθ,χu)−Ah(ηu,χu).

Using again the decomposition (4.9), we have

Oh(u;u,χu)−Oh(uh;uh,χu) = Oh(eu;u,χu) +Oh(uh; eu,χu)

= Oh(ηu;u,χu) +Oh(χu;u,χu) +Oh(uh;ηu,χu) +Oh(uh;χu,χu)︸ ︷︷ ︸
=0

,

Oberve that from the definition of Ih in (4.1)-(4.2), we have Bh(χu, χp) = 0 and then

Bh(χu, ep) = Bh(χu, ηp) +Bh(χu, χp)︸ ︷︷ ︸
=0

Hence, we get

Ah(χu,χu) = Dh(eθ,χu)−Ah(ηu,χu)−Bh(χu, ηp)−Oh(ηu;u,χu)

− Oh(χu;u,χu)−Oh(uh;ηu,χu).

Using Lemmas 3.1, Lemma 3.3 and Lemma 3.4, we have

να
Ah
|||χu|||

2 ≤ C
Dh
‖g‖0,Ω ‖eθ‖h |||χu|||+ νC

Ah
|||ηu||| |||χu|||+ C

Bh
‖ηp‖0,Ω|||χu|||+ C

Oh
|||ηu||| |||u||| |||χu|||

+ C
Oh
|||u||| |||χu|||2 + C

Oh
|||uh||| |||ηu||| |||χu|||.

Now, we recall that thanks to the a priori estimates (2.42) and (3.23), we have

‖u‖H1(Ω) ≤ K1(ν, κ, g, f) and |||uh||| ≤ C1(ν, κ, g, f),

which implies(
να

Ah
− C

Oh
K1(ν, κ, g, f)

)
|||χu||| ≤ CDh

‖g‖0,Ω ‖χθ‖h + C
Dh
‖g‖0,Ω ‖ηp‖0,Ω + νC

Ah
|||ηu|||

+ C
Bh
‖ηp‖0,Ω + C

Oh

(
K1(ν, κ, g, f) + C1(ν, κ, g, f)

)
|||ηu|||.

So, we have (
να

Ah
− C

Oh
K1(ν, κ, g, f)

)
|||χu||| ≤ CDh

‖g‖0,Ω ‖χθ‖h + C∗ (4.12)

with C∗ = C
Dh
‖g‖0,Ω ‖ηp‖0,Ω + νC

Ah
|||ηu|||+C

Bh
‖ηp‖0,Ω +C

Oh

(
K1(ν, κ, g, f) +C1(ν, κ, g, f)

)
|||ηu|||.

To estimate ‖χθ‖h, we use (4.11c) with ψh = χθ

Mh(eθ, χθ) + Ch(u, θ, χθ)− Ch(uh, θh, χθ) = 0,

which gives using the error decompositions (4.9) and the positivity of the form Ch (see (3.15)):

Mh(χθ, χθ) + Ch(uh;χθ, χθ)︸ ︷︷ ︸
≥0

= −Mh(ηθ, χθ)− Ch(ηu; θ, χθ)− Ch(χu; θ, χθ)− Ch(uh; ηθ, χθ).

Using again the a priori estimate for uh in (3.23) and that for θ : (see (2.42)):

‖θ‖H1(Ω) ≤ K2(κ, f),
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together with the continuity of the forms Mh and Ch (see (3.9b) and (3.13c)), we obtain:

κα
Mh
‖χθ‖h ≤ CMh

‖ηθ‖h + C
Ch
|||ηu||| ‖θ‖h + C

Ch
|||χu||| ‖θ‖h + C

Ch
|||uh||| ‖ηθ‖h

≤ C
Mh
‖ηθ‖h + C

Ch
K2(κ, f)

(
|||ηu|||+ |||χu|||

)
+ C

Ch
C1(ν, κ, g, f) ‖ηθ‖h

≤ C
Ch
K2(κ, f)|||χu|||+ C̃∗,

(4.13)

with
C̃∗ = C

Mh
‖ηθ‖h + C

Ch
K2(κ, f)|||ηu|||+ C

Ch
C1(ν, κ, g, f) ‖ηθ‖h .

Combining the estimates (4.12) and (4.13), we obtain(
ναA − COh

K1(ν, κ, g, f)−
C

Dh
‖g‖0,Ω

κα
Mh

)
|||χu||| ≤

C
Dh
‖g‖0,Ω

κα
Mh

C̃∗ + C∗,

which gives by using assumption (4.6)

1

2
ναA|||χu||| ≤

C
Dh
‖g‖0,Ω

κα
Mh

C̃∗ + C∗. (4.14)

Replacing (4.14) in (4.13) gives

κα
Mh
‖χθ‖h ≤

2C
Ch
K2(κ, f)

ναA

(C
Dh
‖g‖0,Ω

κα
Mh

C̃∗ + C∗

)
+ C̃∗ (4.15)

The energy-norm error estimate for the velocity uh and the temperature θh in (4.7) now follows by
the bounds in (4.14),(4.15), (4.10a) and (4.10b).

To prove the error estimate on the pressure in (4.8), we use the inf-sup condition (3.8), the continuity
property of Bh (3.9c) and the fact that χp = ηp − ep to write

β ‖χp‖0,Ω ≤ sup
vh∈Xh

Bh(vh, χp)

|||vh|||

≤ C
Bh
‖ηp‖0,Ω + sup

vh∈Xh

Bh(vh,−ep)
|||vh|||

(4.16)

To bound the term Bh(vh,−ep), we first rewrite equation (4.11a), adding and subtracting suitable
terms to obtain:

Bh(vh,−ep) = Ah(eu,vh) +Oh(u;u,vh)−Oh(uh;uh,vh)−Dh(eθ,vh)

= Ah(eu,vh) +Oh(eu;u,vh) +Oh(uh; eu,vh)−Dh(eθ,vh)

From the continuity properties of Ah, Oh and Dh (see (3.9a), (3.13b) and (3.13a)), we have

|Bh(vh,−ep)| ≤
(
C

Ah
+ C

Oh
‖u‖1,Ω + C

Oh
|||uh|||

)
|||eu||| |||vh|||+ C

Dh
‖g‖0,Ω ‖eθ‖h |||vh|||

By replacing this last bound into (4.16) and using the a priori estimate for u and uh, we get

β ‖χp‖0,Ω ≤ C
Bh
‖ηp‖0,Ω +

(
C

Ah
+ C

Oh
K1(ν, κ, g, f) + C

Oh
C1(ν, κ, g, f)

)
|||eu|||+ C

Dh
‖g‖0,Ω ‖eθ‖h

Using estimates (4.14) and (4.15) together with (4.10) implies the desired estimate (4.8) for the error
on the pressure.

�
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5 Conclusion

This article presents a study of a mixed DG scheme for Boussinesq problem with Navier-type boundary
condition for the velocity. We have introduced the continuous formulation of the problem, applying a
fixed-point approach to analyse the well-posedenss of the associated problem. We have also introduced
a discontinuous Galerkin scheme and used the Brouwer theorem to prove the existence of a solution.
We have utilized recent result concerning a Sobolev embedding from the broken DG norm to the
L6(Ω) norm, which equires some additional regularity conditions on the boundary ∂Ω. For nonsmooth
domnains, such as polygonal or polyhedral domains, the main difficulty caused by the Navier-type
boundary condition is that the solution is only H1/2(Ω) which is embedded in L3(Ω). Using Holder’s
inequality, this regularity is not sufficient to prove the continuity of the trilinear term. With standard
regularity assumption on the exact solution, we proved that the numerical solution converges to the
exact solution optimally for all unknowns in the energy norm. To the best of our knowledge, it is the
first analysis dedicated to DG methods for nonlinear MHD problems. Ongoing work is addressing the
issues associated with the implementation of this mixed DG method.
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des Pays de l’Adour, Universidad de Chile, 2015.

[2] C. Amrouche and N. El Houda Seloula. Lp-theory for vector potentials and sobolev’s inequal-
ities for vector fields. application to the Stokes equations with pressure boundary conditions.
Mathematical Models and Methods in Applied Sciences, 23(1):37–92, 2013.

[3] Christine Bernardi, Brigitte Métivet, and Bernadette Pernaud-Thomas. Couplage des équations
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