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Abstract 10 

Carrots produced in different agricultural regions with organic or conventional mode were analyzed 11 

by untargeted UHPLC-HRMS using reversed-phase and HILIC modes. Data were first treated 12 

separately, and further combined to possibly improve results. An in-house data processing workflow 13 

was applied to identify relevant features after peak detection. Based on these features, 14 

discrimination models were built using chemometrics. A tentative annotation of chemical markers 15 

was performed using online databases and UHPLC-HRMS/MS analyses. An independent set of 16 

samples was analyzed to assess the discrimination potential of these markers. Carrots produced in 17 

the New Aquitaine region could be successfully discriminated from carrots originating from the 18 

Normandy region by an OLPS-DA model. Arginine and 6-methoxymellein could be identified as 19 

potential markers with the C18-silica column. Additional markers (N-acetylputrescine, L-carnitine) 20 

could be identified thanks to the polar column. Discrimination based on production mode was more 21 

challenging: some trend was observed but model metrics remained unsatisfactory. 22 

Keywords 23 

Food authenticity, High resolution mass spectrometry, Liquid chromatography, Metabolomics, PCA, 24 

PLS-DA, OPLS-DA  25 

 26 

1. Introduction 27 

Carrot (Daucus carota L., a member of the Apiaceae family) is a root vegetable produced and 28 

consumed worldwide. Its production underwent a major increase in the 1980s (30% increase 29 

between 1980 and 1990), and is still increasing [Arscott and Tanumihardjo, 2010]. Worldwide 13.7 30 

million tons were produced in 1990 [Arscott and Tanumihardjo, 2010] and 27 million tons in 2008 31 

[Stolarczyk and Janick, 2011]. Carrot offers interesting nutritional benefits, mainly due to the 32 

presence of carotenoids especially provitamin A (i.e. beta-carotene converted to vitamin A in the 33 

body) and numerous phenolic compounds [Arscott and Tanumihardjo, 2010; Stolarczyk and Janick, 34 

2011; Ahmad et al., 2019]. Several positive impacts on consumers health are assumed for this 35 

vegetable, such as anticarcinogenic and antioxidant effects [Akhtar et al., 2017]. Another striking 36 

feature of carrots is their possibility to be consumed under various forms: fresh, processed (i.e. 37 

juice), dried, boiled or fried. This vegetable has interesting technological properties for the food 38 

industry and the cosmetic industry as well [Stolarczyk and Janick, 2011], and a growing demand is 39 

foreseen in the near future since a recent study has suggested carrot could be a valuable ingredient 40 

for several processed foods [Rocchetti et al., 2020]. 41 
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China is the major producing country, with other top producers Uzbekistan, Russia and the USA, 42 

contributing together to nearly 50% of the world carrot production; among other leading producers 43 

are Ukraine, Poland, the United Kingdom, Germany, Indonesia, Turkey and France [Arscott and 44 

Tanumihardjo, 2010]. Besides physical quality attributes (such as size, shape, uniformity, color and 45 

texture), sensory and nutritional quality attributes are also important for carrots. As with other 46 

vegetables, these attributes are dependent on different factors: the cultivar, the geographical origin, 47 

the production method and post-harvest conditions [Pereira et al., 2016; Koudela et al., 2021; Ahmad 48 

et al., 2019]. Since carrots are among the most popular agricultural commodities in the world and 49 

among the world’s most economically important vegetables, food control is an important issue to 50 

guaranty the quality of carrots put on the market, as well as the fair labelling of their geographical 51 

origin and production mode.  52 

Plant metabolites deserve extensive research in the food control field, especially secondary 53 

metabolites that are responsible for several bioactive properties of plants and may serve as 54 

biomarkers for plant characterization as recently reviewed [Pedrosa et al., 2021]. For vegetables, 55 

several interesting applications have been reported in food authentication, mainly based on LC 56 

methods targeted on several molecular markers and combined with chemometrics. As an illustration, 57 

UHPLC-HRMS or UHPLC-HRMS/MS were applied to the determination of phenolic compounds: 58 

phenolic profiles and concentration levels were good chemical descriptors when using chemometric 59 

tools (principal component analysis (PCA) and partial least squares - discriminant analysis (PLS-DA)) 60 

to separate paprika samples based on the production region and flavor varieties [Barbosa et al., 61 

2020]. For carrots, phenolic acids (such as 5-O-caffeoylquinic acid) were investigated as possible 62 

biomarkers of the production mode, but no statistical differences between organic and conventional 63 

growth systems were found [Soltoft et al., 2010]. 64 

In recent years, metabolomics-based untargeted analytical approaches have raised a growing 65 

interest in the food control field. They seem to be promising in this field as they allow to obtain a 66 

global view of the sample, opening the way to the classification of food samples based on several 67 

descriptors referring to different quality attributes. Several applications to plant-based foods (fruits, 68 

vegetables, spices) have been reported. The phenolic compounds fingerprinting of paprika samples 69 

acquired by LC and fluorescence detection enabled their classification according to the production 70 

region after data treatment by PLS-DA [Campmajo et al., 2021]. Mie et al. (2014) discriminated 71 

conventional and organic white cabbage during a long-term study (2 years) thanks to the untargeted 72 

analysis of 1,600 compounds of the plant metabolome by UHPLC-HRMS combined with 73 

chemometrics (PCA separated samples by production year, and orthogonal partial least squares - 74 

discriminant analysis (OPLS-DA)  models discriminated 83% samples based on the production mode); 75 

in their work, white cabbage samples were produced in only three farms in Denmark, covering a 76 

narrow geographical zone. Using a similar methodology (UHPLC-HRMS, PCA and linear discriminant 77 

analysis (LDA)), discrimination between organic and conventional tomato crops was achieved by 78 

other authors with 73% of samples being correctly classified [Martinez Bueno et al., 2018]. Other 79 

authors successfully authenticated organic oranges using a similar approach (LC-HRMS and OPLS-DA 80 

model), with approximately 90% of samples correctly classified [Cuevas et al., 2017]. Another work 81 

on goldenberry samples applying UHPLC-HRMS combined to PCA permitted the separation of sample 82 

groups based on organic and conventional productions [Llano et al., 2018]. 83 

Yet, applications of LC-MS-based untargeted analytical approaches to carrot samples are scarce. To 84 

our knowledge, only one recent study in the area of organic food authenticity has been reported 85 

[Cubero-Leon et al., 2018]. In this work, carrot samples of two varieties (Nerac and Namur) were 86 

collected in two Belgian Walloon regions over four consecutive years – each time both organic and 87 
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conventional production modes were considered. Combining LC-HRMS with OPLS-DA models 88 

correctly classified 100% of unknown carrot samples if models were refined to exclude variables 89 

contributing to the production year [Cubero-Leon et al., 2018]. These promising results need to be 90 

confirmed by other studies that take into account a greater diversity of geographical origins. 91 

Interestingly, Cubero-Leon et al. (2018) identified several markers related to carbohydrate 92 

metabolism and plant defense mechanism as responsible for the differences between organic and 93 

conventional growth systems. 94 

Carrots are interesting vegetables since they are produced during almost all seasons, which 95 

maximizes the possibility to find samples and makes sample collection easier. For carrots, sample 96 

discrimination based on both geographical origin and production mode would be of great value in 97 

practice for the laboratories and control authorities due to their worldwide production. In France, 98 

carrots are the organic vegetables with the biggest market size (125 M€ in 2019) and the 5th biggest 99 

market for organic food products. Although the additional cost of organic carrots compared to 100 

conventional carrots is limited (25%, whereas organic peaches are 200% more expensive than 101 

conventional peaches), the economic impact of fraud on organic carrots is substantial because of the 102 

market size of this product. 103 

In this study, we have investigated the capability of a metabolomics-based untargeted analytical 104 

method combined with chemometrics tools for carrots discrimination based on these two factors. 105 

Carrot samples produced in several French agricultural production regions with either organic or 106 

conventional methods were analyzed by untargeted UHPLC-HRMS. The novelty of our work lies in 107 

the realization of a representative sampling of the carrot production in France. In addition, all carrot 108 

samples were systematically analyzed using two chromatographic modes: reversed-phase (on a non-109 

polar C18-silica column, classically used in applications reported in literature) and HILIC (on a 110 

dedicated polar column, to preferentially retain polar to highly polar compounds). Indeed, as amino 111 

acids were identified as possible marker compounds for authentication of organic foods [Dinis et al., 112 

2022; Cuevas et al., 2017; Mihailova et al., 2021], polar chromatographic columns might be 113 

interesting. One previous study reported the targeted analysis of polar phospholipids, small peptides 114 

and amino acids using HILIC mode for the assessment of garlic authenticity [Hrbek et al. 2018]. In our 115 

work, results obtained from both chromatographic columns were compared to assess which family of 116 

compounds (polar or non-polar compounds) provides better discrimination between carrot samples.  117 

2. Materials and Method 118 

2.1. Reagents and chemicals 119 

Acetonitrile (ACN), methanol, water and formic acid (FA), all LC-MS grade, were purchased from 120 

Fisher Scientific. Ammonium formate (LC-MS grade) was purchased from Sigma-Aldrich. 121 

Different internal standards listed below were used to assess the analytical performance and stability 122 

by monitoring their m/z and retention time. Carbaryl-d7 (purity: 98%) and a mix containing 9 123 

pesticides (namely: boscalid (purity: 98%), captan (purity: 99%), chlorantraniliprole (purity: 98%), 124 

daminozide (purity: 99%), dimethomorph (purity: 99%), fenhexamid (purity: 99%), flonicamid (purity: 125 

99%), hexythiazox (purity: 99%) and pyridaben (purity: 99%)) were both purchased from Restek. The 126 

carbaryl-d7 standard (20 µg/mL) as well as the mix standard (each pesticide at 100 µg/mL) were in 127 

acetonitrile. The pesticide mix was chosen to cover a wide range of retention times and m/z values, 128 

with pesticides unexpected on carrot samples; it was used as an internal standard to control sample 129 

preparation.  130 
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The Pierce™ positive and negative ion calibration solution (purchased from Thermo Fisher Scientific) 131 

was used to weekly calibrate the MS detector.  132 

2.2. Samples description and preparation  133 

Forty-four carrot samples were collected in the frame of the TOFoo (True Organic Food) collaborative 134 

project (see https://www.tofoo-project.com/en/). Carrots were sent by their producers from several 135 

regions of France to the laboratory. Thus, the samples collection depended on the producers’ 136 

possibilities and on the harvest time. Most of the carrots were collected between January, 25th and 137 

February, 24th of year 2021. 138 

After collection, the samples were crushed, homogenized, and placed in a 50 mL flask in the 139 

laboratory and stored at -20 °C before analysis. After defrosting, aliquots (5 g) of samples were 140 

extracted in 5 ml of water and 15 ml of methanol. Next, 10 µl of the pesticide mix standard was 141 

added to control the sample preparation. Samples were then homogenized using an Ultra-Turrax for 142 

30 sec. Samples were next agitated for 10 min using a mechanical stirring and further centrifuged for 143 

5 min at 4,000 rpm. The supernatant was collected and introduced directly in a vial before analysis. 144 

Then, 20 µl of the carbaryl-d7 standard was also added in the vial as an internal standard for 145 

injection. Two replicates per sample (i.e. all extractions were performed in duplicate) were prepared 146 

for each column analysis.  147 

Samples were analyzed in two different analytical batches, each composed of 30 samples. The first 148 

batch was dedicated to models building. Data from the second batch were used for models’ 149 

validation and markers tentative identification, since fragmentations were performed during this 150 

experiment. MS/MS data acquisition was performed in a second step to obtain more information on 151 

the discriminant markers after evaluating the ability of the untargeted UHPLC-HRMS method to 152 

authenticate carrots samples.  153 

The first batch contained 19 organic and 11 conventional carrot samples, and the second batch 14 154 

organic and 16 conventional carrot samples. A detailed list of the samples is presented in Table A.1 155 

and Table A.2 (Supplementary material). It can be observed that our study samples came mainly 156 

from two French regions, namely Normandy and New Aquitaine. Two samples in the first batch were 157 

from two additional geographical origins (Brittany and Hauts-de-France).  158 

Within each batch, all the samples were pooled to prepare a Quality Control (QC) sample, as well as 159 

diluted QC samples (2-fold and 5-fold in water). Each analytical sequence was then built based on 160 

randomized sample vials, QC vials every 10 sample vials as well as analytical blanks every 20 sample 161 

vials. MS/MS acquisitions were performed during the analysis of the second batch. 162 

2.3. Analytical conditions 163 

The UHPLC-HRMS system used was from ThermoFisher® composed of a Vanquish Flex UHPLC system 164 

(equipped with a binary pump, a refrigerated sampler and a column oven) and an Orbitrap® mass 165 

spectrometer QExactive Plus with a heated electrospray ion source (HESI). Chromatographic 166 

separation was performed using either a hydrophobic C18-silica (reversed-phase mode) or a 167 

hydrophilic one (HILIC mode). In both cases, the column temperature was set at 30°C, and the 168 

injection volume was 1 µL. 169 

2.3.1.  Reversed-phase mode 170 

The UHPLC separation was achieved using the C18 Hypersil Gold column detailed in our previous 171 

work with the same injection volume, flow-rate and linear gradient elution (Dinis et al., 2022). Mobile 172 

https://www.tofoo-project.com/en/
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phases compositions were slightly different to improve the separation: water acidified with 0.05% FA 173 

and 5 mM ammonium formate (A), and ACN acidified with 0.05% FA (B). Also, a 0.1 ml/min of ACN 174 

was added before the HRMS acquisition to improve compounds ionization. An example of 175 

chromatogram for a QC is given in Fig. A.1. 176 

2.3.2.  HILIC mode 177 

The UHPLC separation was achieved using an amide-HILIC column (150 x 2.1 mm, 2.6 µm) at a 0.6 178 

ml/min flow-rate. The mobile phases were water acidified with 0.05% FA and 5 mM ammonium 179 

formate (A), and ACN (B), with the following linear gradient: 0-2 min, B: 98%; 2-8 min, B: 98-75%; 8-180 

8.1 min: B: 75-40%; 8.1-10 min, B: 40%; 10-10.1 min, B: 40-98%; 10.1-15 min, B: 98%. An example of 181 

chromatogram for a QC is given in Fig. A.1. 182 

2.3.3.  MS and MS/MS data acquisition 183 

MS data were acquired in centroid mode using TraceFinder software (version 3.1, ThermoFisher®), 184 

with a mass range from m/z 100 to 1000. The electrospray ion source was operated in the positive 185 

ion mode (ESI+) (detailed conditions are presented in Table A.3 of Supplementary material) and the 186 

resolution fixed at 140,000. 187 

MS/MS data were obtained by performing full scan data-dependent analyses using an inclusion list 188 

dedicated for each chromatographic mode (the list was composed of 25 or 12 features for the 189 

reversed-phase or HILIC mode, respectively). The inclusion lists were built after the data processing 190 

of the first sample batch where several features were identified as discriminant. The resolution was 191 

set at 17,500. An isolation window of ± 1 uma was used and three normalized collision energies were 192 

applied (10; 30 and 60 eV) for MS/MS acquisition.  193 

2.4. Data processing 194 

After data files conversion to mzXML format using ProteoWizard, raw data were processed following 195 

a workflow originally developed on the online W4M platform [Dinis et al., 2022], and adapted here 196 

for its implementation in-house on the R software (see Fig. A.2 of the Supplementary material). Raw 197 

data obtained from the two different analytical columns were processed separately. The “features”, 198 

defined by their m/z and retention time (RT), and their intensities in different samples were used for 199 

the statistical analysis as commonly reported. Those found to be the most discriminant between the 200 

sample groups were tentatively identified using online databases, as described below. 201 

2.4.1. Data treatment using the XCMS R-package 202 

The first steps of the workflow were performed using several XCMS functions: (1) peak detection and 203 

extraction using the “centWave” method of the “findChromPeaks” function (this first step 204 

transformed the chromatograms into a 2D-matrix where each peak was described by its feature); (2) 205 

peaks grouping according to their RT using the “groupChromPeaks” function (peaks were grouped 206 

across the samples according to their RT values, and values of m/z and RT were then averaged in the 207 

data matrix); (3) peak alignment using the “adjustRtime” function (RT deviation was corrected); (4) 208 

peaks grouping again; (5) missing intensity values were completed using the “fillChromPeaks” 209 

function. All XCMS parameters used for these steps are presented in Table A.4 (Supplementary 210 

material). A data matrix was then generated, giving the integration of each peak made by XCMS for 211 

each feature and for each sample. 212 

2.4.2. Data filtration and analytical drift correction 213 
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Several successive filtration steps were used to remove irrelevant information present on the 214 

previously obtained data matrix, as the number of features detected by XCMS was very high (about 215 

20,000 for the C18-silica analysis and about 10,000 for the HILIC analysis). Firstly, all features 216 

detected in the dead volume and during the column equilibration were removed (for C18-silica 217 

analysis: before 1.7 min and after 26 min; for HILIC analysis: before 0.75 min and after 12 min). 218 

Secondly, features that were primarily detected in blank analyses were removed based on their fold 219 

change (FC(samples)/ FC(blanks) < 4). Thirdly, features with low stability in the QC analyses were 220 

removed based on their relative standard deviation (RSD > 30%). Also, features for which the ratio of 221 

RSD pool over RSD sample was higher than 1.25 were deleted. Next, the analytical signal drift was 222 

corrected using a LOESS regression method from the replicate injections of the QC sample. Finally, 223 

dilution effects were removed using the probabilistic quotient normalization (PQN). Before 224 

chemometrics, the data matrix was Pareto scaled. 225 

2.4.3. Chemometrics 226 

PCA was considered for exploratory purpose of the data sets and to detect outliers; no outliers were 227 

detected. Then classification of samples was investigated by building PLS-DA and OPLS-DA models 228 

using a 7-fold cross validation [Dinis et al., 2022]. This cross validation permitted to determine the 229 

optimal number of latent variables (LV) to build the models. Several metrics were considered to 230 

assess the quality of our models: the goodness of fit (R2X), the proportion of the response matrix 231 

variance explained (R2Y), and the predictive performance (Q2Y). Their values are in the range 0-1, 232 

and the model performance is increasing with their values. The Q2Y metric and the root mean square 233 

error of prediction (RMSEP) were particularly considered here, as they represent the prediction 234 

efficiency of the model. 235 

To evaluate further the classification performance of the PLS-DA and OPLS-DA models, the data set 236 

was divided into four different subsets between the calibration set and validation set. Four PLS-DA 237 

models and four OPLS-DA models were thus obtained using the four subsets. The confusion matrix of 238 

each model was then extracted, containing the number of true positive samples (TP, samples 239 

correctly classified in class A), the number of true negative samples (TN, samples correctly classified 240 

in class B), the number of false positive samples (FP, samples incorrectly classified in class A) and 241 

false negative samples (FN, samples incorrectly classified in class B). The resulting confusion matrices 242 

for these four subsets were used to calculate the class sensitivity, the class specificity, the model 243 

accuracy, and the number of misclassifications (NMC) as detailed below [Riedl et al., 2015]: 244 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 245 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 246 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 247 

𝑁𝑀𝐶 =  𝐹𝑃 + 𝐹𝑁 248 

As the number of detected features was quite high, feature selection was necessary to identify the 249 

most discriminant features that could be considered as discriminant markers. An ANOVA was then 250 

performed to select significant features between the two studied groups (the two regions of interest 251 

or organic vs. conventional carrots respectively); a maximal accepted p-value of 0.01 was chosen. The 252 

Bonferroni correction method was applied to limit the number of false positive results. New PLS-DA 253 
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and OPLS-DA models were then built based on the features selected by ANOVA to improve the 254 

performance of the models. 255 

The chemometrics were applied on the data matrix obtained for each chromatographic column 256 

separately, as well as after fusion of both data matrices. We aimed to investigate if the discrimination 257 

models could be improved by combining the information from both chromatographic modes. Some 258 

factors such as geographical origin and sample variety are described as the most important sources 259 

of sample variability [Cubero-Leon et al., 2018; Mihailova et al., 2021]. Thus, PLS-DA and OPLS-DA 260 

models were first built based on the geographical origin of the samples. The features with a high VIP 261 

(variable importance on projection) were then removed from the data matrix to remove variability 262 

related to this factor; a VIP value filtration criterion of 1 was applied as previously tested in other 263 

study [Dinis et al., 2022]. Then, new PLS-DA and OPLS-DA models were built for the discrimination 264 

between organic and conventional samples. 265 

2.4.4. Annotation 266 

The number of features was quite high as detailed above. It was reduced by filtering the features 267 

according to their VIP value (calculated during the construction of the PLS-DA and OPLS-DA models) 268 

as well as their p-value (from the ANOVA results) as this strategy was found efficient as already 269 

reported [Dinis et al., 2022].  270 

The MS spectra of the remaining features were first studied, which allowed the determination of the 271 

adduct types of the observed m/z and thus the exact mass of the compounds and, consequently, 272 

molecular formulas were suggested for each feature. An online database (FooDB) was then used to 273 

tentatively annotate these discriminant features. Moreover, the MS/MS experiments were used to 274 

confirm the tentative annotation by the help of spectral databases (MassBank and mzCloud). 275 

3. Results and Discussion 276 

The results obtained with the two analytical columns were quite similar. It was therefore decided to 277 

describe mainly the results obtained with the reversed-phase column because it is a widely used 278 

column. Some results obtained with the HILIC column are presented in the Supplementary material. 279 

Combining the data provided by both chromatographic modes was tested but this did not improve 280 

our results. 281 

3.1. Authentication of the geographical origin of carrots 282 

The dataset used for the reversed-phase mode contained 30 samples (in columns) and 4,652 features 283 

(in rows). The dataset used for the HILIC mode contained 30 samples (in columns) and 1,426 features 284 

(in rows). After fusion of both data matrices, the dataset used contained 30 samples (in columns) and 285 

6,078 features (in rows). 286 

The PCA score plot from the C18-silica column permitted to observe a cluster of the QC samples (see 287 

Fig. 1), highlighting a good system stability during the analysis. Near 50% of variance was explained 288 

by the first three principal components (PC1: 22%, PC2: 19%; PC3: 8%). Similar results were observed 289 

for data obtained with the HILIC column (Fig. A.3 of supplementary material). The two replicates per 290 

samples were grouped, showing good reproducibility. Thus, mean of the two replicates was used for 291 

the following chemometric tools.  292 

Despite the fact that no clear separation could be obtained between the sample groups based on 293 

their geographical origin, a trend seemed to emerge on the PC1 axis regarding the separation of the 294 

New Aquitaine and the Normandy sample groups. It is also interesting to note that Brittany and New 295 
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Aquitaine samples appear in proximity possibly due to their geographic proximity, with the same 296 

trend observed for Hauts-de-France and Normandy samples. Since Brittany and Hauts-de-France 297 

concerned by our samples were regions represented by only one sample each, it was decided to 298 

discard them as these two geographical origins were not sufficiently represented to be modeled. The 299 

discriminant and classification models built were therefore only based on the Normandy and New 300 

Aquitaine samples.  301 

The PLS-DA model was built using three latent variables and showed a good predictive ability (Q2Y: 302 

0.632) as shown in Fig. 2. The OPLS-DA model was built using three orthogonal latent variables and 303 

showed a similar predictive ability (Q2Y: 0.697). The PLS-DA and OPLS-DA models obtained with the 304 

four different subsets showed very similar results, with acceptable sensitivity and specificity as 305 

indicated in Table 1, showing good capacity of the models to correctly classify the samples in their 306 

belonging class. Overall, about 85% of model accuracy was obtained. In all the models, at least one 307 

sample was misclassified. The observed Q2Y values (about 0.7) showed good predictive ability for the 308 

obtained models, but the quite high RMSEP values (around 0.4), indicated that an error on the 309 

prediction of new samples may occur. The HILIC mode analysis showed very close results (Fig. A.4 310 

and Table A.5 of supplementary materials), with slightly better Q2Y and RMSEP values (about 0.75 311 

and 0.35 respectively). 312 

 313 

Table 1: Metrics obtained from the confusion matrices on four different subsets to assess the 314 

performance of PLS-DA and OPLS-DA models for carrot samples discrimination based on their 315 

geographical origin using the reversed-phase mode analysis  316 

#  
Subset 

Number of samples  
(calibration set) 

Number of samples  
(test set) 

Sensitivity Specificity Accuracy Q2Y RMSEP NMC 

PLS-DA models 

1 20 8 100.0% 75.0% 87.5% 0.707 0.349 1 

2 20 8 100.0% 75.0% 87.5% 0.699 0.396 1 

3 19 9 60.0% 100.0% 77.8% 0.733 0.441 2 

4 19 9 100.0% 80.0% 88.9% 0.546 0.402 1 

OPLS-DA models 

1 20 8 100.0% 75.0% 87.5% 0.854 0.348 1 

2 20 8 100.0% 75.0% 87.5% 0.784 0.368 1 

3 19 9 60.0% 100.0% 77.8% 0.739 0.450 2 

4 19 9 100.0% 80.0% 88.9% 0.659 0.402 1 

 317 

Geographical origin of carrots has already been assessed by other methods in previous studies. 318 

Jandric et al. used isotope ratios of strontium combined with the content of 12 elements to classify 319 

carrots from different Austrian regions with OPLS-DA [Jandric et al., 2021]. Targeted LC-MS also 320 

showed good classification rates on the same dataset. Magdas et al. reported the potential of rare 321 

earth elements (REEs) measurement by ICP-MS to discriminate geographical origin of several food 322 

matrices, among which carrots [Magdas et al., 2019]. Models built on REEs values showed a good 323 

stability with harvest year, which could not be tested in this study. However, isotopic ratios and REEs 324 

are more likely to fail to discriminate geographical origins on processed or mixed food due to 325 

fractionation.  326 
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To our knowledge, our study reports for the first time the successful discrimination of carrot samples 327 

based on geographical origin using untargeted LC-HRMS analysis. It would be an interesting 328 

perspective to test the validity of our models presented here on processed or mixed carrots, and 329 

compare their performances with other reported methods such as NMR. Indeed, NMR could 330 

discriminate carrot juices from three locations in Italy [Tomassini et al., 2016]. The authors showed 331 

that the different profiles were linked to the pedoclimatic conditions, which could be the case in our 332 

study as well: there were indeed around 1,500 hours of sunlight in Normandy in 2020, whereas in 333 

New Aquitaine, this number rises to 2,100 hours. 334 

3.2. Authentication of organic carrots 335 

For the sample discrimination based on their production mode, all 30 samples of the first batch were 336 

considered: 19 organic and 11 conventional carrot samples (see Table A.1). Similar to the 337 

methodology applied by Cubero-Leon et al. (2018), features having a VIP higher than 1 for the 338 

geographical origin discrimination were removed from the data matrix to discard variability related 339 

to this factor. As previously stated, the mean value of the two replicates was used to build the 340 

models. After this filtration step, 4,268 features were left in the dataset for the reversed-phase mode 341 

and 1,314 features for the HILIC mode dataset. 342 

PCA was unsuccessful to distinguish between organic and conventional samples as illustrated in Fig. 343 

A.5 (Supplementary material). Similar results were reported for carrot samples by Cubero-Leon et al. 344 

(2018). They suggested that this may be due to the fact that PCA is an unsupervised technique and 345 

also to other factors (such as variety) that may further influence differences in metabolites. 346 

The PLS-DA model was built using three latent variables and the OPLS-DA model was built using three 347 

orthogonal latent variables. The Q2Y obtained with these models were not as good as those obtained 348 

for the discrimination based on the geographical origin as presented in Fig. 3 (Q2Y: 0.304 for PLS-DA 349 

and 0.154 for OPLS-DA). Globally, for all the distributions tested, about 65% of model accuracy was 350 

obtained (see Table A.6). In particular, conventional samples were rarely recognized as being 351 

conventional samples by the different models as described by the specificity values obtained. On the 352 

contrary, organic samples were mostly correctly recognized, as described by the sensitivity values. 353 

The NMC obtained were higher than when dealing with the discrimination of the geographical origin 354 

(between 3 and 5 samples). The RMSEP values were also higher (around 0.5) and the Q2Y values 355 

lower (about 0.35), showing that the obtained models had a worse classification performance. The 356 

results from the HILIC mode gave very similar results (Fig. A.6 and Table A.7 of supplementary 357 

material), with even higher NMC values (between 5 and 8 samples). We may attribute this 358 

unsatisfactory result to the unbalanced composition of our sample batch, and subsequently the low 359 

number of conventional samples present in the data set (11 in total). As already reported, 360 

classification models describe better the majority class, leading to poor prediction accuracy for the 361 

minority class. Unfortunately, the dataset of this study was too small to allow the use of most data 362 

balancing techniques. 363 

Several explanations may be proposed to explain the poor performances of these discrimination 364 

models. Firstly, these poor performances may be linked to the variety of the studied samples. Ten 365 

different varieties were present in our sample set, most of them having only one sample per variety 366 

(see Table A.1 in Supplementary material). Variety has already been identified as a strong source of 367 

variability for this type of study as the composition of carrots may vary with the variety [Arscott and 368 

Tanumihardjo, 2010]. In their long-term study of carrots, Cubero-Leon et al. (2018) considered only 369 

two varieties which could explain the good metrics of their model. It also has to be noticed that their 370 

carrot samples came from the same geographical area (all fields were within 20 km). Another 371 
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explanation for the poor performances of the model presented here is that removing the features 372 

which contribute the most to the geographical discrimination is not sufficient to reduce the 373 

variability caused by the geographical origin. However, the number of samples from the same area 374 

was too low to test this hypothesis here. Finally, the poor performances of these models may be due 375 

to the limited number of samples in our study (30 samples), since it is generally advised to consider 376 

over 40 to 60 samples (Mialon et al., 2023). 377 

Globally, few studies could successfully differentiate conventional from organic carrots. In particular, 378 

the nitrogen isotope ratios failed to discriminate organic and conventional carrot crops, whereas the 379 

same method was successfully applied on tomatoes and lettuce [Bateman et al., 2007]. An 380 

explanation suggested by the authors is the need for nitrogen during growth which is lower for 381 

carrots than for tomatoes and lettuces. Similarly, no discrimination model using NMR has been 382 

published for carrots, although this technique has proven its ability to discriminate organic and 383 

conventional plants for many other different fruits and vegetables [Pacifico et al., 2013]. To our 384 

knowledge, only one study reported successful discrimination between organic and conventional 385 

carrots by analyzing oxygen isotope ratio of sulphate [Novak et al., 2019]; however, the built model 386 

was not tested on commercial samples. 387 

3.3. Annotation and tentative identification of discriminant features for the geographical 388 

origin 389 

A VIP value filtration criterion of 1 remained approximately 100 features left after filtration. Using 390 

further the ANOVA results and focusing on features with the lowest p-value, 18 features were 391 

selected for the reverse-phase mode dataset as indicated in Table 2, and 10 features for the HILIC 392 

mode dataset (see Table A.8 in Supplementary material). No additional discriminant feature could be 393 

obtained by combining the information from both chromatographic modes. 394 

Arginine was tentatively identified and confirmed by its MS/MS spectrum (see Fig. 4), in line with 395 

previous work reporting this amino acid as a potential marker of the agricultural practice for carrots 396 

[Cubero-Leon et al., 2018]. In particular, these authors linked the difference observed in the carrot 397 

metabolome to the impact of fertilization on the soil metabolome. If this hypothesis is valid, the 398 

difference observed in our study could result from a difference in soil metabolome between 399 

Normandy and New Aquitaine. Arginine was also reported in garlic as a possible biomarker of the 400 

geographical origin [Hrbek et al., 2018]. 401 

Other amino acid derivatives were suspected as markers, although they could not be confirmed 402 

based on their MS/MS spectra (see Table 2). Our results are in line with previous ones showing that 403 

amino acids are strong markers of the geographical origin for carrots because their concentrations 404 

are linked to acclimation processes and thus depend on pedoclimatic conditions [Tomassini et al., 405 

2016]. Sciubba et al. observed a correlation between some amino acid concentrations in carrots and 406 

the harvest time [Sciubba et al., 2020]. However, this hypothesis could not be confirmed in our study, 407 

as carrots from geographical areas were regularly collected during the harvest period of time. 408 

Another discriminant marker (feature 16) could also be tentatively identified and confirmed by 409 

MS/MS data. Several suspected compounds were discarded based on their MS/MS spectra and also 410 

since they had never been reported in carrots (neither from FoodDB nor from the literature). 411 

Sinapaldehyde was a suspected compound for this feature, already reported in foods according to 412 

FoodDB. However we discarded this molecule due to some differences observed between its 413 

experimental MS/MS spectrum with the spectra reported in FoodDB as shown in Fig. A.7 414 

(Supplementary material). We finally tentatively identified feature 16 as being 6-methoxymellein (or 415 
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phytoalexin 8-hydroxy-3-methyl-6-methoxy-3,4-dihydroisocoumarin) as indicated in Table 2 and 416 

shown in Fig. 4. 417 

This compound has already been reported in fresh carrots, with varying levels (0.02 to 76 µg/g) 418 

depending on carrot genotype, maturity as well as environmental and growing conditions [De 419 

Girolamo et al., 2004]. It is generally considered of being associated with the bitterness in strained 420 

carrots, and partly responsible for the sensory quality of carrots. A threshold concentration of 94 421 

µg/g has been reported to bitter flavor in carrots [De Girolamo et al. 2004]. Levels of 6-422 

methoxymellein in carrots were found stable at low temperature for quite long periods. 423 

Examples of chromatograms for the discriminant features identified according to the MS/MS 424 

acquisitions for each analytical column are presented in Fig. A.8 and Fig. A.9 (Supplementary 425 

material). 426 

Two additional biomarkers could be tentatively identified based on their MS/MS spectra thanks to 427 

the results from the HILIC polar column as indicated in Table A.8, Fig. A.9 and Fig. A.10 428 

(Supplementary material): N-acetylputrescine and L-carnitine.  429 

N-Acetylputrescine was reported in plants, especially in Daucus carota, being linked to plant defense 430 

mechanism [Lou et al., 2016]. This molecule comes from the acetylation of putrescine, a polyamine 431 

biosynthetised from arginine that may accumulate in plants in response to several biotic and abiotic 432 

stresses. Interestingly, in our work both arginine avec N-acetylputrescine are found as potential 433 

biomarkers of the New Aquitaine geographical origin. 434 

L-Carnitine (or 2-hydroxy-4-trimethylammonium butyrate) is an amino acid already reported in 435 

plants, playing a role in their lipid metabolism [Bourdin et al., 2007]. Concentrations of 37 µg/g have 436 

been recently reported in carrots [Kepka et al., 2021], and nutritional sources of carnitine are 437 

considered as important for the human body. It is suspected to be biosynthetised in the plant from 438 

gamma-butyrobetaine (or 4-trimethylammonium butyrate) as a precursor [Rippa et al., 2012]. In our 439 

work, we found both L-carnitine as a potential marker of the Normandy geographical origin (see 440 

Table A.8 and Fig A.9), and gamma-butyrobetaine was considered as a possible compound for 441 

feature 7. However, 3-dehydroxycarnitine was also a possible compound for this feature, even 442 

though to our knowledge it has never been reported in plants. 443 

During the MS/MS experiments, a full scan analysis was also acquired. It was thus possible to use 444 
these independent acquisitions to evaluate the potential of the discriminant features to serve as 445 
marker compounds. It is noteworthy that the majority of the selected features were successfully 446 

observed on this second sample batch (only three features for the reversed-phase mode and one 447 

feature for the HILIC mode showed a very low intensity). No significant difference in intensity was 448 

observed between the two batches of samples, but a trend was noted for some features (12 features 449 

for the reversed-phase mode and 6 features for the HILIC mode). It is thus very likely that the 450 

combination of several markers would be necessary to discriminate geographical origins of carrots. 451 

Future work should be conducted in that field. In addition, implementation of data processing 452 

workflow may allow to standardize signals obtained in different working sessions. 453 

 454 

 455 
 456 



12 
 

Table 2: Discriminant features for the authentication of geographical origin (compounds confirmed based on MS/MS data are indicated in bold characters) 457 

with the C18-silica column. 458 

# 

Features 

 
Detected 

m/z 

RT 

(min) 
p-value VIP Characteristic 

Adduct 

type 

Monoisotopic 

mass 

Proposed 

molecular 

formulas 

Tentative identification 

1  256.1291 1.78 1,67E-06 6,5 Normandy [M+H]+ 255.1219 C11H17N3O4 N-alpha-(tert-Butoxycarbonyl)-L-histidine* 

2  175.1190 2.02 7,07E-03 4,4 New Aquitaine [M+H]+ 174.1117 C6H14N4O2 Arginine 

3  229.1548 2.64 5,11E-03 3,1 Normandy [M+H]+ 228.1474 C11H20N2O3 L-Isoleucyl-L-proline*, L-Leucyl-L-proline* 

4  146.0812 2.85 3,32E-04 2,2 New Aquitaine [M+H]+ 145.0739 C6H11NO3 Allysine*, L-cis-4-(Hydroxymethyl)-2-pyrrolidinecarboxylic acid*, 4-

Acetamidobutanoic acid* 

5  188.0706 

205.0971 

6.5 1,22E-04 7,6 New Aquitaine [M+H]+  

[M+NH4]+ 

187.0633 C11H9NO2 3-(1H-Indol-3-yl)-2-propenoic acid* 

6  383.1312 6.64 9,66E-04 1,4 Normandy [M+H]+ 382.1237  

382.1232 

382.1250 

382.1250 

382.1224 

C14H18N6O7 

C28H16NO 

C15H14N10O3 

C16H20N3O8 

C13H22N2O11 

n.a. 

7  378.1757 6.65 5,70E-04 1,8 Normandy [M+H]+ 377.1686 

377.1672 

377.1672 

377.1699 

C16H27NO9 

C14H25N4O8 

C13H19N11O3 

C17H23N5O5 

n.a. 

8  342.1758 7.15 1,76E-08 1,1 Normandy [M+H]+ 341.1686 

341.1672 

341.1699 

C13H27NO9 

C10H19N11O3 

C14H23N5O5 

n.a. 

9  390.1393 8.31 3,83E-05 1,8 Normandy [M+H]+ 389.1322 

389.1309 

389.1308 

389.1335 

C16H23NO10 

C14H21N4O9 

C13H15N11O4 

C17H19N5O6 

n.a. 

10  490.2282 8.45 3,37E-07 1,2 Normandy [M+H]+ 489.2210 

489.2205 

489.2218 

489.2197 

489.2223 

C22H35NO11 

C35H27N3 

C37H29O 

C20H33N4O10 

C23H31N5O7 

n.a. 
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11  432.1864 9.08 1,60E-04 2,0 Normandy [M+H]+ 431.1791 

431.1791 

431.1791 

431.1800 

431.1778 

431.1778 

431.1805 

C17H17N15 

C18H23N8O5 

C19H29NO10 

C34H23 

C17H27N4O9 

C16H21N11O4 

C20H25N5O6 

n.a. 

12  354.1757 9.16 8,72E-03 1,2 New Aquitaine [M+H]+ 353.1699 C15H23N5O5 Dihydrozeatin riboside*, 2-[[1-(2-amino-3-

hydroxybutanoyl)pyrrolidine-2-carbonyl]amino]-3-(1H-imidazol-5-

yl)propanoic acid* 

13  348.2744 

313.2371 

12.27 2,36E-03 16,5 Normandy [M+H]+  

Fragment 

347.2672 

347.2672 

347.2658 

347.2685 

C17H31N8 

C18H37NO5 

C16H35N4O4 

C19H33N5O 

n.a. 

14  683.4699 

353.2296 

12.27 7,09E-03 4,6 Normandy [M+H]+  

Fragment 

682.4629 

682.4616 

682.4611 

682.4597 

682.4656 

C34H62N6O8 

C33H66N2O12 

C46H58N4O 

C45H62O5 

C38H66O10 

n.a. 

15  699.4347 12.27 2,94E-03 2,7 Normandy [M+H]+ 698.4241  C37H62O12 Cyclopassifloside I*, Cyclopassifloside IV*, Cyclopassifloside X* 

16 

  

 209.0809 

191.0703 

13.46 6,06E-05 14,5 New Aquitaine [M+H]+  

Fragment 

208.0736 C11H12O4 6-Methoxymellein, Sinapaldehyde, Caffeic acid ethyl ester*, 

Methyl ferulate*, 3-(3,4-Dimethoxyphenyl)-2-propenoic acid*, 

Furapiole*, 1-(2-Methoxy-3,4-methylenedioxyphenyl)-1-

propanone*, 3-(3-Methoxy-4,5-methylenedioxyphenyl)-2-propen-

1-ol*, Anthriscinol*, (R)-2-Benzylsuccinate*, 5-(3',4'-

Dihydroxyphenyl)-gamma-valerolactone*, 5-(3',5'-

Dihydroxyphenyl)-gamma-valerolactone* 

17  374.2901 14.42 4,69E-03 2,3 New Aquitaine [M+H]+ 373.2842 C21H35N5O 1-[[(2R,4S,5R)-5-(5-cyclohexyl-2-methylpyrazol-3-yl)-1-

azabicyclo[2.2.2]octan-2-yl]methyl]-3-ethylurea* 

18  305.2474 19.31 8,86E-04 1,7 New Aquitaine [M+H]+ 304.2402  C20H32O2  Oryzalexin D*, Oryzalexin F*, Arachidonic acid*, Sideridiol*, 

ent-17-Hydroxy-16b-kauran-19-al*, Yucalexin P21*, Copalic acid*, 

Junicedral*, 7,13-Eperudien-15-oic acid*, Oryzalexin S*, 

Oryzalexin E*, Mesterolone*, Abietadiene-diol*, Sodium oleate* 

n.a.: not applicable; * not confirmed based on MS/MS data 459 
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4. Conclusion 460 

Forty-four samples of carrots were analysed by UHPLC-HRMS using two different chromatographic 461 

phases (C18-silica and HILIC). The samples were collected from various production sites at the 462 

beginning of 2021 and originated from different regions of France. PLS-DA and OPLS-DA models were 463 

constructed to discriminate production modes (conventional versus organic) and geographical origin 464 

(New Aquitaine versus Normandy). Despite some trend in sample discrimination based on the 465 

production mode, the models metrics were not satisfying (Q2Y below 0.5). On the contrary, good 466 

results were obtained for the geographical discrimination. An additional batch was analysed to 467 

validate the discrimination performance and tentatively identify discriminant markers. Arginine and 468 

6-methoxymellein were proposed as potential biomarkers of the geographical origin based on the 469 

C18-silica analyses and their MS/MS spectra. The HILIC analyses provided the tentative identification 470 

of two additional biomarkers confirmed by their MS/MS spectra: N-acetylputrescine and L-carnitine. 471 

 472 

Appendix A. Supplementary material 473 
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Figure caption 606 

Fig. 1: PCA score plots of PC1 vs. PC2 and PC1 vs. PC3, obtained using the reversed-phase mode 607 

analysis for the first batch of samples (red squares: Normandy (No) samples, blue crosses: New 608 

Aquitaine (NA) samples, orange circles: Brittany (B) sample, magenta triangles: Hauts-de-France (H) 609 

sample, and green filled circles: quality control (QC) samples)  610 

Fig. 2: PLS-DA and OPLS-DA score plots of LV1 vs. LV2 obtained using the reversed-phase mode 611 

analysis for the geographical origin discrimination (blue: New Aquitaine (NA) samples, red: Normandy 612 

(No) samples)   613 

Fig. 3: PLS-DA and OPLS-DA score plots of LV1 vs. LV2 obtained using the reverse phase mode 614 

analysis for the production mode discrimination (blue crosses: conventional samples, red squares: 615 

organic samples)  616 

Fig. 4: Experimental MS/MS spectrum of features 2 and 16 for authentication of the geographical 617 

origin using the reversed-phase mode analysis, and their corresponding database MS/MS spectrum 618 

(arginine and 6-methoxymellein respectively) 619 

 620 
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