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Abstract. Cardiac Resynchronization Therapy (CRT) is a treatment
aimed at restoring the electrical synchronization in patients with heart
failure and intraventricular conduction delay. However, over 30% of pa-
tients do not respond to CRT. Septal Flash (SF), an abnormality char-
acterized by a rapid inward-outward abnormal motion at early systole,
has been linked to an improved response to CRT in patients with Left
Bundle Branch Block (LBBB). In clinical practice, the detection of SF
is usually performed manually through echocardiographic acquisitions,
which is subjective and dependent on the operator’s experience. To ad-
dress this issue, a deep classification model for automatic SF detection
from 2D anatomical M-mode images has been proposed. Additionally,
this work focuses on SF localization from gradient-based attention maps,
which provide a visual explanation of the output prediction of the model.
Two models based on convolutional neural networks (CNNs) were trained
with original and cropped M-modes from 143 patients, and achieved an
accuracy of 0.83 and 1.0 respectively, on 29 testing patients. The atten-
tion map visualization showed that in SF cases, the models effectively
identified the discriminant regions, while in non-SF cases, the maps ap-
peared more dispersed. Further research is necessary to quantitatively
evaluate the attention map results.

Keywords: Localization · M-mode echocardiography · heart failure ·
cardiac resynchronization therapy · attention maps

1 Introduction

Cardiac resynchronization therapy (CRT) is a medical treatment developed to
recover electrical synchrony in heart failure patients with intraventricular con-
duction delay, characterized by disordered ventricular contractions and adverse
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clinical prognosis [3]. However, a significant amount of patients do not respond
well to the treatment, with CRT non-response rate still over 30% [15]. Among the
identified mechanisms amenable to CRT response, septal flash (SF) is indicative
of electrically mediated dyssynchrony such as left bundle branch block (LBBB)
[17]. It is characterized by a fast inward-outward motion of the septum that
occurs during early systole or isovolumetric contraction period and mostly ends
before aortic valve opening. Due to the early contraction of the right ventri-
cle (RV), a transseptal pressure difference is created that tethers the septum
towards the left ventricle (LV) [3]. Several studies [1, 6] have shown SF to be a
strong predictor of CRT response in patients with LBBB, thus accurate identi-
fication of SF is of interest for CRT patient selection and response prediction.

In clinical practice, SF is commonly assesed through simple ’eye-balling’ from
2D transthoracic echocardiography [3]. However, visual assessment methods rely
heavily on operator’s experience, which could lead to subjective diagnosis. Con-
sequently, several works have focused on more automatic detection of SF. For
example, statistical atlases and representation learning were proposed to auto-
matically detect and quantify abnormal ventricular motion, including SF [8, 11,
16, 7]. With recent computational advancements, deep learning methods have
emerged as powerful tools for image analysis tasks such as object classification
and detection, segmentation and registration, offering new perspectives for the
automatic characterization of mechanisms relevant to CRT response [13]. In the
field of medical image classification, several authors employ convolutional neu-
ral network (CNN)- based methods. However, these models are often seen as
’black boxes’ offering little to no explanation on why the output prediction was
chosen. In the context of our application, a CRT response prediction model
was proposed by Puyol-Antón et al. [12] from cardiac magnetic resonance im-
ages with an interpretable variational autoencoder. More generally, many works
build upon gradient-based class activation mapping (CAM) approaches, such as
Grad-CAM++ [5, 18], to offer a visual explanation of the output prediction via
localization maps.

Regarding SF detection, Qu et al. [13] recently proposed a CNN-based ap-
proach to classify 2D+t B-mode sequences with SF. To capture both spatial and
temporal context (required to detect the abnormal septal motion) the authors
proposed a linear attention cascaded net (LACnet) with CNN-based encoders
and a LSTM- based decoder for temporal feature extraction. However, the design
of a complex deep learning architecture with temporal units capable of handling
long-term dependencies was required, and handling sequential image data may
lead to increased computational complexity compared to simple 2D image pro-
cessing. Furthermore, the localization of the SF region, employed in the model’s
output prediction, was not provided.

Motion-mode (M-mode) is an echocardiography technique that provides a
one-dimensional view of the tissue along a specific ultrasound beam in different
temporal instances, enabling the analysis of tissue motion from 2D images, where
the x-axis represents time. Due to its high temporal resolution, it is often used
for septal motion analysis and SF detection [6]. A variant of M-mode, known
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as anatomical M-mode [4], allows the extraction of M-mode images along freely
specified lines as a post-processing.

In this work, we obtain localization maps of SF prediction from 2D echocar-
diographic sequences. We take advantage of virtual M-mode images to use gradient-
based class activation maps that consider both spatial and temporal aspects of
the sequence. We thoroughly evaluate their ability to localize SF by their pro-
vision of discriminant image regions employed in the model’s output prediction,
which can help to better interpret echocardiographic images, in a longer term
objective of assisting less experienced clinicians to find SF and develop an inter-
active process.

2 Methods

2.1 Dataset

In this study, the dataset was provided by the Hospital Clínic de Barcelona. It
consisted of 2D ultrasound sequences (GE Vingmed Ultrasound A.S., Horten,
Norway) with the corresponding electrocardiogram (ECG) from 89 CRT pa-
tients acquired both at baseline (n = 89) and 12 months follow-up (n = 89)
after the CRT implant. The CRT inclusion criteria corresponded to the interna-
tional guidelines: symptomatic heart failure with QRS duration >120 ms, and
NYHA classification III-IV or NYHA II who covered less than 500 meters in
the 6 minutes walking test. The transthoracic echocardiography sequences were
acquired in an apical four-chamber view, useful for the assessment of abnormal
septal motion. After the deletion of corrupted sequences, we analyzed a total of
143 sequences of two subpopulations, with (n = 55) and without SF (n = 88).

The SF/non-SF labels were annotated by one experienced observer and
controlled by another experienced observer. Septal segmentations at the end-
diastolic frame were provided as a sequence of 62 points with spatial and tem-
poral normalization, also manually marked.

2.2 Virtual M-mode generation

Ultrasound data was provided in echoline format and a B-mode scan reconstruc-
tion was performed with isotropic pixel size of 0.03 mm. The average frame rate
was 60 fps. Using the R peaks of the ECG, the frames corresponding to one
complete cardiac cycle were extracted (30-150 frames). The reconstructed image
sequence was resized to 500× 500 pixels, reducing computational complexity for
posterior M-mode generation.

The generation of a virtual M-mode image post-hoc from a B-mode sequence
implies reading 2D pixel samples along a specified line for each frame. To achieve
this whilst capturing the septal motion, a cut plane in the direction perpendic-
ular to the septum was applied to slice the B-scan considering the concatenated
temporal frames as third dimension. Figure 1 illustrates the steps involved in
the M-mode generation. Two points above and below the septal point of inter-
est (mid-basal region), automatically extracted from the septum segmentation
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Fig. 1. Steps for virtual M-mode generation. Left: B-mode sequence with septum per-
pendicular vector (arrow) defined from two points (in red) sampled from septum seg-
mentation (in green). Middle: synthetic M-mode. Right: resized M-mode

as the 10th and 20th point, were used to define the tangent direction of the
mid-myocardium, from which the normal vector, in the direction towards the
LV blood pool, was computed (Fig. 1-left). To slice the B-scan sequence as a
2D+t volumetric image, the vtkImageReslice() function from the VTK library
in Python was employed. Fig. 1-middle illustrates the cut image, where the x-
axis corresponds to the number of frames and the y-axis to the grayscale pixel
intensities along the vector perpendicular to the septum, from the RV region
(above) to the LV lateral wall (below). Finally, a temporal resampling was ap-
plied to generate the final M-mode image with 500 × 500 pixels (Fig. 1-right).
The proposed approach enabled the semi-automatic extraction of anatomical
M-modes, in contrast to conventional methods [4].

2.3 Preprocessing and data augmentation

To evaluate the impact of extracting the region of interest on SF recognition
rate, an additional dataset was created by cropping the synthetic M-modes.
Specifically, the M-mode images were cropped along the spatial axis, considering
only the upper half region of the image scan that contains the septum. Moreover,
given that SF occurs very early in the cardiac cycle, the M-mode was cropped
along the temporal axis to retain the initial half of the cardiac cycle. Both the
original and cropped M-mode datasets were used to develop SF classification
models described in Sec. 2.4.

Data augmentation allows increasing the performance of image classification
tasks. In this work, data augmentation was applied both offline and online for
each dataset. The offline data augmentation increased the number of M-mode
image training samples by a factor of 11 through sampling 5 additional septum
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segmentation points above and below the original septal point and extracting
the M-mode at different septal locations, without varying the normal vector.
Random perturbations of the image contrast were applied online in the range
[0.5, 2], adding further image variations after every epoch. For image normal-
ization purposes, mean subtraction was applied to every input image from the
mean image of the training dataset. All input images were resized to 256× 256
pixel size.

2.4 CNN model architecture and experimental settings

The CNN-based model implemented in this work adopted the DenseNet121 ar-
chitecture, relevant for classification problems, as a backbone, and it was ini-
tialized with weights from RadImageNet [10] pre-trained models, designed for
transfer learning in medical imaging applications to reduce computational and
data expenses [2]. A fully connected layer with 2 output units and a softmax
activation function were added to the DenseNet121 backbone to obtain the final
binary classification output. After initializing with the pre-trained weights, the
full architecture was retrained. The model was trained for 5 epochs (which was
enough for convergence, probably thanks to pre-training) with an initial learning
rate of 0.001, batch size of 4 and Adam optimization.

Two experiments were performed, on the cropped and original datasets with
similar settings. The stratified training/test dataset split was performed with
a ratio of 80:20 based on patient identifier to avoid placing highly correlated
samples of the same patient in different groups and reduce overfitting. The same
procedure was followed to generate the validation set from the training set. All
experiments were implemented on NVIDIA Tesla T4 GPU with Python and
Keras library. Once trained, the testing samples were employed to evaluate the
diagnostic performance of the model with the area under the curve (AUC) and
the accuracy as evaluation metrics.

2.5 Implementation of Grad-CAM++ attention method

To localize SF, the discriminative image regions used by the CNN to predict
the output were identified through Grad-CAM++ attention maps [5] on the
test samples. This algorithm is a visualization tool to better understand CNN
model predictions through class-specific activation maps. The activation maps
represent regions (with higher intensity) of the input image where the CNN
model has "looked" to output the predicted class.

To estimate these regions, Grad-CAM++ computes the gradients of the pre-
dicted class with respect to the last convolutional layer. In this work the last
convolutional layer of DenseNet121 was selected with feature map pixel dimen-
sions of 8 × 8. The obtained heatmap was normalized in the range [0,1] and
upsampled to input image resolution. The attention algorithm was implemented
through the ’tf-keras-vis’ visualization toolkit [9].
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Table 1. Test accuracy and area under the curve (AUC) of convolutional neural net-
work (CNN) models trained with virtual original M-mode and cropped M-mode images

CNN Model Accuracy AUC
w. original M-mode 0.83 0.95
w. cropped M-mode 1.00 1.00

3 Results

The models were trained and evaluated with 91 training patients and 23 vali-
dation patients (respectively 5005 and 253 samples due to off and on-line data
augmentation), and 29 testing patients.

3.1 Results on the test dataset

To evaluate the trained models, the test dataset was preprocessed as done for the
training set but without the data augmentation. Table 1 shows the test results
for the models trained with the original M-mode and the cropped M-mode. The
network trained with cropped images obtained the highest accuracy (100%),
although accuracy for the model trained with original M-mode was reasonably
high (83%). The AUCs for the cropped and original M-mode models were 1.0
and 0.95, respectively.

3.2 Grad-CAM++ visualization on the test dataset

Figure 2 shows Grad-CAM++ visualization results on 4 test patients with cor-
rect output predictions from original M-mode (Fig. 2, 1st and 3rd column) and
cropped M-mode (Fig. 2, 2nd and 4th column) CNN models. On patients with SF
(top rows) we observe that both CNN models accurately localize the region of SF
occurrence, both along the spatial (vertical) and temporal (horizontal) axis, as
the regions with high activation occur between mitral valve closure (MVC) and
aortic valve opening (AVO). In the non-SF cases (bottom rows) the heatmaps
appear with less localized attention, specially in the cropped M-mode model
where other areas towards the RV region have been activated.

Figure 3 shows Grad-CAM++ visualization results for patients that were
incorrectly predicted by the original M-mode model. As observed in the cor-
responding attention map, the network failed to detect the discriminant image
features related to SF, thus leading to activated regions far from the septal re-
gion. In the first patient (Fig. 3, 1st column) the M-mode exhibits low contrast
between septum and LV blood pool, which might explain the failure in the lo-
calization. The last two columns correspond to incorrect predictions of SF for
non-SF cases. In the first one, the attention map appears focused on the septum,
likely due to the detection of a perturbation similar to SF. On the second one,
regions corresponding to the LV lateral wall appear mistakenly activated.
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Fig. 2. Grad-CAM++ heatmap results for septal flash (SF) and non-SF correct predic-
tions. 1st and 3rd column: extracted from original M-mode trained model. 2nd and 4th
column: extracted from cropped M-mode trained model. MVC; mitral valve closure.
AVO; aortic valve opening

4 Discussion

In this work we proposed the development of 2D SF detection models from gen-
erated anatomical M-mode images and the localization of SF through gradient-
based attention maps.

In the test dataset, the model trained with original virtual M-modes ob-
tained a reasonably high accuracy, with a higher precision for non-SF cases. The
network’s performance further improved to a perfect classification accuracy of
100% when trained with cropped images around the temporal and spatial region
of interest. However, this increased (and perfect) accuracy may be due to the
over-simplification of the SF classification problem by reducing the search area.
The experiment demonstrated the feasibility of SF detection from the generated
M-modes. Nonetheless, it is crucial to acknowledge the potential limitations of
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Fig. 3. Grad-CAM++ heatmap results for septal flash (SF) and non-SF incorrect pre-
dictions from original M-mode model. pred: predicted class, gt: ground-truth class.
MVC; mitral valve closure. AVO; aortic valve opening

the experiment and model, including the generalizability of the results to differ-
ent datasets.

The accuracy of the cropped M-mode classification model surpasses the per-
formance reported in previous studies, including state-of-the-art CNN-based de-
tection from US sequences (LACNet, 91% [13]) or machine learning-based clas-
sification from myocardial strain (linear discriminant analysis (LDA), 94% [16]).
These findings indicate that the cropped M-mode model has the potential to be
an effective approach for SF detection in medical imaging. However, each test
dataset is unique and further evaluation with large and external testing databases
is necessary to comprehensively understand the effectiveness and limitations of
the model for SF classification.

Gradient-based class activation maps were employed to visualize the differen-
tiating image regions for the network’s output prediction. As observed in Fig. 2,
for SF prediction (Fig. 2, 2nd row) the attention maps show a localized acti-
vation in the septum, specifically in the motion abnormality temporal region
(between mitral valve closure and aortic valve opening). This suggests that the
network has successfully learnt the discriminant image features characterizing
SF in images with different septum localization and different septum/LV blood
pool contrast, a necessary requirement for generalization purposes. On the other
hand, for the case of non-SF patients (Fig. 2 bottom row), the attention maps
show higher activations in regions other than the septum and in general, a higher
dispersion. This is especially observed on the cropped M-mode activation maps
(Fig. 2, 2nd and 4th column). Our hypothesis is that upon not finding the char-
acteristic motion perturbation of SF, the networks focuses on random locations;
however, further testing is needed to confirm this. Regarding the wrongly clas-
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sified SF cases (Fig. 3, 1st and 2nd column), the attention maps have difficulty
focusing on the SF region, as expected. Whilst for the non-SF cases, (Fig. 3,
3rd and 4th column), it appears that the network wrongly focused on specific
temporal (3rd column) and spatial regions (4th column) not corresponding to
the SF region, which could have led to the incorrect classification as SF.

The development of 2D SF detection models from generated anatomical
M-modes has shown promising results. Nonetheless, concerning the proposed
methodology of anatomical M-mode generation, the processing algorithms re-
quired to downsize the original reconstructed B-mode sequence for computa-
tional complexity reasons, with the corresponding loss of spatial resolution. Also,
although superimposing gradient-based activation maps allows qualitative as-
sessment of where the network focused its attention, to draw deeper conclusions,
we propose as future work to extract quantitative metrics from the attention
maps, similar to Schöttl et al. [14], and to analyse the differences in the attention
distribution for SF and non-SF populations. Finally, the proposed SF detection
model should be further evaluated with external databases. Further work will be
conducted to evaluate SF localization from gradient-based approaches in models
trained for CRT response prediction.
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