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Abstract 
Cellular architectures are promising in a variety of engineering applications due to 

attractive material properties. Additive Manufacturing (AM) has reduced the difficulty in 

the fabrication of three dimensional (3D) cellular materials. In this paper, the numerical 

homogenization method for 3D cellular materials is provided based on a short, self-

contained Matlab code. It is an educational description that shows how the homogenized 

constitutive matrix is computed by a voxel model with one material to be void and 

another material to be solid. A voxel generation algorithm is proposed to generate the 

voxel model easily by the wireframe scripts of unit cell topologies. The format of the 

wireframe script is defined so that the topology can be customized. The homogenization 

code is then extended to multi-material cellular structures and thermal conductivity 

problems. The result of the numerical homogenization shows that different topologies 

exhibit anisotropic elastic properties to a different extent. It is also found that the 

anisotropy of cellular materials can be controlled by adjusting the combination of 

materials.  

Keywords: Cellular material; Lattice structure; Matlab; Numerical homogenization 

1. Introduction 
Cellular materials are evolved from nature to achieve high stiffness and strength with low 

density. Humankind had manufactured cellular architectures such as foams and 

honeycombs to mimic natural cellular materials decades ago. However, they were less 

sophisticated than natural cellular materials due to the limitation of manufacturing 

techniques. Recently, with the development of Additive Manufacturing (AM), cellular 

materials have been fabricated with more complicated structures and novel architectures 

[1]. The lattice structure, which is a type of cellular material with interconnected structs 

and nodes in a three-dimensional (3D) space, has been successfully manufactured by 

several types of AM techniques. Due to controllable properties, periodic lattice structures 

with different topologies and relative densities are widely used in engineering 

applications for high stiffness-to-weight ratio [2, 3], energy absorption [4], thermal 

management [5], etc. 
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The complex structure of cellular materials not only makes it difficult for fabrications but 

also leads to high computational cost for the simulation of their property. Because of 

small features inside the material, Finite Element Analysis (FEA) requires fine mesh to 

model cellular materials. If the structure is constructed by lots of unit cells, the 

computational cost is extremely high. To reduce the complexity of simulation, 

homogenization methods can be used to compute the macroscopic cellular material 

properties. Homogenization refers to a method that can replace the composite with an 

equivalent material model in order to resolve the difficulty in the analysis of boundary 

value problem with high heterogeneities [6]. In this method, the local problem is solved 

to obtain the homogenized material property based on unit cell. Then the overall problem 

is computed by assigning a solid material with the homogenized property to substitute the 

periodic structure. 

Asymptotic homogenization has been widely used to characterize the mechanical 

properties of cellular materials for several decades. It assumes that each field quantity 

depends on two different scales, macroscopic level, and microscopic level. The basic 

theory has been detailed covered in some literature [7, 8]. Bendsoe and Kikuchi [9] used 

this method to get the effective elastic modulus of a unit cell. It was also implemented in 

a design procedure to find the optimal topology of a unit cell under a certain boundary 

condition. Arabnejad and Pasini [10] investigated the mechanical properties of 6 different 

lattice topologies for a whole range of relative density by asymptotic homogenization. 

The homogenization equation is discretized and solved via FEA. This is often referred as 

numerical homogenization. Hassani and Hinton [6, 11] reviewed the methods of 

numerical homogenization to solve general boundary value problems with periodic 

boundary conditions. Andreassen and Andreasen [12] summarized the formula to 

compute the homogenized elasticity tensor      
  and used numerical methods to solve the 

two-dimensional (2D) homogenization problem by Matlab.      
  can be computed as: 
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where       is the locally varying elasticity tensor,     is the volume of the unit cell, 

   
     

 are prescribed macroscopic strain fields, while the locally varying strain fields    
    

 

are defined as: 
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where     is the displacement fields which can be found by solving the following 

equation: 
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where   is a virtual displacement field. The code provided in [12] can solve Eq.(3) and 

computes the homogenized elasticity tensor for a 2D composite materials. It can also be 

used to solve 2D cellular material by assigning an extremely soft second material. 



 

However, as AM has greatly relieved the manufacturing constraints in the fabrication of 

three-dimensional (3D) cellular materials, the interest in cellular materials is shifting 

from 2D to 3D. 3D cellular materials have more design freedoms so that the mechanical 

performance can be further optimized than 2D cellular materials. The implementation of 

2D problem detailed in [12] is not enough for the need of designers. Nevertheless, the 

difficulty in the analysis of cellular materials is increased by adding one dimension. The 

existing homogenization implementations for 3D problem mathematically complex, 

which hinder designers without strong mathematical backgrounds from utilizing those 

approaches. Therefore, it is necessary to have a simple, self-contained code that can 

analyze the mechanical properties of 3D cellular materials. 

In this paper, an educational Matlab code is provided in Appendix A, which can compute 

the homogenized constitutive matrix for 3D cellular materials. It removes the barrier for 

designers who want to use the numerical homogenization. It also gives instructions for 

those who want to understand how the asymptotic homogenization method is 

implemented. The implementation of the homogenization code is restricted to analyzing 

the linear elastic property of the cellular material. The input of this code is a 3D voxel 

model with isotropic material properties for each element. The voxel model can be 

obtained by the voxelization of the geometrical model. Furthermore, to reduce the 

complex procedure of geometrical modeling and voxelization of 3D cellular materials, a 

simple and concise Matlab code provided in Appendix A can directly generate the voxel 

model of predefined topologies. In Section 2, the voxelization code is introduced. The 

format of the predefined topology will be explained, which is the input of the 

voxelization code. In Section 3, the implementation of numerical homogenization will be 

illustrated. Section 4 discusses the result obtained from the homogenization code. In 

Section 5, some extension of the Matlab code will be introduced to broaden the 

application. Finally, this paper is wrapped up in Section 6 with some future work. 

2.Voxel Generation 
Numerical homogenization requires a finite element model of the lattice structure. That 

means a geometrical model should be generated at first. Then, the geometrical model is 

discretized by 3D solid elements. These procedures are tedious and time-consuming. 

Another way is to use a voxel model to represent the lattice structure. This still requires 

the generation of the geometrical model. To facilitate the procedure of getting the 

homogenization model of lattice structures, a voxelization algorithm based on the lattice 

wireframe has been proposed. In this algorithm, the voxels are directly generated from 

the lattice wireframe, which skips the generation of the geometrical model. This voxel 

model can be used as an input to the numerical homogenization code. 

2.1 Read the information of lattice wireframe (lines 50-72) 

To generate the voxel model, the information of the lattice topology wireframe needs to 

be pre-defined. The wireframe contains two parts, GRID, and STRUT. GRID defines the 

coordinates of all the node in the wireframe. Its format is shown in Table A1 in Appendix 

C, where ‘ID’ is the grid index; ‘x’ is the x-coordinate; ‘y’ is the y-coordinate and ‘z’ is 



 

the z-coordinate. STRUT defines the start grid index and end grid index. Its format is 

shown in Table A2 in Appendix A, where ‘ID’ is the strut index; ‘Start’ is the grid index 

of the start node; ‘End’ is the grid index of the end node. These grid indices refer to the 

‘ID’ in the GRID. Each field of GRID and STRUT take 8 spaces. The wireframe script 

can be downloaded from the link in Appendix A. Furthermore, users can define new 

wireframe script based on the format shown in Table A1 and Table A2 in Appendix A. 

The visualization of these topologies is shown in Figure 1. 

Cubic X-shape Cubic center Face center Octet Tesseract Vintiles

 

Figure 1 Wireframe of seven topologies. 

The next step is to use the information of the wireframe to generate the voxel model. The 

Matlab code provided in Appendix A named ‘GenerateVoxel.m’ computes the voxel 

model. The first argument (n) is the resolution of the voxel, which means the number of 

voxels along x, y and z-axis. The second argument (address) is the address of the 

wireframe file. The third argument (radius) is the radius of the lattice strut. There are two 

outputs. The first output ‘voxel’ is a 3D logical matrix, in which ‘0’ means the voxel in 

this place does not have material; ‘1’ means this voxel has material. The second output 

measures the relative density of the lattice structure. 

2.2 Generate the voxel in the design space (lines 7–21) 

The design space in this research is dimensionless, which is inside a cube with a unit 

length. By dividing the unit length with the number of voxel on each axis, the size of 

each voxel can be obtained. To store the information of each voxel, the index and the 

center coordinates are calculated and saved. The index is used to identify the position of 

the voxel in the 3D logical matrix. As shown in Figure 2(a), the voxels are all generated 

in the first octant of the 3D Cartesian coordinate and they start from the origin. Figure 2(b) 

shows voxel in each layer along the z-axis. The gray voxel means it has material while 

the white color means there is no material in this voxel. The 3D logical matrix that 

represents this voxel model is shown in Figure 2(c). The coordinates measure the center 

position of each voxel which is used to calculate the distance between the voxel and the 

lattice strut. Once the number of voxels along each axis is determined, the size, index, 

and position of each voxel can be generated. 
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Figure 2 An example of the voxel model of a lattice structure with cubic topology. 

2.3 Determine if the voxel has material (lines 23-46) 

After the generation of voxels, the next step is to determine if the voxel has material. The 

criterion is to measure the minimum distance from the center of the voxel to each line 

segment of the wireframe. If the distance is less than the radius of the lattice strut, that 

means this voxel is inside the lattice. Therefore, the value of this voxel will be set to ‘1’, 

which means it has material. Otherwise, the value of this voxel will be set to ‘0’, which 

means it is empty. When calculating the minimum distance, two cases should be 

considered as shown in Figure 3. Two planes, Plane A and Plane B are defined to 

distinguish Case (1) and Case (2). Plane A and Plane B are located at the start point and 

the end point of the line segment, respectively. Both planes are perpendicular to the line 

segment. In Case (1), the center of the voxel is located inside the area between Plane A 

and Plane B. In this case, the minimum distance is from the center point to the line. 

However, if the center of the voxel is located outside the area between Plane A and Plane 

B, which is Case (2), the minimum distance is from the center point to the start point or 

the end point of the line segment. If the center point is exactly on Plane A or Plane B, it is 

included in Case (2).  
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End 
Point
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Figure 3 Two cases when calculating the minimum distance from voxel center to the line segment of 

lattice wireframe. 

To decide whether a voxel is in Case (1) or Case (2), two angles,   and   are defined in 

Figure 3. If both   and   are acute angles, this voxel is in Case (1). Otherwise, it is in 

Case (2). Therefore, the first step to determine whether a voxel has material or not is to 



 

calculate   and  . Then, the minimum distance between the voxel center and the ling 

segment is determined. The last step is to compare the minimum distance with the radius 

of lattice strut. If the minimum distance is smaller than the radius, the index of this voxel 

will be set to ‘1’. Otherwise, it is set to ‘0’. After calculating all the voxels, the 3D logical 

matrix represents the voxel model of lattice structures is obtained. Examples of voxel 

models for seven topologies of lattice structures are shown in Figure 4. These models can 

be directly used for the proposed homogenization method in Matlab. 

Cubic X-shape Cubic center Face center Octet Tesseract Vintiles  

Figure 4 Voxel models of seven topologies. 

3.Matlab Implementation for 3D Homogenization 
In the implementation of numerical homogenization by Matlab, there are three inputs (lx), 

(ly) and (lz) indicate the length of the unit cell along x, y, and z-axis, respectively. The 

input arguments (lambda) and (mu) are the Lame’s first and second parameter for the 

solid material which the lattice structure is made of. The last input argument (voxel) is 

the material indicator matrix, which specifies whether a finite element contains materials 

(        ) or not (        ). This matrix can be obtained by the method proposed in 

Section 2. It requires the finite elements with materials to be connected. If they are not 

connected, a two materials model with a very soft second material should be used, which 

will be introduced in Section 5. 

1 2

3
4

5
6

78

ξ

μ

η

 

Figure 5 Local node numbers and the natural coordinate of hexahedron element. 

3.1 Stiffness matrix and load vectors of hexahedron (lines 99-149) 

The type of element used in this homogenization is an 8-node hexahedron element [13]. 

The local node number of hexahedron element is shown in Figure 5. The natural 

coordinates for it are called  ,  , and  . These coordinates are also shown in Figure 5. The 

shape function can be summarized as: 

   
  

 

 
                       (4) 



 

where   ,    and    are the natural coordinates of the     node. The element stiffness 

matrix is given by the standard formula: 

                   
     (5) 

where B is the strain-displacement matrix, C is the constitutive matrix for the element, 

which is constant over the element. The material is assumed to be isotropic over each 

element. The constitutive matrix can be expressed by Lamé’s parameters as: 
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where      and      are the first parameter and second parameter of Lamé’s constants. 

They can be computed by the following formula [14]: 
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where E is Young’s modulus and   is the Poisson’s ratio. By using Lamé’s parameters, 

the element stiffness matrix can be split into two parts as 

                    (8) 

which will simplify the extension to two or more materials. However, it should be noted 

that Eq. (8) is restricted to isotropic materials. The load vector is calculated by the 

macroscopic volumetric straining 

     
                

     (9) 

where the macroscopic strains are 

                                                      

                                                       (10) 

Similarly, the load vector     
  can also be split into two parts as 

     
        

        
  (11) 

The split parts of element stiffness matrix and load vector are calculated by calling the 

function ‘hexahedron’, which will output   ,   ,   
  and   

 .  

3.2 Periodic boundary conditions (lines 22-39) 

The structure of the mesh to model the unit cell is illustrated in Figure 6. There are 8 

elements in this example. The ID of each element is shown in Figure 6(a). The nodes can 

be divided into three layers. Firstly, the node number without the periodic boundary 



 

condition for each node are shown in Figure 6(b). As for each element, the 24 degrees of 

freedom are saved in ‘edof’. Each row of ‘edof’ is for one element and the bold number 

represent the element Id. The sequences of degrees of freedoms in each row of ‘edof’ are 

arranged according to the local degrees of freedoms. To demonstrate it, the comparison 

between global node numbers and local node numbers for the first element is shown in 

Figure 6(c). Secondly, lines 24-32 generate the periodic boundary condition by mirroring 

the back, left and top border in sequence and the periodic degrees of freedom are shown 

in Figure 6(d). The relationship between the non-periodic and periodic degrees of 

freedom is obtained in lines 34-37 and stored in ‘dofVector’. Finally, line 38 updates the 

degrees of freedom of each element from non-periodic to the periodic condition. 

Layer 1

Layer 2

Layer 3

Z

X

Y

Layer 1 Layer 2 Layer 3
X

Y
(c)

(a)

1

2

3

4

5

6

7

8

1 3 5 7

1

2

1

5

6

5

1

2

3

4

1 3

1

2

1

2 4
1 3

6 8
5 7

Layer 1 Layer 2 Layer 3X

Y (b)

1

2

10

11

13

14

3 12 15

16

17

18

19

20

22

23

21 24

25

26

27

4

5

6

7

8

9

1 2

3
4

5 6

78

2 5

41

11 14

1310

(d)

Global node number Local node number
 

Figure 6 An example of hexahedron mesh used to model the unit cell, (a) the ID of each element, (b) 

the non-periodic node number, (c) global node number of element 1 compared to local node number, 

(d) periodic node numbers. 

3.3 Global stiffness matrix and load vector (lines 42-55) 

Before assembly of the global stiffness matrix, the indices of the non-zero entries in the 

global stiffness matrix are created in two vectors by line 42 and 43. These two vectors are 

used to denote the position of the entry in the global stiffness matrix. For single material 

lattice structures, there are two types of elements. One type is the solid part that will be 

assigned to material properties. The other type is void in the lattice structure, where the 

Lamé’s parameters are zero. Line 45 creates the matrices with material properties      

and      for each element by the indicator matrix ‘voxel’. These matrices are then used to 

compute the stiffness matrix for each element by multiplying the material properties      

and      with    and    in line 47. After obtaining the stiffness matrix for each element, 

the sparse global stiffness matrix is assembled by indices vectors and element stiffness 

matrix in line 48. Due to rounding errors, the global stiffness matrix may not be exactly 

symmetric. Line 49 can eliminate the error to make the matrix symmetric so that the 

speed of the solver can be accelerated. For 3D problems, the computational cost could be 



 

a problem. Therefore, the symmetry of global stiffness matrix is important in solving the 

large system of linear equations. 

In the assembly of load vectors, the indices vectors ‘iF’ and ‘jF’ are generated in lines 51-

52 to denote the row and column of non-zero entries of the global load vector. For the 

element with solid materials, the local load vector is calculated by multiplying the 

material properties      and      with    and    in line 54. For the elements that are void, 

the load vectors are zero. Finally, the global load vector is assembled in line 55. 

3.4 Solution by PCG method (lines 59-66) 

Compared with two-dimensional problems, the 3D problem considerably increases the 

computational cost. Using         in Matlab to solve global equation cost a lot of 

memory if the number of elements is large. Preconditioned conjugate gradients (PCG) 

method is used to solve the system of linear equations. Even though it not as fast as using 

         in some cases, it can save lots of memory. The comparison between these two 

methods are shown in Table 1. It is found that both methods have advantages in different 

cases. In this code, PCG is the default method. However,         is also an optional 

method which is deactivated in lines 65-66. If users need to use the direct method, they 

can simply activate lines 65-66 and deactivated lines 60-64. It should be noted that when 

using PCG method, the matrix should be symmetric and positive definite. The global 

stiffness matrix satisfies these requirements so that it can be efficiently solved by PCG 

method. To accelerate the speed of computation, only the degrees of freedom of element 

with solid materials are activated in line 58. The void element without material properties 

will not be considered in the computation. But this procedure requires these active 

elements to be connected. 

 Table 1 The comparison between the PCG method and the direct method 

   PCG method         
Resolution Topology Relative 

Density 

Memory 

(MB) 

Time (s) Memory 

(MB) 

Time (s) 

50 Grid 
30% 3250 46 6300 15 

50% 3690 77 19600 127 

 

To accelerate the convergence of PCG method, a proper preconditioner should be 

obtained at first. The function ‘ichol’ with only one input argument is used to construct 

an incomplete Cholesky factorization with zero fill. The output can be used as a 

preconditioner in PCG method. Furthermore, the PCG method should specify the 

tolerance and the maximum number of iteration. If the relative residual is less than the 

tolerance or if the number of iteration exceeds the maximum value, the PCG method will 

stop and return a result with the minimum relative residual. In this paper, the default 

tolerance is       and the maximum number of iteration is 300. These two parameters 

can be adjusted by users. For instance, a lower tolerance and a larger number of iteration 

will return a more accurate result but it takes more time to run the PCG method. In lines 

61-64, PCG is run six times to get the displacement field under six loading conditions. 



 

3.5 Homogenization (lines 69-96) 

The homogenization procedure is similar to the procedure for two-dimensional problems 

proposed by Andreassen and Andreasen [12]. Firstly, the element displacements 

corresponding to unit strain cases are found in lines 69-82. Elements’ nodal displacement 

are solved under the uniform strains in Eq. (3). The difference between the 2D and 3D 

problem is the number of constrained degrees of freedom. The 2D problem only needs to 

constrain 3 degrees of freedom, while the 3D problem needs to constrain 6 degrees of 

freedom so that the element stiffness matrix is not singular. Line 72 explains which 

degrees of freedom are constrained to calculate the elementary displacements. Because 

all the elements are equivalent, the resulting displacements are the same for each element. 

The next step is to use the element displacements and the global displacement field to 

calculate the homogenized constitutive matrix   . The entries in    can be calculated by 

the following equation: 
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where     
    

 is the element displacements corresponding to the  th unit strain in Eq. (10). 

    
   

 is the displacement field obtained from the global stiffness equation.   is the total 

volume of the unit cell of the lattice structure. The summation is computed in line 85-96. 

The   part and   part are computed separately and these two parts are multiplied with      

and     . Then, the result for all the element are summed together to get    
 . After the 

iteration for all six unit strains, the     homogenized constitutive matrix    is obtained. 

4. Results and Discussion 

4.1 Homogenized constitutive matrix 

In this sub-section, an example is used to illustrate how to use the proposed method to get 

the homogenized property of lattice structures. To run the homogenization code, the 

voxel model has to be generated first. The lattice structure with the cubic topology is used 

as an example. The strut radius of the lattice structure is set to be 0.1; the path of the strut 

file is saved in variable ‘address’; the resolution is set to be 50. Run the file 

‘GenerateVoxel.m’ that can be downloaded in Appendix A as: 

[voxel,Density] = GenerateVoxel(50,address,0.1); 

where ‘voxel’ is a logical matrix that indicates the element in the lattice structure has 

materials or not. ‘Density’ estimates the relative density of this lattice structure, which is 

8.44% in this case. The next step is to determine material property. It is assumed that the 

Young’s modulus of the material is 200GPa and the Poisson’s is 0.3. From Eq.(7), the 

Lame’s first and second parameters are calculated as 115.4 and 76.9, respectively. The 

size of the unit cell is 1 in x, y, and z-direction. Run the file ‘homo3D.m’ that can be 

downloaded in Appendix A as: 

CH = homo3D(1,1,1,115.4,79.6,voxel); 



 

The homogenized constitutive matrix is 

    

 
 
 
 
 
 
 
 

0.1400000

00.140000

000.14000

0007.060.370.37

0000.377.060.37

0000.370.377.06

 
 
 
 
 
 
 
 

 (13) 

From the homogenized constitutive matrix, it can be concluded that this lattice structure 

has orthotropic material properties. Because of symmetry, the property along x, y and z 

directions are the same. To get the Young’s modulus along the axial direction, the inverse 

of the constitutive matrix should be calculated, which is the homogenized compliance 

matrix   . In the compliance matrix, it has: 

    
  

 

  
    

  
 

  
    

  
 

  
 (14) 

where   ,    and    are the Young’s modulus along x, y, and z-direction. From Eq. (14), 

it can be computed that                   . Because the material property is 

anisotropic, the Young’s modulus is different along different orientations. To get the 

Young’s modulus in other directions, the constitutive matrix has to be transformed. 

Firstly, the     constitutive matrix is rewritten as a fourth-order stiffness tensor. Then 

the tensor is transformed with a rotation matrix. The transformed tensor can be used to 

get elastic modulus along the new direction. Through this procedure, directional 

properties of a cellular can be obtained.  

The proposed method can also be used to homogenize the periodic cellular materials with 

the randomized unit cell as shown in Figure 7. The length of the randomized unit cell is 2 

in x-axis and 1 in y, z-axis. Therefore, the input of the unit cell length in the code should 

correspond to designed length. The dimension of the voxel model of the unit cell is 

          as shown in Figure 7(c). Run the file ‘homo3D.m’ that can be 

downloaded in Appendix A as: 

CH = homo3D(2,1,1,115.4,79.6,voxel); 

The result of this type of cellular material is                                 . 



 

 

Figure 7 An example of periodic cellular materials with randomized unit cell 

4.2 Effective Young’s modulus surface 

To further illustrate how the homogenized constitutive matrix    can be used to predict 

the elastic properties of lattice structure in different directions. Seven types of topologies 

listed in Figure 1 have been analyzed by the proposed Matlab code. The bulk material 

properties are the same as those used in Section 4.1. For each topology, the voxel model 

of lattice structure is generated with three different relative density: 10%, 30% and 50%. 

Because the total strut lengths in different topologies are different, the strut radius need to 

be determined case by case. Table 2 shows the strut radius for each topology with 

different relative densities. The strut radius is dimensionless and the length of the unit 

cell is regarded as 1. 

Table 2 Strut radius of lattice structures with different topologies 

 Cubic X-shape Cubic 

center 

Face 

center 

Octet  Tesseract Vintiles 

10% 0.113 0.074 0.063 0.058 0.045 0.054 0.065 

30% 0.208 0.134 0.114 0.109 0.087 0.100 0.128 

50% 0.287 0.187 0.157 0.150 0.120 0.138 0.177 

 

Because the elastic properties of lattice structures exhibit high anisotropy, the 

homogenized Young’s modulus varies in different orientations [15]. To illustrate the 

anisotropy of different types of lattice structures, the effective Young’s modulus surfaces 

are used to display the Young’s modulus in all the directions in a 3D space as shown in 

Figure 8-10. 
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Figure 8 Effective Young’s modulus of lattice structures with 10% relative density. 
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Figure 9 Effective Young’s modulus of lattice structures with 30% relative density. 
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Figure 10 Effective Young’s modulus of lattice structures with 50% relative density. 

It can be found that the Cubic and X-shape topologies exhibit the higher anisotropy than 

other topologies. Because for isotropic materials, the Young’s modulus surface should be 

a spherical surface that means the Young’s modulus is identical in all directions. 

However, the Cubic topology has much higher Young’s modulus in axial directions while 

the X-shape topology has higher Young’s in diagonal directions. When the relative 

density is 10%, the strength of these two topologies in weak direction is close to zero, 

which means they are very soft in those directions (diagonal direction for Cubic and axial 

direction for X-shape). However, with the increase of relative density, the anisotropy in 

these two topologies is decreasing. For instance, the maximum Young’s modulus is more 

than 10 times larger than the minimum Young’s modulus of the Cubic topology when 

relative density is 10%. But the ratio is reduced to around 2:1 when the relative density 

increases to 50%. The X-shape topology follows the similar trend. Even though they 

exhibit high anisotropy, the maximum Young’s modulus in these two topologies is higher 

than other topologies. Therefore, if the principal stress is in a certain direction, these two 

topologies might be preferred. But if the loading case is varying and the stress field is 

complex, these two topologies with a low relative density should be avoided. 

The material property of Tesseract topology also exhibits high anisotropy when the 

relative density is low. But when the relative density reaches to 50%, it is close to 

isotropic materials. As for Cubic-center, Face-center, Octet and Vintiles topologies, they 

are less anisotropic compared to other topologies. For example, when the relative density 

is 10%, the Face-center topology has a maximum Young’s modulus around 5.5 GPa and 

a minimum Young’s modulus around 4.8 GPa. It is suitable for complex loading cases 

because the stiffness in all the directions is higher than other topologies. Furthermore, the 

anisotropy of these four types of topologies does not reduce much with the increase of 

relative density. It is also found that these topologies have a lower maximum Young’s 

modulus than Cubic and X-shape topologies. However, the Tesseract topology has a 



 

lowest maximum Young’s modulus in all topologies. Therefore, if the design objective is 

a high stiffness, it should be avoided to use Tesseract topology. Another interesting 

finding in Figure 10 is that these topologies can be classified into two groups according 

to the direction of their maximum Young’s modulus. The Cubic, Face-center, Tesseract, 

and Vintiles topologies have a higher stiffness along axial directions. On the contrary, the 

X-shape, Cubic-center and Octet topologies have a higher stiffness along diagonal 

directions. As a result, designers can choose the topology based on the direction of the 

principal stress if a higher stiffness is required. The result from the homogenization code 

can be used as a guide for designers to make decisions. 

4.3 Convergence of the result 

It is known that a higher resolution will result in more computational costs. Appropriate 

voxel size must be chosen to ensure accurate results with allowable computational costs. 

In this subsection, the relationship between the resolution of the voxel model and the 

convergence of the result will be discussed. The Cubic-center topology is used in this 

investigation. The resolution is set from 20 to 100 with 5 as an increment.  The resolution 

means the number of voxels in the voxel model along x, y, and z-direction. The axial 

Young’s modulus is selected to represent the result. The bulk material property is also the 

same as in Section 4.1. The homogenized constitutive matrix is computed for two relative 

densities: 10% and 30%. The result is shown in Figure 11. It can be found that when the 

number of voxels reaches to 100, the result has a trend to converge. However, because 

the computational cost is quite large when the resolution is 100, there is no need to set 

such a high resolution if high accuracy is not the primary goal of simulation. A resolution 

around 50 can already give an indicative result. But if a high accuracy is required, 100 

resolution is recommended. 

 

Figure 11 The relationship between the resolution of the voxel and the axial Young's modulus 



 

5.Extension 

5.1 Shifted incomplete Cholesky factorization 

To further accelerate the convergence of the PCG method, the shifted incomplete 

Cholesky factorization with threshold dropping can be used to modify the preconditioner. 

The default preconditioner in this code is an incomplete Cholesky factorization with zero-

fill. Nevertheless, the incomplete Cholesky with threshold dropping (ICT) can perform 

better convergence than zero-fill. A nonnegative scalar is used as a drop tolerance when 

performing ICT. Elements which are smaller in magnitude than a local drop tolerance are 

dropped from the resulting factor except for the diagonal element which is never dropped. 

However, Incomplete Cholesky factorizations of positive definite matrices do not always 

exist. Sometimes non-positive will be encountered when constructing an incomplete 

Cholesky preconditioner. To solve this problem, the ‘diagcomp’ option is used to 

construct a shifted incomplete Cholesky factorization. That is, instead of constructing L 

such that L*L' approximates A, incomplete Cholesky factorization with diagonal 

compensation constructs L such that      approximates               

              without explicitly forming M. As incomplete factorizations always exist 

for diagonally dominant matrices, alpha can be found to make M diagonally dominant. 

These can be done by substituting line 61 in Appendix A with the following lines: 

opts.type = 'ict'; 
opts.droptol = 1e-3; 
alpha = 0.01; 
opts.diagcomp = alpha; 
L = ichol(K(activedofs(4:end),activedofs(4:end)),opts); 

where ‘opts’ saves the options for ‘ichol’, the drop tolerance is 0.001 and the diagonal 

compensation is 0.01. To show the improvement of the shifted incomplete Cholesky 

factorization, a PCG method is performed on the Octet topology with a 10% relative 

density. The result is shown in Figure 12. It can be found that the result didn’t converge 

to       in 300 iterations when incomplete Cholesky preconditioner had zero-fill. When 

the threshold dropping is active and the diagonal compensation is 0.1, the result 

converged to       in 250 iterations. Furthermore, when the diagonal compensation is 

0.01, the result converged in 150 steps. But it is also found that if there is no diagonal 

compensation or the diagonal compensation is less than 0.001, the non-positive pivot 

error will be encountered. Therefore, a proper diagonal compensation should be selected 

in the shifted incomplete Cholesky factorization. 



 

 

Figure 12 The convergence plot for PCG method with different preconditioners 

5.2 Two or more materials 

Recently, Multi-material structures have received more and more attention from 

researchers, and have been successfully fabricated by some AM technologies [16]. 

Cellular architectures fabricated with multi-materials can realize specific functions such 

as controllable thermal expansion [17] and self-deformation [18]. To simulate the 

material properties of multi-material cellular architectures, the homogenization code can 

be extended to assign more than one material properties. In this section, the extension to 

three materials is described. Firstly, the indicator matrix will not only have ‘0’ and ‘1’ 

elements to represent the void and the first material, but also have ‘2’ and ‘3’ elements to 

represent the second and the third material, respectively. Because the bulk material 

property is divided into two parts,   and  . If there is only one material,   and   are 

scalars. But if there are more than one materials,   and   will be vectors. Line 45 in 

Appendix A needs to be replaced by 

lambda = lambda(1)*(voxel==1) + lambda(2)*(voxel==2)... 
    + lambda(3)*(voxel==3);   
mu = mu(1)*(voxel==1) + mu(2)*(voxel==2)... 

+ mu(3)*(voxel==3);  

The vector   and   should have 3 entries, which are the Lame’s first and second 

parameter for three materials, respectively. Also, the active degrees of freedom should 

also be changed to consider the elements with the second material and the third material. 

The line 62 should be substituted by 

activedofs = edof((voxel==1 | voxel==2 | voxel==3),:); 

which means if the element has material 1, 2 or 3, its degrees of freedom will be activated 

in the global stiffness equation. Figure 13 shows an example of a three-material lattice 

structure model with 10% relative density. The Cubic-center topology can be 

disassembled to Cubic topology and X-shape topology. The voxels in the Cubic topology 

is assigned with material 1; the voxels in the X-shape topology is assigned with material 



 

2; the connection between these two topologies is assigned with material 3. These three 

types of voxels are assembled together to get the multi-material Cubic-center topology. 

Material 1

Material 2

Material 3

 

Figure 13 A three-material lattice cellular structure with Cubic-center topologies 

To get the homogenized constitutive matrix of this three-material structure, the material 

properties is assigned with the data in Table 3. The anisotropy can be controlled by 

adjusting the material properties. Calling the modified function as: 

CH = homo3D(1,1,1,[170.8,80.8,115.4],[117.8,55.7,79.6],voxel); 

The homogenized constitutive matrix for the multi-material lattice structure is obtained. 

To visualize the elastic properties along different orientations, the Young’s modulus 

surface of the multi-materials lattice is shown in Figure 14(a). Figure 14(b) shows the 

Young’s modulus surface of the single material lattice with         and       . The 

multi-materials lattice has an isotropic elastic property because the Young’s modulus is 

the same along all the directions. Therefore, this homogenization code can help designers 

to design lattice structure with isotropic material properties. 

Table 3 Material properties of three materials in the multi-material structure 

Material     

1             

2           

3            

 



 

(a) (b)

 

Figure 14 The Young’s modulus surface of Cubic-center lattice with (a) multi-materials, (b) single 

material 

5.3 Thermal conductivity 

In thermal conductivity problems, the temperature is a scalar field. The homogenization 

equations are analogous to those of the elastic problem, which can be written as [12]: 
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where T is the temperature field,   is a virtual temperature field and     is the 

conductivity tensor and. Unlike the elastic problem, only one material parameter is used 

to determine the conductivity of an isotropic material. Therefore, the input argument 

‘lambda’ is a zero vector. The conductivity of different materials is given by the input 

argument ‘mu’. To change it in the code, line 101 is substituted by: 

CMu = diag([1 1 1 0 0 0]); CLambda = zeros(6); 

The element matrix ‘keMu’ contains the contributions in x, y and z directions in different 

rows and columns. Because only a scalar field is necessary, the contributions in x, y and z 

directions can be summed together to form an     element matrix. The summation is 

done by adding the following line after line 15: 

keMu(1:3:end,1:3:end) = keMu(1:3:end,1:3:end)... 
    + keMu(2:3:end,2:3:end) + keMu(3:3:end,3:3:end); 

To consider the conductivity of both materials in the cellular architecture, line 45 is 

changed to: 

lambda = lambda(1)*(voxel==0) + lambda(2)*(voxel==1);   
mu = mu(1)*(voxel==0) + mu(2)*(voxel==1); 

Even though ‘lambda’ has no meaning in the thermal conductivity problem. ‘lambda’ is 

kept here so that the code can be modified as less as possible. Because every three rows 

and columns are saved in one row and column, the solution of the global stiffness 

equation should be modified. Line 59-66 is replaced by the following lines: 



 

L = ichol(K(4:3:end,4:3:end)); 
X = zeros(ndof,3); 
for i = 1:3 
    X(4:3:end,i) = pcg(K(4:3:end,4:3:end),F(3+i:3:end,i),1e-

10,300,L,L'); 
end 

Also, element strain cases in line 75 should be modified as: 

X0_e(4:3:end,1:3) = keMu(4:3:end,4:3:end)... 
                    \[feMu(4:3:end,1),feMu(5:3:end,2),feMu(6:3:end,3)]; 

The loops start from line 85 and line 85 should only run 3 times instead of 6 times. By 

modifying the code like this, the 3D conductivity problem with two materials can be 

solved. If three or more materials exist in the unit cell, the code can be further extended 

by the procedure similar to that in Section 5.2. 

6.Conclusion 
In this paper, a simple and efficient 3D homogenization code written in Matlab is 

provided to reduce the barrier of the implementation of numerical homogenization. 

Designers can use this code to obtain the homogenized constitutive matrix of 3D cellular 

materials or multi-material composites even without strong mathematical background. To 

further facilitate the implementation of this code, an algorithm is proposed to generate the 

voxel model of lattice structures. This model can be directly imported into the 

homogenization code. A wireframe script is needed in the generation of voxel models. Its 

format is defined so that users can customize the topology of the lattice structure.  

By using the proposed method, the homogenized constitutive matrix and the Young’s 

modulus surface of lattice structures with seven topologies are calculated. The results 

have shown that the lattice structures exhibit high anisotropy. The Cubic, Face-center, 

Tesseract, and Vintiles topologies have a higher stiffness along axial directions. On the 

contrary, the X-shape, Cubic-center and Octet topologies have a higher stiffness along 

diagonal directions.  

The convergence of the PCG method in the homogenization code is accelerated by using 

Shifted incomplete Cholesky factorization. The code is then extended to multi-materials 

and thermal conductivity problems. It is found that the anisotropy of multi-material 

lattice structures can be controlled. With the proper combination of material properties, 

the Cubic center lattice structure is able to have isotropic elastic properties. Finally, 

future work can focus on the further improvement of the efficiency. For instance, the 

assembly-free method can be implemented to reduce the computational cost. 
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Appendix A. Matlab files and the wireframe definition 
 

All the Matlab files including the ‘homo3D.m’ and the ‘GenerateVoxel.m’ and other 

supporting files such as the wireframe files can be downloaded by the link: 

https://github.com/GuoyingDong/homogenization 

or 

https://www.mathworks.com/matlabcentral/fileexchange/67457-3d-homogenization-of-

cellular-materials 

 

Table A1 Definition and description of GRID. 

1 2 3 4 5 

GRID ID x y z 

 

Table A2 Definition and description of STRUT. 

1 2 3 4 

STRUT ID Start End 

  

https://github.com/GuoyingDong/homogenization
https://www.mathworks.com/matlabcentral/fileexchange/67457-3d-homogenization-of-cellular-materials
https://www.mathworks.com/matlabcentral/fileexchange/67457-3d-homogenization-of-cellular-materials
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