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Introduction

The Hilbert-Samuel function and the multiplicity function are fundamental locally defined invariants on Noetherian schemes. They have been playing an important role in desingularization for many years [START_REF] Zariski | Algebraic varieties over ground fields of characteristic zero[END_REF][START_REF] Hironaka | Characteristic polyhedra of singularities[END_REF][START_REF] Bennett | On the Characteristic Functions of a Local Ring[END_REF][START_REF]Étude locale des singularités. Cours de 3me cycle[END_REF][START_REF] Villamayor | Equimultiplicity, algebraic elimination, and blowing up[END_REF][START_REF] Bierstone | Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant[END_REF][START_REF] Cossart | Desingularization: invariants and strategy -application to dimension 2[END_REF], and others. Bennett studied upper semicontinuity of the Hilbert-Samuel function on schemes and linked it with Hironaka's invariant ν * . He also proved that it is non increasing under permissible blowing ups. The latter are blowing ups 1 at regular subschemes along which the singular scheme is normally flat. For the definition of the Hilbert-Samuel function of X and the notion of normal flatness, we refer to Definitions 2.1 and 2.4 [START_REF] Abad | On the highest multiplicity locus of algebraic varieties and Rees algebras[END_REF], respectively.

For a reduced scheme, the Hilbert-Samuel function is locally constant if and only if it is regular: this translates the question of resolution of singularities into a problem of lowering the Hilbert-Samuel function. We show here that, this result can be extended to non reduced schemes, as follows.

Theorem 1.1. Let X be a locally Noetherian scheme such that O X ,x is excellent for every x ∈ X . The Hilbert-Samuel function is locally constant on X if and only if X red is everywhere regular and X is normally flat on X red .

In the case where X is not reduced of characteristic 0 or of dimension ≤ 2, using Hironaka's results, there exists a projective morphism composition of permissible blowing ups (cf. Definition 2.4(2)) X ′ -→ X such that the Hilbert-Samuel function is locally constant on X ′ . As a consequence of our theorem, there exists a projective morphism X ′ -→ X such that X ′ red is everywhere regular and X ′ is normally flat along X ′ red . See [START_REF] Cossart | Desingularization: invariants and strategy -application to dimension 2[END_REF]Corollary 6.19 and Remark 6.20] and [START_REF] Encinas | Some natural properties of constructive resolution of singularities[END_REF]Claim 2.11]. At any rate, this sheds a new light on [12, Theorem I*, page 138] reformulated in [START_REF] Bierstone | Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant[END_REF]Theorem 11.14].

Let us note that in [START_REF] Villamayor | Equimultiplicity, algebraic elimination, and blowing up[END_REF]Proposition 6.14], O. Villamayor gets a similar and finer result for the multiplicity function instead of the Hilbert-Samuel function, in the case where X is an equidimensional scheme of finite type over a perfect field k: the strata defined by the multiplicity on X red and X coincide. This is achieved from a local algebraic and differential description of the maximal multiplicity locus of a variety. See also [START_REF] Abad | On the highest multiplicity locus of algebraic varieties and Rees algebras[END_REF]. Nonetheless, the hypotheses of Theorem 1.1 are much more general.

Apart from classical results on Hilbert-Samuel functions, this article makes essential use of Hironaka's characteristic polyhedron [START_REF] Hironaka | Characteristic polyhedra of singularities[END_REF] which is an essential ingredient in the proof of Theorem 1.1. These notions and relevant properties are recalled in the next section.

A substantial difficulty here consists in dealing with nonperfect residue fields of positive characteristic. For instance, Theorem 1.1 is not obvious even for cones in affine space over such a field. To overcome this, we recall part of Giraud's theory of presentations [START_REF]Contact maximal en caractéristique positive[END_REF] in Section 3 and derive as a byproduct a general result on the Hilbert-Samuel stratum for affine cones,

Invariants of singularities

Fix a locally Noetherian scheme X and a point x ∈ X (not necessarily closed). We begin by recalling the definition of local invariants for the singularity of X at x. For a reference providing more details on the different notions, we refer to [5, Chapters 2 and 3]. 

Let O be a Noetherian local ring (which is not necessarily regular)

with maximal ideal n and residue field κ. The Hilbert-Samuel function

H (0) O : N → N of O is defined by H (0) O (n) := dim κ (n n /n n+1 ), for n ∈ N.

Furthermore, one defines H (t)

O : N → N, for t ∈ N and t > 0, via the recursion

H (t) O (n) := n ∑ i=0 H (t-1) O (i),
for n ∈ N.

Let X be a locally Noetherian catenary scheme and fix N ≥ dim(X ).

The modified Hilbert-Samuel function

H X := H N X : X → N N is defined by H X (x) := H (ϕ X (x)) O X ,x ∈ N N ,
where ϕ X (x) := N -min{codim Y (x) | Y ∈ Irr(x)} and Irr(x) denotes the set of irreducible components of X containing x. Often, we call H X just the Hilbert-Samuel function of X .

Furthermore, we define, for ν ∈ N N ,

X (≥ ν) := {x ∈ X | H X (x) ≥ ν} X (ν) := {x ∈ X | H X (x) = ν}
and call X (ν) the Hilbert-Samuel stratum of X for ν.

Using the Cohen Structure Theorem for complete Noetherian local rings, we may assume when necessary that at x ∈ X , there is an embedding (X , x) ⊂ (Z, x) in a regular Z. Hence, we reduce the setting to a non-zero ideal I ⊂ R in a (complete) regular local ring R. More precisely, R := O Z,x is the local ring of Z at x and I is the ideal describing X locally at x. We denote by m ⊂ R the maximal ideal of R and by k := R/m the residue field of R.

The graded ring of R at m is defined as gr m (R) := ⊕ s≥0 m s /m s+1 . If we fix a regular system of parameters (z) = (z 1 , . . . , z n ) for R, then there is an isomorphism gr m (R) ∼ = k[X 1 , . . . , X n ], where X i := z i mod m 2 for i ∈ {1, . . . , n} and n := dim(R). Definition 2.2. Let (R, m, k) be a regular local ring.

1. Let f ∈ R \ {0} be a non-zero element in R. The initial form in m (f ) ∈ gr m (R) of f (with respect to m) is defined as the class of f in m d /m d+1 , where d := ord m (f ) := sup{a ∈ N | f ∈ m a } is the order of f at m.
Moreover, we set in m (0) := 0.

2. Let I ⊂ R be a non-zero ideal. The ideal of initial forms in m (I) of I (with respect to m) is defined as the ideal in gr m (R) generated by the initial forms of all f ∈ I,

in m (I) := (in m (f ) | f ∈ I) ⊆ gr m (R) In our setting, x ∈ X ⊂ Z with O X ,x ∼ = R/I, the initial ideal defines the tangent cone C x (X ) of X at x, C x (X ) := Spec(gr m (R)/ in m (I)) ⊆ Spec(gr m (R)) ∼ = A n k ,
which is a first approximation of the singularity of X at x. Definition 2.3. Let X be a locally Noetherian scheme, which is embedded in a regular Z, and let x ∈ X be any point. Let I ⊂ R be the ideal defining X locally at x, where (R := O Z,x , m, k) is the respective regular local ring.

1. A system of elements (f ) = (f 1 , . . . , f m ) ∈ R m is called a standard basis of I at m if (a) in m (I) = ( in m (f 1 ), . . . , in m (f m ) ), (b) in m (f i ) / ∈ ( in m (f 1 ), . . . , in m (f i-1 )
), for every i ∈ {2, . . . , m}, and

(c) if we set ν i := ord m (f i ) for i ≥ 1, we have ν 1 ≤ ν 2 ≤ • • • ≤ ν m .
2. The ν * -invariant of X ⊂ Z at x is defined as

ν * x (X , Z) := ν * m (I, R) := (ν 1 , . . . , ν m , ν m+1 , . . . , ),
where (ν 1 , . . . , ν m ) is determined by a standard basis of I at m and ν j = ∞ for all j ≥ m + 1.

Even though the definition of the ν * -invariant seems to depend on the choice of a standard basis, this is not the case. For details, we refer to [START_REF] Cossart | Desingularization: invariants and strategy -application to dimension 2[END_REF]Chapter 2] or [START_REF] Hironaka | On the characters ν * and τ * of singularities[END_REF]. Following Hironaka, we denote:

ν * x (X , Z) =: (ν 1 x (I, R), . . . , ν m x (I, R), ν m+1 x (I, R), . . . , ). (2.1) 
Hironaka's ν * -invariant is an invariant measuring the complexity of the singularity of X at x, which is closely related to the Hilbert-Samuel function in the embedded case. In order to make the latter more concrete, we introduce the following notation. 2. We say that D is permissible for X at x ∈ D if the following three conditions hold:

(a) D is regular at x, (b) X is normally flat along D at x, and (c) D contains no irreducible component of X containing x. Moreover, D is permissible for X , if D is permissible for X at every point of D. Remark 2.5. It follows from [5, Theorem 3.3] that if D is regular and y is the generic point of the irreducible component of D containing x, then X is normally flat along D at x if and only if H X (x) = H X (y).
The following results, which is included in [START_REF] Cossart | Desingularization: invariants and strategy -application to dimension 2[END_REF]Theorem 3.10] shows the close connection between the Hilbert-Samuel function and Hironaka's ν *invariant from the perspective of resolution of singularities.

Theorem 2.6 (cf. [START_REF] Cossart | Desingularization: invariants and strategy -application to dimension 2[END_REF]Theorem 3.10]). Let X be an excellent scheme, or a scheme which is embeddable in a regular scheme Z. Let D ⊂ X be a permissible closed subscheme and let π X : X ′ := Bl D (X ) → X , resp. π Z : Z ′ := Bl D (Z) → Z, be the blowing up with center D. Take any points x ∈ D and x ′ ∈ π -1 X (x). Then:

1. H X ′ (x ′ ) ≤ H X (x) (with respect to the product ordering on N N ). 2. ν * x ′ (X ′ , Z ′ ) ≤ ν * x (X , Z) (with respect to the lexicographical ordering). 3. H X ′ (x ′ ) = H X (x) if and only if ν * x ′ (X ′ , Z ′ ) = ν * x (X , Z).
Definition 2.7 ([6, Definition 3.13(1)]). Let the hypothesis be as in Theorem 2.6. A point

x ′ ∈ π -1 X (x) is near to x if H X ′ (x ′ ) = H X (x).
Using the notation of Theorem 2.6, if X is embedded in a regular Z, then

x ′ ∈ π -1 X (x) is near to x if and only if ν * x ′ (X ′ , Z ′ ) = ν * x (X , Z). If x ′ ∈ π -1 X (x)
is not near to x, the Hilbert-Samuel function (resp. the ν * -invariant) detects a strict improvement of the singularity. Hence, for proving resolution of singularities, it is necessary to find additional invariants, resp. tools, able to detect an improvement at x ′ if the center is chosen suitably. The directix and the ridge of X at x are objects, which reveal information on the singularities of the tangent cone C x (X ). They play a crucial role for the task of controlling the locus of near points.

Recall that a polynomial

f (X) = f (X 1 , . . . , X n ) ∈ k[X 1 , . . . , X n ] is called additive if f (X + Y ) = f (X) + f (Y ), where (Y ) = (Y 1 , . . . , Y n ) is a system of indeterminates and we abbreviate (X + Y ) := (X 1 + Y 1 , . . . , X n + Y n ). Definition 2.8. Let I ⊂ S := k[X 1 , . . . , X n ]
be an ideal, which is generated by homogeneous elements.

Let T (I) ⊂

⊕ n i=1 kX i be the smallest k-vector subspace such that

( I ∩ k[T (I)] ) • S = I,
where k[T (I)] = Sym k (T (I)) ⊆ S. The directrix of the cone Spec(S/I) is the closed subscheme Dir(S/I) ⊆ Spec(S/I) defined by the surjection S/I → S/T (I)S.

2. The ridge of the cone Spec(S/I) is the maximal additive subgroup of Spec(S) ∼ = A n K (considered as an additive group scheme), which leaves the cone Spec(S/I) stable under translation.

If x ∈ X is a point of a locally Noetherian scheme X , with an embedding (X , x) ⊂ (Z, x) for some regular Z, then the directrix Dir x (X ) (resp. ridge Rid x (X )) of X at x is defined as directrix (resp. ridge) of the tangent cone C x (X ) of X at x, embedded in the Zariski tangent space T x (Z).

In fact, one can define the directrix and the ridge of a locally Noetherian scheme X at x without the assumption of an embedding in a regular (Z, x). Both definitions of directrix and ridge coincide via the embedding T x (X ) ⊂ T x (Z). For details, we refer to [5, Chapter 2] and [10, Ch. I, § 5)], respectively.

The last notion which we need to recall is Hironaka's characteristic polyhedron [START_REF] Hironaka | Characteristic polyhedra of singularities[END_REF], see also [START_REF] Cossart | Desingularization: invariants and strategy -application to dimension 2[END_REF]Chapter 18]. It captures refined information on the singularity of X at x, which is not detected by the tangent cone, the directrix, or the ridge. Definition 2.9. Let (R, m, k) be a regular local ring and let I ⊂ R be a nonzero ideal. We fix a system (u) = (u 1 , . . . , u e ) in R, which can be extended to a regular system of parameters for R and such that gr m (R)/T (in m (I)) ∼ = k[U 1 , . . . , U e ] (using the notation of Definition 2.8), where U i := u i mod m 2 is the image of u i in the graded ring gr m (R).

1. Let (y) = (y 1 , . . . , y r ) be a system of elements in R such that (u, y) is a regular system of parameters for R. Let (f ) = (f 1 , . . . , f m ) be a standard basis for I. For every i ∈ {1, . . . , m}, consider expansions

f i := ∑ (A,B)∈Z e+r ≥0 C A,B,i u A y B with coefficients C A,B,i ∈ R × ∪ {0}.
The projected polyhedron ∆(f ; u; y) of (f ) with respect to (u, y) is defined as the smallest convex subset of R e which contains all points of the set

{ A ν i -|B| + R e ≥0 C A,B,i ̸ = 0 ∧ |B| < ν i } ,
where

ν i := ord m (f i ), for all i ∈ {1, . . . , m}.
For a vertex v ∈ ∆(f ; u; y) and i ∈ {1, . . . , m}, the initial form of f i at v is defined as

in v (f i ) := ∑ B:|B|=ν i C 0,B,i Y B + ∑ (A,B): A ν i -|B| =v C A,B,i U A Y B ∈ k[U, Y ],
where C A,B,i := C A,B,i mod m and Y j := y j mod m 2 for j ∈ {1, . . . , r}.

2. For fixed (u), the characteristic polyhedron ∆(I; u) of I at m is defined as the intersection of all projected polyhedra ∆(f ; u; y), where one varies the choice of (f ; y) fulfilling the properties of the first part of the definition,

∆(I; u) := ∩ (f ;y) ∆(f ; u; y).
Given a vertex v of ∆(g; u; z), we say that (g; z) is prepared at v if (g; u; z) is normalized at v ([5, Definitions 8.12 and 8.11]) and v is not solvable. We say that (g; z) is a suitable choice if (g; u; z) is prepared at every vertex v of ∆(g; u; z) ([5, Definitions 8.11, 8.12 and 8.13]). The first condition (normalized) is an appropriate choice for the generators of I, while the second means that for every vertex v ∈ ∆(g; u; z) it is impossible to find a change in (z) such that corresponding projected polyhedron is contained in ∆(g; u; z), v not being a vertex.

For example, if I is the ideal generated by f 1 := y 2 1 -2u 2 1 y + u 4 1 -u 5 2 , then ∆(f 1 ; u; y 1 ) has two vertices, namely v := (2, 0) and w := (0, 5 2 ). It is easy to verify that v is a solvable vertex: If we introduce z 1 := y 1 -u 2 1 , then

f 1 = z 2 1 -u 5
2 and the unique vertex w is not solvable. In particular, it follows that (f 1 ; z 1 ) is a suitable choice.

By [14, Theorem (4.8)], we have the following equality for a suitable choice (g; z) ∆(g; u; z) = ∆(I; u), and in particular this proves that ∆(I; u) is actually a polyhedron. In [START_REF] Hironaka | Characteristic polyhedra of singularities[END_REF],

Hironaka proved that at least in the m-adic completion R of R, there exists a suitable choice ( g, u) for (I R; u) such that ∆( g; u; z) = ∆(I; u). In general, it is not clear, whether there exists a suitable choice without passing to the completion. It is shown in [START_REF] Cossart | Characteristic polyhedra of singularities without completion[END_REF][START_REF] Cossart | Characteristic polyhedra of singularities without completion: part II[END_REF]] that Hironaka's result holds without passing to the completion if we assume R to be excellent and if we additionally require mild technical conditions, which are fulfilled in many cases, e.g., if the residue field of R is perfect, or if R is Henselian, or in polynomial situations.

While the definition of the characteristic polyhedron depends on an embedding, it is still a useful source for invariants of the singularity of X at x. For example, the number δ(∆(I; u)), defined just below, is actually an invariant of Spec(R/I). This topic has been investigated in great details in [START_REF] Cossart | Invariance of Hironakas characteristic polyhedron[END_REF].

Definition 2.10. Let ∆ ⊆ R e ≥0 be a non-empty, closed, convex subset such that ∆ + R e ≥0 = ∆, where + denotes the Minkowski sum. Set

δ(∆) := min{v 1 + • • • + v e | v = (v 1 , • • • , v e ) ∈ ∆}.
We define the first face of ∆ as the face of

∆ consisting of all points v = (v 1 , . . . , v e ) ∈ ∆ with v 1 + • • • + v e = δ(∆).

Giraud's presentations and their application to cones

To prove Theorem 1.1, we need Giraud's Theory of presentations [START_REF]Contact maximal en caractéristique positive[END_REF]. In particular, we require Theorem 3.1 below, which is a refinement of [ 

:= M R 0 . Moreover, E ⊆ Z e
≥0 is a certain subset fulfilling E + Z e ≥0 = E (the socalled exponents of the ideal I 0 with respect to (z)) such that for all i ∈ {1, . .

. , m} and A

= (A 1 , . . . , A e ) ∈ E with |A| = A 1 + • • • + A e < n i , we have D (z) A f i ≡ 0. Here, D (z) A f i denotes the Hasse-Schmidt derivative of f i = f i (z)
with respect to z A , meaning the coefficient of T A in the Taylor expansion of f i (z + T ) = f i (z 1 + T 1 , . . . , z e + T e ) with respect to T = (T 1 , . . . , T e ) (when it does exist, e.g., in the completion of R). (d) P 1 , . . . , P e ∈ S[X A,i | A ∈ Z e ≥0 , i ∈ {1, . . . , m} : |A| < n i ] are polynomials with coefficients in S that are homogeneous of degree q i if we assign to X A,i the degree n i -|A|.

Finally, s 1 , . . . , s e ∈ R are elements in R such that s j = P j (D

A f i ) for all j ∈ {1, . . . , e}. Additionally, there is also a condition on the Hilbert-Samuel series of R 0 /(s)R 0 , which will be automatically fulfilled in our setting as the elements s i will form a triangular system. Thus, we do not recall the details here.

For the precise definition of a presentation we refer to [11, Définition 3.1]. Theorem 3.1. Let P be a presentation as recalled just before. Suppose that S is excellent and contains a field. Let x ∈ X be the closed point corresponding to the maximal ideal M ⊂ R. Using the notation of the definition, we further set X := Spec(R/I) X i := Spec(R/(f i )), and Y j := Spec(R/(s j )), for i ∈ {1, . . . , m} and j ∈ {1, . . . , e}. The Hilbert-Samuel stratum of X at x fulfills the following equality

HS X ,x = m ∩ i=1 HS X i ,x ⊂ e ∩ j=1 HS Y j ,x ,
where we abbreviate HS X ,x := X (H X (x)) (Definition 2.1) and analogously for HS X i ,x and HS Y j ,x .

Proof. Let H be a reduced irreducible subscheme of Z := Spec(R). In the case that H is regular, we have by [START_REF]Contact maximal en caractéristique positive[END_REF]Proposition 4.3],

H ⊆ HS X ,x ⇐⇒ H ⊆ m ∩ i=1 HS X i ,x and H ⊆ e ∩ j=1 HS Y j ,x , if H ⊆ HS X ,x (3.1)
Suppose that H is singular at x. We choose a curve Γ such that x ∈ Γ ⊂ H, Γ ̸ ⊂ Sing(H). We perform a sequence of blowing ups

Z =: Z 0 π 1 ←-Z 1 π 2 ←-• • • πn ←-Z n ←-. . . , ( 3.2) 
where π 1 : Z 1 → Z 0 is the blowing up with center x, and for i ∈ {1, . . . , n-1}, π i+1 : Z i+1 → Z i is the blowing up with center some closed point x i ∈ Z i , exceptional for π i and on the strict transform Γ i of Γ. By [3, (2.2.3) p. 71], there exists

N ∈ N such that, for n ≥ N , ν * xn (H n , Z n ) = ν * x N (H N , Z N ), where H n (resp. H N ) is the strict transform of H and Z n (resp. Z N ) of Z := Spec(R). Of course, for N big enough, Γ n is regular at x n for n ≥ N .
Then, by [3, Proposition (3.1) p. 74], Γ n is permissible for H n at x n : the Hilbert-Samuel function of H n is constant along Γ n in a neighbourhood of x n , so H n is regular at x n . Furthermore, n is defined to be any natural number such that the strict transform H n of H is regular at x n .

Notice that H n is an irreducible component of the Hilbert-Samuel stratum of the strict transform of X (resp. X i , resp. Y j ) at x n in Z n if and only if H is an irreducible component of the Hilbert-Samuel stratum of X (resp. X i , resp. Y j ) at x. Let P n be the transform of P, i.e., the presentation defined by an induction of [START_REF]Contact maximal en caractéristique positive[END_REF]Theorem 5.2] (which requires the assumption that S contains a field). Since H n is regular at x n , we may apply [START_REF]Contact maximal en caractéristique positive[END_REF]Proposition 4.3] locally at x n . Therefore, (3.1) holds for H n (with the respective transforms of X , X i , and Y) and thus the statements also hold for H. This proves the assertion.

Next, we apply Theorem 3.1 in the setting of cones. Let us fix the notation: Let k be a field and I ⊂ k[X 1 , . . . , X n ] be an ideal generated by homogeneous polynomials. We set C := V (I). Let J, J be the ideals of the directrix and of the ridge of I respectively (Definition 2.8). Then by [11, Section 1.5, Lemma 1.6] or [10, Proposition 5.4 page I-27], up to renumbering the variables, there exist (F 1 , . . . , F m ) homogeneous generators of I of degree

n i = deg(F i ), 1 ≤ i ≤ m, with D (X) A F i ≡ 0 for A ∈ exp(I) =: E, i ∈ {1, . . . , m} with |A| < deg F i , (3.3)
where exp(I) := {exp(h) | h ∈ I \{0} homogeneous} and exp(h) denotes the dominant exponent of the polynomial h with respect to the lexicographical ordering on N n . Furthermore J is generated by a triangular basis of additive homogeneous polynomials (s 1 , . . . , s e ) with 

s i = X q i i + ∑ j>i c i,j X q i j , c i,j ∈ k, 1 ≤ i ≤ e, with q 1 ≤ q 2 ≤ • • • ≤ q e . ( 3 
, P i ∈ k[X A,j | 1 ≤ j ≤ m, |A| < n i ], 1 ≤ i ≤ m,
homogeneous of degree q i when we give to X A,j the degree n i -|A|, such that

s j = P j (D (Z) A F i ). (3.5) 
To draw the connection with the notion of presentation of [START_REF]Contact maximal en caractéristique positive[END_REF], we denote

Z i := X i , 1 ≤ i ≤ e, R := k[Z 1 , . . . , Z e , X e+1 , . . . , X n ] M , M := (X 1 , . . . , X n ), S := k[X e+1 , . . . , X m ] N , N := (X e+1 , . . . , X m ).
The reader will verify that Proposition 3.2.

P := (S; R; Z 1 , . . . , Z e ; I; F 1 , . . . , F m ; n 1 , . . . , n m ; E; P 1 , . . . , P e ; q 1 , . . . , q e ; s 1 , . . . , s e ) (

is a presentation as defined by Giraud.

By [START_REF]Étude locale des singularités. Cours de 3me cycle[END_REF]Lemme 1.7], this presentation has the following supplementary property:

F i ∈ k[s 1 , . . . , s e ], 1 ≤ i ≤ m. ( 3.7) 
Remark 3.3. By Theorem 3.1 and (3.7), the Hilbert Samuel strata of the origin of the cone C and of its ridge locally coincide.

The word "locally" may be skipped, indeed these strata coincide in the full affine scheme Spec k[X 1 , . . . , X n ], as stated in the proposition below which makes more precise M.J. Pomerol's Theorem [15, Proposition 2.2]. Proposition 3.4. With the notations of the beginning of this section, the Hilbert Samuel strata of the origin of the cone C and of its ridge coincide in Spec k[X 1 , . . . , X n ]. Their ideals are respectively the reduction of (D (X)

A F i ; |A| < n i , 1 ≤ i ≤ m)
and the reduction of Let us note that, when char(k) = 0, additive polynomials are homogeneous of degree 1. Hence, J = I and C is the intersection of hyperplanes of Spec k[X 1 , . . . , X n ], which implies the proposition in this easy case. Now we consider the case char(k) = p > 0. As seen above (viz. before stating Proposition 3.2), there exist variables (Z 1 , . . . , Z e ; W 1 , . . . , W d ) in k[X 1 , . . . , X n ] (d + e = n) such that I = (σ 1 , . . . , σ e ), where σ i are homogeneous additive polynomials of degrees q i with q 1 ≤ q 2 ≤ • • • ≤ q e and σ i = Z q i i + t i (Z i+1 , . . . , Z e , W 1 , . . . , W d ).

(D (X) A s i ; |A| < q i , 1 ≤ i ≤ e)
When I red = J, by definition of the directrix, after translations on (Z 1 , . . . , Z e ) if necessary, we get C red = V (Z 1 , . . . , Z e ). Furthermore, for any point x ∈ C, we have ν *

x (C, A n ) = (q 1 , . . . , q e , ∞, ∞, . . .), where A n k := Spec k[Z 1 , . . . , Z e ; W 1 , . . . , W d ] (Definition 2.3( 2)). This implies that C is normally flat over C red ([5, Theorem 3.2(2)]), which is equivalent to the constancy of the Hilbert-Samuel function on C ([5, Theorem 3.3]). This proves the converse implication in the proposition.

Let us prove the direct implication. We are in the very extreme case where, in the corresponding presentation (3.6), e = m, F i = s i , 1 ≤ i ≤ e. Then, by Theorem 3.1, ∩ m i=1 HS C i ,x = HS C,x = C red . Consider the additive group subscheme D ⊂ A n defined by the equations

σ qe/q i i , 1 ≤ i ≤ e. Then D is flat over A d = Spec k[W 1 , . . . , W d ]. Note that D red = C red .
As D is a cone, Theorem 3.1 applied to D implies that HS D,x = D red . In other terms, it can be assumed that q 1 = • • • = q e . In this case, we may replace the σ i by some τ i = Z qe i + r i , r i ∈ k[W 1 , . . . , W d ] for 1 ≤ i ≤ e by performing a linear change of coordinates. Since HS D,x = D red and since the natural morphism η : D -→ A d is dominant, each polynomial s i has a prime factor of order q e as an element of K[Z i ], where

K = Frac(k[W 1 , . . . , W d ]). Therefore r i ∈ K qe . Now k[W 1 , . . . , W d ] is integrally closed, so r i ∈ k[W 1 , . . . , W d ] qe . Up to an affine k[W 1 , . . . , W d ]
-linear change of coordinates on A n , we thus have τ i = Z qe i , 1 ≤ i ≤ e, so the conclusion holds.

Proof of the Theorem

Recall that our goal is to prove that the Hilbert-Samuel function is locally constant on a Noetherian scheme X such that O X ,x is excellent for every x ∈ X if and only if its reduction X red is regular and X is normally flat along X red . By [5, Theorem 3.3] (see Remark 2.5), we have only need to prove the following : if the Hilbert-Samuel function is constant on X , then X red is everywhere regular. Lemma 4.1. Let X = Spec A with A a catenary Noetherian local ring, let x ∈ X be the closed point. Assume that the Hilbert-Samuel function is constant on X . Let Dir x (X ) ⊂ Rid x (X ) ⊂ T x (X ) be respectively the directrix and the ridge of the tangent cone of X at x, embedded in the Zariski tangent space T x (X ) (Definition 2.8 and following comments). Then, we have Dir x (X ) = (Rid x (X )) red .

Proof. When dim X = 0, Dir x (X ) = Rid x (X ) red is the origin in T x (X ). From now on, we assume dim X ≥ 1.

Let us note the following remark that we will use later on. 

⊂ R := k[X 1 , .
. . , X n ] be a homogeneous ideal. Let J be the ideal of its ridge and J the ideal of its directrix. Assume J ̸ = J red .

Let x ∈ Spec(R/I) be the origin and X ′ -→ Spec(R/I) be the blowing up along x. There exists x ′ ∈ X ′ above x such that

H X ′ (x ′ ) < H Spec(R/I) (x).
Proof. By [11, Lemme 5.2.2] every point in X ′ is on the strict transform of the ridge and is near to x as a point of the ridge. Furthermore, a point x ′ near to x is on the strict transforms of Y 1 , . . . , Y e , the hypersurfaces of equations σ i of degrees q 1 , . . . , q e , q 1 ≤ • • • ≤ q e , J = (σ 1 , . . . , σ e ) and near to x for all Y i . Let us define, as in the proof of Proposition 3.5,

τ i = Z q e i + r i , r i ∈ k[W 1 , . . . , W c ], where Vect k (X 1 , . . . , X n ) = Vect k (Z 1 , . . . , Z e , W 1 , . . . , W c )
) is a renaming of variables after performing a k-linear change of variables. As J ̸ = J red , there is at least one r i 0 which is not a q e -th power. So, there is a point x ′ ∈ π -1 (x) on the strict transform of the (unique) prime factor of τ i 0 = Z q e i 0 + r i 0 which is not near to x for the hypersurface of equation τ i 0 . Hence, it is not near to x for some Y i : this point x ′ is not near to x for X . in X ′′ there is no point near to ζ, as the Hilbert-Samuel function is constant on X ′ . This contradicts Remark 4.2 applied to ζ, X ′ .

All this leads to δ -1 > 1. Let π 2 : X ′′ -→ X ′ be the blowing up of X ′ along D := V (y ′ , u 1 ). End of the Theorem's proof. Let X = SpecA be an affine scheme, A an excellent local ring and x ∈ X be the closed point. Assume that the Hilbert-Samuel function is constant on X . By Lemma 4.1, the directrix at x coincides with the reduced ridge at x. This is hypothesis (*) of [START_REF] Cossart | Characteristic polyhedra of singularities without completion: part II[END_REF]Proposition 4.1]. Suppose A = R/I for some excellent regular local ring R. By [9, Proposition 4.1], there exist a standard basis f := (f 1 , . . . , f m ) ∈ R m for the ideal of X at x and a regular system of parameters (u, y) of R such that ∆(f ; u; y) = ∅. By Lemma 4.4, V (y) is permissible for X at x. Since the reduced ridge coincides with the directrix, the blowing up along V (y) has no point near to x. In a neighbourhood of x, V (y) is the Hilbert-Samuel stratum of X which is X red : V (y) = X red . This ends the proof in this case.

If X is not embedded in a regular scheme, the completion A of the local ring A at its maximal ideal is the quotient of a regular ring R. By the argument above, there exist regular parameters (y) in R such that V (y) ⊂ Spec(R) is the Hilbert-Samuel stratum of X = Spec A. By [5, Lemma 2.37(2)], V (y) is the preimage of X 's Hilbert-Samuel stratum which is X red , since A is excellent. By [5, Lemma 2.37(2)], X red is regular at x. Remark 4.6. There exist excellent schemes X with X red regular and with a non-constant Hilbert-Samuel function, even if X is a complete intersection.

Look at this example: X ⊂ Spec k[X 1 , X 2 , X 3 ] with ideal

I = (X 2 1 + X 2 X 2 3 , X 2 2 ).

Definition 2 . 1 (

 21 [5, after Lemma 2.22 and Definition 2.28]).

Definition 2 . 4 ([ 5 ,

 245 Definition 3.1]). Let X be a locally Noetherian scheme and let D ⊂ X be a reduced closed subscheme. Let I D ⊂ O X be the ideal sheaf of D in X . 1. The scheme X is normally flat along D at x ∈ D if the stalk gr I D (O) x of gr I D (O) := ⊕ t≥0 I t D /I t+1 D is a flat O D,x -module. Furthermore, X is normally flat along D if X is normally flat along D at every point of D.

. 4 )By [ 11 ,

 411 Section 1.5, Lemma 1.7] or [10, Proposition 5.4 page I-27], there are polynomials P 1 , . . . , P e

Proposition 3 . 5 .

 35 which both coincide. Proof. Denote by R the ridge of C. Let us blow up the origin. The strict transforms of C and R are the tautological line bundles over Proj k[X]/I and Proj k[X]/J respectively. So the strict transforms of the Hilbert Samuel strata are empty or line bundles over Hilbert Samuel strata of Proj k[X]/I and Proj k[X]/J respectively: these Hilbert Samuel strata are subcones of Spec k[X 1 , . . . , X n ] and by Remark 3.3, they coincide. The equalities of the ideals are consequences of Theorem 3.1. Let k be a field and I ⊂ k[X 1 , . . . , X n ] be an ideal generated by homogeneous polynomials, we set C := V (I). Let J, J be, respectively, the ideals of the directrix and of the ridge of I. The Hilbert-Samuel function is constant on C if and only if I red = J red = J. Proof. By Proposition 3.4 above, it is enough to prove the statement when I = J .

  S ⊆ R are regular local rings with respective maximal ideals N and M , such that the residue field extension is trivial, say k := R/M = S/N , and such that the natural morphism of graded rings gr N (S) → gr M (R) is flat. Further, (z 1 , . . . , z e ) are differential local coordinates of R/S (in the sense of [11, Dfinition 2.2(iii)]). (b) I ⊂ R is an ideal such that gr M (R/I) is flat over gr N (S). (c) f 1 , . . . , f m are elements in I such that their images in R 0 := R/N R form a standard basis

	where:
	(a)

11, Propo-sition 4.3]. A presentation P consists of the following data (S; R; z 1 , . . . , z e ; I; f 1 , . . . , f m ; n 1 , . . . , n m ; E; P 1 , . . . , P e ; q 1 , . . . , q e ; s 1 , . . . , s e ), * for the ideal I 0 := IR 0 and n 1 , . . . , n m are positive integers such that ν * M 0 (I 0 , R 0 ) = (n 1 , . . . , n m , ∞, . . .), for M 0

  Consider the point x ′′ ∈ π -1 2 (D) ⊂ X ′′ of parameters (u ′′ , y ′′ ) := (u ′ 1 , u ′ 2 , . . . , u ′ d , y ′ 1 /u ′ 1 , . . . , y ′ r /u ′ 1 ).At x ′′ , each vertex with smallest first coordinate of ∆(f ′′ , u ′′ , y ′′ ) is not solvable with first coordinate δ -2 > 0. By the same argument as above, one can deduce that δ -2 > 1. An induction on δ leads to a contradiction.

We have X red = V (X 1 , X 2 ). On X , the Hilbert-Samuel function takes different values at the origin and at the generic point.

Here is a different argument for this : the characteristic polyhedron ∆(I; X 3 ) is not empty. By Lemma 4.4, the Hilbert-Samuel function of X cannot be constant.

End of the proof of Lemma 4.1.

From now on, we suppose that Dir x (X ) Rid x (X ) red and we will deduce a contradiction. By going to the completion, we may suppose that O X ,x is the quotient of a regular ring O Z,x of residue field k. Let (u, y) := (u 1 , . . . , u d , y 1 , . . . , y r ) be a regular system of parameters of O Z,x such that the initial forms of (y) (with respect to the maximal ideal m at x) are a standard basis for the ideal of the directrix of X at x embedded in Spec k[U, Y ], where U i := in m (u i ) and Y j := in m (y j ), for i ∈ {1, . . . , d}, j ∈ {1, . . . , r}. Let (f 1 , . . . , f m ) be a standard basis of I ⊂ O Z,x with respect to (u, y). Let Z ′ -→ Z be the blowing up along x. Denote by X ′ the strict transform of X and recall that I ⊂ O Z,x is the ideal of X . The fibre above x is canonically isomorphic to the Proj of the tangent cone of X at x. Let x ′ be a point in this fibre not near to x for the tangent cone.

(4.1)

x ′ be the strict transform of I and t ∈ O Z ′ ,x ′ be a generator of the exceptional ideal. By (4.1), there exists a standard basis (g 1 , . . . ,

x ′ is not near to x, this is the contradiction.

Lemma 4.4. Let X = Spec R/I, with R an excellent regular local ring, and let x ∈ X be the closed point, Z := Spec R. Assume that the Hilbert-Samuel function is constant on X . Then, for any "adapted choice of variables", the characteristic polyhedron at x is empty (Definition 2.9).

Proof. Let us first precise what is an "adapted choice of variables": we mean a system (u) := (u 1 , . . . , u d ) ∈ O d Z,x which can be extended to a regular system of parameters (u, y) = (u 1 , . . . , u d , y 1 , . . . , y r ) of R such that (in m (y 1 ), . . . , in m (y r )) are equations of the directrix of X at x, where m ⊂ R is the unique maximal ideal. The statement is that for any such system (u),

Suppose the statement is wrong. Thus, we can find a regular system of parameters (u, y) = (u 1 , . . . , u d , y 1 , . . . , y r ) and a standard basis f = (f 1 , . . . , f m ) at x of the ideal I such that the vertices of the first face of ∆(f ; u; y) (Definition 2.10) are "prepared" (see comments right after Definition 2.9). This implies that they are vertices of the characteristic polyhedron ∆(I; u). Let π 1 : Z ′ -→ Z be the blowing up along x and let x ′ be the point of parameters (u ′ , y ′ ) := (u 1 , u 2 /u 1 , . . . , u d /u 1 , y 1 /u 1 , . . . , y r /u 1 ) (origin of the "u 1 -chart"). Set δ := δ(∆(f ; u; y)) = δ(∆(I; u)) (Definition 2.10) to be the modulus of the vertices of the first face.

As in

where k := R/m, we have δ > 1. The usual computations (e.g., analogous to [8, Proof of Proposition 3.15, formula (4.4)]) show that the smallest first coordinate of points of ∆(f

For j ∈ {1, . . . , m} and v a vertex, we write the initial form of f j at v (Definition 2.10) as

of the directrix at the generic point ζ of V (y ′ , u 1 ) is generated by the initial forms

Proof. For 1 ≤ j ≤ m, the initial forms are (with the obvious abuse of notation)

) is separable, so by [5, Lemma 2.10 p.18], the ideal of the directrix of (F

Furthermore, we have, for 1 

for at least one i, and such that, for all i,

: by (4.5), the exponents a(i, j) are all in N. By taking all the possible w, in (4.4), for all i, 1 ≤ i ≤ r, we get λ i ∈ O Z ′ ,x ′ /(u ′ 1 , y ′ ). We can find (z 1 , . . . , z r ) ∈ O r Z ′ ,x ′ with in ζ (z i ) = Z ′ i , and ∆(f ′ , u ′ , z) has only vertices with first coordinate > 1. This contradicts the fact that all vertices of ∆(f ′ , u ′ , y ′ ) of abscissa δ -1 = 1 are prepared. We arrived to a contradiction which proves the claim. 

End of the proof of