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Preface

My purpose is to present the main results on prime 2-structures. We con-
sider primality in terms of the usual modular decomposition. We are mainly
interested in the downward hereditary properties of primality. The first six
chapters are devoted to finite prime 2-structures whereas the last three ones are
to infinite prime 2-structures. The main focus is to establish results from the
literature proven for graphs, digraphs, binary relational structures, etc., in the
setting of 2-structures.

In Chapter 1, we provide the definition of a 2-structure. The 2-structures
are the suitable generalizations of usual structures in Graph Theory, such as
graphs and digraphs, to study the modular decomposition. In a 2-structure,
the link between two vertices is not an edge or an arc, but a type of links, that
is, an equivalence class of ordered pairs of distinct vertices. In this manner, a
2-structure is defined as an equivalence relation on the set of ordered pairs of
distinct vertices. This equivalence relation is sufficient to define the notion of a
module.

In Chapter 2, we define different types of connectedness for 2-structures.
They generalize known connectedness for graphs and tournaments. We examine
the components which are generated by these different types of connectedness.
This examination leads us to introduce the notions of a module, of a modular
cut, and of a strong module. These three notions induce three different types
of primality. We study these three types of primality, and we conclude with
Gallai’s decomposition theorem.

In Chapter 3, we examine the prime 2-substructures in a prime 2-structure.
First, we prove that every vertex is covered by prime 2-substructures of size
3, 4 or 5. Second, we introduce the outside partition associated with a prime
2-substructure. The outside partition allows us to build from a prime 2-substruc-
ture a new prime 2-substructure by adding two vertices. The first downward
hereditary property of primality follows: A prime 2-structure admits prime 2-
substructures obtained by removing one or two vertices.

In Chapter 4, we characterize the critical 2-structures, that is, the prime
2-structures with the property that all the 2-substructures obtained by remov-
ing one vertex are decomposable. We introduce the primality graph associated
with every prime 2-structures. Its edges are the unordered pairs whose removal
provides a prime 2-substrucure. We examine the neighbourhoods of the primal-



ii PREFACE

ity graph of a critical graph. We deduce that the primality graph of a critical
graph is a path, a cycle of odd length or a path of odd length together with one
isolated vertex. For each of these four types, we characterize the corresponding
critical 2-structures. The characterization of critical 2-structures constitutes an
important step in the study of prime 2-structures.

In Chapter 5, we demonstrate the Schmerl-Trotter theorem: a prime 2-
structure, with at least seven vertices, admits an unordered pair whose removal
provides a prime 2-substructure. In other words, the primality graph of a prime
graph, with at lest seven vertices, is nonempty. The Schmerl-Trotter theorem
is the first substantial theorem in the study of prime 2-structures. It is an
important downward hereditary property of primality. We prove also different
refinements of the Schmerl-Trotter theorem.

In Chapter 6, we characterize the prime 2-structures that are minimal for a
singleton or an unordered pair. Precisely, a prime 2-structure is minimal for a
vertex subset if every proper induced 2-substructure with at least three vertices
containing this vertex subset is not prime. We mainly characterize the prime
2-structures with at least six vertices that are minimal for an unordered pair.
This characterization allows us to provide a concise proof of the Schmerl-Trotter
theorem.

Chapter 7 is devoted to the following compactness theorem on infinite prime
2-structures. An infinite 2-structure is prime if and only if every finite ver-
tex subset is contained in a finite vertex subset which induces a prime 2-
substructure.

Chapter 8 is the analogue of Chapter 4 for infinite 2-structures. Precisely,
we characterize the infinite prime 2-structures, all the 2-substructures of which
obtained by removing one vertex are decomposable, and that admit at least a
prime 2-substructure obtained by removing finitely many vertices.

In Chapter 9, we characterize finite or infinite partially critical 2-structures.
A prime 2-structure is partially critical whenever the removal of every vertex
outside a given proper and prime 2-substructure provide a decomposable 2-
substructure. As in Chapter 3, we associate with the prime 2-substructure an
outside partition. We also associate with it an outside graph which plays an
important role in our characterization.

Finally, in Chapter 10, we provide a downward hereditary property of pri-
mality in the case of infinite 2-structures. Precisely, we prove that an infinite
prime 2-structure admits a proper vertex subset equipotent to the vertex set
which induces a prime 2-substructure.
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Chapter 1

2-structures

A 2-structure [14] o consists of a vertex set V(o) , and of an equivalence 2-structure

relation =, defined on (V (o) x V(o)) N\ {(v,v) : v € V(0)}. The cardinality of vertex set

V(o) is denoted by v(c). A wvertex subset of o is a subset of V(o). The set wvertex subset

of the equivalence classes of =, is denoted by E(c) . Given a 2-structure o, if

E(o) admits a unique element e, then o is said to be constant or e-constant.  constant, e-constant

Warning. Unless indicated to the contrary, we consider 2-structures
to be finite.

Notation 1.1. Let o be a 2-structure. Given distinct v,w € V (o), the equiv-
alence class of =, to which (v,w) belongs is denoted by (v,w), . Moreover,
set

[v7w]0 = ((U7w)07 (wvv)a)v
and
<v,w>5= {(v,w)q, (W,0)s}.

Let o be a 2-structure. With each W ¢ V(o) associate the 2-substructure 2-substructure
o[W] of o induced by W defined on V(c[W]) = W such that

Zow] = (Z0) (W)~ {(w,w)weW} -

Given W c V(0), o[V (o) \W]is denoted by c-W, and by o —w when W = {w}.
We use the next notation.

Notation 1.2. Let S be a set. Given W ¢ Sx.5, set W* = {(v,w) : (w,v) e W}.

We associate with a 2-structure o its dual o defined on V(o*) = V(o) dual
as follows. Given x,y,v,w € V(c*), with x # y and v # w, (x,y) =5+ (v,w) if
(y,z) =5 (w,v). Hence E(c*) = {e* : e € E(o)}. A 2-structure o is reversible reversible

1
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if 0 = 0*. Hence, a 2-structure o is reversible if and only if for each e € F(0),
e* € E(c). Let o be a reversible 2-structure. For each e € E(o), we have
e* € E(g),soe=¢" or ene’ =@. A 2-structure o is symmetric if for each
e € E(o), e = ¢*. On the other hand, it is asymmetric if for each e € E(0),

ene =g t.

1.1 Isomorphism

Given 2-structures o and 7, an isomorphism from o onto 7 is a bijection from
V(o) onto V(1) satistying for x,y,v,w € V (o), with z # y and v # w, (z,y) =,
(v,w) if and only if (f(x),f(y)) = (f(v), f(w)). Therefore, given a bijection
f:V(c) — V(7), f is an isomorphism from ¢ onto 7 if and only if f induces a
bijection f: E(c) — E(7) satisfying for any v, w € V (o), with v # w, we have

(f(’l)), f(w))T = i((vaw)o)'

Two 2-structures are isomorphic if there exists an isomorphism from one onto
the other.

Let o be a 2-structure. An automorphism of o is an isomorphism from o
onto itself. For example, the identity function Idy () :V (o) — V (o), defined
by Idy (»y(v) = v for every v € V (o), is an automorphism of 0. The family of the
automorphisms of o, endowed with composition, is the automorphism group of
o. It is denoted by Aut(c). A 2-structure o is rigid if Aut(o) = {Idy(,)}. On
the other hand, it is vertex-transitive if for any v,w € V (o), there is f € Aut(o)
such that f(v) = w.

Lastly, given 2-structures o and 7, o embeds into 7 if ¢ is isomorphic to a
2-substructure of 7.

1.2 Graphs

A (simple) graph G is defined by a vertex set V(G) and an edge set E(G),
where an edge of G is an unordered pair of distinct vertices of G. Such a graph is
denoted by (V(G), E(G)). For instance, given a nonempty set S, Kg = (.5, (‘;))
is the complete graph on S whereas (S, @) is the empty graph. With each graph
G we associate its complement G = (V(QG), (V(QG)) N E(Q)).

A graph G is multipartite with a partition P of V(G) if the subgraph G[X]
of G induced by X is empty for each X € P. It is bipartite when |P| = 2.
Given n > 2, the path P, is the graph defined on V(P,) = {0,...,n -1} as
follows. Given v,w € {0,...,n—1}, with v # w, {v,w} € E(P,) if |[v—w|=1 (see
Figure 1.1). The length of the path P, is n - 1.

n general, a reversible 2-structure is neither symmetric nor asymmetric.
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Figure 1.1: The path P,

Given n > 3, the cycle C,, is the graph defined on V(C,) = {0,...,n -1}
obtained from P, by adding the edge {0,n —1}. The length of C,, is n.

Let G be a graph. Given a vertex v of G, a neighbour of v is a vertex w
of G such that {v,w} € E(G). The neighbourhood of v is the set Ng(v) of its
neighbours, and dg(v) = |[Ng(v)| is its degree. Given a nonempty subset X of
V(G), G[X] is connected if for any x,y € X, with = # y, there are elements
Zo,---,Zn of X such that g = z, x,, = y, and {x,Tm+1} € E(G) for every
0 <m <n-1. Given a nonempty subset X of V(G), G[X] is a component of G
if G[X] is connected, and for any z € X and v € V(G)\ X, {z,v} ¢ E(G). A
vertex v of a graph G is isolated if G[{v}] is a component of G.

Let G and H be graphs such that V(G)nV (H) = @. The disjoint union of G
and H is the graph Go H = (V(G)uV (H), E(G)UE(H)). Y V(G)nV(H) + 2,
then we can define G @ H up to isomorphism by considering a graph H' such
that H~ H', and V(G)nV(H') = @.

A graph G is identified with the symmetric 2-structure o(G) defined on
V(o(G)) =V(G) as follows. Given z,y,v,w € V(c(G)), with z # y and v + w,

{z,y},{v,w} € E(G)
(xay) =5(Q) (v,w) if {or

{z,y},{v,w} ¢ E(G).

Given a graph G, observe that o(G) = o(G). A graph is self-complementary
if it is isomorphic to its complement. Consider a self-complementary graph
G. Since 0(G) = 0(G), an isomorphism from G onto G is an automorphism of

o(G).

1.3 Digraphs

A digraph D is defined by a vertex set V(D) and an arc set A(D), where an
arc of D is an ordered pair of distinct vertices of D. Such a digraph is denoted
by (V(D),A(D)). With each digraph D we associate its dual D* defined on
V(D*) = V(D) as follows. Given v,w € V(D*), with v # w, (v,w) € A(D*) if
(w,v) € A(D). Given a vertex v of a digraph D, the in-neighbourhood of v is
the set Np(v) = {w e V(D) : (w,v) € A(D)}, and its out-neighbourhood is the
set Nj)(v) ={weV(D): (v,w) e A(D)}.

A digraph D is identified with the 2-structure o (D) defined on V(o(D)) =

cycle

neighbour
neighbourhood
degree
connected

component

isolated
disjoint union

self-complementary

digraph

vertexr set

arc set

dual
in-neighbourhood

out-neighbourhood
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V(D) as follows. Given z,y,v,w € V(o(D)), with z #y and v # w,

(z,9), (v,w) € A(D)
(xay) EU(D) (’U,U)) if or
(z,9), (v,w) ¢ A(D).

A digraph D is a tournament if for any v,w € V(D), with v # w, |[A(D) n
{(v,w),(w,v)}| = 1. Tt is a transitive digraph provided that for any u,v,w €
V(D), if (u,v) € A(D) and (v,w) € A(D), then (u,w) € A(D). A transitive
digraph is also called a (strict) partial order. With each partial order O, we
associate its comparability graph Comp(O) defined on V(Comp(O)) = V(O)
as follows. For any v,w € V(Comp(0O)), with v # w, {v,w} € E(Comp(O))
if (v,w) e A(O) or (w,v) € A(O). A linear order is a transitive tournament.
Given a nonempty set S of integers, the usual linear order on S is denoted by
Ls. Given m > 1, Lyg, .. m-1y is also denoted by L,,. Given n > 1, we consider
the tournament Ty,.1 defined on V(T5,41) ={0,...,2n} by

Tops1 = (2n) = Loy,

(2n,2m) € A(Topi1) for 0<m<n-—1,

and

(2m+1,2n) € A(Top41) for 0 <m <n -1 (see Figure 1.2).

Figure 1.2: The tournament 75,1

Consider a reversible 2-structure . Given e € E(0), the 2-structure o is
linear or e-linear if (V(o),e) is a linear order.

Remark 1.3. Consider an e-linear 2-structure o, where e € E(c). We have
(V(0),e) is a linear order. Clearly, (V(o),e*) is a linear order as well. Since o
is reversible, e* € E(c). Thus, o is (€*)-linear, and E(o) = {e,e*}. Moreover,
we have o =o((V(0),¢e)) =c((V(0),€e")).



Chapter 2

Connectedness and modules

We use the following notation.

Notation 2.1. Let o be a 2-structure. For W, W' ¢ V (o), with W n W' = &,
W «—, W' signifies that (v,v") =, (w,w") and (v',v) =, (w',w) for any v,w €
W and v',w’ € W'. The negation is denoted by W </, W’ . Given v € V(o)
and W c V(o) \ {v}, {v} «—>, W is also denoted by v «—, W . The negation
is denoted by v <, W .

Given W, W' ¢ V(o) such that W «—, W', (W, W’), denotes the equiva-
lence class (w,w"), of (w,w"), where w € W and w’ € W'. Furthermore, set

[W7 W,](T = ((Wv WI)U7 (le W)a)~

Lastly, given v € V(o) and W € V(o) ~ {v} such that {v} «—, W, ({v}, W),
is also denoted by (v, W), , (W,{v}), is denoted by (W,v), , and [{v}, W], is
denoted by [v, W], .

2.1 Different types of connectedness

Let o be a 2-structure. With each (e, f) € E(0) x E(0), we associate a type of
connectedness. Given (e, f) € E(0)x E(0), we require that if o is not connected
in terms of the type associated with (e, f), then the ordered pairs of vertices
that are not in the same component, belong to e or f.

Given a 2-structure o, consider e, f € E(c). We define on V(o) the equiva-
lence relation »(. yy in the following way. Given v, w € V(0), v % ) w if v = w
or v #+ w and there exist sequences vyg,...,v, and wq,...,w, of vertices of o
satisfying

e vy =v and v, = w;
o for 0<i<m-—1, [vi,vir1]0 # (e, f);

e wo=w and w, = v;
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o for 0<j<n-1, [wj,wj]s # (e f).

Note that we do not need the second sequence wo, ..., w, when e = f. Moreover,
for 0 <i<m-1, [vis1,vi]0 # (f,€), and for 0 < j <n -1, [wjs1,w;]e # (f,€).
By considering the sequences v = wy,...,wp = w and W = Vp,,...,V0 = U, We

obtain v (¢ .) w. Consequently, for any e, f € E(c) and v,w € V (o), we have
v N (e, p) w if and only if w (s ) v.

Definition 2.2. Let o be a 2-structure. Consider e, f € E(o). The equivalence
classes of ~(, ry are called the {e, f}-components of o. The family of the {e, f}-
components of ¢ is denoted by Cy. s;(c). Lastly, we say that the 2-structure
o is {e, f}-connected if it admits a unique {e, f}-component. Moreover, the
2-structure o is connected if o is {e, f}-connected for all e, f € E(c).

Remark 2.3. First, consider a graph G. Set

€1 = {(’U,U)) : {'va} € E(G)}

and

eo = {(v,w) : {v,w} ¢ E(G)}.

We have
E(0(G)) ={eo,e1}.

The {ep}-components of o(G) are exactly the components of G, whereas the
{e1}-components of o(G) are exactly the components of G. Since o(G) is
symmetric, o(G) is {eg, e1 }-connected.

Second, consider a tournament 7. We have

E(o(T)) = {A(T), A(T)"}.

The {A(T),A(T)*}-components of o(T') are exactly the strongly connected
components of T. Since o(7T) is asymmetric, o(T) is {A(T)}-connected, and
{A(T)* }-connected.

The following lemma is established in [23] for binary structures, that is,
labeled 2-structures [14].

Lemma 2.4. Given a 2-structure o, consider e, f € E(0). Let X be an {e, f}-
component of o. For each ve V(o) N X, we have v <, X. Precisely, for each
yeV(o) N X, we have [v,X], = (e, f) or (f,e).

Proof. Let veV (o)~ X. Consider z € X. Since v #. y) x, we have
(.00 = (s £) ot (f¢). (2.1)

For a contradiction, suppose that there exist x,y € X such that [z,v], # [y,v],.
It follows from (2.1) that e # f. Morever, by interchanging x and y if necessary,
we can assume that [x,v], = (e, f) and [y,v], = (f,e). Hence [v,2], # (e, f)
and [y,v]s # (e, f). Since x m(. r) y, there exists a sequence o, . . ., T, satisfying
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e ro=x and x,, = ¥;

o for 0<i<m-—1, [z;,x41]0 # (e, f).

By considering the sequences xo, ..., Tm,v and v,z, we obtain x ~( ) v, which
contradicts v ¢ X. Therefore, [z,v], = [y,v], for any x,y € X. It follows from
(2.1) that [v, X ], = (e, f) or (f,e). O

2.2 Modules and quotient

Given Lemma 2.4, we introduce the following definition. Given a 2-structure
o, a subset M of V(o) is a module! of o if for each v € V(o) ~ M, we have
v «—, M. The classical properties of modules follow.

Proposition 2.5. Let o be a 2-structure.
(M1) @, V(o) and {v}, where v eV (o), are modules of o.
(M2) Given W cV (o), if M is a module of o, then MW is a module of c[W].

(M3) Let M be a module of o. For every N € M, N is a module of o[ M ] if and
only if N is a module of o.

(M4) For any modules M and N of o, M n N is a module of .

(M5) Given modules M and N of o, if Mn N # @, then M UN is a module of
o.

(M6) Given modules M and N of o, if M N N # @, then N\ M is a module of
.

(M7) Given modules M and N of o, if M n N =&, then M <, N.

Proof. 1t is easy to verify that the first assertion holds. For the second one,
consider a subset W of V (o), and a module M of 0. Let v e W~ M. Clearly,
veV (o) N M. Since M is a module of o, we have v «—, M, s0o v <>, M nW.

For the third assertion, consider a module M of ¢ and a subset N of M. By
the preceding assertion, if IV is a module of o, then M n N = N is a module
of o[M]. Conversely, suppose that N is a module of o[M], and consider v €
V(o) N N. We have v €e V(o) N M or v e M ~x N. In the first instance, since
M is a module of o, v <, M, and hence v «—, N. In the second instance,
v <, N because N is a module of o[M].

Now, let M and N be modules of o.

IThis notion of a module generalizes the usual notion of module for a graph [34]. One
uses also homogeneous set [11, 28] for graphs. For a partial order, Gallai [18] uses closed set
(geschlossen Menge in German), and Kelly [26] uses autonomous set. For a linear order L,
the notion of a module of o(L) coincide with the classical notion of an interval of L. For
relations and multirelations [17], Fraissé introduced the notion of an interval [16]. It is also
used for digraphs [22, 33] . The notion of clan was introduced by Ehrenfeucht and Rozenberg
for 2-structures [13].

module
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To verify that M nN is a module of o, consider v € V(B)\ (M nN). We have
ve(V(e)NM)u(V(c)\ N). By interchanging M and N if necessary, assume
that ve V(o) N M. As M is a module of o, v <, M, and hence v «—, M nN.

To show that M u N is a module of o, suppose that there exists x € M n N.
Let v e V(o) N (M UN). Since M is a module of o, x € M and v € V(o) \ M,
we have [v,M], = [v,2],. Similarly, we have [v,N], = [v,2],. It follows that
[v,MuUN], =[v,2]s. Thus v «—, M UN.

Lastly, to prove that N \ M is a module of o, suppose that there exists
xeMNN.Letve V(o) N (N~ M). Clearly, ve (V(c) N N)u (M nN). First,
suppose that v € V(o)NN. Since N is a module of o, v «—, N, so v «—, N\M.
Second, suppose that v € M n N. Consider u,u’ € N x M. We have to verify
that v «—, {u,u’}. Since M is a module of o, x,v € M and v € V(o) M,
we have [v,u], = [z,u],. Similarly, [v,u'], = [z,u],. Moreover, we have
[z,u], = [z,u'], because N is a module of o with u,u’ € N and z € V(o) \ N.
It follows that [v,u]s = [v,u']s, SO V <=4 {u,u’}.

Finally, let M and N be nonempty modules of ¢ such that M n N = &.
Consider z € M and y € N. For any v € M and w € N, we have [v,w], = [z, w],
because M is a module of o with z,v € M and w € V(o) \ M. Furthermore,
[z,w]s = [%,y], because N is a module of o with y,w € N and z € V(o) \ N.
Therefore, [v,w], = [z,y], for any ve M and we N. Thus M «—, N. O

Let o be a 2-structure. Following Assertion (M1) of Proposition 2.5, the
modules @, V(o) and {v}, where v € V (o), are called trivial modules. A 2-
structure is indecomposable if all its modules are trivial 2 . Otherwise, it is
decomposable. Observe that a 2-structure, with at most two vertices, is inde-
composable. This leads us to the following notion. A 2-structure o is prime if
o is indecomposable, with v(o) > 3.

For instance, if o is a constant 2-structure, then all the subsets of V(o) are
modules of 0. Hence, a constant 2-structure o is decomposable if v(o) > 3. The
same holds for linear 2-structures. Instead, consider a linear 2-structure o such
that v(c) > 3. By Remark 1.3, there exists a linear order L such that o = o(L).
As above mentioned, the intervals of L are modules of 0. By denoting by v and
w the first two vertices of L, we obtain that {v,w} is an interval of L. Thus,
{v,w} is a nontrivial module of o, so o is decomposable.

Fact 2.6. For n >4, the path P, (see Figure 1.1) is prime.

Proof. Let M be a module of P, with |[M| > 2. We have to show that M =
{0,...,n—=1}. Consider p,q € M such that 0 < p < ¢q. Since {p—1,p} € E(P,)
and {p—-1,q} ¢ E(P,), we have p—1 € M. In the same manner, if 0 < p -1,
then p—2 e M. It follows that {0,...,p} € M. Similarly {q,...,n -1} ¢ M.
Therefore

{0,...,p}u{q,...,m -1} Cc M.

Now, consider p,q € M such that p<q and M n{p,...,q} ={p,q}. Suppose
for a contradiction that p < ¢ — 1. Since {p,p+ 1} € E(P,) and p+1 ¢ M,

2Ehrenfeucht et al. [13, 14] use primitive instead of indecomposable.
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we have {x,p+ 1} € E(P,) for every x € M. Therefore M ¢ {p,p + 2}. Since
{0,...,p}u{q,...,n—1} € M, we obtain p=0, g =n-1=2. Since n > 4, we
have p=q-1. Thus M ={0,...,n-1}. O

Fact 2.7. Forn>1, the tournament To,.1 (see Figure 1.2) is prime.

Proof. Consider a module M of Ty,41 such that |[M| > 2. 'We have to show
that M = {0,...,2n}. By Proposition 2.5, M n {0,...,2n - 1} is a module
of Ton41[{0,...,2n — 1}] = Lg,. Since M n{0,...,2n — 1} # @, there exist
p,q€{0,...,2n—1} such that p<gand Mn{0,...,2n-1} ={p,...,q}. U p=gq,
then 2n € X because |[M| > 2. If p < ¢, then 2n € X because 2n <>, {2m,2m+1}
for 0 <m <n-1. Thus 2n € M. Since (2n,0) € A(T2n+1) and (0,7) € A(Topn+1)
for 1 <r<2n-1, we have 0 € M. Since (2n—-1,2n) € A(T2p+1) and (r,2n—-1) €
A(Top41) for 0 <r < 2n -2, we have 2n — 1€ M. Consequently, p=0, ¢ =2n-1
and M ={0,...,2n}. O

Let o be a 2-structure. For any e, f € E(0), the {e, f}-components of o are
modules of o by Lemma 2.4. Hence, the family Cy. fy(0) (see Definition 2.2)
realizes a partition of V(o) in modules of o. Generally, we introduce the fol-
lowing definition. A partition P of V(o) is a modular partition of o if all the
blocks of P are modules of . Given a modular partition P of o, it follows from
Assertion (MT) of Proposition 2.5 that for distinct X,Y € P, we have X «—, Y.
Hence, the blocks of P can be considered as the vertices of a new 2-structure
defined in the following manner. With each modular partition P of o, we as-
sociate the quotient o/P of o by P defined on V(¢/P) = P as follows. Given
X, X"Y,Y' € V(c/P), with X # X" and YV # Y,

(X7X,) =(o/P) (K Y,) if (J),J?,) = (y7y,)a

where ze X, 2’ e X', yeY,and y e Y.
Let o be a 2-structure. Given e, f € F(0), C¢. (o) is a modular partition
of o as mentioned above. We characterize the quotient 0/Cy. s1(0) as follows.

Proposition 2.8 (Ille [23]). Let o be a 2-structure. For every e € E(o),
0[Ciey (o) is constant. Moreover, for distinct e, f € E(c), 0/Cye sy(0) is lin-
ear.

Proof. To begin, consider e € E(c). Given distinct X,Y € Ci.y(0), it follows
from Lemma 2.4 that
(X,Y), =e. (2.2)

Consider X, X", Y,Y" € Cfey(0), with X # X" and Y # Y. Let z € X, 2’ € X,
yeY,and y' € Y. Tt follows from (2.2) that (z,2'), = e and (y,y")s = €, so
(z,2") =5 (y,y’). By the definition of quotient, we have (X, X") =(,/c,.,(0))
(Y,Y"). Hence 0/Cy.y (o) is constant.

Now, consider distinct e, f € E(0). Given distinct X,Y € Cy. ry(0), it follows
from Lemma 2.4 and Assertion (MT7) of Proposition 2.5 that

[X,Y], = (e, f) or (f,e). (2.3)

modular partition

quotient



10 CHAPTER 2. CONNECTEDNESS AND MODULES

Set

e/c{e,f}(a) = {(X,Y) € C{e,f}(o—) X C{e,f}(a) (X # Yv (XaY)U = 6}
and
f/c{e,f}(a) = {(va) € C{e,f}(U) x C{e,f}(a) X %Y, (va)a = f}

We prove that

E(0[Cie,1y(0)) ={e/Cie.51(0), f[Cie,r3 ()} (2.4)

Consider X, X", Y,Y" €C¢. py(0), with X # X" and Y #Y". Let x € X, 2" € X',
y €Y, and y' € Y'. First, suppose that (X, X’) =(0/Cey () (Y,Y’). By the
definition of quotient, we have (x,2') =, (v,%'), so (z,2")s = (v,4')s. By
(23)3 (l‘,(l?’)c,, (yay,)a € {eaf}' Thus, either (:L‘,’I,)U = (yay,)t‘f =eor (‘Tﬂxl)ff =
(y,9)o = f. In the first instance, we obtain (X, X’), = (Y,Y”’), = e, and hence
(X, X"),(Y,Y") € e/[Cie,sy(0). In the second one, we have (X, X'),(Y,Y") €
f/Cie,;3(0). Second, suppose that (X,X’),(Y,Y") € e/Cc s3(0). We have
(X, X")o = (V,Y")s =e. Thus (z,2"), = (y,y')s = €, 50 (z,2") =5 (y,y'). By the
definition of quotient, we have (X, X") =(0/Cley(0)) (Y,Y’). Similarly, we have
(X, X") Z(o/cy (o)) (YY) when (X, X"), (YY) € f/Cie fy(0). Consequently
(2.4) holds.
We continue by showing that

(e/Cle.sy(9))" = f[Che,py (o). (2.5)

Consider distinct X,Y € Cy ry(0). Suppose that (X,Y) € (¢/Cic 53(0))*. We
have (Y, X) € ¢/Cf. 1y(0), s0 (Y, X), =e. By (2.2), [X,Y ], = (e, f) or (f,e).
Since (Y,X), = e, we obtain (X,Y), = f, so (X,Y) € f/Cqc sy(0). Conversely,
suppose that (X,Y’) € f/Cic 3 (o). We have (X,Y), = f. By (2.2), [X,Y], =
(e, f) or (f,e). Hence (Y, X), = e, so (Y, X) € e/Ci s;(0), that is, (X,Y) €
(e/Cie,53(0))*. Consequently (2.5) holds.

To conclude, we have to prove that (Ci., f3(0),e/Cie £1(0)) is a linear order.
It follows from (2.4) and (2.5) that (Cie 53(0),e/Cic53(0)) is a tournament.
Thus, we have to verify that (Cy. ry(0),e/Cic 3(0)) is transitive. Consider
X,Y,Z €Cye (o) such that (X,Y),(Y,Z) €e/Cq ry(0). Since (X,Y),(Y,Z) €
e/Cse, 1y (o), we have (X,Y), = (Y, Z), = e. It follows from (2.3) that [X,Y ], =
[Y,Z]s = (e,f). Since e # f, we have X # Z. Let x ¢ X, ye Y, and z € Z. We
obtain [z,y], = [y, 2], = (f,€). Since e # f, we have [2,y], # (e, f) and [y, z], #
(e, f). Since X # Z, we have x #, ry 2. It follows that [z, z], = (e, f). By (2.3),
[X,Z]s = (e, f). Consequently, (Cie, ry(0),e/Cie s1(0)) is transitive. O

Notation 2.9. Given a 2-structure o, consider a partition P of V(o). With
W cV (o), we associate the set W /P of the blocks X of P such that X nW # @.
Moreover, with @) ¢ P, we associate the union U@ of the elements of Q.

In the following result, we compare the modules of a 2-structure with those
of its quotients.
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Lemma 2.10. Given a 2-structure o, consider a modular partition P of o.
1. If M is a module of o, then M /P is a module of o/P.
2. If Q is a module of /P, then UQ a module of o.

Proof. First, we consider a module M of o. Consider X € P~ (M/P), and
Y,Z € M/P. Let x € X. Since Y,Z € M/P, there exist y,z € M such that
yeYnMand ze Zn M. Since M is a module of o, we have (z,y) =, (z, 2)
and (y,z) =, (z,z). By the definition of quotient, (X,Y’) =(,/p) (X,Z) and
(Y, X) =(o/p) (Z,X). Thus, M/P is a module of /P.

Second, let @ be a module of ¢/ P. Consider v € V(o)\(UQ), and y, z € (UQ).
Since v € V(o) \ (UQ), there exist X € P\ @ such that v € X. Furthermore,
since y, z € (UQ), there exist Y, Z € @) such that y € Y and z € Z. Since @ is
a module of o/P, Y,Z € Q and X € P\ Q, we have (X,Y) =,/p (X,Z) and
(Y, X) =,/p (Z,X). Tt follows from the definition of quotient that (v,y) =,
(v,2) and (y,v) =4 (z,v). Therefore, UQ is a module of o. O

2.3 Modular cuts

Given a 2-structure o, we continue the examination of the properties of the
{e, f}-components of o, where e, f € E(c). The next result is a consequence of
Proposition 2.8.

Corollary 2.11 (Ille [23]). Given a 2-structure o, consider e, f € E(o). If o is
not {e, f}-connected, then there exists X € Cy 5y(0) such that [X,V (o)~ X], =

(e, f)-

Proof. If e = f, then it follows from Proposition 2.8 that [X,V (o)~ X], =
(e,e) for every X e Ciy(0). Suppose that e # f. By Proposition 2.8 and
Remark 1.3, there exists a linear order L defined on V(L) = Cy. f} (o) such that
0/Cie,r3(0) = 0(L). The least vertex Y of L satisfies [V, V(o) N Y], = (e, f)
or (f,e). Similarly, the greatest vertex Z of L satisfies [Z,V (0) \ Z], = (e, f)
or (f,e). Since [Y,Z], # [Z,Y]s, we have [Y,V(c)\Y], # [Z,V (o) \ Z],.
Therefore, there exists X € {Y, Z} such that [ X,V (o) \ X], = (e, f). O

In Corollary 2.11, observe that X and V(o) ~ X are modules of o. This
leads us to the following definition. Given a 2-structure o, a subset X of V(o)
is a modular cut® of o if X and V(o) ~ X are modules of o. For instance, @
and V(o) are modular cuts of o, called trivial modular cuts. A 2-structure is
uncuttable if all its modular cuts are trivial, otherwise it is cuttable *. The fol-
lowing characterization of uncuttable 2-structures follows from Assertion (M7)
of Proposition 2.5 and from Corollary 2.11.

3Also called cut in [8] for digraphs.
4Ehrenfeucht, Harju and Rozenberg [14] say that a 2-structure has the 2-block property if
it is cuttable.

modular cut
trivial modular cut
uncuttable

cuttable
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Proposition 2.12 (Ille [23]). A 2-structure is uncuttable if and only if it is
connected.

Proof. Let o be a 2-structure. To begin, suppose that ¢ is not connected.
There exist e, f € E(c) such that o is not {e, f}-connected. By Corollary 2.11,
o admits a nontrivial modular cut among its {e, f}-components. Hence o is
cuttable.

Conversely, suppose that o is cuttable, and consider a nontrivial modular
cut X of o. Since X is a nontrivial modular cut of o, X and V(o) \ X are
nonempty modules of o. It follows from Assertion (MT7) of Proposition 2.5 that
there exist e, f € E(o) such that [ X,V (o)\ X], = (e, f). Consequently, there is
no sequence T, . . . , T, satisfying zg € X, x, € V(o) X, and [, Tmy1]0 # (e, f)
for m € {0,...,n—1}. Thus o is not {e, f}-connected, so o is not connected. [

2.4 Strong modules and Gallai’s decomposition

Let o be a 2-structure. If ¢ is prime, then {V (o)} and {{v} : v e V(o)} are
the only modular partitions of o. On the other hand, if ¢ is constant, then
every partition of V(o) is a modular partition of o. Hence, in order to obtain
a successful modular decomposition process, we have to associate intrinsically a
modular partition with each 2-structure and to characterize the corresponding
quotient. Furthermore, for the efficiency of the process, we inquire that if we
repeat the process a second time, we would get an isomorphic quotient. For
instance, consider a binary structure o, and suppose that o is not {e}-connected,
where e € E(c). First, given Lemma 2.4, we can associate with o the modular
partition Cy.y (o). By Proposition 2.8, the corresponding quotient o/Cy.y (o) is
constant. Set
7=0/Ciey(0),

and
€= (Ciey(0) xCiey (@) N (X, X) : X € Cey (o)}

Since 7 is constant, we have E(7) = {e}. Moreover, |Cic;(0)| 2 2 because o is
not {e}-connected. Thus 7 is not {e}-connected. Second, associate with 7 the
family Cy.y () of its {}-components. Since E(7) = {¢}, the {¢}-components of
7 are reduced to singletons. Therefore, the quotient of 7/C.y(7) is isomorphic
to 7. To proceed for any 2-structure o, we return to the examination of the
properties of the {e, f}-components of o, where e, f € E(0).

Lemma 2.13 (Ille [23]). Given a 2-structure o, consider an {e, f}-component
X of o, wheree, f € E(c). For every module M of o, if XnM # @, then X ¢ M
or M cX.

Proof. Let M be a module of ¢ such that X n M # @ and X \ M # . We have
to show that M < X. Consider x € X \ M and y € X n M. Since X is an {e, f}-
component of o containing = and y, there exist sequences = = zg, ..., x, = y and
Y =Yo,--.,Yq = = of elements of X such that for 0 <m < p—1, [y, Tim+1]0 *
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(e, f), and for 0 <m < ¢ -1, [Ym,Ym+1]o # (e, f). Since g ¢ M and z, € M,
there exists m € {0, ...,p—1} such that z,, € X\ M and 2,41 € XnM. Similarly,
since yo € M and y, ¢ M, there exists n € {0,...,q — 1} such that y,, e X n M
and yp+1 € X N M. Now, let v e M. Since M is a module of o, x;p41,v € M
and x,, ¢ M, we have [T, Tm+1]o = [Tm,v]s. Hence [zm,,v]s # (e, f). Since
Yn,V € M and Yn+1 ¢ Ma [ynaynJrl]a = [vayn+1]a~ Thus [varwl]a * (evf)' By
considering the sequences = = zg,...,Zm,v and v,Yp+1,...,Yq = T, We obtain
T %,y v. It follows that v € X. Therefore M ¢ X. O

This result leads us to introduce the following definition. Given a 2-structure
o, a subset M of V(o) is a strong module ® of o provided that M is a module
of o, and for every module N of o, we have

if MnN+@,then Mc N or Nc M.

Given e, f € E(0), it follows from Lemma 2.13 that each {e, f}-component of o
is a strong module of o. As for modules, @, V(o) and {v}, v € V (o), are strong
modules of o, called trivial strong modules. A 2-structure is primitive °

its strong modules are trivial. Three types of primitive 2-structures occur.

Lemma 2.14. Given a 2-structure o, if o is prime, constant or linear, then o
18 primitive.

Proof. If ¢ is indecomposable, then all its modules are trivial, and hence all its
strong modules are also. Therefore, if ¢ is prime, then o is primitive.

Now, suppose that o is constant or linear. Recall that a 2-structure with
at most 2 vertices is indecomposable. Hence, suppose also that v(o) > 3. To
show that o is primitive, it suffices to verify that every nontrivial module M
of ¢ is not strong, that is, there exists a module N of o such that M n N = @,
M~N=+gand N\M +@.

Suppose that o is constant. As previously observed, any subset of V(o) is a
module of o. Consider distinct x,y € M, and v € V(o) N\ M. The module {z,v}
of o satisfies x € M n{z,v}, ye M ~{z,v} and v e {x,v} \ M.

Lastly, suppose that o is linear. By Remark 1.3, there exists a linear order
L defined on V(L) = V(o) such that o = o(L). Recall that the modules of o
are exactly the intervals of L. Hence, M is a nontrivial interval of L. Up to
isomorphism, we can assume that L = L,,, where n > 3. Since M is a nontrivial
interval of L, M = [p,q], where 0<p<qg<n-1and (p,q) # (0,n—-1). Observe
that o = o(L*) as well. Thus, by considering L* instead of L if necessary, we
can assume that p > 1. To conclude, it suffices to consider for N the interval
[0,p] of L. O

The analogue of Lemma 2.10 for strong modules follows.

Lemma 2.15. Given a 2-structure o, consider a modular partition P of o.

5Also called prime module in [14] for 2-structures, and strong interval for digraphs.
6 Also called special in [14] .

strong module

if all primitive
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1. If M is a strong module of o, then M|P is a strong module of o/P.

2. Suppose that all the blocks of P are strong modules of o. If Q is a strong
module of o[ P, then UQ s a strong module of o.

Proof. First, let M be a strong module of o. By Lemma 2.10, M /P is a module
of o/P. Consider a module @ of o/P such that Q n (M/P) # @. If |M/P| =1,
that is, if there is X € P such that M ¢ X, then M/P = {X}, so X € Q
and M /P c Q. Hence suppose that |M/P| > 2. For each X ¢ M /P, we have
MnX # @ and M~ X # @. Since M is a strong module of o, X ¢ M.
Consequently M = u(M/P). By Lemma 2.10, u@ is a module of o. Clearly
Mn(uQ) + @ because Qn(M/P) + @. Since M is a strong module of o, we have
M cu@ or uQ € M. Since M = u(M/P), we obtain M/P cQ or Q < M/P.
Consequently, M /P is a strong module of o/P.

Second, let @Q be a strong module of o/P. Consider a module M of o
such that there exists z € (UQ) N M. Denote by X the block of P containing x.
Clearly X e Qn(M/P). By Lemma 2.10, M /P is amodule of ¢/ P. If |[M/P| =1,
then M ¢ X ¢ uQ. Thus suppose that |[M/P| > 2. Consider Y € M/P. Since
|M/P|>2, we have Y n M # @ and M \Y # @. Moreover, Y is a strong module
of o because Y € P. It follows that Y ¢ M. Therefore M = u(M/P). Since Q is
a strong module of o/P and X € Q n (M /P), we have Q € M/P or M/P c Q.
It follows that uQ ¢ M or M c u@Q. Consequently, UQ is a strong module of
. O

In the second assertion of Lemma 2.15, the hypothesis that all the blocks of
P are strong modules of ¢ is necessary. Indeed, for each X € P, {X} is a strong
module of o/P, so we must have u{X } = X is a strong module of o.

The following property of the {e, f}-components of a 2-structure o, where
e, f € E(o), completes our examination.

Lemma 2.16 (Ille [23]). Given a 2-structure o, consider an {e, f}-component
X of o, where e, f € E(c). For every strong module M of o, if X € M, then
M=X or M =V(o).

Proof. Let M be a strong module of ¢ such that X ¢ M ¢ V(o). We have to
show that M = V(o). It follows from Lemma 2.4 that C¢. (o) is a modular
partition of o. Furthermore, each block of Cy. f;(c) is a strong module of o by
Lemma 2.13. Since M is a strong module of o, it follows from Lemma 2.15 that
M/C¢. .51 (o) is a strong module of o/Cy. (o). By Proposition 2.8, o/Cy. (o)
is constant or linear. Thus, o/Cy. sy(0) is primitive by Lemma 2.14. There-
fore, M[Cic fy(0) is a trivial strong module of 0/Ci. s1(0). Since X ¢ M,
|M[Cie,r3(0)| 2 2, s0 M[Cie 51(0) = Cye fy(0). Lastly, consider Y € Cq. 41(0).
Since M [Cyc 53 (0) = Cie, ;1 (0), we have Y " M # @ and M \Y # @. Since M is
a strong module of o, we obtain Y ¢ M. It follows that M =V (o). O

Notation 2.17. Let o be a 2-structure. Suppose that o is not {e, f }-connected,
where e, f € E(0). It follows from Lemma 2.16 that Cy. (o) is the set of the
strong modules of o that are maximal under inclusion among the proper strong
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modules of o. In a general way, we associate with each 2-structure o the set
II(c) of the strong modules of o that are maximal under inclusion among the
proper strong modules of o. (Note that II(c) can be empty when o is infinite.)

Proposition 2.18. Let o be a 2-structure such that v(c) > 2. The set II(o)
constitutes a modular partition of o7, and the quotient o /I1(c) is primitive.

Proof. To begin, consider X,Y € II(c) such that X nY # @. Since X is a strong
module of o, we have X ¢ Y or Y ¢ X. It follows from the maximality of X
and Y that X =Y. Moreover, consider v € V(o). As previously mentioned, {v}
is a strong module of ¢. Denote by S, the set of the proper strong modules of
o containing v. Since v(o) > 2, {v} €S,. Let M,N €S,. We have ve M nN.
Since M is a strong module of o, we obtain M ¢ N or N ¢ M. Therefore,
(Sy, &) is a linear order. Since V(o) is finite, (S,, %) admits a greatest element
M,. Clearly, M, € II(c). Consequently, we have UIl(c) = V(o). It follows that
II(c) is a modular partition of o.

Now, we prove that o/II(c) is primitive. Consider a strong module @ of
o/T(o) such that |Q| > 2. We have to show that @ = II(¢). Since all the
blocks of II(o) are strong modules of o, it follows from Lemma 2.15 that u@ is
a strong module of 0. Given X € Q, we have X ¢ (UQ) because |Q| > 2. By the
maximality of X, u@Q =V (o), and hence @ =II(0). O

The characterization of primitive 2-structures is an easy consequence of
Lemma 2.14, and of the following two propositions.

Proposition 2.19. Given a primitive 2-structure o such that v(c) > 3, o is
prime if and only if o is uncuttable.

Proof. To begin, suppose that o is cuttable, and consider a nontrivial modular
cut X of . Since v(o) >3, X or V(o)X are nontrivial modules of o. Therefore
o is decomposable.

Conversely, suppose that o is decomposable. Hence ¢ admits nontrivial
modules. Consider a module M of ¢ that is maximal under inclusion among
the nontrivial modules of o. Since o is primitive, M is not a strong module of
0. Thus there exists a module N of ¢ such that M n N # @, M ~ N # &, and
N~ M # @. By Assertion (M5) of Proposition 2.5, M u N is a module of o
because M NN # @. Since N\ M # @&, we have M ¢ M u N. By the maximality
of M, we obtain M UN =V (o). Thus N\ M =V (o) \ M. By Assertion (M6)
of Proposition 2.5, N~ M = V(c)\~ M is a module of ¢ because M \ N # &.
Consequently, M is a nontrivial modular cut of o. Therefore o is cuttable. [

Proposition 2.20. Given a 2-structure o, o is primitive and cuttable if and
only if o is constant or linear, with v(c) > 2.

Proof. Suppose that ¢ is constant or linear, with v(c) > 2. By Lemma 2.14, o
is primitive. Since o is constant or linear, it follows from Corollary 2.11 that

"Recall that we consider finite 2-structures.
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there exists v € V(o) such that {v} is a modular cut of o. Since v(c) > 2, {v}
is a nontrivial modular cut of o, so o is cuttable.

Conversely, suppose that ¢ is primitive and cuttable. By Proposition 2.12,
there exist e, f € E(c) such that o is not {e, f}-connected. Furthermore, by
Lemma 2.13, each {e, f}-component of o is a strong module of ¢. Since o is
primitive and not {e, f}-connected, each {e, f}-component of ¢ is reduced to a
singleton. Consequently, the function V(o) — Cy. s1(0), defined by v = {v}
for every v € V(o), realizes an isomorphism from o onto o/Cyc 53 (o). It follows
from Proposition 2.8 that o is constant or linear. Note that v(o) > 2 because o
is cuttable. O

There is another approach to establish the forward direction of Proposi-
tion 2.20. It reveals the importance of the notion of a modular cut in the study
of non connected 2-structures.

Second proof of the forward direction of Proposition 2.20. Let o be a cuttable
and primitive 2-structure. We consider a maximal set S under inclusion among
the sets of modular cuts of o that are linearly ordered by inclusion. By the
maximality of S, we have @,V (o) € S, and S~ {2,V (0)} # & because o is
cuttable. We denote the elements of S by Xg,...,X,, where n > 2, in such a
way that

@=X0%¢X,=V(0).

Let m € {0,...,n—1}. We show that
Xm+1 N X 18 a strong module of o.

Since V(o) \ X, is a module of o, X010 (V(0) N X)) = Xipr1 N Xy, I8 a
module of o by Assertion (M4) of Proposition 2.5. Now, consider a module M
of o such that M n (X1~ X)) # @, and M N (X401 N X)) # @. We have to
verify that (X1 N\ X)) € M. Since M\ (X 41N Xm) # @, we have MnX,,, + &
or M n(V(o)~ Xyp11) # @. The set {V(o)\ X, :0<p<n}is also maximal
under inclusion among the sets of modular cuts of ¢ that are linearly ordered
by inclusion. So, by interchanging S and {V (o) \ X, : 0 < p < n} if necessary,
we can assume that
MnX,, +@.

We verify that
X U (M n Xp41) is a modular cut of o.

Since X;, N (M nXppi1) = M n Xy, XU (M N X,n41) is a module of o by
Assertion (M5) of Proposition 2.5. Clearly, V(o) (X U(MnX 1)) = (V(0)N
Xm) N (M 0 Xppi1). Since (M 0 Xppi1) N (V(0) N X)) = M n X, it follows
from Assertion (M6) of Proposition 2.5 that (V(o) N~ X)) N (M 0 Xppe1) =
V(o)N (XU (M nX,41)) is a module of o. Therefore, X,,, u(M nX,,11) is a
modular cut of o.
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Since X, U(M N Xpni1) = X U (M 0 (Xps1 N Xin)), we have
Xm ¢ Xm u (Mme+1) < Xm+1-

It follows from the maximality of S that X, u (M N X,,41) = X;n41 or, equiva-
lently, (X411 N X)) € M.

Consequently, X,,+1\ X, is a strong module of ¢ for every m € {0,...,n—1}.
Since o is primitive, | X,,+1\ X;n| = 1 for every 0 < m < n—-1. Denote by 2,41 the
unique element of X,,,+1 \ X,,,. We have X, = {z1,...,2,,} for each 0 <m < n.
In particular, V(o) = X,, = {z1,...,2,}. Consider p,q € {1,...,n} such that
p < q. Since X, = {x1,...,2,} is a module of o, we obtain [z,,Z4]s = [%1,%4]0-
Since V(o) \~ X1 ={®2,...,2,} is a module of o, [21,24]s = [#1,22]s. Thus

[@p, Zqlo = [1,22]s for any p,g € {1,...,n} such that p <q.

It follows that o is constant if (z1,22)s = (%2,21)s, and o is linear if (x1,22), *
(l‘g,l‘l)g. O

The characterization of primitive 2-structures follows.

Theorem 2.21 (Ille [23]®). Given a 2-structure o, o is primitive if and only if
o s prime, constant or linear.

Proof. By Lemma 2.14, if ¢ is prime, constant or linear, then ¢ is primitive.
Conversely, we verify that if ¢ is primitive and decomposable, then ¢ is constant
or linear. Hence, suppose that ¢ is primitive and decomposable. Obviously,
v(o) 2 3 because o is decomposable. It follows from Proposition 2.19 that o is
cuttable, and it suffices to apply Proposition 2.20. O

The next result, called Gallai’s decomposition theorem, is a direct conse-
quence of Proposition 2.18 and Theorem 2.21.

Theorem 2.22 (Gallai [18, 28]° ). Given a 2-structure o, with v(o) > 2, the
quotient o /T1(o) is prime, constant or linear.

Remark 2.23. Chein, Habib and Maurer [9] adopted a different approach
to establish Theorem 2.22 for partitive hypergraphs, which constitutes a nice
generalization of Theorem 2.22. We transcribe it in terms of symmetric 2-
structures. (The set of the modules of a symmetric 2-structure is a partitive
hypergraph.) Given a symmetric 2-structure o, define a partial order @ on the
set of the modular partitions of o as follows. Given distinct modular partitions P
and Q of o, (P, Q) € A(O) if for every X € P, there exists Y € () such that X ¢ Y.
Clearly, {{v} : v € V(o)} is the least vertex of O, and {V (o)} is the greatest
one. Furthermore, with modular partitions P and @ of o associate their join

8Ehrenfeucht, Harju and Rozenberg [14, Theorem 5.3] established a more general result.
They associate with a decomposable and primitive 2-structure o a graph I" defined on V(I") =
V(o) as follows. Given distinct v,w € V(T'), vw € E(T") if {v,w} is a module of o. Then, they
proved that either I' is complete or IT" is a path. In the first instance, o is constant whereas o
is linear in the second one.

9Gallai [18] demonstrated this theorem for graphs; Boussairi, Ille, Lopez, Thomassé [8,
Theorem 5] for digraphs; Ehrenfeucht, Harju and Rozenberg [14, Theorem 5.5] for 2-structures;
Ille [23, Theorem 2] for binary structures.

join
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PvQ, and their meet P AQ defined as follows. First, given distinct v,w € V(0),
v and w belong to the same block of P v @Q if there exist Xy,..., X, e Pu@
satisfying v € Xo, w e X,,, and for 0<i<n-1 (whenn > 1), X;nX;; + @.
Second, given distinct v, w € V (o), v and w belong to the same block of P A Q
if there exist X € P and Y € @ such that v,w € X nY. Clearly, Pv @ and
P A @ are modular partitions of o. Therefore, O is a lattice, that is, for any
modular partitions P, @ and R of o, we have: if (P, R),(Q,R) ¢ A(Q), then
((Pv@Q),R) € A(0), and if (R, P),(R,Q) € A(Q), then (R, (P AQ)) € A(O).
The maximal vertices of Q- {V (o)} are called the coatoms of Q. Lastly, Chein,
Habib and Maurer observed that II(o) is the meet of all the coatoms of Q.

We specify Theorem 2.22 as follows.

Theorem 2.24. Given a 2-structure o, with v(c) > 2, the assertions below
hold.

1. There exists e € E(o) such that o is not {e}-connected if and only if
(o) = Ciey(0) and o/I(0) is constant.

2. There exist distinct e, f € E(c) such that o is not {e, f}-connected if and
only if II(0) = Cye 53 (o) and o/II(0) is linear.

3. The 2-structure o is connected if and only if o/II(c) is prime.

Proof. To begin, suppose that there exist e, f € E(o) such that o is not {e, f}-
connected. It follows from Lemma 2.4, Lemma 2.13, and Lemma 2.16 that
(o) = Cye,53(0). By Proposition 2.8, o/TI(0) is constant if e = f, and o/II(0)
is linear if e # f. Conversely, suppose that ¢/II(o) is constant or linear. There
exists X € II(o) such that {X} is a modular cut of ¢/TI(¢). By Lemma 2.10,
X is a modular cut of ¢. It follows from Assertion (M7) of Proposition 2.5 that
there exist e, f € E(o) such that [ X,V (o) N\ X]s = (e, f). Therefore, o is not
{e, f}-connected.

Lastly, suppose that o is {e, f}-connected for any e, f € E(c). By Proposi-
tion 2.12, o is uncuttable. It follows that [II(o)| > 3. For every modular cut Q of
o/Il(c), u@Q is a modular cut of o by Lemma 2.10. Thus ¢/II(0) is uncuttable
as well. Moreover, by Proposition 2.18, ¢/II(o) is primitive. Since [II(o)| > 3, it
follows from Proposition 2.19 that ¢/II(c) is prime. Conversely, suppose that
o/T(0o) is prime. Since |II(o)| > 3, o/II(o) is neither constant nor linear. It
follows from the first two assertions that ¢ is connected. 0

Notation 2.25. Let o be a non connected 2-structure. It follows from Theo-
rem 2.24 that there exists a unique subset v(o) of F (o) such that |[v(o)| =1 or
2, and o is not v(o)-connected. The v(o)-components of o are simply called
the components of o, and C,(,)(o) is denoted by C(o).

Finally, the last assertion of Theorem 2.24 is developed as follows.

Theorem 2.26. Given a 2-structure o, with v(o) > 2, the following assertions
are equivalent
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1. o is connected;

2. o 1s uncuttable;

o

o/ll(o) is prime;

B

. There exists a modular partition P of o such that o/P is prime;

[\

. [(0)| 2 3 and I1(0) is the set of the mazimal modules of o under inclusion
among the proper modules of o.

Proof. We denote by M the set of the maximal modules of o under inclusion
among the proper modules of 0. Hence, the fifth assertion is restated as follows

[TI(o)| > 3 and II(o) = M.

By Proposition 2.12, the first two assertions are equivalent. Hence, it fol-
lows from the last assertion of Theorem 2.24 that the first three assertions are
equivalent.

Clearly, the third assertion implies the fourth one. Now, we show that the
fourth assertion implies the fifth one. Suppose that there exists a modular
partition P of o such that o/P is prime. First, we prove that for every module
M of o,

if |M/P|>2, then M/P = P. (2.6)

Let M be a module of o such that |[M/P| > 2. By Lemma 2.10, M /P is a module
of o/P. Thus M /P = P because o/P is prime. Therefore (2.6) holds. Second,
we prove that for every module M of o,

if |[M/P|>2, then M =V (o). (2.7)

Let M be a module of o such that [M/P| > 2. By (2.6), M/P = P. For a
contradiction, suppose that M # V (o), and consider X € P such that X \M # &.
By Assertion (M6) of Proposition 2.5, M \ X is a module of 0. We have
(M~X)/P=P~{X}. Since |P| > 3, we obtain [( M~X)/P|>2and (M~X)/P #
P, which contradicts (2.6). It follows that X ¢ M for every X € P, so M =V (o).
Therefore (2.7) holds. Third, we prove that P = M. Given X € P, consider a
module M of o such that X ¢ M. Since X ¢ M, |[M/P|>2. By (2.7), M =V (o).
Thus P ¢ M. Conversely, consider Y € M. Since Y # V(0o), it follows from
(2.7) that there exists X € P such that Y ¢ X. By the maximality of Y, Y = X,
so Y € P. Therefore M c P. It follows that P = M. Fourth, we verify that the
blocks of P are strong modules of 0. Given X € P, consider a module M of o
such that X n M # @ and M ~ X # @. We have |[M/P|>2. By (2.7), M =V (o).
Hence X ¢ M. It follows that X is a strong module of . Since P = M, X € M.
Tt follows that X € II(¢). Therefore P € II(o). Since P and II(o) are partitions
of V(o), we obtain P =TII(o). Consequently

P=Tl(c) =M.
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Note that [II(c)| > 3 because II(c) = P and o/P is prime. It follows that the
fourth assertion implies the fifth one.

Lastly, we show that the fifth assertion implies the third one. Hence suppose
that |II(o)| > 3 and II(¢) = M. Since |II(c)| > 3, we have to show that o/II(c)
is indecomposable. Let @Q be a module of o/II(o) such that |Q| > 2. We have to
verify that @ =II(o). By Lemma 2.10, u@ is a module of 0. Consider X € Q.
Since II(0) = M, we have X € M. Since |Q| > 2, we obtain X ¢ uQ. It follows
from the maximality of X that u@Q =V (o). Hence Q =TI(0o). O



Chapter 3

Prime 2-substructures of a
prime 2-structure: the first
results

Notation 3.1. Let o be a 2-structure. For n € {3,...,v(c) - 1}, we denote by
P, (o) the set of X ¢ V(o) such that o[ X] is prime and | X| = n. Furthermore,
we denote by %, (o) the union of the elements of £, (o).

Question 3.2. Let o be a prime 2-structure. A natural question is
for which ne {3,...,v(c) -1}, is £, (o) + 2?

Obviously, we can refine the question as follows. Given v € V (o), for which
ne{3,...,v(c) -1}, do we have v e Z,(0)?

For instance, given n > 2, consider the graph Ba,,1 defined on V(Bapy1) =
{0,...,2n} by

E(Bapi1) ={{i,j}:4,5€{0,....,n—1},i#j}
u{{i,i+n}:i€{0,...,n-1}}
u{{i,2n}:i€{0,...,n—1}} (see Figure 3.1).

The graph Bs is called the bull. the bull

21
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Np;, (6)

Figure 3.1: The graph By

Claim 3.3. Bs,.1 — 2n is prime.

Proof. Consider a module M of Ba,.1 —2n such that |M]| > 2. We have to show
that M = {0,...,2n—1}. For a contradiction, suppose that M n{0,... , n-1} = @.
Hence M € {n,...,2n-1}. Since |M| > 2, there exist distinct ¢,j € {0,...,n—1}
such that ¢ + n,j + n € M, which is impossible because i ¢ M with {i,i +n} €
E(Baps1) and {i,j + n} ¢ E(Bapy1). It follows that M n {0,...,n -1} # @.
Similarly, M n{n,...,2n-1} # @.

We prove that for every i€ {0,...,n—1},

iteM=—=1i+neM. (3.1)

Indeed, consider i € M n{0,...,n—1}. Since M n{n,...,2n-1} # @, there exists
je{0,...,n—1} such that j+ne Mn{n,...,2n—1}. If i = j, then i + n € M.
Suppose that i # j. We have {i,i+n} € E(Bap+1) and {j+n,i+n} ¢ E(Bap+1)-
Since M is a module of By,.1 —2n such that 4,5 +n € M, we obtain ¢ +n € M.
Hence (3.1) holds. Now, we prove that for every i € {0,...,n -1},

1e€M < i+neM. (3.2)

Since (3.1) holds, consider ¢ € {0,...,n — 1} such that i +n € M. Since M n
{0,...,n—1} + @, there exists j € {0,...,n—1}n M. If j = i, then i € M.
Suppose that i # j. Since (3.1) holds, j+n € M. We have {i,i+n} € E(Ba,+1) and
{i,j+n} ¢ E(Ban+1). Since M is a module of Ba,+1—2n such that i+n,j+n € M,
we obtain ¢ € M. Hence (3.2) holds.
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Lastly, since (3.2) holds, there exists i € {0,...,n — 1} such that i,i+n e M.
For each j € {0,...,n =1} \ {i}, we have {i,j} € F(Ban+1) and {i +n,j} ¢
E(Bsp+1). Since M is a module of Bay,41 — 2n such that ¢,i+n € M, we obtain
j € M. Therefore {0,...,n—-1} ¢ M. It follows from (3.2) that M = {0,...,2n -
1}. O

Claim 3.4. By, is prime.

Proof. Consider a module M of B, 1 such that |M| > 2. We have to show that
M ={0,...,2n}. For a contradiction, suppose that 2n ¢ M. By Assertion (M2)
of Proposition 2.5, M is a module of Bg,1 — 2n. Since |M| > 2, it follows
from Claim 3.3 that M = {0,...,2n — 1}, which is impossible because {0,2n} €
E(Bsp+1) and {n,2n} ¢ E(Bsoy+1). Thus 2n e M.

We prove that |[M \ {2n}| > 2. We have M \ {2n} + @ because |M| > 2. First,
suppose that there exists i € M n{0,...,n—1}. Since {i,i+n} € E(Bay+1) and
{i +n,2n} ¢ E(Ba2y+1), we have i + n € M. Second, suppose that there exists
i €{0,...,n—1} such that i +n € M. Consider j € {0,...,n -1} ~ {i}. Since
{j,2n} € E(Ban+1) and {j,i + n} ¢ E(Bays1), we have j € M. It follows that
M~ {2n}| > 2.

By Assertion (M2) of Proposition 2.5, M ~ {2n} is a module of Ba,+1 — 2n.
Moreover, Bay+1 —2n is prime by Claim 3.3. Since |M \ {2n}| > 2, we obtain
M~ {2n}={0,...,2n-1}. Thus M ={0,...,2n} because 2n € M. O

Claim 3.5. We have 2n € Z5(Baps1) ~ (#3(Bans1) U Z4(Bani1)).

Proof. Tt follows from Claim 3.4 that the 2-substructure Ba,+1[{0,1,n,n+1,2n}]
is prime because it is isomorphic to Bs. Thus 2n € %Z5(Bay+1)-

Now, consider X € V(Ba,.1) such that |X| =3 or 4, and 2n € X. We have
to prove that Ba,.+1[X] is decomposable.

First, suppose that for all i € Xn{0,...,n—-1} and all j € Xn{n,...,2n-1},
we have j —i #n. We have (X n{0,...,n-1})u{2n} and X n{n,...,2n -1}
are modules of Bay.1[X]. If (X n{0,...,n-1})u{2n} is a trivial module of
Bg,1[X], then X ¢ {n,...,2n}, and hence X n{n,...,2n — 1} is a nontrivial
module of Bay,.1[X]. Therefore, (Xn{0,...,n-1})u{2n} or Xn{n,...,2n-1}
are nontrivial modules of Ba,11[X].

Second, suppose that there exists i € {0,...,n — 1} such that 7,i +n € X. If
X n{0,...,n -1} = {i}, then {i + n,2n} is a nontrivial module of Ba,+1[X].
Otherwise, if there exists j € {0,...,n -1} ~ {i} such that X = {4, 4,7+ n,2n},
then {j,2n} is a nontrivial module of Ba,,1[X]. O

In Corollary 3.9, we establish that such a vertex 2n is unique.

3.1 Summner’s theorem
Remark 3.6. Let o be a prime 2-structure. Consider

v R3(o)uZy(0). (3.3)
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Let X € V(o) such that v € X and |X| =3 or 4. We verify that ¢[X] is not
connected. Otherwise, o[X] is connected, and it follows from Theorem 2.26
that o[ X]/TI(c[X]) is prime. Consider a subset X’ of X such that v € X’
and | X' nY] =1 for each Y € II(¢[X]). The function f : I(c[X]) — X',
satisfying X' nY = {f(Y)} for each Y € II(c[ X]), realizes an isomorphism from
o[ X]/TI(¢[X]) onto o[ X']. Thus, o[X'] is prime with v € X’ and |X'| = 3 or 4,
which contradicts (3.3).

Notation 3.7. Consider a 2-structure o. Let v € V(o). For e, f € E(0), set

NED ) = {w e V(o) ~ {v} = [v,w], = (e, )}

Proposition 3.8 (Ille [23]!). Given a prime 2-structure o, consider v ¢ #Z3(o)u
e%4(0) .

1. For each e € E(0), J[Née’e) (v)] is e-constant.
2. For distinct e, f € E(0), O'[N(E—E’f)(’l))] is e-linear (and f-linear).

Proof. Consider e, f € E(o) such that Née’f)(v) + @. We prove that each {e, f}-
component C' of U[N(Se’f)(v)] is a module of o. Consider x € V(o) \x C. We
have to verify that z «—, C. Since C ¢ Née’f)(v), we have [v,C]y, = (e, ).
Hence, suppose that x # v. Moreover, since C' is a module of J[N(Ee’f)(v)] by
Lemma 2.4, suppose that z ¢ Née’f)(v). Thus suppose that

z ¢ N&D(v)u {v).

Let v € C. Since v € Née’f)(v) and x ¢ Née’f)(v)7 {7v,x} is not a module of
o[{v,z,v}]. Since o[{v,z,7}] is decomposable, {v,z} or {v,~v} are modules of
o[{v,z,~}]. First, suppose that {v,~v} is a module of o[{v,z,v}]. We obtain
x «—4 {v,v}. Thus [z,7], = [2,v]s, sO 7 € N(E”f’”]"(;c). Second, suppose that
{v,2} is a module of o[{v,z,v}]. We obtain v «—, {v,z}. Hence [z,7], =
[v,7]s. Since C € N (v), we obtain v € NS (2). Therefore

C e N&D(z)u Nl=vle ()., (3.4)

Suppose that <v,z>,={e, f} (see Notation 1.1). We obtain e # f and [v,z], =

(f,e) because z ¢ Née’f)(v). It follows from (3.4) that [z,C]s = (e, f). Now,
suppose that <v,z>,+ {e, f}. We obtain

(C NI (2) n (Cn NP (2)) = 2.

Consider v € CnNL")7 (2) and 6 € CANSS) (2). By Remark 3.6, o[{v, ,7,5}]
is not connected. Since <v,y>,=<v,d>,=<x,5>,= {e, f}, we obtain

v(o[{v,x,7,0}]) = {e, f} (see Notation 2.25).

!Cournier and Tlle [12] established this proposition for digraphs. Ille [23] proved this
proposition for binary structures, that is, labeled 2-structures [14].
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Furthermore, since <v,z>,# {e, f} and <x,y>,=<v,z>,, we have

{v, 2,7} € C(a[{v, 2,7,6}]).

By Lemma 2.4, § <, {v,x,7}, and hence [v,0], = [v,d], = (e, f). Conse-
quently, if C n NF"v1 (z)#@ and C'n Née’f)(x) # @, then [C'n N(EI’”]"(x), Cn
Née’f)(a:)]g = (e, f). Since o[C] is {e, f}-connected and C ¢ Née’f)(sc) U
NEYo(2) by (3.4), we have € ¢ NIV (2) or € ¢ N{*)(2). In both in-
stances, we obtain z «—, C.

Consequently, the {e, f}-components of U[Née’f)(v)] are modules of o. Since
o is prime, they are reduced to singletons. Thus, the function from Née’f )(v)
onto C{eyf}(a[Née’f)(v)), defined by u — {u} for every u € Née’f)(v)7 is an iso-
morphism from O’[Née’f)(’l))] onto J[N(Se’f)(v)]/C{&f}(J[Née’f)(v)]). It follows
from Lemma 2.4 and Proposition 2.8 that J[Née’f)(v)] is e-constant if e = f,
and J[Née’f)(v)] is e-linear if e # f. O

Corollary 3.9 (Ille [23]%). Given a prime 2-structure o, we have
V(o) N (#s(0) U Za(0))| < 1.

Proof. For a contradiction, suppose that there exist distinct z,y € V(o) ~
(%5(0) UZ4(0)). We prove that o is decomposable. This is the case if {x,y}
is a module of o because v(c) > 3. Hence, suppose that {x,y} is not a module
of o, and consider v € V(o) \ {z,y} such that v </, {x,y}. Since o[{x,y,v}]
is decomposable, {z,v} or {y,v} are modules of o[{z,y,v}]. Suppose that
{z,v} is a module of o[{z,y,v}]. Thus z,v € N (y). By Proposition 3.8,
<L, U>5=<x,Y>,. It follows that

<L, V>=<Y, V> =<T, Y>q . (3.5)
Since v <>, {z,y} and < x,v >,=< y,v >,, we obtain | < z,v >, | = 2 and
[%,v]s = [v,y]o. Since {z,v} is a module of o[{z,y,v}], we have

[xav]o = [’va]a = [l’,y]g- (36)

We obtain also that (3.6) is satisfied when {y,v} is a module of o[{z,y,v}].
Consequently, by setting

W={veV(o)\{x,y}:v b, {z,y}},

we obtain that W u {z} is a module of o[W u{z,y}]. We show that W u{z} is
a module of 0. By Assertion (M3) of Proposition 2.5, it suffices to verify that
Wu{z,y} is a module of o. Consider v,w € V(o)\{z,y} such that v <, {z,y}
(i.e. ve W) and w «—, {x,y}. We prove that

w o {z,y,0v}. (3.7)

2Cournier and Tlle [12] proved this corollary for digraphs. Ille [23] proved this proposition
for binary structures, that is, labeled 2-structures [14]
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By Remark 3.3, B[{x,y,u,w}] is not connected. We distinguish the following
two cases.

1. Suppose that < z,y >,#* v(o[{z,y,v,w}]) (see Notation 2.25). Since
<X, V> =<Y, V>,=<T,Y>s by (3.5), it follows from Lemma 2.4 and Propo-
sition 2.8 that {z,y,v} € C(o[{z,y,v,w}]). By Lemma 2.4, {z,y,v} is a
module of o[{z,y,v,w}], and hence w «—, {z,y,v}.

2. Suppose that < z,y >,= v(o[{z,y,v,w}]) (see Notation 2.25). Since
w «—, {z,y}, we have <z, w>,=<y,w>,. For a contradiction, suppose
that

<z, w>o# v(o[{z,y,v,w}]).

By Lemma 2.4 and Proposition 2.8, {z,y,w} € C(o[{z,y,v,w}]). By
Lemma 2.4, {z,y,w} is a module of B[{z,y,v,w}], which contradicts
v <, {x,y}. It follows that <z, w>,= v(o[{z,y,v,w}]). Since w «—,
{z,y}, [w,{z,y}]o = [x,y]o or [y,z],. Suppose that

[w,{z,y}]o = [2,y]o.

Since | <z,y>, | =2 and [v,z], = [y,x], by (3.6), {v,w} is not a module
of o[{z,v,w}]. Since o[{z,u,w}] is decomposable, we have {z,v} is a
module of o[{x,v,w}] and [w,v], = [w,z], = [z,y]s or {z,w} is a module
of o[{z,v,w}] and [w,v], = [z,v]s. Since [z,v]s = [2,y], by (3.6), we
obtain

[w,{z,y,0}]o = [2,]o

in both instances. When [w,{z,y}]s = [y, 2]s, we obtain [w,{z,y,v}], =
[y, 2], by considering o[{y,u,w}] instead of o[{z,u,w}].

In both cases, we obtain that (3.7) holds. It follows that W u{x,y} is a module
of 0. By Assertion (M3) of Proposition 2.5, Wu{z} is a module of o. Hence o
is decomposable. Consequently |V (o) \ (Z5(c) U Z4(0))| < 1. O

Sumner’s theorem is an immediate consequence of Corollary 3.9.
Theorem 3.10 (Sumner [35]%). Given a prime 2-structure o, we have
Ps(0)u Py(0) + @.
Sumner’s theorem is improved as follows.
Theorem 3.11 (Cournier, Ille [12]*). Given a prime 2-structure o, we have

V(o) =%3(0) uZy(c) U5 (o).

3Sumner [35] demonstrated this theorem for graphs.
4Cournier and Tlle [12] proved this theorem for digraphs, and Ille [23] for binary structures
by using the same proof.
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Proof. We prove that
V(o) N (Z3(c)uZy(0)) € X5(0).

Hence, consider v € V(o) N (#3(c)uZ4(0)). By Corollary 3.9, V(o) \ (#3(c) U
Z4(0)) = {v}. Thus, by considering an element of V(o) \ {v}, we obtain X €
P3(0)u Py(0) such that X c V(o) \ {v}. We prove that o[ X u{v}] is prime.
Otherwise, o[ X u {v}] admits a nontrivial module M. By Assertion (M2) of
Proposition 2.5, M n X is a module of o[ X]. Since [M|>2, M n X # @&. Since
o[X] is prime, we obtain [M nX|=1or MnX = X. In the first instance,
there is y € X such that M = {y,v}. Since {y,v} is a module of o[X u {v}],
the function X — (X \ {y}) u {v}, defined by y » v and z — 2z for each
z € X ~ {y}, is an isomorphism from o[X] onto o[(X \ {y}) u {v}]. Thus
o[ (X ~{u}) u{v}] is prime, which contradicts v € V(o) \ (#Z3(c) UZ4(c)). In
the second instance, v «—, X. Hence there exist e, f € E(co) such that X ¢
NP (v). By Proposition 3.8, o[ NS/ (v)] is constant or linear. Therefore,
o[ X] is constant or linear as well, which contradicts the fact that o[ X] is prime.
Consequenlty o[ X u{v}] is prime. O

3.2 The Ehrenfeucht-Rozenberg theorem

We continue examining the existence of prime 2-substructures of cardinality > 5
in a prime 2-structure (see Question 3.2).

Notation 3.12. Given a 2-structure o, suppose that there exists X ¢ V(o)
such that o[ X] is prime. By Theorem 3.10, such a subset X exists if o is prime
with v(o) > 5. The discussion on M nX in the proof of Theorem 3.11, where M
is a module of o[ X u{v}], leads us to consider the following subsets of V(o) \ X

e Ext,(X) denotes the set of v e V(o) \ X such that o[ X u{v}] is prime;
e (X), denotes the set of v € V(o)\ X such that X is a module of o[ X u{v}];

e For each y € X, X,(y) denotes the set of v e V(o) \ X such that {y,v} is
a module of o[ X U {v}].

Furthermore, p(, x) denotes the set {Ext,(X),(X)o} u{X,(y):yeX}.

Lemma 3.13. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. The set p(y, x) constitutes a partition of V(o) ~ X.

Proof. To begin, we verify that the union of the elements of p(,. x) equals V (o)~
X. Let ve V(o) X. If o[ X u{v}] is prime, then v € Ext,(X). Suppose that
o[X u{v}] is decomposable. Hence, o[ X u{v}] admits a nontrivial module M.
By Assertion (M2) of Proposition 2.5, M n X is a module of o[ X]. Since M is
a nontrivial module of o[ X U {v}], we have |[M|>2, so M n X # @. Since o[ X]
is prime, we obtain [M| =1 or M nX = X. In the first instance, there exists
y € X such that M n X = {y}. Since |M| > 2, we obtain M = {y,v}, and hence
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v e X, (y). In the second instance, we obtain M = X because M # X u {v}. It
follows that v € (X),.

Now, we show that the elements of p(,, x) are pairwise disjoint. By definition
of the elements of p(,, x), we have Ext, (X)n(X), = @, and Ext, (X)X, (y) =@
for every y € X.

Let y € X. Suppose for a contradiction that there exists v € X, (y) N {X),.
We obtain that {y,v} and X are modules of o[X U {v}]. By Assertion (M6)
of Proposition 2.5, X ~ {y,v} = X ~ {y} is a module of o[X u {v}] because
v e{y,v}\X. By Assertion (M2) of Proposition 2.5, X \{y} is a module of o[ X],
which contradicts the fact that o[ X] is prime. It follows that X, (y)n{X), = @.

Lastly, consider distinct ¥,z € X. Suppose for a contradiction that there is
veX,(y)nXs(z). We obtain that {y,v} and {z,v} are modules of o[ X u{v}].
By Assertion (M5) of Proposition 2.5, {y,v} u{z,v} = {y,z,v} is a module of
o[X u{z}] because v € {y,v} n{z,v}. By Assertion (M2) of Proposition 2.5,
X n{y,z,v} ={y,2} is a module of o[ X], which contradicts the fact that o[ X]
is prime. O

Lemma 3.13 justifies the following definition.

Definition 3.14. Given a 2-structure o, consider X ¢ V(o) such that o[X]
is prime. By Lemma 3.13, p(,,x) is a partition of V(o) \ X. It is called the
outside partition induced by ¢ and X.

Given a 2-structure o, consider X ¢ V(o) such that o[X] is prime. We
study the modules of o[ X u{v,w}], where v,w € V(o) \ X. We begin with two
remarks.

Remark 3.15. Given a 2-structure o, consider X ¢ V(o) such that o[X] is
prime.

e For every v € (X),, X is a module of o[ X u{v}], that is, v «—, X. Thus,
X is a module of o[ X U (X),], and X is a module of o[X U {v,w}] for
v,w e (X),.

o Let y e X. For z € X N\ {y} and v € X,(y), we have z <, {y,v} be-
cause {y,v} is a module of o[X U {v}]. Therefore z «—, {y} U X,(y).
Consequently {y}u X, (y) is a module of o[ X U X, (y)], and {y,v,w} is a
module of o[ X U {v,w}] for v,w € X, (y).

Remark 3.16. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. Suppose that o admits a nontrivial module M. By Assertion (M2) of
Proposition 2.5, X n M is a module of o[X]. Since o[X] is prime, we obtain
XnM=g,|XnM|=1or XnM=X. We consider the three cases below.

e Suppose that X n M = @. We prove that there exists B € p(,, x) such that
M ¢ B. For distinct v,w € M, we have (X u{v,w})n M = {v,w} is a
module of o[ X U {v,w}] by Assertion (M2) of Proposition 2.5. Therefore,
the function f: X u{v} — X u{w}, defined by v » w and y ~ y for every
y € X, is an isomorphism from o[ X u{v}] onto o[ X u{w}]. Consequently,
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if v € Ext,(X), that is, o[ X u{v}] is prime, then o[ X u{w}] is prime too,
so w € Ext,(X). Furthermore, if v € (X),, that is, if X is a module of
o[Xu{v}], then f(X) = X is a module of c[ X u{w}], so w € (X),. Lastly,
given y € X, if v € X(y), that is, {y,v} is a module of ¢[X u {v}], then
f{y,v}) ={y,w} is a module of o[ X U {w}], so w € X, (y). Therefore, v
and w belong to the same block of p, x).

e Suppose that there is y € X such that X n M = {y}. We verify that
M~{y} +@ and M~ {y} € X,(y). We have M \ {y} # @ because |M| > 2.
For each v € M \ {y}, it follows from Assertion (M2) of Proposition 2.5
that (X u{v})n M = {y,v} is a module of ¢[X U {v}] or, equivalently,
veX,(y).

e Suppose that X ¢ M. Since M is a nontrivial module of o, we have
M ¢ V(o). Moreover, (V(o)\M) ¢ (X),. Indeed, for each v e V(o) \ M,
it follows from Assertion (M2) of Proposition 2.5 that (X u{v})nM =X
is a module of o[ X U {v}] or, equivalently, v € (X),.

Lemma 3.17. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. The following statements hold.

(P1) Forve(X), andw € X,(y), wherey € X, if o[ Xu{v,w}] is decomposable,
then X u{w} and {y,w} are the only nontrivial modules of c[ X u{v,w}].

(P2) For v € (X), and w € Ext,(X), if o[X u{v,w}] is decomposable, then
X u{w} is the unique nontrivial module of o[ X u {v,w}].

(P3) Given distinct y,z € X, for v e X,(y) and w € X,(2), if o[ X u{v,w}]
is decomposable, then {y,v} and {z,w} are the only nontrivial modules of
o[ X u{v,w}].

(P4) Given ye X, forve X,(y) and w € Ext,(X), if o[ X u{v,w}] is decom-
posable, then {y,v} is the unique nontrivial module of o[ X U {v,w}].

(P5) Given distinct v,w € Exty(X), if o[X u {v,w}] is decomposable, then
{v,w} is the unique nontrivial module of o[ X u{x,y}].

Proof. For Statements (P1),...,(P5) above, consider distinct v,w € V(o) \ X.
Suppose that o[ X U {v,w}] admits a nontrivial module M. By Assertion (M2)
of Proposition 2.5, X n M is a module of o[ X]. Since ¢[X] is prime, we obtain
|XnM|<1or XnM = X. Observe that in Statements (P1), (P2), (P3), and (P4)
above, v and w do not belong to the same block of p(,, x). By Remark 3.16, we
have X n M # @. Hence, we have [ X nM|=1or X nM = X in Statements (P1),
(P2), (P3), and (P4) above.

For Statement (P1), suppose that v € (X), and w € X,(y), where y € X. As
above observed, X ¢ M or there is z € X such that X n M = {z}. First, suppose
that X ¢ M. Since w € X,(y), w ¢ (X), by Lemma 3.13. Tt follows from
Remark 3.16 that w € M. Since M # X u{v,w}, we obtain M = X u{w}. Thus
v <, XUu{w}, sov <, {y,w}. Since w € X,(y), that is, {y,w} is a module of
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o[ X u{w}], we obtain that {y,w} is a module of o[ X u{v, w}]. Second, suppose
that X n M = {z}. By Lemma 3.13, v ¢ X,(z). It follows from Remark 3.16
that v ¢ M. Therefore M = {z,w} because |M| > 2. We obtain w € X,(z).
By Lemma 3.13, y = z. Since {y,w} is a module of o[X U {v,w}], we have
v <4 {y,w}. We have also v «—, X because v € (X),. Thus v «—, X u{w},
and hence X U {w} is a module of o[ X U {v,w}].

For Statement (P2), suppose that v € (X), and w € Ext,(X). We verify
that |X n M| > 2. Otherwise, there exits y € X such that X n M = {y}. By
Remark 3.16, M\ {y} # @ and M ~{y} € X,(y), which contradicts Lemma 3.13.
Therefore, | X n M| > 2, and hence X ¢ M. Since w ¢ (X),, we obtain w € M by
Remark 3.16. Hence M = X u {w} because M ¢ X{v,w}.

For Statement (P3), suppose that v € X,(y) and w € X,(z), where y,z € X
and y # z. Suppose for a contradiction that X ¢ M. By Remark 3.16, {v,w} \
M # @ and {v,w} \ M ¢ (X),, which contradicts Lemma 3.13. Consequently,
X\ M # @, and hence there exists t € X such that XnM = {¢}. By Remark 3.16,
M~A{t} + @ and M~ {t} ¢ X,(¢). It follows from Lemma 3.13 that ¢t € {y, z}. By
interchanging y and z, and hence v and w if necessary, we can assume that y = ¢.
As previously, M ~ {y} # @ and M ~ {y} € X,(y). By Lemma 3.13, w ¢ X, (y),
and hence w ¢ M. Since [M| > 2, we obtain M = {y,v}. It remains to show
that {z,w} is a module of o[X U {z,y}] as well. Since {z,w} is a module of
o[X u{w}], it suffices to verify that v «—, {z,w}. We have [z,y], = [2,v],
and [w,y]s = [w,v]s because {y,v} is a module of o[ X U {v,w}]. Furthermore,
we have [z,y]s = [w,y]s because {z,w} is a module of o[ X U {w}]. Therefore
[Za U]U = [wvv]ﬂ'

For Statement (P4), suppose that v € X, (y), where y € X, and w € Ext,(X).
Suppose for a contradiction that X ¢ M. By Remark 3.16, {v,w} \ M # @ and
{v,w} ~ M c (X),, which contradicts Lemma 3.13. Consequently, X \ M # @,
and hence there exists z € X such that XnM = {z}. By Remark 3.16, M ~{z} #
@ and M\ {z} ¢ X,(z). By Lemma 3.13, w ¢ X,(v), so w ¢ M. Since |M| > 2,
we obtain M = {z,v}. By Lemma 3.13, we have z = y.

For Statement (P5), suppose that v,w € Ext,(X). First, suppose that X ¢
M. By Remark 3.16, {v,w}~ M # @ and {v,w} ~ M < (X),. It follows from
Lemma 3.13 that X \ M # @&. Second, suppose that there exists y € X such that
X nM ={y}. By Remark 3.16, M ~ {y} # @ and M \ {y} € X,(y). It follows
from Lemma 3.13 that |X n M| # 1. Consequently, we have X \ M # &, and
|X n M|+1. By Remark 3.16, X n M = @, and hence M = {v,w}. O

The following result is a direct consequence of Lemma 3.17.

Corollary 3.18. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. The following two assertions hold.

(Q1) Forve(X), andw e V(o)N(XU(X),), if o[ X u{v,w}] is decomposable,
then X u{w} is a nontrivial module of o[ X u {v,w}].

(Q2) Givenye X, forve X,(y) and we V(o) N (XuX,(y)), if o[ X u{v,w}]
is decomposable, then {y,v} is a nontrivial module of o[ X u {v,w}].
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At present, we are ready to establish the Ehrenfeucht-Rozenberg theorem.

Theorem 3.19 (Ehrenfeucht and Rozenberg [13]). Given a 2-structure o, con-
sider X ¢ V(o) such that |V (o)~ X| > 2 and o[X] is primitive. If o is prime,
then there exist distinct v,w € V(o) N X such that o[ X u{v,w}] is primitive.
More precisely, if o is prime, then the following two statements hold.

1. If (X)s #+ @, then there exist v € (X), and w e V(o) N (X U(X),) such
that o[ X u{v,w}] is prime.

2. For each y € X, if X;(y) + @, then there exist v e X;(y) and we V(o) ~
(X uXs(y)) such that o[ X u{v,w}] is prime.

Proof. First, suppose that (X), # @. Since o is prime, V(o) ~ (X), is not a
module of o. Thus, there exists v € (X), such that v </, V(o) ~ (X),. But
v «—, X because v € (X),. It follows that there exists w e V(o) \ (X U (X))
such that v <, X u{w}. It follows from Assertion (Q1) of Corollary 3.18 that
o[X u{v,w}] is prime.

Second, consider y € X such that X, (y) # @. Since o is prime, {y} U X, (y)
is not a module of o. By Remark 3.15, {y}uX,(y) is a module of o[ X U X, (y)].
Consequently, there exists w € V(o) (X uX,(y)) such that w </, {y}uX,(y).
Observe that for u € V(o) \ ({y} u X, (y)), we have u <, {y} u X, (y) if and
only if u «—, {y,v} for every v e X,(y). It follows that there is v € X, (y) such
that w </, {y,v}. Therefore, {y,v} is not a module of o[ X u{v,w}]. Tt follows
from Assertion (Q2) of Corollary 3.18 that o[ X u {v,w}] is prime.

Finally, suppose that (X), = @, and X,(y) = @ for each y € X. By
Lemma 3.13, we have V(o) \ X = Ext,(X). Since o is prime, V(o) \ X is not a
module of o. Therefore, there exist y € X and distinct v,w € V(o) ~ X such that
y <o {v,w}. We obtain that {v,w} is not a module of o[X U {v,w}]. Since
v, w € Ext, (X), it follows from Statement (P5) of Lemma 3.17 that o[ X u{v, w}]
is prime. O

The next result, called the parity property, follows by applying Theorem 3.19
several times. It also provides an upward hereditary property of primality.

Corollary 3.20 (Ehrenfeucht and Rozenberg [13]). Given a prime 2-structure
o, consider X ¢ V(o) such that o[X] is prime. For each n > 0 such that
[V (o) N\ X| > 2n, there exists Y € V(o) N~ X such that |Y|=2n and o[ X UY] is
prime.

The next result is a simple consequence of Corollary 3.20.

Corollary 3.21 (Ehrenfeucht and Rozenberg [13]). Given a prime 2-structure
o, consider X ¢ V(o) such that o[X] is prime. There exist v,w € V(o) N X
such that o — {v,w} is prime.

Proof. Tt suffices to apply Corollary 3.20 with n = [%] -1. O
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The first downward hereditary property of primality ends the section. It
is an immediate consequence of Theorem 3.10 and Corollary 3.21. The second
downward hereditary property of primality is the Schmerl-Trotter theorem (see
Theorem 5.3).

Proposition 3.22 (Ehrenfeucht and Rozenberg [13]). Given a prime 2-structure
o, with v(o) 25, there exist v,w € V(o) such that o — {v,w} is prime.

Proof. By Theorem 3.10, there exists X ¢ V(o) such that o[X] is prime, and
| X| =3 or 4. To conclude, it suffices to apply Corollary 3.21. O
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Critical 2-structures

Given n > 2, the tournament T, (see Figure 1.2) is prime by Fact 2.7. More-
over, we have

e Th,11 —2n = Lo, and, for instance, {0,1} is a nontrivial module of Ty, —

2n;
e {2,...,2n} is a nontrivial module of Ty,,1 —0;
e {0,...,2n -3} is a nontrivial module of Ty,,1 — (2n —1);

o for 1<p<2n-2,{p-1,p+1} is a nontrivial module of T5,+1 — p.
This leads us to the following definition.

Definition 4.1. Given a prime 2-structure o, a vertex v of o is critical (in terms critical
of primality) if o — v is decomposable. The set of the noncritical vertices of o is

called the support of o, it is denoted by .# (o). Generally, a proper subset W of support
V(o) is critical if 0 — W is decomposable. A primitive 2-structure is critical if

all its vertices are critical.

From the example above, given n > 2, the tournament 75,1 is critical. Since
critical 2-structures exist, the only attempt to improve Proposition 3.22 is to
answer the following question positively.

Question 4.2. Let o be a prime 2-structure. If v(o) is large enough, then does
there exist Z ¢ V(o) such that ¢[Z] is prime and |V (o) \ Z| =27

The second downward hereditary property of primality, that is, the Schmerl-
Trotter theorem (see Theorem 5.3) answered Question 4.2 positively. Before
providing such an answer, Schmerl and Trotter [33] characterized the critical
partial orders, graphs, tournaments, etc... Bonizzoni [4] independently char-
acterized the critical 2-structures. To describe the structure of the critical di-
graphs, Boubabbous and Ille [7] study the components of the primality graph!

!The same approach is adopted in [6] to characterize the critical infinite digraphs.

33
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associated with every prime 2-structure. The primality graph was introduced
by Ille [20] as below. It plays a decisive role in the structural study of the prime
2-structures.

4.1 The primality graph

Definition 4.3. Given a prime 2-structure o, the primality graph P(c) of o is
the graph defined on V(P(c)) = V(o), the edges of which are the noncritical
unordered pairs. Therefore, given v,w € V (o), with v # w, we have

{v,w} € E(P(0)) if and only if o — {v,w} is prime.

To begin, given a prime 2-structure o, we examine the neighbourhood Np(4)(v)
of a critical vertex v of o.

Lemma 4.4 (Ille [20]). Let o be a prime 2-structure with v(c) > 5. For every
veV(o)\ .S (o), we have dp,y(v) <2. Moreover, we have

1. ifdpsy(v) = 1, then V(o) (Np(o) (v)u{v}) is the unique nontrivial module
of o0 —v;

2. if dp(sy(v) = 2, then Np(yy(v) is the unique nontrivial module of o —v.

Proof. To begin, we prove that dp(,)(v) <2 for each v € V(o) \.# (o). Consider
veV(o)\ S (o) such that Np(y(v) #@. Let w € Np()(v). Set

X =V(o)~A{v,w}.
Hence, o[ X] is prime. Since v ¢ #(0), o — v is decomposable. Thus,
w ¢ Ext,(X) (see Notation 3.12). (4.1)

By Lemma 3.13, w € (X ), or w € X, (y), where y € X. Therefore, we distinguish
the following two cases.

e Suppose that w € (X),. For every y € X, X \ {y} is a nontrivial module
of o —{v,y}. Therefore y ¢ Np(,)(v). Consequently,

if there exists w € Np(,)(v) N (X)o , then Np,y(v) = {w}. (4.2)

e Suppose that there exists y € X such that w € X, (y). For every z € X\ {y},
{y,w} is a nontrivial module of o — {v,2}. Consequently, z ¢ Np(s)(v),
and hence Np(,)(v) € {y,w}. Since {y,w} is a module of o[ X u{w}], the
function X — (X \ {y}) u {w}, defined by y » w and z — z for every
z € X \{y}, is an isomorphism from o — {v,w} onto o — {v,y}. It follows
that y € Np(o)(v). Consequently, given y € X,

if there exists w € Np(,)(v) N X, (y), then Np(,y(v) = {y,w}.  (4.3)
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It follows from both cases above that dp(,)(v) < 2.

Now, consider v € V(o) \~ .#(0) such that dp,)(v) = 1. Denote by w the
unique neighbour of v in P(c). Set X =V (o) {v,w}. It follows from (4.3) that
w ¢ X, (y) for every y € X. Moreover, w ¢ Ext,(X) by (4.1). By Lemma 3.13,
w € (X),, and V(o) \ {v,w} is the only nontrivial module of o —v.

Lastly, consider v € V(o) \ (o) such that dp,)(v) = 2. Denote by w and
w’ the neighbours of v in P(c). Set X = V(o) ~ {v,w}. It follows from (4.2)
that w ¢ (X),. Moreover, w ¢ Ext,(X) by (4.1). By Lemma 3.13, there exists
y € X such that w € X, (y). By (4.3), Np(y(v) = {y,w}. Therefore, v’ =y,
so we X (w'). It follows from Lemma 3.13 that {w,w’} is the only nontrivial
module of o —v. O

Given a prime 2-structure o, consider a component C of P(o) such that
v(C)22and V(C) cV(o)\Z(0). It follows from Lemma 4.4 that C is a cycle
or a path.

Proposition 4.5 (Boudabbous and Ille [7]). Let o be a prime 2-structure with
v(o) > 5. For every component C of P(c) such that v(C) > 2 and V(C) ¢
V(o) N F(0), the following statements hold.

1. If C is a cycle, then its length is odd and V(C) =V (o);
2. If C is a path of odd length, then |V (o)~ V(C)|<1;
3. If C is a path of even length, then V(C) =V (o).

Proof. We denote the vertices of C by 0,...,v(C) -1 in such a way that C =
Cv(C) or PU(C)'

First, suppose that v(C) > 3 and C = C,(¢y. For a contradiction, suppose
that v(C) is even. Hence, v(C') = 2n, where n > 2. We show that {1,2n -1} is
a nontrivial module of 0. Since Np(;)(0) = {1,2n -1}, {1,2n -1} is a module
of 0 - 0 by Lemma 4.4. To show that {1,2n — 1} is a nontrivial module of &,
it suffices to verify that [0,1], = [0,2n - 1],. For m € {1,...,n -1}, we have
Npoy(2m) = {2m - 1,2m + 1}. By Lemma 4.4, {2m - 1,2m + 1} is a module
of o —2m. In particular, we obtain [0,2m - 1], = [0,2m + 1],. Therefore,
we have [0,1], = [0,3], = - = [0,2n — 1],. Consequently, {1,2n - 1} is a
nontrivial module of o, which contradicts the fact that ¢ is prime. It follows
that v(C) is odd. Hence v(C) = 2n + 1, where n > 1. For a contradiction,
suppose that V(C) ¢ V(o). We show that V(C) is a module of 0. Consider
veV(o)\V(C). Form € {0,...,n-1}, we have Np(,)(2m+1) = {2m,2m+2}. By
Lemma 4.4, {2m, 2m+2} is a module of o—(2m+1). We obtain [v,0], = [v,2], =
= [v,2n]y, 80 v <>, {0,2,...,2n}. Similarly, since for m € {1,...,n -1},
Npoy(2m) = {2m~1,2m+1}, we have v <—, {1,3,...,2n~1}. Since Np(,)(0) =
{1,2n}, [v,2n], = [v,1],. It follows that v «—, V(C). Consequently, V(C) is
a nontrivial module of o, which contradicts the fact that ¢ is prime. Therefore
V(C)=V(o).

Second, suppose that v(C') > 2, v(C) is even, and C' = P,(¢y. Hence v(C) =
2n, where n > 1. For a contradiction, suppose that n = 1. We obtain Np(,)(0) =
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{1} and Np(s)(1) = {0}. By Lemma 4.4, V(o) ~ {0,1} is a module of o -0 and
o—1. Thus V(o) ~{0,1} is a nontrivial module of o. Therefore n > 2. We show
that V(o)\V(C) is amodule of o. Consider v € V(c)\V(C). Since Np(,)(2m+
1) = {2m,2m + 2} for m € {0,...,n - 2}, we have v «<—, {0,2,...,2n - 2}.
Moreover, since Np(,)(2n-1) = {2n-2}, [v,2n-2], = [1,2n-2],. It follows that
for any v,w € V(o) \V(C)and m € {0,...,n-1}, [v,2m], = [w,2m],. Similarly,
for v e V(o) N\ V(C), we have v <=, {1,3,...,2n - 1} because Np(,)(2m) =
{2m - 1,2m + 1} for m € {1,...,n - 1}. Now, since Np,(0) = {1}, [v,1], =
[2n - 2,1],. Consequently, for any v,w € V(o) N\ V(C) and m € {0,...,n -1},
[v,2m+1], = [w,2m +1],. Consequently, V(o) \V(C) is a module of o. Since
o is prime, we obtain |V (o) N V(C)| < 1.

Lastly, suppose that v(C') is odd. Hence v(C) = 2n + 1, where n > 1. For
a contradiction, suppose that V(C) ¢ V(o). We show that V(o) ~ {1} is a
nontrivial module of . Since Np()(0) = {1}, V() ~ {0,1} is a module of -0
by Lemma 4.4. Let v e V(o) \ V(C). It suffices to verify that [1,v], =[1,0],.
We distinguish the following two cases.

e Suppose that n = 1. We have Np(,)(2) = {1}. By Lemma 4.4, V (o)~ {1,2}
is a module of o — 2. In particular, we obtain [1,v], =[1,0],.

e Suppose that n > 2. Since for m € {1,...,n -1}, Np)(2m) = {2m -
1,2m+1}, we obtain v «—, {1,3,...,2n-1} and 0 <—, {1,3,...,2n—-1}.
Therefore, [1,v], = [2n - 1,v], and [1,0], = [2n - 1,0],. Furthermore,
since Np(,)(2n) = {2n -1}, [2n - 1,v]s = [2n - 1,0],. Tt follows that
[1,v], =[1,0],-

In both cases above, V(o) \ {1} is a nontrivial module of o, which contradicts
the fact that o is prime. Consequently, V(C) =V (o). O

Corollary 4.6 (Boudabbous and Ille [7]). For every critical 2-structure o, with
v(o) 25, there exists n > 2 such that P(o) is isomorphic to Pay, ® Koy, Pons1,
Con+1 or Pay,. (In the last instance, n > 3.)

Proof. By Proposition 3.22, there exist v,w € V(o) such that o - {v,w} is
prime. Since ¢ is critical, we have v # w, and hence {v,w} € E(P(c)). Consider
the component C' of P(o) containing v and w. As observed before stating
Proposition 4.5, it follows from Lemma 4.4 that C' is a cycle or a path. To
begin, suppose that C is a cycle. It follows from Proposition 4.5 that there
exists n > 2 such that P(¢) =~ Co,.1. Similarly, if there exists n > 2 such
that C is a path of length 2n, then V(C) = V (o), and hence P(c) ~ Papi1.
Lastly, suppose that there is n > 2 such that C' is a path of length 2n - 1. By
Proposition 4.5, [V (o) \ V(C)| < 1. Obviously, if V(C) =V (o), then n > 3 and
P(0) ~ Py,. Suppose that [V (¢) ~ C| = 1. The single element of V(o) \ V(C)
is an isolated vertex of P(0) because C is a component of P(c). Therefore,
P(O’) ~ Py, ® K{Qn} O

We end the section with some specific results on critical 2-structures. The
first one follows from Corollary 3.20.
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Corollary 4.7. Let o be a critical 2-structure o such that v(o) > 5. Let X &
V(o).

1. If o[ X] is prime, then v(o) - |X| is even.
2. Moreover, if o[ X] is prime and |X| > 4, then o[X] is critical.

Proof. Let X ¢ V(o) such that o[ X] is prime. For a contradiction, suppose that
v(o) = |X|=2n+1, where n > 0. By Corollary 3.20, there exists Y € V(o) \ X
such that |Y] = 2n and ¢[X uY] is prime. We have [V (o) \ (X uY)|=1. By
denoting by v the unique element of V(o) \ (X UY'), we obtain ¢ — v is prime,
which contradicts the fact that o is critical. Consequently, v(c) —|X]| is even.
Now, suppose that | X| > 4. For each x € X, we have v(c)—|X \{z}|is odd. Tt
follows from the first assertion that o[ X \ {z}] is decomposable. Consequently,
o is critical. O

The second result follows from Lemma 4.4 and Corollary 4.6.

Corollary 4.8. Let o be a critical 2-structure o such that v(o) > 5. Fore,f €
E(P(0)), we have s —e~ 0 - f.

Proof. Consider distinct e, f € E(P(0)). It follows from Corollary 4.6 that e
and f are contained in the same component of P(¢). Consequently, there exist
distinct vertices vy, ..., v, of o satisfying

b {007U1}=€;
e p>2 and {vp_1,v,} = f;
o forie{0,...,p—1}, {vi,vi41} € E(P(0)).

Let i€ {0,...,p~1}. We have v;_1,v;41 € Np(s)(v;). Since v; ¢ .7(0), it follows
from Lemma 4.4 that Np()(vi) = {vi-1,vis1}, and {v;_1,vi41} is a module of
o —v;. Thus, o —{vi_1,v;} ~ 0 — {v;,v41}. It follows that o — {vg,v1} ~ o -
{vp-1,vp}, that is, o —e~ o - f. O

The third result is an easy consequence of Corollaries 4.7 and 4.8.

Corollary 4.9. Let o be a critical 2-structure o such that v(o) > 6. Let X,Y &
V(o) such that |X| = |Y| and |X| > 4. If o[X] and o[Y] are prime, then
o[X]~o[Y].

Proof. By Corollary 3.21, there exist z,2’ € V(o) ~ X such that o — {z,2'} is
prime. Since o is critical, we have x # z’. Thus, v(0) — |X| > 2. We proceed
by induction on v(o) - |X| > 2. If v(o) —|X| = 2, then it suffices to apply
Corollary 4.8. Hence, suppose that v(o)—|X| > 3. Similarly, there exist distinct
v,y € V(o) \Y such that o — {y,y’} is prime. By Corollary 4.8, o — {z,z'} ~
o —{y,y’}. Therefore, there exits Y’ ¢ V(o) \ {z,2'} such that o[Y'] ~ o[Y].
Since o —{z, 2’} is prime and v(o) > 6, o —{z, 2’} is critical by Corollary 4.7. To
conclude, it suffices to apply the induction hypothesis to o — {x, 2’} with o[ X]
and o[Y']. O
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Lastly, we obtain the following result.

Corollary 4.10. Let o be a critical 2-structure o such that v(o) > 6. Consider
X,Y ¢ V(o) such that o[X] and o[Y] are prime. If 4 < |X| < |Y|, then o[X]
embeds into o[Y].

Proof. By Corollary 4.9, o[ X] ~ o[Y] if |X| = |Y]|. Hence, suppose that |X| <
[Y|. By Corollary 4.7, there exist m > n > 0 such that v(c) — |X| = 2m and
v(o) - |Y|=2n. By applying (m—n) times Theorem 3.19 from o[ X ], we obtain
X ¢ X' c V(o) such that ¢[X'] is prime, and |X'| = |Y]. By Corollary 4.9, we
have o[ X'] ~ o[Y']. Tt follows that o[ X ] embeds into o[Y]. O

4.2 The characterization of critical 2-structures

Given a critical 2-structure o, it follows from Corollary 4.6 that o has four
possible types according to whether P(0) is isomorphic to Pop, Pan ® K2y,
Psy+1 or Copp1. The following remark is very useful in the characterization of
critical 2-structures of a given type.

Remark 4.11. Consider a set S. We denote by A(S) the set of all 2-structures
defined on S. We consider the partial order <g defined on A(S) as follows. Given
0,7 € A(S), 0 <g 7 if (0 # 7 and) for every e € E(0), there exists f € E(7) such
that e ¢ f. Consider 0,7 € A(S). As in Remark 2.23, we define their meet o AT
and their join o v 7 as follows. Given z,y,v,w € V(o), with « # y and v #+ w,
(2,9) Zonr (v,w) if (2,9) =5 (v,w) and (z,y) =, (v,w). Hence

E(onT)={enf:eecE(o),feE(r),en f+a}.

Given z,y,v,w € V (o), with z # y and v # w, (2,y) Z5vr (v, w) if there exists a
sequence (eg, . . ., e,) of elements of E(c)UE(7) such that (x,y) € eg, (v,w) € ey,
and (whenn>1,) e;ne;q # @ for 0 <i<n-1. Hence, A(S) ordered by <g is a
lattice.

Since it is easy to verify that the next fact holds, we omit its proof.

Fact 4.12. Given o,7 € A(S), the following statements hold.
1. If o <g T, then all the modules of o are modules of T.
2. The modules of o AT are exactly the modules of both o and T.
We obtain the following consequences.
Fact 4.13. Given 0,7 € A(S) such that o <g T, the next statements hold.
1. If 7 is prime, then o is prime too.
2. For eachne{3,...,|S| -1}, we have
Po(1) € Pn(o) (see Notation 3.1).

In particular, when T is prime, we have # (1) € (o) and P(1) c P(0).
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It follows from the first statement of Fact 4.13 that the set of the prime 2-
structures defined on S is an ideal of the lattice (A(S),<g). We end the remark
with the following consequence of Lemma 4.4, Fact 4.12 and Fact 4.13.

Fact 4.14. Consider o,7 € A(S). Suppose that o and T are critical. Suppose
also that P(c) =P(7). Lastly, suppose that P(c) does not have isolated vertices.
Under these assumptions, we obtain that o AT is critical, and

P(o A1) =P(0).

Proof. To begin, we verify that o A 7 is prime. We have 0 A7 <g ¢ and o is
prime. By the first statement of Fact 4.13, o A 7 is prime.

Now, we show that o A 7 is critical, and P(c A7) = P(c). Let v € V(o).
Since P(c) does not have isolated vertices, dp(,y(v) # 0. Since v is a critical
vertex of o, it follows from Lemma 4.4 that dp,y(v) = 1 or 2. We distinguish
the following two cases.

e Suppose that dp,)(v) = 2. Since P(0) = P(7), we have Np,y(v) =
NP(T)(’U). Furthermore, since v is a critical vertex of o and 7, it fol-
lows from Lemma 4.4 that Np(,)(v) is a nontrivial module of ¢ — v and
7 —v. Note that (6 —v) A (7 —v) = (6 A7) —v. Therefore, it follows from
the second statement of Fact 4.12 that Np(,)(v) is a nontrivial module of
(6 A7) —w. Thus, v is a critical vertex of o A7, and

N]P’(o'/\T) (U) < NIP’(U) (”U)

Lastly, it follows from the second statement of Fact 4.13 that Np(,(v)
Np(onry(v). Consequently, we obtain Npsary(v) = Np(oy(v).

N

e Suppose that dp(,y(v) = 1. Since P(c) = P(7), we have Np(s)(v) =
Np(ry(v). Furthermore, since v is a critical vertex of o and 7, it fol-
lows from Lemma 4.4 that V(o) \ (Np(s)(v) U{v}) is a nontrivial module
of 0 —v and 7 —v. We conclude as in the preceding case.

It follows from both cases above that o A 7 is critical, and P(o A7) =P(0). O

4.2.1 The type P,

Proposition 4.15. Given n > 3, consider a 2-structure T defined on V(1) =
{0,...,2n—1}. The following two statements are equivalent

1. 7 is critical and P(7) = Pap;

2. <0,1>,;#<0,2>, (see Notation 1.1), and for p,q€{0,...,2n-1} such that
p < q, we have

(4.4)

p.ql = [0,1], if p is even and q is odd,
Pl = [0,2], otherwise.
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Proof. To begin, suppose that 7 is critical and P(7) = P,,,. First, we show that
(4.4) holds. Consider p,q € {0,...,2n -1} such that p < q. We prove that there
exist p’ € {0,1} and ¢’ € {2n - 2,2n — 1} such that

p'=pmod 2, ¢'=¢gmod 2, and [p,q] = [p',¢']-. (4.5)

For instance, suppose that p > 2. Since P(7) = Pay,, we have Np;y(p-1) =
{p-2,p}. By Lemma 4.4, {p—2,p} is a module of 7 - (p-1). In particular, we
obtain [p,q]- = [p -2, ¢]-. By iteration, we obtain p’ € {0,1} such that

p'=pmod 2 and [p,q]; = [p', q]-

Similarly, we obtain ¢’ € {2n — 2,2n — 1} such that ¢’ = ¢ mod 2 and [p',q], =
[p',q']>. Therefore, (4.5) holds. It follows from (4.5) that for any p',q" €
{0,...,2n -1},

if p <q', p' =p mod 2 and ¢’ = ¢ mod 2, then [p,q], = [p',q']-. (4.6)

We distinguish the following four cases, where p,q € {0,...,2n — 1} such that
p<q.
e Suppose that p and ¢ are even. By (4.6), [p,q]- = [0,2].

e Suppose that p and ¢ are odd. By (4.6), [p,q]- = [1,2n - 1],. Since
P(7) = Pan, we have Np(-)(0) = {1}. By Lemma 4.4, {2,...,2n -1}
is a module of 7 - 0. In particular, we obtain [1,2n - 1], = [1,2n - 2],.
Moreover, we have Np(;y(2n—-1) = {2n-2}. By Lemma 4.4, {0,...,2n-3}
is a module of 7—(2n-1). In particular, we obtain [1,2n-2], = [0, 2n-2],.
By (4.6), [0,2n - 2], = [0,2],. Consequently, we obtain [p,q], = [0, 2].

e Suppose that p is even and ¢ is odd. By (4.6), [p,q]- =[0,1].

e Suppose that p is odd and ¢ is even. By (4.6), [p,q]r = [1,2],. Since
Np(-(0) = {1}, we have {2,...,2n~1} is a module of 7~ 0. In particular,
we obtain [1,2]; = [1,2n - 2];. Since Np(,)(2n - 1) = {2n - 2}, we have
{0,...,2n -3} is a module of 7 - (2n—1). In particular, we obtain [1,2n—
2]; =[0,2n -2],. By (4.6), [0,2n - 2], = [0, 2],. Consequently, we obtain
[p,q]- =[0,2].

It follows from the four cases above that (4.4) holds.

Second, we show that < 0,1 >.#< 0,2 >,. Since 7 is prime, 7 is neither
constant nor linear. It follows from (4.4) that [0,1]; # [0,2],. Furthermore,
since Np(-)(1) = {0,2}, it follows from Lemma 4.4 that {0, 2} is a module of 7-1.
Since 7 is prime, {0, 2} is not a module of 7. Therefore, we have [0,1]; # [2,1],.
Since [2,1]; = [2,0], by (4.4), we obtain [0,1]; # [2,0],. Consequently, we
obtain [0,1], #[0,2]; and [0,1], # [2,0],. It follows that <0,1>,#<0,2>,.

Conversely, suppose that <0,1>,#<0,2>, and (4.4) holds. Since <0, 1>,#<
0,2>,, we have

[0,1], #[0,2],
and (4.7)
[07 1]7’ # [2’ O]T
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We prove by induction on k € {2,...,n} that

7[{0,...,2k - 1}] is prime. (4.8)
To begin, we verify that 7[{0,1,2,3}] is prime. By (4.4), we have [0,2], =
[1,2]; =[1,3]; and [0,1], = [0, 3], = [2,3],. Using (4.7), it is easy to verify that
for each W ¢ {0,1,2,3}, with [W|=2 or 3, W is not a module of 7[{0,1,2,3}].

Therefore, 7[{0,1,2,3}] is prime. Now, suppose that 7[{0,...,2k—1}] is prime,
where k€{2,...,n-1}. Set

X={0,...,2k-1}.

By (4.4), we have [y, 2k], = [0,2], for every y € X. Thus, 2k € (X),. Further-
more, it follows from (4.4) that for every y € X\{2k-1}, [y,2k-1], = [y, 2k+1],.
Therefore, 2k +1 € X, (2k — 1). Lastly, by (4.4), we have [2k — 1,2k], =
[0,2]; and [2k + 1,2Kk], = [1,0],. By (4.7), {2k - 1,2k + 1} is not a module
of 7[X u {2k,2k + 1}]. Tt follows from Statement (P1) of Lemma 3.17 that
T[X u{2k,2k+1}] =7[{0,...,2k + 1}] is prime. Consequently, 7 is prime.
Now, we verify that 7 is critical. We consider the following cases.
e For pe{2,...,2n-1}, we have [1,p], = [0,2],. Hence, {2,...,2n-1} is a
module of 7 - 0;
e For pe{0,...,2n -3}, we have [p,2n -2], =[0,2],. Thus, {0,...,2n -3}
is a module of 7 - (2n - 1);
o Let pe{l,...,2n-2}. Consider ve V(7)\{p-1,p,p+1}. Since p—1=
p + 1lmod 2, it follows from (4.4) that [v,p - 1], = [v,p + 1];. Therefore,
{p-1,p+1} is a module of 7 - p.

It follows that 7 is critical.

Lastly, we have to prove that P(7) = Py,. Let p € {0,...,2n-2}. The function
{0,....2n =1}~ {p,p+1} — {0,...,2n - 3}, defined by ¢~ g if g <p-1 and
g+~ q-2if ¢ >p+2,is an isomorphism from 7—-{p,p+1} onto 7[{0,...,2n-3}].
It follows from (4.8) that 7[{0,...,2n—-3}] is prime. Hence 7—{p,p+1} is prime
t00, so {p,p+1} € E(P(7)). It follows that

E(Py,) < E(P(7)). (4.9)
Thus, since 7 is critical, it follows from Lemma 4.4 that
for pe {1,...,2n -2}, Npcry(p) ={p-1,p+1}. (4.10)

By (4.9), 1 € Np(7y(0). As previously seen, {2,...,2n-1} is a nontrivial module
of 7—-0. Since [{2,...,2n—1}| > 4, it follows from Lemma 4.4 that dp(,y(0) = 1.
Therefore,

Negry (0) = {1}, (111)
By (4.9), 2n -2 € Np(;y(2n - 1). Furthermore, it follows from (4.10) that
Npy(2n-1)n{l,...,2n -3} = @. Finally, by (4.11), 0 ¢ Np(;y(2n - 1). Thus,

NP(T)(QTL - 1) = {2’[1 - 2}
Consequently, we obtain that P(7) = P,. O



half-graph

42 CHAPTER 4. CRITICAL 2-STRUCTURES

By using Proposition 4.15, we construct critical graphs, digraphs or 2-
structures of type Ps, that allow us to characterize the critical 2-structures
of type Ps,. We use the following notation.

Notation 4.16. Let n > 2. Recall that A(L,) is the set of ordered pairs (p, q),
where 0<p<g<n-1. Given 4,5 € {0,1}, set
A(Ln)(i,j) ={(p,q) € A(L,) :p=imod 2,q = j mod 2}.

Let 7 be a 2-structure defined on V(1) = {0, ...,2n-1}, where n > 3. Suppose
that <0,1>,%<0,2>,. Suppose also that 7 satisfies (4.4). By Proposition 4.15,
T is critical and P(7) = Pa,,. We distinguish the following cases.

1. Suppose that (0,2), = (2,0),.
(a) Suppose that (0,1), = (1,0),. Since < 0,1 >.#<0,2>,, (0,1), #
(0,2),. Therefore, we obtain
E(71) = {A(L2n)0,1) U (A(L2n)(0,1))", (see Notation 1.2)
(A(L2n)(0,0) U A(LG)(l,o) U A(L2n)(1,1)) (4.12)
U (A(L2n)0,0) Y A(L2n) (1,00 Y A(L2n) (1,1))" }-
In fact, 7 is the 2-structure associated with a graph (see the end of
Section 1.2). Given m > 1, we consider the half-graph Hs,, defined
on V(Hay,) ={0,...,2m - 1} as follows (see Figure 4.1). For p,q €

{0,...,2m -1}, with p # q, {p,q} € E(Hay,) if there exist 0 <4 < j <
m — 1 such that {p,q} = {2¢,25 + 1}. It follows from (4.12) that

7 =0(Hap).
r 3 ) ) o 2m-1
0 2 2m -2

Figure 4.1: The half-graph Hs,,

(b) Suppose that (0,1),; # (1,0),. We distinguish the following three
subcases.
i. Suppose that (1,0), = (0,2),. We obtain
E(7) = {A(L2n)(0,1),
(A(L2n)(0,0) Y A(L2n) 1,0y Y A(L2n) (1,1))
U (A(L2n) (0,00 Y A(L2n) (1,00 Y A(L2n)(1,1))"  (4.13)
U (A(LQn)(O,l))*}'



4.2. THE CHARACTERIZATION 43

ii.

iii.

In fact, 7 is the 2-structure associated with a partial order (see
Section 1.3). Given m > 2, we consider the partial order Qay,
defined on V(Qay,) = {0,...,2m -1} as follows (see Figure 4.2).
For p,q € {0,...,2m — 1}, with p # ¢, (p,q) € A(Q2,) if there
exist 0 <4 <j<m—1such that (p,q) = (2¢,25 +1).

Figure 4.2: The partial order Q2

Observe that Comp(Qapm) = Hom 2 . Tt follows from (4.13) that

7=0(Q2n)-
Suppose that (0,1), = (0,2),. We obtain
BE(r) = {(A(L2n)(0,1))"
(A(L2n)(0,0) U A(L2n)(1,0) U A(L2n)(1,1))

U (A(L2n) 0,00 Y A(L2n) (1,00 YA(L2n) (1,1))"  (4.14)
u A(LG)(o,l)}-

It follows from (4.14) that
T=0((Q2n)").

Suppose that <0,1>, n <0,2>,=g. We obtain

E(7) ={A(L2n)(0,1), (A(L2n)(0,1)) ",
(A(L2n)0,0) Y A(L2n) (1,00 Y A(L2n)(1,1))  (4.15)
U (A(La2n)(0,0) Y A(L2n) 1,00 Y A(L2n)(1,1))" }-

It follows from (4.13), (4.14) and (4.15) that

T=0(Q2n) Ao ((Q2,)") (see Notation 4.11).

2The following theorem is due to Gallai [18, 28] .
Theorem 4.17 (Gallai [18, 28]). A partial order is prime if and only if its comparability

graph is prime.

Let m > 3. As showed above, o(Hay, ), and hence Ha,, are critical. Moreover, P(Hay, ) = Pop.
It follows from Theorem 4.17 that Qzy, is critical, and P(Q2n) = Pan.
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Recall that by Proposition 4.15, 0(Qan) A 0((Q2,)") is critical
and P(a(Q2,) A ((Q2r)")) = Pay,. Note that we obtain the same
by using Fact 4.14 because o(Q2,) and o((Q2,)*) are critical,
and P(0(Q2n)) = P(c((Q2n)*)) = Pap. Note also that o(Qan) A
o((Q2n)") = 0(Hzn) A0 (Q2n) = 0(Han) Ao ((Q2n)").

2. Suppose that (0,2), # (2,0),.

(a) Suppose that (0,1), = (1,0),. We distinguish the following three
subcases.

i. Suppose that (0,1), = (2,0),. We obtain

E(1) = {(A(L2n) 0,0y Y A(L2n) 1,0y Y A(L2n) (1,1)),
A(L2n) 0,1y Y (A(L2n)(0,1))" (4.16)
U (A(L2n) (0,00 Y A(L2n) 1,0y Y A(L2n)(1,1)) "}

In fact, 7 is the 2-structure associated with a partial order. Given
m > 2, we consider the partial order Ra,, defined on V(Ra,,) =
{0,...,2m -1} as follows (see Figure 4.3). For p,q € {0,...,2m-
1}, with p £ ¢, (p,q) € A(Ra2y,) if p < ¢ and either p is odd or ¢ is
even. Equivalently, Rs,, is obtained from the linear order Lo,
by removing the arcs (24,25 +1) for 0<i<j<m-1.

2m—2\} 2m -1
’ 2m -3

4
2 3
0 1

Figure 4.3: The partial order Ra,,

Observe that Comp(Ram,) = Hap,. It follows from (4.16) that

7 =0(Ray)-
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ii. Suppose that (0,1), = (0,2),. We obtain

E(1) = {A(L2n)(0,1) Y (A(L2n)0,1))"
U (A(L2n)0,0) Y A(L2n) (1,00 Y A(L2n)(1,1)),  (4.17)
(A(La2n) (0,00 Y A(L2n) 1,0y Y A(L2n)(1,1))" }-

It follows from (4.17) that
T=0((R2pn)").
iii. Suppose that <0,1>, N <0,2>,=&. We obtain

E(7) = {A(L2n)(0,1) V (A(LQn)(OJ))*,
(A(Lz2n)0,0) Y A(L2n) (1,00 Y A(L2n)(1,1)),  (4.18)
(A(L2n)(0,o) U A(L2n)(1,0) U A(L2n)(l,1))*}-

It follows from (4.16), (4.17) and (4.18) that
7=0(Ron) Ao((Ran)™).
Note that
0(Ron) Ao ((Rap)*) = 0(Hayp) Ao (Rap) =0 (Hap) Ao((Ran)).

(b) Suppose that (0,1), # (1,0),. We distinguish the following five sub-
cases.

i. Suppose that (0,1), = (0,2),. Since <0,1>,#<0,2>,, we have
(1,0); # (2,0),. We obtain
E(7) = {A(L2n)(0,1)
U (A(L2n)(0,0) Y A(L2n) 1,0y Y A(L2n) (1,1))s
(A(L2n)(0,1))", (4.19)
(A(L2n) (0,00 Y A(L2n) (1,00 Y A(L2n)(1,1)) " }-

It follows from (4.19) that

7=0((Q2n)") Ao((R2n)").
ii. Suppose that (1,0), = (0,2),. Since <0,1>,%#<0,2>,., we have
(0,1) # (2,0),. We obtain
E(7) = {(A(L2n)(0,1))"
U (A(L2n)0,0) Y A(L2n) (1,00 Y A(L2n) (1,1)),
A(L2n)(0,1) (4.20)
(A(L2n) 0,0y Y A(L2n) (1,00 Y A(L2n) (1,1)) " }-

It follows from (4.20) that
7=0(Q2n) Ao ((R2n)")-
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iii. Suppose that (0,1), = (2,0),. Since <0,1>,#<0,2>,, we have
(1,0), # (0,2),. We obtain

E(r) = {A(L2n)(0,1)
U (A(L2n) 0,00 Y A(L2n) (1,00 Y A(L2n)(1,1)) ",
(A(L2n)(0,1))" (4.21)
(A(L2n) (0,00 Y A(L2n) 1,0y Y A(L2n)(1,1)) }-

It follows from (4.21) that

7=0((Q2n)") Ao (Ran).

iv. Suppose that (1,0), = (2,0),. Since <0,1>,#<0,2>,, we have
(0,1); #(0,2),. We obtain

E(r) = {(A(L2n)(0,1))"
U (A(L2n) (0,0 Y A(L2n) 1,00 Y A(L2n)(1,1)) ">
A(La2n)(0,1)5 (4.22)
(A(L2n) 0,0y Y A(L2n) 1,0y Y A(L2n) (1,1)) }-

It follows from (4.22) that

7=0(Qan) Ao (Ran).

v. Suppose that <0,1>, Nn <0,2>.= . We obtain

E(r) = {A(LQn)(O,l)a
(A(L2n)(0,1))"
(A(L2n)0,0) Y A(L2n) (1,00 Y A(L2n) (1,1)),  (4.23)
(A(L2n) 0,0y Y A(L2n) (1,00 Y A(L2n)(1,1)) " }-

It follows from (4.23) that

7=0(Q2n) Ao ((Q2n)") A o (Ran).

Remark 4.18. We showed previously that o(Ha, ), 0(Q2n), 0((Q2n)"), 0(Ran)
and o((Ray,)*) are critical. Furthermore, their primality graph equals Ps,,. We
also obtained that some of their meets are also critical, and admit P, as pri-
mality graph. Observe that, by Fact (4.14), all their meets are also critical, and
admit Py, as primality graph.

We summarize the previous examination in the next theorem.

Theorem 4.19 (Boudabbous and Ille? [7]). Consider a 2-structure T defined on
V(r)={0,...,2n-1}, where n > 3. The following two statements are equivalent

3Boudabbous and Ille [7] proved this theorem for digraphs.
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e 7 is critical, and P(7) = Pay,;

¢ T= O—(HQTL)} J(QQH); U((QQH)*); O—(RQH)) U((RQH)*)7 U(QQH)AU((Q2H)*)7
o(Ran) Ao ((R2n)"), 0(Q2n) Ao (R2n), 0(Q2n) Ao ((R2n)"), 0((Q2n)") A
o(Ran), 0((Q2n)*) Ao ((R2n)*) or 0(Qan) Ao ((Q2n)") Ao (Ran)-

The following result is an immediate consequence of Theorem 4.19.

Corollary 4.20. Consider a reversible 2-structure T defined on V(1) = {0,...,2n-
1}, where n > 3. The following two statements are equivalent

o 7 is critical, and P(7) = Pay;

i T(:RU(])—]Qn); U(Q2n)AU((Q2n)*); U(R2H)AU((R2H)*) OTU(Q2n)AU((Q2n)*)A

The next remark completes Subsection 4.2.1. We use the following notation.

Notation 4.21. Given n > 2, 7, denotes the permutation of {0,...,n—1} which
exchanges 7 and (n—1) - for i€ {0,...,n—1}.

Remark 4.22. Given n > 3, consider a critical 2-structure 7 defined on V(1) =
{0,...,2n -1}, and such that P(7) = Pa,. Set

E(1) = {A(L2n) (0,00 Y A(L2n) (1,1) Y A(L2n)(1,0)5
(A(LQn)(O,O) u A(Lgn)(lyl) U A(L2n)(l,0))*7
A(L2n) (0,1), A(L2n) (0,1) }-

We obtain
man(€) = e* for each e € £(7). (4.24)

Consider e € E(7). By Proposition 4.15, there exists B, ¢ £(7) such that

e= U f.

feBe

Thus, we obtain

71'2n(€) = U 7TQn(f)

feBe

= U (by (429)

feB.

*
=€ .

Consequently, 7o, is an isomorphism from 7 onto 7*. If 7 is reversible, then
7 =71%, and hence my, is an automorphism of 7.
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4.2.2 The type Py, ® K,

Proposition 4.23. Given n > 2, consider a 2-structure T defined on V(1) =
{0,...,2n}. The following two statements are equivalent

1. 7 is critical, and P(7) = Pan © Ko ;
2. (0,1); #(1,0),, and for p,qe{0,...,2n -1}, we have

if p<q, then [p,q]- = [0,1]; (4.25)
moreover, fori€{0,...,n—1}, we have
[2i,2n], = [1,0], and [2i+1,2n], =[0,1],. (4.26)

Proof. To begin, suppose that 7 is critical, and P(7) = Pop, ® Kya,3. In a
similar way as in the proof of Proposition 4.15, we verify that (4.4) holds.
For a contradiction, suppose that <0,1>,#<0,2>.. If n = 2, then it is not
difficult to verify that 7 —4 is prime. Furthermore, if n > 3, then it follows from
Proposition 4.15 that 7 — (2n) is critical, and hence prime. Since 7 - (2n) is
decomposable, we obtain

<0,1>,=<0,2>, . (4~27)
Since P(7) = P2, ® K9y, we have Np(+(0) = {1}. By Lemma 4.4, {2,...,2n}
is a module of 7—0. Since 7 is primitive, {0}u{2,...,2n} is not a module of 7, so

[1,0]- #[1,2],. Since (4.4) holds, we have [1,2], =[0,2],. Therefore, we obtain
[1,0]- #[0,2],. It follows from (4.27) that (0,1), # (1,0), and [0,1], = [0,2],.
Since (4.4) holds and [0,1], = [0, 2], (4.25) holds.

Lastly, we show that (4.26) holds. As previously seen, {2,...,2n} is a module
of 7—0. Hence we have [1,2n], = [1,2],. Since (4.25) holds, we have [1,2]; =
[0,1],. We obtain [1,2n], = [0,1];. Let i € {0,...,n —2}. Since P(r) =
Pon® K {2y, we have Np(;)(2i+2) = {2i+1,2i+3}. By Lemma 4.4, {2i+1,2i+3}
is a module of 7 - (2¢). In particular, we have [2i + 1,2n], = [2i + 3,2n],. Tt
follows that

[0,1]; =[1,2n]; =[3,2n], = =[2n-1,2n],.
Since P(7) = Pop ® K{z,,), we have Np(;y(2n - 1) = {2n - 2}. By Lemma 4.4,
{0,...,2n -3} u{2n} is a module of 7 — (2n - 1). In particular, we have [2n —
2,2n]; = [2n-2,0],. Since (4.25) holds, we have [2n-2,0], =[1,0],. We obtain
[2n-2,2n], = [1,0],. Let i€ {1,...,n~1}. Since P(7) = P, ® K2,,), we have
Np(+)(2i-1) = {2i-2,2i}. By Lemma 4.4, {2i-2,2i} is a module of 7-(2i-1).
In particular, we have [2i - 2,2n], = [2{,2n],. It follows that

[1,0], =[2n-2,2n], = [2n - 4,2n], = =[0,2n],.

Consequently, (4.26) holds.

Conversely, suppose that (4.25) and (4.26) hold. Moreover, suppose that
(0,1); # (1,0),. It follows that 7 = 0(Tan+1) (see Figure 1.2). By Fact 2.7, 7 is
prime. We continue with the following observation

for every pe {0,...,2n -2}, 7 — {p,p+ 1} is prime. (4.28)
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Indeed, consider p € {0,...,2n—-2}. Recall that 7—{p, p+1} = 0 (T2n+1)—{p, p+1}.
The bijection

e: {0,....2n}~{p,p+1} — {0,...,2n-2}
q<p-1 = g
qzp+2 — q-2

is an isomorphism from Ts,,+1 —{p,p+1} onto Ts,_1. Hence, ¢ is an isomorphism
from o(Tons1) —{p,p+1} onto o(Ts,-1). By Fact 2.7, 0(T2y,-1) is prime. Thus,
0(Ton+1)—{p,p+1} is prime as well. Consequently, (4.28) holds. It follows from
(4.28) that

E(P2y) € E(P(7)). (4.29)

Lastly, we prove that 7 is critical, and P(7) = Pop, ® K{2,). As already
observed, 7 — (2n) = 0(L2,). Hence 7 — (2n) is decomposable. Furthermore,
since 7 - (2n) = 0(Lay), 7 - {p,2n} is decomposable for each p € {0,...,2n-1}.
Thus,

N]P:(U)(QTL) =d. (430)

Counsider p € {1,...,2n - 2}. It follows from (4.25) and (4.26) that {p-1,p+1}
is a module of 7 — p. Therefore, p is a critical vertex of 7. Moreover, it follows
from (4.29) that {p - 1,p + 1} S Np(-)(p). Since p is a critical vertex of 7, it
follows from Lemma 4.4 that Np(-)(p) = {p—1,p+1}. Hence,

for each pe {1,...,2n -2}, Np-)(p) ={p-1,p+1}. (4.31)

It follows from (4.25) and (4.26) that {2,...,2n} is a module of 7—0. Therefore,
0 is a critical vertex of 7. By (4.31), 1 € Np(;)(0). Since {2,...,2n} is a
nontrivial module of 7-0, with [{2,...,2n}| > 3, it follows from Lemma 4.4 that
dp(7y(0) = 1. Thus,

Nery(0) = {1}, (432)
Finally, it follows from (4.25) and (4.26) that {0,...,2n-3}u{2n} is a module of
7—(2n-1). Therefore, 2n—1is a critical vertex of 7. By (4.30), 2n ¢ Np()(2n-1).
By (4.31), 2n -2 € Np(,)(2n - 1) and Np,y(2n-1)n{1,...,2n -3} = @. By
(4.32), 0 ¢ Np(s)(2n—1). Consequently, Np(,y(2n—1) = {2n-2}. It follows that
7 is critical, and P(7) = Pay, ® K{2,3. O

The next characterization is a simple consequence of Proposition 4.23 and
its proof.

Theorem 4.24 (Boudabbous and Ille* [7]). Consider a 2-structure T defined
on V(1) ={0,...,2n}, where n > 2. The following two statements are equivalent

o 7 is critical, and P(7) = Pay ® Kiop);

o 7=0(Tons1) (see Figure 1.2).

4Boudabbous and Ille [7] proved this theorem for digraphs.
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In Remark 4.26, we determine the automorphism group of o(Ty,+1), where
n > 2. We use the following note.

Note 4.25. Consider a tournament T. We denote by Iso(7T,T*) the set of the
isomorphism from T onto its dual. We prove that

Aut(a(T)) = Aut(T) ulso(T,T™). (4.33)

Given z,y,v,w € V(o (T)), with z # y and v # w,

(z,y), (v,w) € A(T)
(2,y) =0y (v,w) if {or
(xvy)v ('U,’LU) ¢ A(T)

Therefore,
(z,y), (v,w) € A(T)
(2,y) =o(1) (v,w) if {or
(z,y), (v,w) € (A(T))".
It follows that

E(a(T)) = {A(T), (A(T))"}-

Given a permutation ¢ of V(T'), we have

P(A(T)) = A(T) and p((A(T))") = (A(T))"
v € Aut(o(T)) if and only if {or

P(A(T)) = (A(T))" and p((A(T))") = A(T).

Clearly, if o( A(T)) = A(T), then p((A(T))*) = (A(T))*. Similarly, if o(A(T)) =
(A(T))*, then p((A(T))*) = A(T). Therefore,

P(A(T)) = A(T)
p € Aut(o(T)) if and only if {or
e(A(T)) = (A(T))".

We have o(A(T)) = A(T) if and only if ¢ € Aut(T"). Analogously, ¢(A(T)) =
(A(T))* if and only if ¢ € Iso(T,T*). It follows that (4.33) holds.

Remark 4.26. Let n > 2. We verify that Tb,.1 is rigid. Let ¢ € Aut(Topn+1).
Since n > 2, 2n is the only vertex of Tsy, 41 such that Th,.1—(2n) is a linear order.
Consequently, ¢(2n) = 2n. It follows that (o, 2n-1} € Aut(Tons1 — (2n)).
Since Th,41—(2n) is a linear order, T5,,41—(2n) is rigid. Therefore, (0, 2n-1} =
Idyo,... 2n-1}- Since ¢(2n) = 2n, we obtain ¢ = Id, .. 2n}-

We denote by 72, the extension of ma,, to {0, ...,2n} defined by 72, (2n) = 2n
(see Notation 4.21). Clearly, T2, is an isomorphism from 75,1 onto (Top41)*.
Conversely, consider an isomorphism ¢ from 75,41 onto (Tz,+1)*. Recall that 2n
is the only vertex of Ty,4+1 such that Th,41 — (2n) is a linear order. Hence, 2n is
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the only vertex of (To,41)* such that (To,4+1)* —(2n) is a linear order. It follows
that ¢(2n) = 2n. Therefore, p(o,... 2,1} is an isomorphism from Th,41 — (2n)
onto (Tons1)* — (2n). Since Thpi1 — (2n) = Lap, We obtain 0y, 2n-1} = T2n-
Consequently, we have ¢ = To,.

It follows from Note 4.25 that

Aut(o(Tans1)) = {Idgo,... 20} T2n }- (4.34)

4.2.3 The type P,

Proposition 4.27. Given n > 2, consider a 2-structure T defined on V(1) =
{0,...,2n}. The following two statements are equivalent

1. 7 is critical, and P(7) = Pops1;

2. (0,1); #(1,0),, [0,1]; #[0,2],, and for p,q€{0,...,2n} such that p<gq,
we have

.l - {[0,2]T if p and q are even, (4.35)

[0,1], otherwise.

Proof. To begin, suppose that 7 is critical, and P(7) = Py,41. First, we show
that (4.35) holds. Consider p,q € {0,...,2n} such that p < q. We prove that
there exist p’ € {0,1} and ¢’ € {2n - 1,2n} such that

p'=pmod 2, ¢ =g mod 2, and [p,q]. =[p',¢]- (4.36)

For instance, suppose that p > 2. Since P(7) = Pa,41, we have Npy(p-1) =
{p-2,p}. By Lemma 4.4, {p—2,p} is a module of 7 - (p-1). In particular, we
obtain [p,¢]- = [p -2, ¢],. By iteration, we obtain p’ € {0,1} such that

p' =pmod 2 and [p,q], =[P, q]--
Similarly, we obtain ¢’ € {2n —2,2n — 1} such that ¢’ = ¢ mod 2 and [p’,¢], =
[p',q'];. Therefore, (4.36) holds. It follows from (4.36) that for any p’,q’ €
{0,...,2n} such that p' < ¢,
if p’ = p mod 2 and ¢’ = ¢ mod 2, then [p,q], = [p',¢']+- (4.37)
We distinguish the following four cases, where p,q € {0,...,2n} such that p < q.
e Suppose that p and ¢ are even. By (4.37), [p,q]+ = [0, 2].

e Suppose that p and ¢ are odd. By (4.37), [p,q]- = [1,2n - 1],. Since
P(7) = Papi1, we have Np(+y(2n) = {2n-1}. By Lemma 4.4, {0,...,2n-2}
is a module of 7 - (2n). In particular, we obtain [1,2n-1], = [0,2n - 1],.
By (4.37), [0,2n - 1], =[0,1],. Consequently, we obtain [p,q], = [0,1],.

e Suppose that p is even and ¢ is odd. By (4.37), [p,q]- =[0,1].
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e Suppose that p is odd and ¢ is even. By (4.37), [p,q]- = [1,2],. Since
Np(-)(0) = {1}, we have {2,...,2n} is a module of 7 — 0. In particular,
we obtain [1,2], = [1,2n - 1];. Since Np(;)(2n) = {2n - 1}, we have
{0,...,2n-2} is a module of 7—(2n). In particular, we obtain [1,2n-1], =
[0,2n — 1];. By (4.37), [0,2n - 1], = [0,1],. Consequently, we obtain
[p, q]’l’ = [Oa 1]7"

It follows from the four cases above that (4.35) holds.

Second, we verify that (0,1), # (1,0), and [0,1], # [0,2],. If (0,1), =
(1,0),, then {2¢:i € {0,...,n}} is a module of 7, which contradicts the fact
that 7 is critical, and hence prime. Hence (0,1), # (1,0),. Furthermore, if
[0,1], = [0,2],, then 7 = 0(Lan+1), which contradicts the fact that 7 is prime.
Thus [0,1]- # [0, 2].

Conversely, suppose that (0,1), # (1,0),, [0,1], # [0,2],, and (4.35) holds.
To begin, we prove that 7 is prime. We show by induction that

for each m € {1,...,n} that 7[{0,...,2m}] is prime. (4.38)

Since [0,1]; # [0,2],, {0,1} and {1,2} are not modules of 7[{0,1,2}]. More-
over, {0,2} is not a module of 7[{0,1,2}] because (0,1), # (1,0),. It follows
that 7[{0,1,2}] is prime. Now, consider m € {1,...,n -1}, and suppose that
7[{0,...,2m}] is prime. Set

X ={0,...,2m}.

Since (4.35) holds, we obtain 2m + 1 € (X), and 2m + 2 € X, (2m). Since
(0,1); #(1,0),, Xu{2m+2} is not a module of 7[{0,...,2m+2}]. By Statement
(P1) of Lemma 3.17, 7[{0,...,2m+2}] is prime. Consequently, (4.38) holds for
every m € {0,...,n}. It follows that 7 is prime.

To continue, we make the following observation

for every pe {0,...,2n -1}, 7 — {p,p+ 1} is prime. (4.39)
Indeed, let p € {0,...,2n —1}. Since (4.35) holds, the bijection

{0,....2n}~{p,p+1} — {0,...,2n-2}

g<p-1 — 4,
(ifp<2n-2)g2p+2 —> q-2.
is an isomorphism from 7 - {p,p + 1} onto 7[{0,...,2n - 2}]. It follows from

(4.38) that 7[{0,...,2n —2}] is prime, so 7 — {p,p+ 1} is as well.
B(Po) € B(B(7)). (4.40)
Lastly, we prove that 7 is critical, and P(7) = Pap41. Let pe {1,...,2n—1}.

Since (4.35) holds, {p—1,p+1} is a module of 7 —p. Thus, p is a critical vertex
of 7. By (4.40), {p - 1,p+ 1} € Np()(p). Since p is a critical vertex of 7,
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it follows from Lemma 4.4 that Np¢,;)(p) = {p —1,p + 1}. Therefore, for each
pe{l,...,2n -1}, we have

N]P’(T)(p) :{p_17p+1} (441)

Since (4.35) holds, {2,...,2n} is a module of 7-0. Thus 0 is a critical vertex of 7.
It follows from (4.41) that 1 € Np(+)(0). Since {2,...,2n} is a nontrivial module
of 7 -0, with [{2,...,2n}| > 3, it follows from Lemma 4.4 that dp(;(0) = 1.
Therefore,

Ne(ry(0) = {1}. (4.42)

Finally, since (4.35) holds, {0,...,2n — 2} is a module of 7 - (2n). Thus 2n
is a critical vertex of 7. It follows from (4.41) that 2n — 1 € Np(;y(2n) and
N]P’('r) (271)0{1, ey 271—2} =gJ. By (442), 0 ¢ N]}»(T)(Qn) Therefore, NP(T)(QTL) =
{2n —1}. Consequently, 7 is critical, and P(7) = Pap1. O

Let 7 be a 2-structure defined on V(7) = {0,...,2n}, where n > 2. Suppose
that (0,1), # (1,0), and [0,1], # [0,2],. Suppose also that T satisfies (4.35).
By Proposition 4.27, 7 is critical, and P(7) = Py,4+1. We distinguish the following
cases.

1. Suppose that (0,2), = (2,0),. We distinguish the following three subcases.

(a) Suppose that (0,2), = (1,0),. We obtain

E(7) = {A(L2n+1)(0,1) Y A(L2n+1)(1,0) Y A(L2n+1)(1,1)
(A(L2n+1)(0,1) U A(L2n+1)(1,0) U A(L2n+1)(1,1))* (4.43)
U A(L2n+1)0,0) Y (A(L2n+1)(0,0))"}  (see Notation 4.16).

In fact, 7 is the 2-structure associated with a digraph (see Sec-
tion 1.3). Given m > 2, we consider the digraph Das,,.+1 obtained
from the linear order Lo,,.1 by removing all the arcs between the
even integers (see Figure 4.4).

1%//?\2
. . ~

/.

m—1
\.
2m

A d

Figure 4.4: The digraph Day,41.
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It follows from (4.43) that
T =0(Dap+1).
(b) Suppose that (0,2), = (0,1),. We obtain

E(7) = {A(L2n+1)0,1) Y A(L2n+1) (1,0) Y A(L2n+1) (1,1)
U A(L2n+1)0,0) Y (A(L2n+1)(0,0)) " (4.44)
(A(L2n+1) 0,y Y A(L2n+1) (1,00 Y A(L2ns1)(1,1)) " }-

It follows from (4.44) that
T = U((Dgn_,_l)*).
(¢) Suppose that <0,1>, N <0,2>.= @. We obtain

E(7) = {A(L2n+1) 0,1) Y A(L2n+1) 1,0y Y A(L2ns1) (1,1)
(A(L2n+1)0,) Y A(L2ns1) (1,00 Y A(L2ns1)(1,1)) "5 (4.45)
A(L2n+1)(0,0) Y (A(L2n+1)(0,0)) " }-

It follows from (4.43), (4.44), and (4.45) that

7 =0(Dans1) Ao((Dan+1)”) (see Remark 4.11 and Fact 4.14).

2. Suppose that (0,2), # (2,0),. Since [0,1], # [0,2],, we have (0,1), =
(2,0), and (1,0), = (0,2), or <0,1>, n <0,2>,=@. We distinguish the
following two subcases.

(a) Suppose that (0,1); =(2,0), and (1,0), = (0,2),. We obtain

E(7) = {A(L2n+1)0,1) Y A(L2n+1) (1,00 Y A(L2n+1) (1,1)
U (A(L2n+1)(0,0))"5 (see Notation 4.16)
(A(L2n+1)0,1) Y A(Lans1) (1,00 Y A(L2ns1)(1,1))"  (4.46)
U A(L2n+1)(2,0))} (see Notation 1.2).

In fact, 7 is the 2-structure associated with a graph (see Section 1.2).
Given m > 2, we consider the tournament Us,,,1 obtained from the
linear order Lo,,+1 by reversing all the arcs between the even integers
(see Figure 4.5).
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Figure 4.5: The tournament Usj,,1.

It follows from (4.46) that
7= 0(Uznt1)-
(b) Suppose that <0,1>, N <0,2>,= @. We obtain
E(1) = {A(L2n+1) 0,1) Y A(L2n+1) (1,00 Y A(L2n+1) (1,1)
(A(L2n+1)(0,1) Y A(L2n+1) (1,00 Y (A(L2n+1)(1,1)) "

A(L2n+1)(0,0)5 (4.47)
(A(L2n+1)(0,0))" }-

It follows from (4.45), (4.46), and (4.47) that

T = 0(Dap+1)Ac((D2n+1) )Ac(Uzps1) (see Remark 4.11 and Fact 4.14).

We summarize the previous examination in the next theorem.

Theorem 4.28 (Boudabbous and Ille® [7]). Consider a 2-structure T defined
such that V(1) = {0,...,2n}, where n > 2. The following two statements are
equivalent

o 7 is critical, and P(7) = Papy1;

e T = U(D2n+1)7 U((D2n+1)*), 0(D2n+1)/\0((-D2n+1)*)7 U(U2n+1)7 OTU(D2n+1)/\
U((D2n+1)*) /\U(U2n+1)'

The following result is an immediate consequence of Theorem 4.28.

Corollary 4.29. Consider a reversible 2-structure T defined such that V(7) =
{0,...,2n}, where n > 2. The following two statements are equivalent

o 7 is critical, and P(7) = Popy1;

5Boudabbous and Ille [7] proved this theorem for digraphs.
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& T = U(U2n+1), 0(Dap+1) A U((D2n+1)*); or U(D2n+1) A U((D2n+1)*) A
0(Uzn+1)-

The next remark completes the subsection.

Remark 4.30. Given n > 2, consider a critical 2-structure 7 defined on V(1) =
{0,...,2n}, and such that P(7) = Pape1. Set

E(1) = {A(L2n+1)(0,1) Y A(L2n+1) (1,0) Y A(L2n+1)(1,1)s
(A(L2n+1)(071) U A(L2n+1)(170) U A(L2n+1)(171))*7
A(L2n+1)(0,0)s A(L2n+1){0,0) }-
We obtain
man+1(e) = e for each e € £(7)  (see Notation 4.21). (4.48)
Consider e € E(7). By Proposition 4.27, there exists B, ¢ £(7) such that

e= U 1.

feBe

Thus, we obtain

71'2n+1(€) = U 7T2n+1(f)
feBe.
= U f (by (4.48))

feBe
*
=€ .

Consequently, mo,,+1 is an isomorphism from 7 onto 7*. If 7 is reversible, then
7 =7, and hence ma,,1 is an automorphism of 7.

4.2.4 The type (5,4

Given m > 1, we consider the tournament W, ,1 obtained from the tournament
Usm+1 by reversing all the arcs between the odd integers (see Figure 4.6). The
next remark is useful to establish Proposition 4.36 below.

Figure 4.6: The tournament W, 1.
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Remark 4.31. Let I" be a group of odd order with identity element e. Consider
QcT \{e} such that |[2n {z,z71}| = 1 for each x € T'\ {e}. We associate with
I' and Q the Cayley tournament Cay(T,Q) defined on V(Cay(T,2)) =T as
follows. Given x,y € I, (z,y) € A(Cay(T,Q)) if yz~' € Q. For each a € T, the
permutation of I', defined by z — xa for every x € I', is an automorphism of
Cay (T, Q). Consequently, Cay(T', () is vertex-transitive.

Let m > 1. We consider the cyclic group (Zop11,+). We consider also the
permutation

Yoms1: {0,...,2m} — {0,...,2m}
P — (m+1)xp mod2m+1

of Zom+1- We denote by ao;,+1(Wapme1) the unique tournament defined on
Zom+1 such that 1g,,,1 is an isomorphism from Wa,,11 onto ¥om1 (Wame1)-

Fact 4.32. For m > 1, we have (Yom+1(Wams1))* = Cay(Zom+1,{1,...,m}).

For convenience, set

Cayogpi1 = Cay(Zam+1, {1,...,m}).
Fact 4.33. Given m > 1, Cay,,, .1 is prime.

Proof. Let M be a module of Cays,,,; such that [M| > 2. We have to show
that M = Zopm41. As previously noted, the permutation of Zs,,,1, defined by
pr (p+1) mod (2m + 1) for each p € Zop,41, is an automorphism of Cay,,,, 1.
Hence, we can assume that 0 € M. Moreover, the permutation of Zo,,.1, defined
by p ~ —p mod (2m + 1) for each p € Zay,1, is an isomorphism from Cays,,,q
onto (Caysy,,,1)”- Since Cay,,, ., and (Cay,,,,;)” share the same modules, we
can assume that there exists ¢ € M n{1,...,m}. Since Cay,,, .1[{0,...,m}] =
L1, we obtain {0,...,q} € M. Since (1,m +1),(m+1,0) € A(Cays,,.1), We
have m+1 e M. Hence

{0,...,¢}u{m+1}c M. (4.49)

Now, we show that
{0,...,m+1} c M. (4.50)

Clearly, (4.50) follows from (4.49) when ¢ = m. Thus, suppose that ¢ < m — 1.
Let pe {g+1,...,m}. Since (¢,p),(p,m + 1) € A(Cays,,.1), we have p € M.
It follows that {¢+1,...,m} ¢ M. Since {0,...,¢} u{m+ 1} ¢ M by (4.49),
we obtain {0,...,m + 1} ¢ M. Consequently, (4.50) holds. If m = 1, then
M = Zom+1 by (4.50). Lastly, suppose that m > 2. Let pe {m+2,...,2m}. Since
(m+1,p),(p,0) € A(Cays,,.1), we have p e M. We obtain {m+2,...,2m} c M.
It follows from (4.50) that M = Zay,+1. Consequently, Cays,, ., is prime. O

Fact 4.34. Given m > 2, Cay,,, . is critical, and

P(CaYZm+1) = w2m+1 (02m+1 )7

where Yom+1(Camy1) denotes the unique graph defined on Zom1 such that o1
is an isomorphism from Copmi1 0nto Yame1 (Comaet)-



58 CHAPTER 4. CRITICAL 2-STRUCTURES

Proof. We have Wop,i1 N {2m — 1,2m} = Wa,,—1. By Fact 4.33, Cay,,,_; is
prime. Since (Yam-1(Wam-1))* = Cays,,,_1 by Fact 4.32, Wa,,,_1 is prime. Hence
Wam+1 N {2m —1,2m} is prime as well. Since (¢2m+1(Wam+1))™ = Cays,,,1 by
Fact 4.32, we obtain that Cays,, 1 \ ¥am+1({2m - 1,2m}) = Cayg,,.1 ~ {m,2m}
is prime. The permutation of Zg,,4+1, defined by p - (p —m) mod (2m + 1)
for each p € Zoy41, is an automorphism of Cay,,, ;. Thus Cays,,.; ~ {0,m}
is prime. The permutation of Zg;,.+1, defined by p — —p mod (2m + 1) for
each p € Zom+1, is an isomorphism from Cays,,,,; onto (Cays,,,,;)*. Therefore,
Caygmir N Vam+1({0,-m}) = Cayg,,i1 N Yom+1({0,m + 1}) is prime. It follows
that
m,m + le N]P’(Cay2m+1)(0)~

Clearly, {m,m + 1} is a module of Cay,,,,; —0. Thus 0 is a critical vertex of
Cayy,,41- By Lemma 4.4, dp(cay,, .,)(0) < 2. We obtain

N]P’(Cayz,n+1)(0) = {m,m + 1}

Let g € Zop+1- Since the permutation of Zay,+1, defined by p — (p+q) mod (2m+
1) for each p € Zom+1, is an automorphism of Cay,,, ., we obtain that ¢ is a
critical vertex of Cays,,,,1, and Np(cay,, ,,)(q) = {g+m,g+m+1}. Consequently,
Cayy,,,; is critical, and P(Cayg,,11) = Y2m+1(Come1)- O

The next fact is an immediate consequence of Facts 4.32 and 4.34.
Fact 4.35. Given m > 2, Woy,41 is critical, and P(Wapm41) = Comet-

Proposition 4.36. Given n > 2, consider a 2-structure T defined on V(1) =
{0,...,2n}. The following two statements are equivalent

1. 7 is critical, and P(7) = Copq1;

2. (0,1); #(1,0),, and for p,q€{0,...,2n} such that p < q, we have

1,0]; if p and q have the same parity,

[p.q]- = LL.0] ) (4.51)
[0,1], otherwise.

Proof. To begin, suppose that 7 is critical, and P(7) = Co,41. We verify that
(4.51) holds in the following manner. Since E(Pan11) € E(Cans1), (4.36) holds.
It follows that (4.37) holds. We distinguish the following cases, where p,q €
{0,...,2n} such that p < gq.

e Suppose that p and ¢ are even. By (4.37), [p,q]- = [0,2],. Since P(7) =
Cony1, we have Np(y(2n) = {0,2n - 1}. By Lemma 4.4, {0,2n -1} is a
module of 7 - (2n). In particular, we obtain [0,2], = [2n - 1,2],. By
(4.37), [2n-1,2]; = [1,0],. Thus

[p.q]- =[1,0]-. (4.52)
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e Suppose that p and ¢ are odd. By (4.37), [p,q]- = [1,2n - 1],. Since
{0,2n - 1} is a module of T - (2n), we have [1,2n - 1], =[1,0],. Hence

[p, Q]T = [17 O]'r~

e Suppose that p is even and ¢ is odd. By (4.37), [p,q]- =[0,1].

e Suppose that p is odd and ¢ is even. By (4.37), [p,q]- = [1,2],. Since
P(7) = Cops1, we have Np(;y(0) = {1,2n}. By Lemma 4.4, {1,2n} is a
module of 7 - 0. In particular, we obtain [1,2], = [2n,2],. By (4.37),
[2n,2], =[2,0],. By (4.52), [2,0], = [0,1],. Therefore

[p7 Q]'r = [07 1]7'

It follows that (4.51) holds. Since 7 is prime, 7 is not constant. It follows from
(4.51) that (0,1), # (1,0),.
Conversely, suppose that (4.51) holds, and (0,1), # (1,0),. We obtain

T = U(W2m+1).
By Fact 4.35, 7 is critical, and P(7) = Coppe1- O

The next characterization is a simple consequence of Proposition 4.36 and
its proof.

Theorem 4.37 (Boudabbous and Ille® [7]). Consider a 2-structure T defined
on V(1) ={0,...,2n}, where n > 2. The following two statements are equivalent

o 7 is critical, and P(7) = Copy1;
o 7=0(Wani1) (see Figure 4.6).

In the next remark, we determine the automorphism group of o(Wayn41)
when n > 2.

Remark 4.38. Let n > 2. By Fact 4.32, 12,41 is an isomorphism from Wa,,,1
onto (Cay,,,;)*. To determine Aut(Cay,,, ), we consider the permutation

Oon+1: {0,...,2n} —> {0,...,2n}

D — p+1 mod2n+1
of Zony1. We prove that
Aut(o(Wans1)) =< O2n41, Tans1 > - (4.53)
To begin, we show that
Aut(Cayg,q) = < O2p41 > . (4.54)

6Boudabbous and Ille [7] proved this theorem for digraphs.
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Clearly, 09,1 € Aut(Cays,,,;), and hence < f9,.1 > € Aut(Cay,,, ;). Con-
versely, consider ¢ € Aut(Cay,, ;). Since < 2,41 > S Aut(Cays,,, 1), (f2ns1) ¥ o
p € Aut(Cays,,,1). We have ((f2n.1) @ o) (0) = 0. Since Cayy,,.1[Ng,y,  (0)]

and Cayy,, 41 [Ny,  (0)] are linear orders, we obtain (Bans1) P Doy = Idgo,... .20} -

Therefore, p € < 09,41 >. It follows that (4.54) holds. Moreover, since g, is
an isomorphism from Ws,,1 onto (Cay,,,;)*, we obtain

Aut(Wans1) = ($ans1) "o < Bans1 >0 tonir-
We have (12,11) " 0 Oani1 0 Yans1 = (B2ni1)?. Furthermore, we have
((O2n+1)*)™" = 201
It follows that
AU (Wara1) = (Vams1) ™0 < Bamet > 0 aner =< Oanar > - (4.55)
Now, we show that
Iso(Cayy,,. 1, (Cayy,,1)") = < Oap41 >0 Topyq. (4.56)

Clearly, man+1 € Iso(Cayg,,,1, (Caya,1)"). It follows from (4.54) that < 0,41 >
o Tans1 S Iso(Cayg, 1, (Cays,1)"). Conversely, let ¢ be an isomorphism from
Caysy,,,, onto (Caysy,,,)*. Since fy,,1 € Aut(Cay,, ;) by (4.54), (B2n.1)" ¢ ™o
¢ €Iso(Caygp,q, (Caygy,,1)”). Set

9= (B2n41)" "W o g,
We have /() = n. Thus, ¢/ [Ny, | (m)] = Néyy, (n) and /[N, | (0)] =
Ncay, ., (n). Recall that
CZ‘LYZnJrl|:J\[(Say2n+1 (n)] = L{O,..A,n—l} and Ca‘y2n+1[Néay2n+l (n)] = L{n+1,...,2n}~

It follows that ¢’ = moy,41, SO @ = (92%1)‘/’(")’" o mon+1- Consequently, (4.57)
holds. Lastly, since 12,41 is an isomorphism from Wa,,.1 onto (Caysy,,,1)", we
obtain

Iso(Wans1, Wans1)™) = (¥2ns1) "t < O2n41 >0 Tons1 © Yoy
Since Tap11 © Y241 = (02n41)" © Yans1 0 Tons1,

Iso(Wans1, Wans1)™) = (V2ns1) "0 <O2p41 >0 (B2n41)™ 0 P2ns1 © Tonst

= (Yans1) to < Bop41 >0 Yopi1 © Tanes
=< 02n+1 >0 Ton+1 (by (455)) (457)

By Note 4.25, Aut(c(Wapns1)) = Aut(Wape1) UIso(Wapi1, (Wans1)™). It follows
from (4.55) and (4.57) that

Aut(oc(Wan+1)) =< O2p41 > U(< b2ppi1 > 0 Topy1).

Since mans1 0 (02041)% = (B241) ™% 0 manyi1, (4.53) holds.
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4.3 Properties of critical 2-structures

Lemma 4.39. Let 7 be a critical 2-structure, with v(7) > 7. If u,v,z,y are
distinct vertices of T such that {u,z},{x,y}, {y,v} € E(P(7)), then T —{x,y} is
critical, 7 and T — {x,y} share the same type, and

E@®(r - {z,y})) = (BEP(7)) ~ {{w, z}, {z, v}, {y,v}}) v {{u, v}}.

Proof. By Corollary 4.6, there exist n > 3 and a bijection f defined on V(1)
such that f(]P(T)) = P2n @ K{2n}7 P2n+17 Cv2n+1 or f(P(T)) = P2n7 with n > 4.
To begin, suppose that

f(B(7)) = Consa.
We can assume that f(u) =2n-2, f(x) =2n-1, f(y) =2n and f(v) = 0. Since
P(f(7)) = f(P(7)), we have

P(f(7)) = Cans1-

By Proposition 4.36, (0,1)f(r) # (1,0)4(r), and f(7) satisfies (4.51). Clearly,
(0, 1)]0(7.)_{2”_17271} * (1, O)f(T)_{Qn_Lgn}, and f(’T) - {QTL -1, 2n} satisfies (451)
Since n > 3, we can apply Proposition 4.36 to f(7) — {2n - 1,2n}. We obtain
that f(7) - {2n-1,2n} is critical, and P(f(7) - {2n-1,2n}) = Cay,_1. Since f
is an isomorphism from P(7) onto Cs,,41, we obtain
E(®(r)) ={{/ (), /' (p+1)}:0<p<2n-1}
u{{/7(2n), F71(0)}}. (4.58)
Clearly, fiv(r)<{z,y} is an isomorphism from 7 - {z,y} onto f(7) - {2n-1,2n}.
Hence, fiv(r)<{z,y} 18 an isomorphism from P(7 - {z,y}) onto P(f(7) - {2n -
1,2n}). Since P(f(7) - {2n-1,2n}) = Ca,-1, we obtain
E®(r - {z,y})) ={{/ (), f ' (p+1)}:0<p<2n-3}
U {7 (2n-2), /7 (0)}} (4.59)

It follows from (4.58) and (4.59) that
E(P(1 - {z,y}) =(BEP(M))NA{{f(2n-2), 1@ - D} {f (20 - 1), f7(2n)},

{71 @n), O v {f T (2n-2), F71(0)})
=(BE(P() ~ {u, 2z}, {z, v}, {y,v}}) v {{u, v} }.

Now, suppose that f(P(7)) = Pa,, Pan ® K25} O Papi1. We proceed in the
same way for the three cases. For instance, assume that

f(P(T)) =Py

There exists p € {0, ...,2n -3} such that f(u) =p, f(z)=p+1, f(y) =p+2 and
f(v) =p+3. Since P(f(7)) = f(P(7)), we have

P(f(7)) = Pns1-
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By Proposition 4.27, (0,1) y(ry # (1,0) s(+), [0,1]¢r) # [0,2] (), and f(7) sat-
isfies (4.35). Consider the bijection

g: {0,....2n}~{p+1,p+2} — {0,...,2n-2}

qsp — q,
q>p+3 — q-2.

For each g € {0,...,2n -2}, we have ¢ = g"'(¢) mod 2. Moreover, for any ¢,r €
{0,...,2n-2}, g <rif and only if 7' (q) < g~ '(r). Since (0,1)(r) # (1,0) s(r),
[0,1] () # [0,2]4(+), and f(7) satisfies (4.35), we obtain

(0, Dg(rr)-tprpr2p) # (1,0)g(p(r)-(p+1.p+2))

[0, (s () -tprpe2) # [0, 2] g s () -pr1,pr21)s
and

g(f(r) —{p+1,p+2}) satisfies (4.35).
By Proposition 4.27 applied to g(f(7) - {p+1,p+2}), g(f(7) - {p+1,p+2}) is
critical, and
P(g(f(1) —{p+1,p+2})) = Pan_1.
Since f is an isomorphism from P(7) onto Pa,41, we have
EP®()={{f (), f(g+1)}:0<qg<2n-1}. (4.60)

Since P(g(f(7) ={p+1,p+2})) = Pan-1, g° (fiv(r) fa,y}) is an isomorphism
from P(7 - {z,y}) onto Py,_1. It follows that
E(P(r - {z,y})) =
{{(g o (ffV('r)\{a:,y}))_l(Q)a (g o (frV(T)\{m,y}))_l(q + 1)} :0<g<2n- 3}

‘We obtain

E®(r-{z,y}) ={{f (@), f " (q+1)}:0<q<p-1} (whenp>1)
U{{f (), T (p+3)}} (4.61)
v{{f ' q),f N (¢g+1)}:p+3<q<2n—-1} (when p<2n-—4).

It follows from (4.60) and (4.61) that

EP(1 —{z,y}) =(E@@)N {7 (0), o+ DL 0+ 1), (0 +2)),
{7 e+2), T e+3Du{{f ),/ (r+3)}}
=(E(P(m)) ~ {{u, 2} {z,y}, {y,v}}) v {{u, v}}. O
Lemma 4.40. Let 7 be a critical 2-structure, with v(7t) > 7. If u,z,y are

distinct vertices of T such that {u,z},{z,y} € E(P(7)), and dp(y(y) = 1, then
T—A{z,y} is critical, T and T — {x,y} share the same type, and

E®(r - {z,y})) = E(P(T)) ~ {{u, z},{z,y}}.



4.3. PROPERTIES 63

Proof. By Corollary 4.6, there exist n > 3 and a bijection f defined on V(1)
such that f(]P(T)) =Py, ® K{Qn},Pgn+1,an+1 or f(P(T)) = Py,, with n > 4.
Since dp(7)(y) = 1, f(P(7)) = Pan, Pon ® K{2p) Or Payy1. As in the proof of
Lemma 4.39, we treat only the case f(P(7)) = Pan+1. We can assume that
flw)y=2n-2, f(z)=2n-1and f(y) =2n.
Since P(f(7)) = f(P(7)), we have
P(f(7)) = Pons1-

By Proposition 4.27, (0,1) ¢(-) # (1,0) #(+), [0,1] ¢r) # [0,2](+), and f(7) sat-
isfies (4.35). Therefore, we have

(0, 1) f(ry-f2n-1,2n} * (1,0) f(r)~{2n-1,2n}

[0, 1] 5 (r)—2n-1,2n} # [0, 2] (r)-{2n-1,20}

and

f(7)={2n-1,2n} satisfies (4.35).

By Proposition 4.27 applied to f(7)-{2n-1,2n}, f(7)-{2n-1,2n} is critical,
and

P(f(r)-{2n-1,2n}) = Pyy,_1.
Since f is an isomorphism from P(7) onto Ps,1, we have

E®()={{f"(q), f ' (¢g+1)}:0<qg<2n-1}. (4.62)

Since P(f(7) = {2n~-1,2n}) = Pan_1, fiv(r)<{a,y} 15 an isomorphism from P(7 —
{z,y}) onto Py,_1. we obtain

EP(r-{z,y})) ={{f ' (0),f H(g+1)}:0<qg<2n-3}. (4.63)
It follows from (4.62) and (4.63) that
E(P(7 - {z,y}) =E(P(7))
{1 @En-2), 7 e - DL 2= 1), £ (20) 1)
=E(P(r)) N {{w, z}, {z,y}}. O

The following corollary is an immediate consequence of Lemmas 4.39 and
4.40. Tt is useful in the next chapter when disjoint edges of the primality graph
of a critical 2-structure are considered.

Corollary 4.41. Given a critical 2-structure T, with v(T) > 7, consider distinct
vertices x and y of T such that {x,y} € E(P(7)). The following two statements
hold.

1. 7—A{z,y} is critical;
2. 7 and T — {x,y} share the same type;
3. For every e € E(P(7)), if en{z,y} =2, then e E(P(1 - {z,y}));

4. For every e € E(P(1 - {z,y})), if e~ (Npry(x) U Np(ry(y)) # @, then
ee E(P(7)).



64

CHAPTER 4. CRITICAL 2-STRUCTURES



Chapter 5

Noncritical unordered pair
theorems

Given a prime 2-structure, a noncritical unordered pair theorem provides dis-
tinct vertices v and w of o such that o — {v,w} is prime as well.

We refine the notion of a support as follows. Given a 2-structure o, the
critical support of o is the set of the vertices v of o such that o —v is critical. It
is denoted by Z.(0).

Remark 5.1. Let o be a prime 2-structure. Suppose that
L(o)\ F(o) + @.
Let v € (o) \ F(0). Since v € .#(0), o —v is prime. Since v ¢ .Z.(0), 0 —v

is not critical. Hence, there exists w € V(o —v) such that (¢ —v) —w is prime.
Therefore, {v,w} is a noncritical unordered pair of o.

Remark 5.2. Let o be a prime 2-structure, with v(o) > 6. Suppose that
[Ze(o) < 1.

It follows from Theorem 3.11 that there exists X ¢ V(o) such that 3 < |X|<5
and

(o) c X. (5.1)
By Corollary 3.21, there exist v,w € V(o) ~ X such that o - {v,w} is prime.
Clearly, if v # w, then {v, w} is a noncritical unordered pair of o. Hence, suppose

that v = w. We obtain v € (o). Since .7.(c) € X, we have v € .¥(0) \ S(0),
and we conclude as in Remark 5.1.

65

critical support
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5.1 The Schmerl-Trotter theorem

Theorem 5.3 (Schmerl and Trotter [33]!). Given a prime 2-structure o such
that v(c) > 7, there exist v,w € V(o) such that v +w and o — {v,w} is prime.

Theorem 5.3 is the second downward hereditary property of primality. We
use the properties of critical 2-structures presented in Section 4.3 to prove it.
Our approach is based on Remark 5.1.

In this section, we provide a proof of Theorem 5.3 when v(o) > 9. In Chap-
ter 6, we provide a proof of Theorem 5.3, when v(o) > 7, by using Theorem 5.23.
We begin with the following lemma.

Lemma 5.4. Let o be a prime 2-structure, with v(o) > 8, such that S.(c) + @.
Consider x € /(o). Let
EcE(P(oc-1))

such that en f =@ for distinct e, f € £. If |E| > 4, then En E(P(0)) + @.

Proof. Suppose that €n E(P(0)) = @. We have to show that |£] < 3. Hence,
suppose that |€| > 3. We have to show that |€] = 3.

Given e € &, set

Xe=V(o)N ({z}ue).

Since e € E(P(0 - z)), o[X.] is prime. Since e ¢ E(P(0)), o[X. u {z}] is
decomposable. By Lemma 3.13, x € (X.), or there exists u. € X, such that
x e (Xe)o(ue).

Given distinct e, f € £, set

X{e,f} = AXVe AN f

Since en f = @, it follows from Corollary 4.41 applied to ¢ — x that f €
E(P(c[X.])), that is,

o[ X¢e, 5] is prime. (5.2)

For a contradiction, suppose that there is ¢ € £ such that z € (X.),. For
each f €&~ {e}, we have

X € <X{e,f})a- (53)

If there is f € £\ {e} such that = € (X),, then V(o) \ {z} is a module of

o, which contradicts the fact that o is prime. Thus, suppose that for every

[ e &~ {e}, there is uy € Xy such that 2 € (Xf),(uy). Let f e &N {e}. If

uf ¢ e, then z € (X{e7f})g(ujf). By (5.3), x € (X{e7f})g(Uf) N (X{e,f}>g7 which
contradicts Lemma 3.13. Therefore, for every f € € \ {e},

uy €e. (5.4)

Since |€] > 3, consider distinct f,g € £\ {e}. By (5.4), us,uy € e. If uy = ug,
then {z,us} is a module of o, which contradicts the fact that o is prime. Hence

1Schmerl and Trotter [33] proved this theorem for binary relational structures. The cases
of partially ordered sets, graphs, and tournaments are specified.
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uy # ug. Recall that o[ Xy ] is prime by Corollary 4.41. We obtain that
x e (X(pg1)o(up)n(Xis,gy)o(uy), which contradicts Lemma 3.13.

It follows that for each e € &, there is u, € X, such that z € (X, ), (u.). Given
distinct e, f € £, if ue = uy, then {z,u.} is a module of o, which contradicts the
fact that o is prime. Hence, for distinct e, f € £, we have

Ue F UFf. (5'5)

Given distinct e, f € £, ifuc ¢ f and uy ¢ e, then x € (Xyc 53 ) o (ue)N(Xe, 1 )0 (us)
which contradicts Lemma 3.13 because u. # uy by (5.5). Thus, for distinct
e, f €&, we have

ue € f or us €e. (5.6)

Let e € £. Recall that the elements of £ are pairwise disjoint. Since |E| > 3,
there exists f € £\ {e} such that u. ¢ f. By (5.6), uy ce. Let ge &N {e, f}.
By (5.6) applied to f and g, ug € f, because us ¢ g. By (5.6) applied to e and
g, ue € g because uy ¢ e. Therefore, every element of £ \ {e, f} contains u..
Consequently, |£] = 3. O

The next result follows from Corollary 4.6 and Lemma 5.4.

Corollary 5.5. Given a prime 2-structure o, consider x € Z.(c). If v(o) > 9,
then E(P(o —xz))n E(P(0)) * @.

A first proof of Theorem 5.8 when v(o) > 9. If o is critical, then E(P(0)) # @
by Corollary 4.6. Suppose that ¢ is not critical, so (o) + @. If Z.(0) # @,
then we conclude by using Corollary 5.5. Lastly, if #.(o) = @, then we conclude
as in Remark 5.1. O

Remark 5.6. By using Corollary 4.6, we can directly verify that Corollary 5.5
holds when v(c) =7 or 8.

The next result improves the Schmerl-Trotter theorem when the critical
support is nonempty.

Proposition 5.7. Let o be a prime 2-structure such that v(c) >29. If S.(0) #
@, then |E(P(0))] > [42] - 4.
Proof. Consider z € .%.(0). Set

We have n > 5. We verify that Ps,_o embeds into P(c - ).

e Suppose that v(c) is even. We obtain v(o) =2n, so v(c —x) =2n-1. Tt
follows from Corollary 4.6 that P(o — ) is isomorphic to Pa,—2 ® K259},
Py, 1, or Coy—1. Thus, Py, o embeds into P(o - ).

e Suppose that v(c) is odd. We obtain v(c) =2n -1, so v(c —z) = 2n — 2.
It follows from Corollary 4.6 that P(o — x) is isomorphic to Pa,_s.
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Since Pyy,—2 embeds into P(o - z), there exists a function f:{0,...,2n-3} —
V(o - x) such that f is an isomorphism from P, onto P(c — z)[{f(p) : 0 <
p<2n-3}]. Set

F={{fm),f2m+1)}:0<m<n-2}.

Clearly, F ¢ E(P(o - x)). It follows from Lemma 5.4 that |F \ E(P(¢))| < 3.
We obtain

|E(P(0))| 2 |F n E(B(0))| = |F| - [F ~ E(P(0))|

=(n-1)-|[F N EP®(o))]
>n—4. O

5.2 Ille’s theorem

Ille [22] succeeded in providing conditions that ensure the existence of a non-
critical unordered pair outside a prime substructure of a prime 2-structure.

Theorem 5.8 (Ille [22]). Given a prime 2-structure o, consider X ¢ V(o) such
that o[ X ] is prime. If [V (o)~ X| 2 6, then there exist v,w € V(o)X such that
v+w and o —{v,w} is prime.

The first proof of Theorem 5.8 is technical and unclear. A new clearer and
shorter proof is provided in Section 9.6 at the end of Chapter 9. Belkhechine et
al. [3] improved Theorem 5.8 in particular cases as follows.

Theorem 5.9 (Belkhechine et al. [3]). Given a prime 2-structure o, consider
X c V(o) such that o[X] is prime. Suppose that at least one of the following
statements holds

(S1) there exists v e (X), such that (v,X)s # (X,v), (see Notation 2.1);
(S2) there exist y € X and v e X,(y) such that (v,y)s # (y,v)s-

Under these assumptions, if [V (o) N X| 2 4, then there exist v,w € V(o) N X
such that v # w and o —{v,w} is prime.

Sayar [32] proved Theorem 5.9 for tournaments. Obviously, Statements (Sy)
and (Sy) above are satisfied by tournaments. We provide a proof of Theorem 5.9
in Section 9.6 as well.

5.3 The Boudabbous-Ille theorem

Boubabbous and Ille [7] succeeded in finding a noncritical unordered pair which
intersects the support. Note that the proof of the next result uses Theorem 5.3.
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Theorem 5.10 (Boubabbous and Ille [7]?). Consider a prime 2-structure o
such that v(o) > 7. If |#(0)| > 2, then there exists e € E(P(c)) such that
enS (o) +@. (In other words, if |.7(c)| > 2, then L (o) \ S(0) + @.)

Proof. By Theorem 5.3, E(P(0)) # @. Hence, P(c) admits a component C
such that v(C) > 2. Since |£(0)| > 2, it follows from Proposition 4.5 that
V(C)n.#(0) + @. Since C is connected, there exist distinct v,w € V(C') such
that {v,w} € E(P(c)) and v € .# (o). Thus, v ¢ .Z.(0). O

As shown by the next result, Theorem 5.10 does not hold when |.%(0)| = 1.
For convenience, we use the following notation.

Notation 5.11. Given n > 3, set

Ron ={0(R2n),0((R2n)"),0(Ran) Ao ((R2n)"),
0(Q2n) Ao (Ran),0(Q2n A o((R2n)"),0((Q2n)") Ao (Ran),
o((Q2n)") Ao ((R2n)"),0(Q2n) Ao ((Q2n)") Ao (Ran)}
(see Figures 4.2 and 4.3).

Remark 5.12. Given n > 3, it follows from Theorem 4.19 that the elements of
Ray, are the critical 2-structures o defined on {0, ..., 2n-1} such that P(c) = P,
and (0,2), # (2,0),.

Theorem 5.13 (Boubabbous and Ille [7]®). Consider a prime 2-structure o
such that v(o) 2 6, and |.7(c)| = 1. The primality graph P(c) admits a unique
component C such that v(C) 2 2. Moreover, if V(C)n.7(c) = @, then v(o) =
2n+1, where n > 3, and there exists an isomorphism ¢ from o —.# (o) onto an
element of Ray, satisfying*

[Z(0), ¢ ({2020 €{0,...,n=1}})]s = [¢7'(0), 7 (2)]o,
and (5.7)

[(0), ¢ ({2i+1:0€{0,...,n=1}})]o = [07'(2), 7 (0) ],

2Boubabbous and Ille [7] proved this theorem for digraphs.

3Boubabbous and Ille [7] proved this theorem for digraphs.

4The digraph Ran+1 (see Figure 5.1) is the extension of Rg, (sse Figure 4.3) to {0,...,2n}
defined by

A(Ran+1) = A(R2n)U{(2n,2i):0<i<n—-1}u{(2i+1,2n):0<i<n-1}.
By using the fact that o(R2n+1) — (2n) is prime, it is not difficult to verify that o(Ran+1)

is prime. We have “(0(R2n+1)) = {2n} and C = Pay,, so V(C) n (o) = @. Furthermore,
o(Ran+1) satisfies (5.7) with ¢ =1Idg, . 2pn-13-
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2n
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2n -2

L

Figure 5.1: The digraph Ra,41

Proof. Denote by x the unique element of .#(c). By Theorem 3.11, there
exists X ¢ V(o) such that z € X, 3 <|X]| <5, and o[X] is prime. It follows
from Corollary 3.21 that there exist v,w € V(o) N\ X such that o — {v,w} is
prime. Since #(o) ¢ X, we have v #+ w. Denote by C the component of
P(c) containing v and w. For a contradiction, suppose that P(o) admits a
component D such that v(D) > 2 and D # C. Since V(C)n V(D) = @ and
|-Z(0)] = 1, we have V(C)n .#(0) = @ or V(D) n.(c) = @. For instance,
assume that V(C) n (o) = @. Since V(C)n V(D) = @ and v(D) > 2, we
obtain |V (¢) ~ V(C)| > 2, which contradicts Proposition 4.5. Consequently, C
is the unique component of P(o) such that v(C) > 2.

Now, suppose that V(C)n.S (o) =@, so x ¢ V(C). Since z ¢ V(C'), we have
dp(s)(x) = 0. Therefore, o -z is critical. It follows from Proposition 4.5 that
V(C) =V (o)~{z}, and C is isomorphic to Ps,, where n = (v(c)-1)/2. Consider
an isomorphism ¢ from C onto Ps,. As in the proof of Proposition 4.15, we
verify that

<gp’1(0), cpfl(l)>a¢< @’1(0), @71(2) >, (see Notation 1.1),
and for any p,q € {0,...,2n — 1} such that p < ¢, we have

[©71(0),¢71(1)]s if p is even and ¢ is odd,

[©71(0),¢71(2)]s otherwise. (58)

™' (), ¢ ()]0 = {

Let i € {0,...,n—2}. Since ¢! is an isomorphism from P, onto C, we have
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N]p(g)(cp’l(2i+l)) ={¢p71(2i), o1 (2i+2)}. By Lemma 4.4, {¢~1(2i), 071 (2i+2)}
is a module of ¢—¢~1(2i+1). In particular, we obtain [z, ¢ (2i)], = [z, 1 (2i+
2)],- It follows that

(2,07 ({205 €{0,....,n=1}}]o = [z, (2n - 2)],.

Since ¢! is an isomorphism from Py, onto C, we have Np(,)(¢™'(2n - 1)) =
{p7'(2n-2)}. By Lemma 4.4, V(o) {¢ "1 (2n-2),¢ ' (2n-1)} is a module of
o—p~1(2n~-1). In particular, we obtain [z, ! (2n-2)]s = [¢71(0), 01 (2n-2)],.
Moreover, we have [¢71(0), o1 (2n-2)]s = [ 1(0), 0 1(2)], by (5.8). It follows
that

[, 07 ({202 € {0,...,n = 1}}]o = [¢7(0), 07 ()]s
Similarly, we show that
(2,07 ({20 +1:i€{0,....,n-1}}]o = [ 1(2), o 1 (0)]o.

Consequently, (5.7) holds. Since o is prime, V(o) \ {z} is not a module of o.
It follows that [0~1(0),071(2)], # [¢71(2),¢71(0)]s. Therefore,

[0,2]; #[2,0],

where 7 is the unique 2-structure defined on {0,...,2n — 1} such that ¢ is an
isomorphism from o —x onto 7. Hence 7 is critical and P(7) = Pa,. As observed
in Remark 5.12, we have T € Ro,, because [0,2], # [2,0],. O

Since the elements of Ry, are not symmetric, the next result follows from
Theorems 5.10 and 5.13.

Corollary 5.14. Consider a symmetric 2-structure o such that v(o) >7. If o
is prime and noncritical, then there exists v € V(o) such that o —v is prime and
noncritical, as well.

Proof. Suppose that o is prime and noncritical. Hence, (o) # @. If |.7(0)| >
2, then we conclude by using Theorems 5.10. Therefore, suppose that (o)
contains a unique element denoted by z. By Theorem 5.13, P(0) admits a
unique component C' such that v(C) > 2. Since o is symmetric, o — z is not
isomorphic to an element of Ro, by Remark 5.12. It follows from Theorem 5.13
that x € V/(C). Since v(C) 2 2, we have dp(,)(x) # 0. Thus, o -z is prime and
noncritical. [

Theorem 5.13 leads us to introduce the following definition. It is useful to
generalize the Chudnovsky-Seymour theorem (see Theorem 5.21).

Definition 5.15. Consider a prime 2-structure o such that v(o) > 5. Suppose
that (o) admits a unique element, denoted by x. We say that o is almost
eritical if o — x is critical (that is, .7 (o) = Ze(0) = {z}).

almost critical
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Remark 5.16. Consider a prime 2-structure o such that v(o) > 6. Suppose
that (o) admits a unique element denoted by x. By Theorem 5.13, P(o)
admits a unique component C such that v(C) > 2. Suppose also that o is
almost critical, that is, o — x is critical. Since o — x is critical, we have

N]p(g)(x) = .
As seen in the proof of Theorem 5.13, it follows from Proposition 4.5 that
V(C)=V(o)~A{z},

and there exists an isomorphism ¢ from C onto Ps,. Furthermore, ¢ is an
isomorphism from o — x onto a critical 2-structure 7 such that P(7) = Py,.
Thus, ¢ is an isomorphism from P(¢ - x) onto P,. It follows that

P(oc-xz)=P(c)-z=C.
The next result is an easy consequence of Theorem 5.13.

Corollary 5.17. Given a 2-structure o such that v(o) > 7, the following two
statements are equivalent

1. o is almost critical;

2. v(o) =2n+ 1, where n > 3, and there exist x € V(o) and an isomorphism
@ from o —x onto an element of Ray, (see Notation 5.11) such that (5.7)
holds.

Proof. To begin, suppose that ¢ is almost critical. Hence, there exists x € V(o)
such that
(o) = (o) = {x}.

As seen in Remark 5.16, V(o) ~ {2} is the unique component of P(c) containing
at least two elements. Clearly, (V (o)~ {z})n.%(c) = @, and it suffices to apply
Theorem 5.13 to obtain the second statement above.

Conversely, suppose that v(o) = 2n+ 1, where n > 3, and suppose that there
exist © € V(o) and an isomorphism ¢ from ¢ -z onto an element 7 of Ra,
such that (5.7) holds. As observed in Remark 5.12, 7 is critical and P(7) = Pay,.
Hence,

o -z is critical. (5.9)
Set

X =V(o){x}.
We prove that ¢ is prime. As observed in Remark 5.12, we have (0,2), # (2,0).
It follows that (¢1(0), v™1(2))s # (¢ 1(2),¢71(0)),. Since (5.7) holds, we have
[z, ({2 :i € {0,...,n=1}})]o = [¢71(0), 07 (2)]s and [z, ({2i +1: i €
{0,...,n-13N]s = [ 1(2),071(0)],. It follows that

¢ (X),.
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Now, consider y € X. Set
p=¢(y).
There exists ¢ € {0,...,2n — 1} such that <p,¢>,=<0,1>.. It follows that

<07 (0), ¢ (@) 7o=< 1 (0), 07 (1) > -
Moreover, by Proposition 4.15, <0,1>,#<0,2>.. It follows that

<71(0), 07 (1)< (0), 071 (2) >0 -
Since (5.7) holds, we have

<2,07 (@) >o=<¢"1(0), 071 (2) > .

Therefore, we obtain

<2, (@) >ot<¢ " (p), 0 (@) >0 -

It follows that
r ¢ Xo(y).

By Lemma 3.13, x € Ext,(X), so ¢ is prime. Since o —x is critical by (5.9), we

obtain
x € S(0). (5.10)

Lastly, we show that (V (o)~ {z})n (o) = @. Consider y € V(o) \ {z}.
We have to verify that o — y is decomposable. Set

p=0(y).

Suppose that p € {1,...,2n - 2}. Since P(7) = Pa,, we have Np(-)(p) = {p -
1,p+1}. By Lemma 4.4, {p-1,p+ 1} is a module of 7 — p. It follows that
{7 (p-1),071(p+1)} is a module of o~ {x, 1 (p)}. Since (5.7) holds, we have
z g {1 (p-1),¢ 7 (p+1)}. It follows that {p~!(p-1),0 1 (p+1)} is a module
of -1 (p). Hence, 0~ !(p) is decomposable. Now, suppose that p = 0. Since
P(7) = Pyp, we have Np(;)(0) = {1}. By Lemma 4.4, 7 - {0,1} is a module of
7—-0. Precisely, since 7 is critical and P(7) = Pay,, we have [1,{2,...,2n-1}], =
[0,2],. It follows that [¢ (1), ({2,...,2n-1})], = [¢71(0),¢ (2)],. Since
(5.7) holds, we have [¢™1(1),2]s = [ 1(0),¢71(2)],. It follows that V(o) \
{p71(0),071(1)} is a module of o — ¢~1(0). Hence, o — ¢ (0) is decomposable.
Similarly, o — ¢™1(2n - 1) is decomposable. Consequently, we obtain

V(o) {z})nF(0) = 2.
It follows from (5.10) that
yc(a) :y(U) = {3?}

Thus, o is almost critical. O
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We complete the section with the following properties of almost critical 2-
structures.

Fact 5.18. Consider an almost critical 2-structure o such that v(c) > 7. The
following two statements hold, where x denotes the unique element of .7 (o),

1. given X ¢ V(o —x), if o[X] is prime, then o[ X u{z}] is prime;
2. fore, fe E(P(oc—x)) (or fore, f e E(P(0))), we have o —e~ 0 - f.

Proof. Consider an isomorphism ¢ from ¢ —z onto an element p of Ry, where
n > 3, satisfying (5.7).

For the first statement, consider X ¢ V(o — ) such that o[ X] is prime. Let
y € X. We verify that x ¢ X,(y). Since (5.7) holds, we have

<, 2>5=<p 7 (0),7(2) >0

for every z € X \ {y}. Since p € Ra,, it follows from Proposition 4.15 that there
exists z € X \ {y} such that

<y, 2>6=<¢(0),0 (1) > .

Moreover, we have

< 10), 071 (2) %<7 (0), 07 (1) >4

by Proposition 4.15. It follows that

x ¢ Xcr(y)~

Now, we verify that = ¢ (X),. Consider ¢,5 € {0,...,n - 1} such that i < j.
It follows from Proposition 4.15 that [¢™'(2i), 9 1(25)]s = [¢71(0),071(2)]s-
Therefore, o[@™ ({2 : i € {0,...,n —1}}] is constant or linear. Since o[X]
is prime, we obtain X \ ¢ '({2i : i € {0,...,n—1}} # @. Thus, there exits
pe{0,...,n—1} such that ¢~1(2p+1) € X. Similarly, there exists ¢ € {0,...,n—1}
such that ¢™1(2¢) € X. Since (5.7) holds, we have

[z, (29)]6 = [¢71(0), 7 (2)]5
and

(2,07 (2p+ 1)]o = [¢7(2), 7" (0)]5.

Since p € Ray, it follows from Remark 5.12 that

(o7 (0), 07 (2)]0 % [ (2), 71 (0)].

Therefore, we have
x ¢ (X),.
It follows from Lemma 3.13 that

x € Ext, (X),
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that is, o[ X u{z}] is prime.

For the second statement, consider e, f € E(P(0 - x)). To begin, we make
the following observation. By Remark 5.16, P(c—z) = P(0) -z, and z is isolated
in P(o). Tt follows that

E(P(oc-x))=EP(c) -x).

Consequently, we can consider e, f € E(P(c)) as well.

By Remark 5.16, ¢ is an isomorphism from P(o-2) onto Ps,. By exchanging
e and f if necessary, we can suppose that e = {p™1(i),o7 (i + 1)} and f =
{o71(5), ¢ (j+1)}, where 0<i<j<2n-2.

Consider the bijection f from {0,...,2n-1}\{i,i+1} onto {0,...,2n—-1}
{j, 7 +1} defined as follows. Given m € {0,...,2n -1}~ {4,i + 1},

mifi>land 0<m<i-1,
fm)y=Am-2ifi+2<m<j+1,
mif j<2n-3 and j+2<m<2n-1.

By Remark 5.12, P(p) = Py,. It follows from Proposition 4.15 that for p,q €
{0,...,2n -1}, with p < ¢, we have

[0,1], if p is even and ¢ is odd,
[p,al, = :
[0,2], otherwise.
Since f is strictly increasing and preserves the parity, f is an isomorphism from
p-{i,i+1} onto p-{j,j+1}. Now, consider the bijection ¢ from V(o) \ e
onto V(o) \ f defined by 9 (z) = z, and ¥(w) = (¢ ' o f o p)(w) for every
we V(o) (eu{z}). Since ¢ satisfies (5.7) and f preserves the parity, ¢ is an
isomorphism from o — e onto o — f. O

5.4 The Chudnovsky-Seymour theorem

Theorem 5.19 (Chudnovsky and Seymour [10]°). Let o be a symmetric 2-
structure. If o is prime and noncritical, then for every prime 2-structure T such
that T embeds into o, with 5 < v(7) < v(0), there exists X ¢ V(o) such that
o[X] =7 and Ext,(X) + @ (see Notation 3.12).

Proof. We consider a prime 2-structure 7, such that v(7) > 5, and we proceed
by induction on v(c) > v(7) + 1. The result is obvious when v(o) = v(7) + L.
Hence, suppose that v(o) > v(7) +2. We have v(c) > 7 because v(7) > 5. By
Corollary 5.14, we have

L(o)\ F(o) + @.

5Chudnovsky and Seymour [10] proved this theorem for graphs.
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To begin, we prove that there exists X ¢ V(o) such that

o X]~71
and (5.11)
(V(e)~X)nS (o) + 2.

Counsider Y € V(o) such that o[Y] ~ 7, and suppose that o —u is decomposable
for every u € V(o) \Y. It follows from Corollary 3.21 that there exist distinct
v,w € V(a)\Y such that o — {v,w} is prime. Thus, 7 embeds into ¢ — {v,w}.
Denote by C the component of P(c) containing v and w. For a contradiction,
suppose that V(C) c V(o) \ .#(0). By Proposition 4.5, [V (¢) N\ V(C)| < 1, so
|-#(o)| < 1. Since o is not critical, we have |#(o)| = 1. By Theorem 5.13, C' is
the unique component of P(c) such that v(C) > 2. Since V(C)n . (o) = @, it
follows from Theorem 5.13 that o is almost critical, which contradicts the fact
that o is symmetric (see Remark 5.12). Consequently, we have V(C)n.% (o) + @.
Since o —u is decomposable for every u € V(o) \Y, we have {v,w}n.(0) = @.
Since C' is connected, there exist distinct vertices co,...,c, of C satisfying

e {co,c1} = {v,w};
e p>2 {cp,...,cp-1} S V(o) F(0), and ¢, € L(0);

o forie{0,...,p-1}, {¢i,cis1} € E(P(0)).

Let i€ {1,...,p—1}. We have ¢;_1,¢i+1 € Np(o)(ci). Since ¢; ¢ .7 (o), it follows
from Lemma 4.4 that Npy(ci) = {ci-1,¢it1}, and {c;_1,¢i11} is a module of
o-c¢;. Thus, o—{c;-1,¢} =~ 0—{ci, civ1}. It follows that o—{co,c1} = 0—{cp-1,¢p},
that is, 0 —{v,w} ~ 0 —{¢p-1,¢,}. Since 7 embeds into o —{v,w}, T embeds into
o —{¢p-1,¢p} as well. Since ¢, € #(0), (5.11) holds.

Now, we consider X € V(o) such that (5.11) holds. There exists

ve(V(o)\X)nS (o).

If there exists w € (V(o) N~ X) n (S (o) \ S(0)), then it suffices to apply the
induction hypothesis to ¢ —w. Hence, suppose that

V(o) X)n(Z (o) Fe(0)) = 2.
In particular, o — v is critical. Since .7 (o) \ .7.(0) + @, there exists
zeXn(F(o)NF(0)).

Since o — v is a critical symmetric 2-structure, it follows from Corollary 4.6
and Propositions 4.15, 4.23, 4.27, and 4.36 that P(c — v) = P»,, where n > 3.
Consequently, there exists y € (V (o) —v) \ {z} such that {z,y} € E(P(c —v)).
Since v(o)-v(7) > 2, we have X ¢ V(o -v). Since o—w is critical, it follows from
Corollary 3.21 that there exist distinct w,w’ € V(o —v) ~x X such that {w,w'} €
E(P(o - v)). Thus, 7 embeds into (¢ - v) - {w,w'}. Since {z,y}, {w,w'} €
E(P(c-v)), it follows from Corollary 4.8 that (o -v)—{z,y} ~ (0 -v) - {w,w’}.
Therefore, 7 embeds into (o —v) — {z,y} as well. To conclude, it suffices to
apply the induction hypothesis to o — . O
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Remark 5.20. Theorem 5.19 does not hold for almost critical 2-structures.
Indeed, given n > 3, consider the 2-structure pa,+1 defined on {0,...,2n} by

Pan+1 — (2n) = 0(Ray,) (see Figure 4.3)

[2”, {22 : Z € {07 R 7n - 1}}]p2n+1 = [O’ 2]p2n+1’
and

[2n,{20+1:9€{0,....,n=1}}],,... = [2,0]ppss-

(5.12)

By Corollary 5.17, pan.1 is almost critical. As observed in Remark 5.16, we
have
P(p2n+1 = (2n)) = P(p2n+1) = (2n) = Pay.

Therefore, pan+1 — {2n - 2,2n - 1} is prime. Set
T = p2n+1 — {271—2,271— 1}

Consider X ¢ {0,...,2n} such that 7 is isomorphic to pan+1[X]. Since 7 is
prime, pop41[X] is prime. It follows that

V(p2n+1) N X € E(P(p2n+1)).
As observed in Remark 5.16, we have
P(pani1) = Pon ® Kyapy.
It follows that there exists p € {0,...,2n — 2} such that
X =V(p2n+1) N {p,p+1}.
Finally, to establish that Theorem 5.19 does not hold for ps,.1, we verify that

p,p+1¢Ext,,  (X).

Since P(p2n+1) = Pon ® Koy, We have

{p,p+2}ifp<2n-3
NP(PZnH)(p + 1) = 3or
{p}ifp=2n-2.

It follows from Lemma 4.4 that
p € <X>P2n+1 J szn+1 (p + 2)-

In the same way, we verify that

p+ Le Xp2n+1 (p_ 1)'

We generalize Theorem 5.19 as follows.
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Theorem 5.21 (Liu [27]%). Let o be a prime 2-structure o. Suppose that o is
neither critical nor almost critical. For each prime 2-structure T such that T
embeds into o, with 5 < v(7) <v(0o), there exists X € V(o) satisfying X + V (o),
o[X]~7, and Ext,(X) + @.

Theorem 5.21 is proved in Appendix A. The next result is obtained by
applying Theorem 5.21 several times.

Theorem 5.22. Let o be a prime 2-structure. Suppose that o is neither critical
nor almost critical. Consider a prime 2-structure T such that 7 embeds into o,
with 5 <v(7) <wv(c). Under these assumptions, there exists X ¢ V(o) such that
o[X] =7, and the elements of V(o) N\ X can be indexed as z1,...,2, in such a
way that o[ X u{z1,...,2;}] is prime forie{l,...,n}.

5.5 The critical support

The purpose of this section is to demonstrate the next theorem.

Theorem 5.23 (Sayar’[31] ). For every prime 2-structure o, with v(c) > 7, we
have |Z.(0)| < 2.

Theorem 5.23 is an immediate consequence of Corollary 4.6 and of Propo-
sitions 5.26, 5.27, 5.28, and 5.29 below. The proofs of Propositions 5.26, 5.27,
5.28, and 5.29 share the same approach and have similar arguments. Moreover,
they are technical and the proofs of the last three ones are long. In order to keep
this section at a satisfactory length, we provide the proofs of Propositions 5.27,
5.28, and 5.29 in Appendix B.

We begin with the following lemma (compare with Corollary 4.10).

Lemma 5.24. Let o be a prime 2-structure with v(o) > 6. Consider X,Y ¢
V(o) such that o[X] and o[Y] are critical. Suppose that |X| < |Y|. If there
exists Z € X nY such that o[Z] is prime and |Z| > 5, then o[ X] embeds into
o[Y].

Proof. We can suppose that |Z| = 5 or 6. Indeed, suppose that [Z| > 7. By
Theorem 3.10, there exists Z’ ¢ Z such that o[ Z'] is prime and |Z'| =3 or 4. By
Theorem 3.19, there exists Z" ¢ Z such that Z' ¢ 2", |Z"| = |Z'| + 2, and o[ Z"]
is prime. Consequently, suppose that |Z| =5 or 6. Furthermore, o[Z] is critical
by Corollary 4.7.

To begin, suppose that |Z] = 5. Tt follows from Corollary 4.7 that there
exist 2 < m < n such that |X| =2m+1 and |Y| = 2n + 1. Moreover, it follows
from Corollary 4.41 that o[ X], o[Y], and o[ Z] share the same type. By Corol-
lary 4.6, P(c[X]) is isomorphic to Comi1, Pom ® K{gm) or Pami1. Suppose
that P(o[X]) ~ Coms1. Hence P(o[Y]) ~ Copyq1. It follows from Theorem 4.37
that o[X] embeds into o[Y']. Similarly, if P(o[X]) = Poy & K{opy, then it

61iu [27] proved this theorem for tournaments.
"Sayar [31] proved this theorem for digraphs.
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follows from Theorem 4.24 that o[X] embeds into o[Y]. Therefore, suppose
that P(c[X]) ~ Pams1. Thus, P(0[Y]) ~ Pape1. Consider an isomorphism ¢x
from P(c[X]) onto Pape1. Denote by 7x the unique 2-structure defined on
{0,...,2m} such that px is an isomorphism from o[X] onto 7x. We obtain
that 7x is critical and P(7x) = Papm41. It follows from Proposition 4.27 that
(0,1)ry # (1,0)74, [0,1]74 #[0,2]74, and for any p,q € {0,...,2m} such that
p < q, we have

_ ] [0,2],, if p and ¢ are even
[P a)ex = { [0,1],, otherwise. (5.13)

There exist zg, ..., x4 € {0,...,2m} such that zg < - < x4 and
<pX(Z):{x0,...,x4}.

Since o[ Z] is isomorphic to 7x[px(Z)], Tx[vx(Z)] is prime too. By (5.13), if
xo is odd, then px (Z)\{zo} is a module of 7x[px (Z)]. Thus, x¢ is even. Given
i€{0,...,3}, if x; = 241 mod 2, then it follows from (5.13) that {z;,z;41} is a
module of 7x[px(Z)]. Therefore, x; # x;1,1 mod 2. It follows that

T, X2, T4 are even
and (5.14)

x1,x3 are odd.

Let fx :ox(Z) «— {0,...,4} defined by fx(x;) =1 for i € {0,...,4}. Clearly,
fx is strictly increasing. By (5.14), fx preserves the parity. It follows that
fx is an isomorphism from 7x[¢x(Z)] onto 7x[{0,...,4}]. Therefore, o[Z] is
isomorphic to 7x[{0,...,4}]. Since (5.13) holds, we have

[07 2]TX = [074]TX = [274]7')(
and
[Ov 1]TX = [0’3]7')( = [172]7')( = [173]7'X = [1’4]7')( = [273]7')( = [374]7')('

Since (0,1)7, # (1,0)r, and [0,1],4 # [0,2]+y, it follows from Proposition 4.27
applied with 7x[{0,...,4}] that 7x[{0, ...,4}] is critical and P(7x [{0,...,4}]) =
Ps. Similarly, consider an isomorphism ¢y from P(c[Y]) onto Psy,.1. Denote
by 7y the unique 2-structure defined on {0,...,2n} such that py is an isomor-
phism from o[Y] onto 7y. We obtain that 7y is critical and P(7x) = Papy1. It
follows from Proposition 4.27 that (0,1),. # (1,0)+,, [0,1] # [0,2]+., and for
any p,q € {0,...,2n} such that p < ¢, we have

_ ] [0,2];, if p and q are even
[P a)ey = { [0,1],, otherwise. (5.15)

Moreover, [ Z] is isomorphic to 7y [{0,...,4}]. Consequently, there exists an
isomorphism ¢ from 7x[{0,...,4}] onto 7v[{0,...,4}]. We obtain also that
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Ty [{0,...,4}] is critical and P(7y [{0,...,4}]) = Ps. Since P(7x[{0,...,4}]) =

Ps and P(7y [{0,...,4}]) = Ps, ¥ is an automorphism of Ps. Therefore, we have
Y =1dgo,... 4y or m5  (see Notation 4.21).

To conclude, we distinguish the following two cases.

1. Suppose that ¢ = Idyo,... 43. We obtain 7x[{0,...,4}] =7y[{0,...,4}]. Tt
follows from (5.13) and (5.15) that

TX = Ty[{O,...,Qm}].
Since o[X] ~ 7x and o[Y] ~ 7y, o[ X] embeds into o[Y].

2. Suppose that ¢ = m5. By Remark 4.30, ¢ is an isomorphism from 7x[{0,
...,4}] onto (7x[{0,...,4}])*. Since ¢ is also an isomorphism from
7x[{0,...,4}] onto 7v[{0,...,4}], we obtain

(7x)"[{0,...,4}] = v [{0,...,4}].

Clearly, (7x)* is critical and P((7x)*) = Pame1. It follows from Proposi-
tion 4.27 that for p,q € {0,...,2m} such that p < ¢, we have

[0,2](r4)+ if p and g are even

[, d)(rx)r = {

Since (7x)*[{0,...,4}] =7v[{0,...,4}], it follows from (5.15) that
(Tx)* = Ty[{o7 e ,2m}].

By Remark 4.30, 79,41 is an isomorphism from 7x onto (7x)*. Thus, 7x
embeds into 7y. Therefore, o[ X ] embeds into o[Y].

[0,1](ry)+ otherwise.

Now, suppose that |Z| = 6. It follows from Corollary 4.7 that there exist
3 <m < nsuch that | X|=2m and |Y|=2n. If m = 3, then X = Z, and hence o[ X ]
embeds into o[Y']. Thus, suppose that m > 4. By Corollary 4.6, P(c[X]) ~ Pap,
and P(o[Y]) ~ P,. We proceed as previously, using Proposition 4.15 instead
of Proposition 4.27. We obtain a prime 2-structure u = 7x[{0,...,5}] such that

<0,1>,#<0,2>,

[0’ 1]u = [0a3]u = [075]u = [273]M = [275]u = [4a 5];“

and

[0,2]# = [074]u = [172]u = [173]# = [1’4]u = [1a5]u = [2a4]u = [374]u = [375]u7

It follows from Proposition 4.15 that P(u) = Ps. We obtain also a prime 2-
structure v = 7y [{0,...,5}] such that

<0,1>,#<0,2>,

[07 1]1/ = [0,3]1, = [075]1/ = [273]11 = [275]11 = [4,5]1,,

and

[0,2], =[0,4], =[1,2], =[1,3], = [1,4], =[1,5], = [2,4], = [3,4], = [3,5].,
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It follows from Proposition 4.15 that P(v) = Ps. Furthermore, there exists an
isomorphism v from p onto v. Thus, v is an automorphism of Ps. We obtain
Y =1dgo,... 53 or mg. As previously, we deduce that 7y[{0,...,2m - 1}] = 7x or
(7x)*. Since Ta,, is an isomorphism from 7x onto (7x)*, 7x embeds into Ty.
Thus, o[ X ] embeds into o[Y]. O

The next result follows from Lemma 5.24.

Corollary 5.25. Let o be a prime 2-structure with v(c) > 7. Consider distinct
s,t € S(c). We have

Np(o-s)(t) = Np(o-ty(5), and Npo_s)(t) # @.

Moreover, if v(o) > 8, then 0 —s~ o —t.

Proof. We have Np(,_4)(t) = {x € V(0 —5) ~{t} : (¢ —s) - {t,x} is prime}.
Similarly, Np(s_4)(s) = {z € V(o —t) N {s} : (0 =t) - {s,z} is prime}. Thus,
N]P’(a'—s)(t) = N]P’(a—t) (3)

For a contradiction, suppose that Np(,_s)(t) = @. It follows from Corol-
lary 4.6 that there exists an isomorphism ¢, from P(o —s) onto Py, ® K{a,y,
where v(o) = 2n + 2. Furthermore, since Np(,_s)(t) = @, p4(t) = 2n. Denote
by 7, the unique 2-structure defined on {0,...,2n} such that ¢ is an isomor-
phism from o - s onto 7,. We obtain that 7, is critical and P(7s) = P2, ® K{2,,}-
By Theorem 4.24, 74 = 0(T2p4+1). Similarly, there exists an isomorphism
from o — ¢ onto o(Tan+1) such that ¢(s) = 2n. Since ps(t) = 2n and @i(s) =
2n, (@s)[V(a)\{s,t} ° ((Sot)rV(a)\{s,t})_l is an automorphism of J(T2n+1) - (2TL)
Furthermore, since To,11 — (2n) = Loy, 0(Tan+1) — (2n) is linear, and hence
0(Tan+1) = (2n) is rigid. Therefore, (0s)1v (o) (s} = (©8)1v (o) {s,y- It fol-
lows that {s,t} is a module of o, which contradicts the fact that o is prime.
Consequently, Np(,_g)(t) # @.

Lastly, suppose that v(o) > 8. Since Np(,—5)(t) = Np(o-1)(s) and Np(,_s)(t) #
@, there exists v € Np(y_s)(t) N Np(y—4)(s). We have o - {s,t,v} is prime. Since
v(o - {s,t,v}) 25, it follows from Lemma 5.24 that o - s ~ o — ¢. O

Proposition 5.26. Let o be a prime 2-structure with v(o) > 7. If there exists
se S (o) such that P(o - s) ~ Caps1, then S(0) = {s}.

Proof. Let s € .#.(0) be such that P(o - s) ~ Co,41, where n > 3. Up to
isomorphism, we can assume that

V(o) =A0,...,2n + 1},
s=2n+1,

and

P(o-(2n+1)) = Cony1.

For a contradiction, suppose that

()] > 2, (5.16)



82 CHAPTER 5. NONCRITICAL UNORDERED PAIR

and consider ¢t € (o) ~ {2n + 1}. Since 0,41, T2n41 € Aut(Copny1) by Re-
mark 4.38, we can assume that

t=2n.
Hence, Np(s—(2n+1))(2n) = {0,2n — 1}. By Corollary 5.25, Np(s_(2n))(2n +1) =
{0,2n-1}. Moreover, since v(c) > 8, it follows from Corollary 5.25 that c—(2n) ~
o —(2n+1). Therefore, P(c — (2n)) ~ Cap+1. Consider an isomorphism ¢ from
P(o - (2n)) onto Cayi1. Since oy11, Ton+1 € Aut(Capyir), we can assume that

e(2n+1) =2n,
©(0) =0,
0 -

o(2n-1)=2n-1.

Since o — (2n + 1) is critical and P(o - (2n + 1)) = Cay,41, it follows from Propo-
sition 4.36 that

(0,1)¢ # (1,0),, (5.18)
and for p,q € {0,...,2n} such that p < ¢, we have
[0,1], if p # ¢ mod 2
= 5.19
[p q] {[170]0 otherwise. ( )

Set
E={{2n-2,2n-1},{2n-1,2n},{2n,0}}.

Since E ¢ E(P(o - (2n+1))), it follows from Lemma 4.39 that (¢ — (2n+1)) -
{2n - 1,2n} is critical, and
E(P((c-(2n+1))-{2n-1,2n}))
=(EP(o-(2n+1))NE)u{{2n-2,0}}.
We obtain
P(o-{2n-1,2n,2n+1}) = Cap_1. (5.20)

Similarly, we obtain (»™1(0),¢7 (1)), # (¢ 1(1),¢71(0)),, and for p,q € {0, ..., 2n}
such that p < ¢, we have

[¢7(0), 7 ()], if p# g mod 2

[p7'(1), 71 (0)], otherwise. (5.21)

™' (), ()]0 = {

Furthermore, @1y (o—(2n)) {41 (2n-1),0-1(2n)}) 18 an isomorphism from P((c -
(2n)—{¢'(2n-1),¢7"(2n)}) onto Ca,_1. By (5.17), ¢y(o,... 202} is an isomor-
phism from P(o - {2n - 1,2n,2n + 1}) onto Cs,—;. It follows from (5.20) that
©1o,....2n-2} € Aut(Cay,_1). Since ¢(0) = 0, we obtain

©10,....2n-2} = Id{o,... 2n—2} Or Tan_1 (see Notation 4.21).

We distinguish the following two cases. In each of them, we obtain a contradic-
tion.
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1. Suppose that ¢ (o, 2n-2y = Idgo, .. 2n-2}. Hence, ¢(i) =i forie {0,...,2n-
2}. Since p(2n-1) =2n -1 by (5.17), we obtain

p(t)=ifori€{0,...,2n-1}. (5.22)
Consider k € {0,...,2n — 1}. For instance, assume that k is even. We
obtain
[k,2n], =[1,0], by (5.19)
e (0,07 (0], by (5.22)
=[e7 (k)97 (2n)], by (5.:21)
= [k (20)], by (5.22)
=[k,2n+1], by (5.17).

The same holds when k is odd. It follows that {2n,2n + 1} is a module of
o, which contradicts the fact that o is prime.

2. Suppose that ¢y(o,... 2n-2} = T2n-1. Therefore, for each i € {0,...,2n -2},
we have

e l(i)=2n-2-1i. (5.23)

It follows that
[071]0 = [0,2”—1]0 by (519)
[ (0),p) (20 -1)], by (5.17)
[e™(0), 9" (D]s
[

= by (5.21)
=[2n-2,2n-3], by (5.23)
=[1,0], by (5.19),
which contradicts (5.18).
Consequently, (5.16) does not hold, and hence .Z.(c) = {s}. O

Proposition 5.27. Let 7 be a prime 2-structure with v(7) > 7. If there exists
s €.7,(1) such that P(T —5) ~ Pay, ® Koy, then 7.(T) = {s}.

Proposition 5.28. Let o be a prime 2-structure with v(o) > 7. Suppose that
there exists s € S.(0) such that P(c—s) = Py,y1. Also, suppose that there exists
te (o) N {s}. Under these assumptions, the following statements hold

hd d]P’(a—s)(t) =2;
e by denoting by x and y the elements of Np(,_s)(t), the function

V(o) ~{s} — V(o) {t}
t — S,
T — Y, (5.24)
y —

veV(o)\{s,t,x,y} — v,

is an isomorphism from o — s onto o —t;
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e note that (z,9)s = (y,2)0;
o S(o)={s,t}.

Proposition 5.29. Let o be a prime 2-structure with v(o) > 7. Suppose that
there exists s € (o) such that P(c —s) ~ Py,. Also, suppose that there exists
te S (o)~ {s}. We can suppose that

V(o) ={0,...,2n},
s =2n,
te{n,...,2n-1}, (5.25)
and
P(o - (2n)) = Pay,.
Under these assumptions, one of the following two cases holds
1. dp(o—(2n))(t) =1, and we have

1.1. t=2n-1,

1.2. (0,2), =(2,0),,

1.3. the function

{0,....2n-1} — {0,...,2n-2}u{2n}
0 —  2n,

1 — 2n-2,
2<k<2n-1 +— k-2,

(5.26)

is an isomorphism from o — (2n) onto o —t;
2. dp(o—(2n))(t) = 2, and we have

2.1. n<t<2n-2,
2.2. the function
{0,...,2n -1} — {0,...,2n}\ {t}
t —  2n,
t-1 — t+1, (5.27)
t+1 — t-1,
veV(e)\{t-1,t,t+1,2n} +— v,

is an isomorphism from o — (2n) onto o —t; in particular, we have
(t-1,t+1),=(t+1,t-1),.

In both cases above, we have ..(c) = {t,2n}.



Chapter 6

Minimal prime 2-structures

Definition 6.1. Let o be a prime 2-structure. Consider a vertex subset W of
o. We say that o is minimal for W if for each W’ ¢ V(o) such that W ¢ W’
and |W'| > 3, we have o[W'] is decomposable.

Cournier and Ille [12] characterized the prime digraphs that are minimal for
a vertex subset of size 1 or 2. The purpose of this chapter is to extend their
characterization to prime 2-structures. The next question follows naturally.

Question 6.2. Given k > 3, characterize the prime 2-structures that are mini-
mal for a vertex subset of size k.

6.1 Minimal and prime 2-structures for a single-
ton

Consider a prime 2-structure o. Given v € V (o), suppose that ¢ is minimal for
{v}. Tt follows from Theorem 3.11 that

veR3(0)URy(0)UZRs(o) (see Notation 3.1).

Hence, there exists X ¢ V(o) such that 3 <|X|<5, ve X, and o[ X] is prime.
Since o is minimal for {v}, we obtain X = V(o). Therefore, we have

3<wu(o) <5.

We examine only the minimal and prime 2-structures for one vertex that are
defined on five vertices. For instance, it follows from Claims 3.4 and 3.5 that
Bs is prime and minimal for {4}. We use the following set of 2-structures.

Notation 6.3. We denote by M the set of the 2-structures o defined on
V(o) ={0,...,4} and satisfying the following assertions

! Alzohairi and Boudabbous [1] characterized the minimal prime graphs for a vertex subset
of size 3 that do not contain Kyg 1,2y as an induced subgraph.

85
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1. <0,1>,%#<0,2>, (see the second statement of Proposition 4.15);

2. [0,1], = [0,3], = [2,3], and [0,2], = [1,2]s = [1,3], (see (4.4) in the
second statement of Proposition 4.15 2 );

3. [0,4], = [4,3], = [0,3], and [1,4], = [4,2], = [1,2],.

Remark 6.4. It is easy to verify that the elements of M are prime and minimal
for {4}.

Theorem 6.5 (Cournier and Ille? [12]). Consider a 2-structure o such that
v(o) =5. Let ve V(o). The following two assertions are equivalent

e o is prime and minimal for {v};

e there exists an isomorphism f from o onto an element of My such that

fv)=4.

The proof of Theorem 6.5 is a long sequence of easy verifications. We omit
it, but we provide the following hint.

Hint for a proof of Theorem 6.5. To begin, suppose that there exists an isomor-
phism from o onto 7 € M such that f(v) =4. By Remark 6.4, 7 is prime and
minimal for {4}. Thus, o is prime and minimal for {v}.

Conversely, suppose that ¢ is prime and minimal for {v}. Up to isomorphy,
we can assume that V(o) = {0,...,4} and v =4. We prove that o € M;.

Since o is minimal for {4}, we have

4 ¢ B3(0) U Ba(0). (6.1)

We show that
P3(o)u Py(0) ={{0,...,3}}. (6.2)

By Theorem 3.10, there exists X € P3(c)u P4(c). By (6.1), v ¢ X. As in the
proof of Theorem 3.11, we obtain that o[ X u {4}] is prime. Since o is minimal
for {4}, we have V(0) = X u {4}, so X ={0,...,3}. Consequently, (6.2) holds.

It follows from (6.2) that ¢[{0,...,3}] is critical. Up to isomorphy, we can
assume that

e {2,3} is a module of ¢[{0,...,3}] - 0;

)

[

e {0,2} is a module of ¢[{0,...,3}

e {1,3} is a module of ¢[{0,...,3}
[

-2
e {0,1} is a module of ¢[{0,...,3}]-3.

2By the first two assertions, o —4 satisfies the second statement of Proposition 4.15. Propo-
sition 4.15 does not hold for 2-structures of size 4 because the primality graph of a prime
2-structure of size 4 is empty. Nevertheless, we can directly verify that a 2-structure of size 4,
which satisfies the second statement of Proposition 4.15, is critical. Therefore, we can deduce
here that o —4 is critical.

3Cournier and Ille [12] proved this theorem for digraphs.
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It follows that [0,1], =[0,3], =[2,3], and [0,2], = [1,2]s = [1,3],. Therefore,
we obtain <0,1>,#<0,2>,.
We prove that
<i,4>,=<0,1>, or <0,2>, (6.3)

for i € {0,...,3}. By using Proposition 3.8 and (6.2), we show that (6.3) holds
for i =0 or 1. Since the permutation (03)(12) is an isomorphism from o -4 onto
(0 —4)*, we obtain that (6.3) holds for i = 2 or 3.

Finally, by using Proposition 3.8 and (6.2), we verify that [0,4], = [4,3], =
[0,3], and [1,4], =[4,2]s = [1,2],. Therefore, o € M;. O

6.2 Minimal and prime 2-structures for an un-
ordered pair

Given n > 4, it is easy to verify that o(P,) (see Figure 1.1) is prime and
minimal for {0,n—1}. Furthermore, for n > 3, M,, is the tournament defined on
V(M,) ={0,...,n—1} as follows. Given i,5 € {0,...,n—1}, (i,7) € A(M,,) if
j=i+1lorj<i-1 (see Figure 6.1). Given n > 5, it is easy to verify that o(M,,)
is prime and minimal for {0,n - 1}.

Figure 6.1: The tournament M,,.

We generalize o(P,) and o(M,) as follows.
Notation 6.6. We denote by My the set of the 2-structures o defined on

V() ={0,...,n -1}, where n > 3, and satisfying the following assertions

forie{0,....,n-3}and je{i+2,...,n-1}, [i,5], =[0,n - 1],
and (6.4)
for i €{0,...,n -2}, [i,i+1], #[0,n—1],.

We use the next result to verify that the elements of My are prime.
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Lemma 6.7. Consider a 2-structure o € My. If M is a nontrivial module of
o, then M ={0,n—-1}.

Proof. Consider 4,j € M such that i < j and {m e M : i <m < j} = {i,j}.
Suppose that ¢ > 1. Since [i - 1,i], # [0,n - 1], and [i - 1,j]s = [0,n - 1],, we
have i—1 € M. By proceeding by induction, we obtain {0, ...,i} € M. Similarly,
we have {j,...,n -1} € M. Therefore, we have M ={0,...,i} u{j,...,n—1}.
Since M + {0,...,n—1}, we have j > i+2. If i > 1, then [i-1,i+1], = [0,n—-1],
and [i,i + 1], # [0,n — 1], which contradicts the fact that M is a module of
o because i — 1,4 € M and i +1 ¢ M. Tt follows that ¢ = 0. Similarly, we have
j=n-1. Consequently, we obtain M ={0,n—1}. O

Lemma 6.8. Given o € Mo, if v(o) > 5, then o is prime and minimal for
{0,n-1}.

Proof. Let 0 € Ma. We have V(o) = {0,...,n -1}, where n > 5. First, we
verify that o is prime. For a contradiction, suppose that ¢ admits a nontrivial
module M. By Lemma 6.7, M = {0,n —1}. We have [0,2], = [0,n - 1], and
[n-1,2], =[n-1,0],. It follows that

[0,n—-1], =[n-1,0],.

We obtain [0,1], # [0,n - 1], and [n-1,1], = [n-1,0], = [0,n - 1],, which
contradicts the fact that {0,n — 1} is a module of 0. Consequently, o is prime.

Second, we verify that o is minimal for {0,n-1}. Let W ¢ V(o) such that
0,n—1€W and |[W| > 3. Since W # V (o), there exists i € {1,...,n -2} such
that i ¢ W. Set

W' '=wn{0,...,i-1}.
For j e W and k € W~ W' we have k > j + 2, and hence [j,k], = [0,n -

1],. It follows that W' and W \~ W’ are modules of o[W]. Thus, o[W] is
decomposable. O

Given n > 6, the graph @, is defined on V(Q,) = {0,...,n - 1} in the
following way (see Figure 6.2)

1. Qn-{n-2,n-1} = P,_5 (see Figure 1.1);
2. for i€ {0,...,n-4}, {i,n-2} € E(Qn):;

3. {n-2,n-1} e E(Q,).
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Figure 6.2: The graph @,

Furthermore, for n > 6, O,, is the tournament defined on V' (O,,) ={0,...,n—
1} in the following way (see Figure 6.3)

1. Op—{n-2,n-1} = M,,_o;

2. for i €{0,...,n -4}, (i,n-2) € A(Oy);
3. forie{0,...,n=3}, (i,n-1) € A(O,);
4. (n-2,n-3),(n-1,n-2) e A(O,).

Figure 6.3: The tournament O,,.

Given n > 6, it is not difficult to verify that ¢(Q,,) and o(O,,) are prime and
minimal for {0,n - 1}. We generalize 0(Q,,) and ¢(O,,) as follows.
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Notation 6.9. We denote by N> the set of the 2-structures o defined on V(o) =
{0,...,n =1}, where n > 5, and satisfying the following assertions

o—{n—-2,n-1} satisfies (6.4),

forie{0,...,n-4}, [n-2,i], =[n-2,n-1],,

for i € {0,...,n-3}, [n-1,i], = [0,n - 3]s, (6.5)
and

[n-2,n-1],#[n-2,n-3], and [n-2,n-1], # [n—3,0],-.

Lemma 6.10. The elements of Na are prime and minimal for {0,n—1}.

Proof. Let 0 € No. We have V(o) ={0,...,n—1}, where n > 5. First, we verify
that o is prime. We distinguish the following two cases.

e Suppose that n € {5,6}. Using Assertion (M2) of Proposition 2.5 and
Lemma 6.7 applied to o[{0,...,n - 3}] € My, it is not difficult to verify
that o is prime.

e Suppose that n > 7. Since o-{n-2,n-1} € My, it follows from Lemma 6.8
that o — {n - 2,n -1} is prime. Set

X ={0,...,n-3}.

It is not difficult to verify that n -2 € Ext,(X) and n -1 € (X),. Since
[n-2,n-1], # [n-3,0], and [n-1,n-3], = [0,n-3],, we have [n-1,n-
2]s # [n-1,n-3],. Thus, Xu{n-2} is not a module of o[ Xu{n-2,n-1}].
It follows from Assertion (P2) of Lemma 3.17 that o[ X u{n-2,n-1}],
that is o, is prime.

Second, we verify that o is minimal for {0,n — 1}. Consider W ¢ V(o)
such that O,n -1 € W and [W| > 3. If n-2 ¢ W, then W~ {n-1} is a
nontrivial module of o[W]. Hence, suppose that {O,n —2,n -1} ¢ W. If
n-3¢ W, then W\ {n-2} is a nontrivial module of o[W]. Thus, suppose that
{0,n-3,n-2,n-1} cW. If 1 ¢ W, then {0,n—1} is a nontrivial module of o[W].
Therefore, suppose that {0,1,n-3,n-2,n—-1} cW. Since W #{0,...,n -1},
there exists i € {2,...,n—4}~W. We obtain that Wn{0,...,i-1} is a nontrivial
module of o[W]. O

Proposition 6.11. Consider a prime 2-structure o such that v(c) > 6. Let v
and w be distinct vertices of o. Suppose that for every W c V (o), we have

if 3<|W| <5 and v,w e W, then o[W] is decomposable. (6.6)

Under these assumptions, there exists an isomorphism ¢ from an element of
Mo UN, onto o[ X, where X €V (o), such that v,w € X and |X| > 6, satisfying

¢({0,n -1}) = {v,w}.
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Proof. Set
e=(v,w)y and f = (w,v),.

Consider

Z={ze V(o) {v,w}: 2z, {v,w}}\ NSO (v)
(see Notation 2.1 and Notation 3.7).

Denote by C(v) (respectively, C(w)) the {e, f}-component of o — Z (see Defi-
nition 2.2) containing v (respectively, w).
To begin, suppose that
C(v) =C(w).

Let n be the least integer m > 3 such that there exists a sequence vg, ..., V-1
of vertices of o — Z satisfying

e vg=v and v,,—1 = w;
o for 0<i<m=—2, [vi,vi11]0 % (e, f).

It follows from the minimality of n that for i € {0,...,n-3} and j € {i+2,...,n-
1}, we have

[vi,vj]0 = (e, f).

We consider the bijection ¢ : {0,...,n -1} — {vg,...,v,-1} defined by ¢(i) =
v; for i € {0,...,n —1}. Moreover, we denote by 7 the unique 2-structure
defined on V(7) = {0,...,n — 1} such that ¢ is an isomorphism from 7 onto
o[{vo,.--,vn-1}]. For ge E(a[{vo,...,vn-1}]), set

o ' (g9) ={(¢" (@), 0 (W) : (x,y) € g}

We obtain
E(r)={¢"(9) : g€ E(a[{vo, -, vn1}])}.

In particular, we have [0,n — 1], = (¢7'(e),o 1 (f)). Let i € {0,...,n - 1}.
Since [vi,vi+1]o # (€, f), we have [i,4+ 1], # [0,n — 1],. Furthermore, consider
i€{0,....n-3} and j e {i+2,...,n—1}. Since [v;,v;], = (e, f), we have
[¢,7]- = [0,n - 1];. It follows that T satisfies (6.4). Hence, T € My. Finally, we
prove that 7 is prime. For a contradiction, suppose that 7 admits a nontrivial
module M. By Lemma 6.7, M = {0,n - 1}. Hence, {vg,v,-1}, that is {v,w}, is
a module of o[{vg,...,vn-1}]. We obtain v; «+—, {v,w} and [v,v1], # (e, f).
Thus, v, € Z, which contradicts the fact that C(v) € V(o) \ Z. Consequently, 7
is prime. Thus, o[{vg,...,v,-1}] is prime too. It follows from (6.6) that n > 6.
Now, suppose that
C(v) + C(w).

It follows from Lemma 2.4 that C¢. sy(c - Z) (see Definition 2.2) is a modular
partition of o — Z. In particular, for ¢ € C(v) and d € C(w), we have [¢,d], =
[/U7 w]o’-
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First, suppose that there exists z € Z such that <v, z>,#<v,w>,, we have

z >, C(v). (6.7)

We conclude in the following way. Since C(v) is {e, f}-connected, there exist
Vo, .-, Vg1 € C(v), where k > 2, such that

e o[{vg,...,vx_1}] satisfies (6.4);

® vy =;

o if k=2, then [vg,vi-1]s % (f,€);

e if k>3, then [vg,vk-1]s = (f,€);

e [z,v0]0 % [2,k-1]03

o forie{0,...,k-2}, [2,v0]s = [2,Vi]o-

If k = 2, then it is not difficult to verify directly that o[{vg,...,vp-1}U{z,w}] is
prime, which contradicts (6.6). Therefore, we have k > 3. Consider the bijection

e: {0,...,k+1} — A{wvo,...,vp-1}U{z,w}
0<i<k-1 +—
k —  Z,
k+1 —  w.

Denote by 7 the unique 2-structure defined on V(7) = {0, ...,k + 1} such that
© is an isomorphism from 7 onto o[{vg,...,vk-1} U {z,w}]. We have T € Ns.
By Lemma 6.10, 7 is prime. Hence, o[{vo,...,vk-1} U {z,w}] is prime too. It
follows from (6.6) that k>4, so [{vo,...,vk-1}U{z,w}| >6.

Second, suppose that for every for z € Z such that <v,z>,#<v,w>,, (6.7)
does not hold, that is, z «—, C(v). Similarly, for z € Z such that <v, z >,#<
v,w>,, we can suppose that z «—, C(w). Since z «—, {v,w} for every z € Z,
we obtain

2z «—, C(v) uC(w) for every z € Z such that <v, z>,#<v,w>,. (6.8)

For a contradiction, suppose that e = f. Since Cycy (0~ 2) is a modular partition
of o0 - Z, C(v) and C(w) are modules of ¢ — Z. By Proposition 2.8, (o -
Z)[Ciey(0 = Z) is constant. Thus, C(v)uC(w) is a module of o — Z as well. It
follows from (6.8) that C'(v), C'(w), and C(v) u C(w) are modules of o, which
contradicts the fact that o is prime. Consequently, we have

e+ f.

To continue, suppose that there exists z € Z such that z <>, C(w). By
(6.8), <v, z2>,=<v,w>,. Since z ¢ Née’f)(v), we obtain [z,v], = (e, f). Set

C={ceClw)\{w}:z s {c,w}}.
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If there exists ¢ € C such that <c,w>,#<v,w>,, then o[{c,v,w,z}] is prime,
which contradicts (6.6). Furthermore, if there exists ¢,d € C' such that [¢,w]y, =
(e,f) and [d,w]s = (f,e), then o[{c,d,v,w,z}] is prime, which contradicts
(6.6). Hence, suppose that [w,C], = (e, f) or (f,e). We distinguish the follow-
ing two cases.

1. Suppose that [w,C], = (e, f). Since C(w) is {e, f}-connected, there exist
wo, . .., W1 € C(w), where k > 3, such that

o[{wo, ..., wi-1}] satisfies (6.4);

wo = w and [wo, wi-1]s = (e, f);

[Za wO]a’ * [Za wk—l]a;

for i € {0,...,k -2}, [z,wi]s = (e, f).

Consider the bijection

v: {0,....,k+1} — A{wo,...,wp_1}U{z,v}
0<i<k-1 +—— wy
k — 2z,

k+1 — .

Denote by 7 the unique 2-structure defined on V(7) ={0,...,k + 1} such
that ¢ is an isomorphism from 7 onto o[{wo, ..., wk-1}U{z,v}]. We have
7 € N2. By Lemma 6.10, 7 is prime. Hence, o[{woq,...,wi_1} U {z,v}] is
prime too. It follows from (6.6) that k >4, so [{wy,...,wr-1}U{z,v}| > 6.

2. Suppose that [w,C], = (f,e). Since C(w) is {e, f}-connected, there exist
wo, - - ., W1 € C'(w), where k > 3, such that

o o[{wo,...,wi_1}] satisfies (6.4);
® wo =w and [wovwkfl]a =(f,e);
* [z,wolo # [2,wp-1]0;

o forie{0,...,k—2}, [z,w;]s = (e, f).
Consider the bijection

P {O7ak+1} - {w07...,wk_1}U{Z,’l}}
0<i<k-1 > Wy,
k — 2z,

k+1 — .

Denote by 7 the unique 2-structure defined on V(7) ={0,...,k + 1} such
that ¢ is an isomorphism from 7 onto o[{wy, ..., w1 }U{z,v}]. We have
T € Ms. Tt follows from Lemma 6.8 that 7 and hence o[{wo,...,wi-1} U
{z,v}] are prime. By (6.6), [{wo, ..., wk-1} U{z,v}| > 6.
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Consequently, we can suppose that z «—, C(w) for every z € Z. Since C(w) is
a module of o — Z, C'(w) is a module of o as well. Since o is prime, we obtain

C(w) ={w}.
By Proposition 2.8, (0~ Z)/Cqe, sy (0 — Z) is linear. Set
Itywy ={ue V(o) (ZuCw)u{w}) : [v,uls = [u,w]s, [v,u]s = (e, )}
Given z € Z, we verify that
if <v, 2>5#<v,w>,, then z «—, (C(v) U I, 4y U{w}). (6.9)

By (6.8), we have z «—, (C(v)u{w}). For a contradiction, suppose that there
exists u € I,y such that [z,v], # [2,u],. It is easy to verify that o[{z,u,v,w}]
is prime, which contradicts (6.6). It follows that (6.9) holds.

Since o is prime and w «—4 (C(v) U,y ), we have (C(v) Ul ) U{w}) #
V(o). Hence, C(v) U If, ) U {w} is not a module of o. Furthermore, since
(0-2)[Cie, 5y (0-Z) is linear, C(v)uly, ,,U{w} is a module of o~ Z. Thus, there
exists z € Z such that z <f>5 (C(v) Ul U{w}). By (6.9), <v, 2>5=<v,w>,,
0 [z,v], = (e, ). We define by induction a sequence of pairwise disjoint subsets
(Zp)pso of {z€Z:[z,v], = (e, f)} as follows. Set

Zy = {Z €Z: [Z,U]U = (evf)wz (_/_)U (C(U) Ul{v,w} U {w})}
Note that Zy # @. Given Zy,...,Z;, where ¢ >0, set

Zimn={zeZ~(Zpu--0Z;):[z,v]s = (e, f),
z (_/_>0 (C(U) U I{v,w} U {w} U (ZO U--u Zl))}
Denote by p the least integer i such that Z; = @. As previously noted, Z, + @,
sop>1. We have [w,C(v)Ulfy 3 U(Zou--uZy1)]s = (f,e). Since o is prime,

we have C(v) U I,y U{w}u (Zou--uZ, 1) # V(o). Therefore, there exists
eV (o) (C(v)ulpy . v{w}u(Zou--uZ,)) such that

T <o (C(V) Ul wyu{wu(Zou-uZy,y)).

Set
Z'={eZ~(Zyu-UZ,q): [ v]o = (e, f)}
For each 2" € Z’, we have 2" «—, (C(v) U Iy U{w}u (Zou-u Z,1)).

Thus, = ¢ Z'. Tt follows that either x € Née’f)(v) N Née’f)(w) or z € Z and
<V, T>,#<V,W>,. In both cases, we obtain

[z,v], % (€, f)-

If z € Z and <0,z >5#<v,w >5, then  «—5 (C(v) U I, U {w}) by (6.9).
Furthermore, since (o — Z)/Cyc 3 (0 — Z) is linear by Proposition 2.8, we have
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[C(v) U Ty u{w], N () N,ge’f)(w)]g = (e, f). Therefore, in both cases,
we have
T g (C(’U) U I{v,u)} o {U}})

Consequently, there exists i € {0,...,p - 1} such that z «f>5 (C(v) U I{y 0 U
{wPu(Zou--uZ;). Set

j=min({i € {0,...,p—1} 12 <> (C(v) Ul ) V{w}) U (Zou--uUZ;)}).

We show that there exists a sequence (vo, ...,vr-1) of elements of C'(v) Ul wy,
where k > 3, such that

o[{vo,...,vk-1}] satisfies (6.4),
[vo,Vk-1]0 = (f;€),

Vo =,

x <4 {vgy...,Vk-2}

and

x >4 {vo,vk-1}-

By minimality of j, we have z <=, (C(v) U I, ) U{w}) U (Zou--U Zj_1)),
when j > 1, and x </, (C(v) U I,y U {w}) U Z;). There exists a sequence
(20, - .,7;) satistying

(6.10)

o forie{0,...,5}, z; € Zy;;

o &<y (C(v) Ul wyu{w})ui{z;});

e if j>1, then z «—, (C(v) U Iy .y U{w})u{zo, ..., 2j-1});
e if j>1, then [2;,2i41]0 # (f,e) for i € {0,...,5 - 1}.

Lastly, since 2o € Zo, we have 2o € Z, [20,v]5 = (e, f), and 2o <f>5 (C(v)Ulfy 03U
{w}). Therefore, there exists u € (C(v) N {v})Ul{, .} such that [z9,u], # (e, f).
To conclude, we distinguish the following two cases.

1. Suppose that u € Iy, . Set k= j +3 and

Vo =V,
V1 = U,
and

forle{2,....k—1}, v; = z1_5.
2. Suppose that u € C(v) \ {v}. Since C(v) is {e, f}-connected, there exist
UQ, - -, Um-1 € C'(w), where m > 2, such that

® Up =7

o for 1e{0,...,m -2}, [uy, ws1]s = (f,€);
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o if m>3 thenforle{0,...,m-3}and ' e{l+2,...,m—1}, we have
[uhul’]o = (fae);

o for L€ {0,...,m—2}, [u, %] = (f,):

* [um-1,20]0 # (f,€).

Set k=m+7j+1 and

forle{0,...,m—-1}, v; = uy,
and
forle{m,....k=1}, vy = zi_m.

In both cases, we obtain k > 3 and (vy,...,vx-1) satisfies (6.10). Consider the
bijection
e: {0,...,k+1} — {vo,...,vp-1}U{z,w}
O<i<k-1 —
k —  x,
k+1 —  w.

Denote by 7 the unique 2-structure defined on V(7) = {0,...,k + 1} such that
® is an isomorphism from 7 onto o[{vo,...,vk-1}U{z,w}]. We have 7 € No. Tt
follows from Lemma 6.10 that 7 and hence o[{vo,...,vx-1} U {z, w}] are prime.
By (66)7 |{’U0, o 7Uk_1} u {Z,’LU}| > 6.

The next characterization of prime 2-structures that are minimal for an
unordered pair follows from Lemma 6.8, Lemma 6.10, and Proposition 6.11.

Theorem 6.12 (Cournier and Ille* [12]). Consider a 2-structure o such that
v(o) > 6. Let v,w be distinct vertices of o. The following two assertions are
equivalent

1. o is prime and minimal for {v,w};

2. there exists an isomorphism ¢ from o onto an element of MoUN3 defined
on {0,...,n—1} such that

p({v,w}) ={0,n -1}

Remark 6.13. The elements of My U N5 of size 5 are not the only prime 2-
structures that are minimal for an unordered pair. For instance, consider the
reversible 2-structure o defined on {0, ...,4} by

E(o) = {{(0,1),(2,0),(3,0),(4,0),(4,1),(4,2),(3,4)},
{(1,0),(0,2),(0,3),(0,4),(1,4),(2,4), (4,3)},
{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2) }}.

It is not difficult to verify that o is prime and minimal for {0,4}. Nethertheless,
o is not isomorphic to an element of My U N>.

4Cournier and Ille [12] proved this theorem for digraphs.



6.3. PROOF OF THEOREM 5.3 97

6.3 Proof of Theorem 5.3

A second proof of Theorem 5.3 when v(c) > 7. Consider a prime 2-structure o
such that v(o) > 7. By Theorem 5.23, |.7.(c)| < 2. Therefore, there exist
distinct v, w € V(o) such that

Fe(o) € {v,w}.

First, suppose that o is minimal for {v,w}. By Theorem 6.12, there exists
an isomorphism ¢ from o onto 7 € My UN; defined on V(7) = {0,...,n -1}
such that p({v,w}) = {0,n—1}. Clearly, we have 7—{0,1} € MaUN>. It follows
from Lemmas 6.8 and 6.10 that 7— {0, 1} is prime. Hence, o — {o~1(0), 071 (1)}
is prime as well.

Second, suppose that o is not minimal for {v,w}. There exists X ¢ V(o)
such that o[X] is prime and v, w € X. We obtain

Fe(o)c X and X ¢ V(o).

We conclude as in Remark 5.2 from (5.1) by using Corollary 3.21. O
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Chapter 7

Infinite prime 2-structures

The purpose of this chapter is to prove the next theorem.

Theorem 7.1 (Ille'[21, 24] ). Given an infinite 2-structure o, the following two
assertions are equivalent

® U S prime;
e for each finite F < V(0), there exists F' ¢ V(o) such that

F' is finite,
FcF,
(7.1)
and

o[ F'] is prime.

We use the following definition.

Definition 7.2. Let S be a set. A family F of subsets of S is up-directed if for
any X,Y € F, there exists Z € F such that X uY c Z.

Lemma 7.3. Given a 2-structure o, consider an up-directed family F of subsets
of V(o). If o[ X] is prime for each X € F, then

ol U X] is prime.

XeF
Proof. Let M be a module of o[Uxcr X ] such that |[M]| > 2. We have to show
that
M= X.
XeF

Since |[M| > 2, consider distinct z,y € M. Let v € Uxer X. Since F is up-
directed, there exists X € F such that x,y,v € X. By Assertion (M2) of Propo-
sition 2.5, M n X is a module of o[ X]. Since z,y € M n X, we have [M nX| > 2.
Since o[X] is prime, we obtain M n X = X. Hence v € M. It follows that
M = Uxer X. O

lle [21, 24] proved this theorem for digraphs.
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Lemma 7.3 allows to prove one direction of the equivalence in Theorem 7.1.
The use of the next result is decisive in the proof of the other direction. Fur-
thermore, it is also significant in the study of infinite and prime 2-structures.

Theorem 7.4. Given a prime 2-structure o, consider X ¢ V(o) such that o[ X ]
is prime. Suppose that V (o)~ X is infinite. For each v e V(o) X, there exists
a finite F ¢ V(o) N X such that ve F and o[ X U F] is prime.

Proof. Consider the set W of v € V(o) \ X such that for every finite F ¢
V(c)\ X, we have o[ X U F'] is decomposable whenever v € W. We have to show
that W = @.

Recall that

P(o,x) = {Exto(X), (X))o} U{Xs(y) :y € X} (see Notation 3.12).

By Lemma 3.13, p(,,x) is a partition of V(¢) \ X. Consequently, to prove that
W = @, it suffices to show that

W nExt,(X) =2, (7.2)
Wn(X), =2, (7.3)
and
WnX,(y) =2 for each y € X. (7.4)
First, for v € Ext,(X), we have o[ X u {v}] is prime. Thus v ¢ W. Therefore,
(7.2) holds.

Second, we verify that V(o) \ (W n(X),) is a module of 0. Consider w ¢
Wn({X),. Since w € (X )., we have w +—, X (see Notation 2.1). Consequently,
to prove that w <—, (V(o) ~ (W n(X),)), it suffices to verify that

w <, X U{v} for every ve (V(o) N X))\ (Wn(X),). (7.5)
Given v e (V(o) N~ X) N (W n(X),), we distinguish the following two cases

e Suppose that v ¢ (X),. Since w € W, o[X u {v,w}] is decomposable. It
follows from Assertions (P1) and (P2) of Lemma 3.17 that X u {v} is a
module of o[ X U {v,w}]. Hence, we obtain w «+—, X u{v}.

e Suppose that v e (X),. Since ve (V(o) N X))~ (Wn(X),), v¢W. Thus,
there exists a finite F' ¢ V(o) \ X such that v € F and o[ X U F] is prime.
Set

Y=XuF.

Since w € W, w ¢ Y. Moreover, since w € W, we have o[Y u {w}] is
decomposable. Thus, w ¢ Ext,(Y). For a contradiction, suppose that
w € Yy(2), where z € Y. If z € X, then w € X,(z), which contradicts
w € (X), because p(, x) is a partition of V(o) \ X by Lemma 3.13. Now,
suppose that z € Y \ X, that is, z € F'. Set

F'=(F~{z})u{w}.
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Since w € Y,(2), we have {z,w} is a module of o[(X U F)u {w}]. Tt
follows that o[ X UF'] and o[ X U F’] are isomorphic. Therefore, o[ X U F”]
is prime too, which contradicts w € W. Consequently, we obtain w € (Y),.
In particular, we have w «—, X U {v}.

It follows from both cases above that (7.5) holds. Consequently, V(o) ~ (W n
(X),) is a module of o. Since o[X] is prime, we have |[X| > 3. Since X ¢
V(o) ~ (W n({X)s)), we obtain V(o) N\ (W n(X),)) = V(o), that is, (7.3)
holds.

Third, we verify that (7.4) holds. Given y € X, we show that {y} u (W n
X,(y)) is a module of 0. Let we W n X, (y). We have to verify that

v, {y,w} for every ve V(o) N {ytu(WnX,(y))). (7.6)

Since w € X, (y), we have v «—, {y,w} for v e X \ {y}. To continue, suppose
that
ve(V(e)NX)N(WnX,(y)).

We distinguish the following two cases.

e Suppose that v ¢ X,(y). Since w e W, o[ X U {v,w}] is decomposable. It
follows from Assertions (P1), (P3), and (P4) of Lemma 3.17 that {y,w}
is a module of o[ X U {v,w}]. In particular, we have v «—, {y,w}.

e Suppose that v € X, (y). Since v ¢ WnX,(y), we have v ¢ W. Thus, there
exists a finite F'¢ V(o) ~ X such that v € F and o[ X U F] is prime. Set

Y=XUF

Since w € W, w ¢ Y. Since w € W, we have o[Y u {w}] is decompos-
able. Thus, w ¢ Ext,(Y). Furthermore, if w € (Y),, then w € (X),,
which contradicts w € X, (y) because p(,, x) is a partition of V(o) \ X by
Lemma 3.13. It follows that w € Y, (z), where z € Y. For a contradiction,
suppose that z € Y N\ X, that is, z € F'. Set

F' = (F~{z})u{w).

Since w € Y, (z), we have {z,w} is a module of c[(XUF)u{w}]. Tt follows
that o[ X UF] and o[ X UF'] are isomorphic. Therefore, o[ X UF"'] is prime
too, which contradicts w € W. Therefore, z € X. We obtain w € X,(z)
because w € Y, (2). It follows from Lemma 3.13 that z = y. Hence, {y,w}
is a module of o[Y u{w}]. In particular, we have v «—, {y, w}.

Consequently, {y} u (W n X,(y)) is a module of o. Since (X ~ {y}) n ({y}u
(WnX,(y))) =2, we have {y} u (W n X,(y)) ¢ V(o). Since o is prime, we
obtain |{y} u (W n X,(y))| <1, that is, Wn X, (y) = @. Hence, (7.4) holds. O

Finally, we prove Theorem 7.1 as follows.
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Proof of Theorem 7.1. To begin, suppose that o is prime. Consider a finite
F c V(o). By Theorem 3.10?, there exists X ¢ V(o) such that | X| =3 or 4, and
o[X] is prime. By applying Theorem 7.4 several times from X together with
the elements of F'\ X, we obtain F' ¢ V(o) satisfying (7.1).

Conversely, suppose that

for every finite F' ¢ V (o), there exists F' ¢ V(o) satisfying (7.1). (7.7)

Consider the family F of finite X € V(o) such that ¢[X] is prime. Since (7.7)
holds, we have

U X=V(o)

XeF
and

F is up-directed.

It follows from Lemma 7.3 that o is prime. O

2Tt is not difficult to verify that Proposition 3.8, Corollary 3.9, and hence Theorem 3.10
hold for infinite prime 2-structures as well.



Chapter 8

Critical and non finitely
critical 2-structures

The path P is defined on Z as follows. Given v,w € Z, with v # w, {v,w} € E(Z)
if jJv —w| = 1. In the sequel, Pz[N] is denoted by Py .

For each finite subset F' of 7Z, there exist m,n € Z such that n —m > 4 and
F c {m,...,n}. Since Pz[{m,...,n}] ~ Py, it follows from Fact 2.6 that
Py[{m,...,n}] is prime. Hence, o(Pz)[{m,...,n}] is prime too. Therefore, it
follows from Theorem 7.1 that o(Pz) is prime. Furthermore, for each finite and
nonempty subset F' of Z, Z — F is disconnected. Therefore, Z — F and hence
o(Pyz) — F are decomposable. The properties of o(Pyz) lead us to introduce the
following definition.

Definition 8.1. An infinite prime 2-structure o is finitely critical if for each
finite and nonempty subset F' of V(0), o — F' is decomposable.

The next result is a direct consequence of Corollary 3.21.

Corollary 8.2. Given an infinite prime 2-structure o, o is critical and non
finitely critical if and only if the following two assertions hold

o for each v eV (o), o —wv is decomposable (i.e. o is critical);
o there exist x,y € V(o) such that x +y and o — {z,y} is prime (i.e. P(o)
is nonempty).

The next result provides a characterization of the nontrivial components of
the primality graph of an infinite critical 2-structure. It is an easy consequence
of Lemma 4.4 and Proposition 4.5.

Corollary 8.3. Given an infinite critical 2-structure o, each nontrivial compo-
nent of P(o) is isomorphic to Py or Py.

Proof. Let C be a component of P(c) such that v(C) > 2. By Lemma 4.4, C
is a cycle or an infinite or finite path. It follows from Proposition 4.5 that C is
infinite. Therefore, C' is isomorphic to Py or Py. O

103

finitely critical



104 CHAPTER 8. CRITICAL AND NON FINITELY CRITICAL

8.1 The families .%; and Jy

Observation 8.4. Let o be an infinite critical 2-structure. We denote by @
the partition of V(o) constituted by the vertex sets of the components of P(o).
Using the axiom of choice, it follows from Corollary 8.3 that there exists a
function ¢ : V(o) — Z satisfying

e for each Y € @ such that |Y|> 1, ¢y is an isomorphism from the compo-
nent P(c)[Y] of P(o) onto Py or Py.

Denote by p the unique 2-structure defined on N or Z such that ¢y is an
isomorphism from o[Y'] onto p.
First, consider a nontrivial component C of P(¢) such that o(V(C)) = Z.
Let n e Z. Tt follows from Lemma 4.4 that {n—1,n+ 1} is a module of p - n.
Second, consider a nontrivial component C' of P(¢) such that ¢(V(C)) =N.
By Lemma 4.4, {2,3,...} is a module of p — 0. Furthermore, by Lemma 4.4,
{n-1,n+1} is a module of p - n for every n > 1.

Observation 8.4 leads us to introduce the following two families of 2-structures.

Notation 8.5. First, we denote by %z the family of the 2-structures 7 defined
on V(1) =Z and satisfying

o forevery neZ, {n-1,n+1} is a module of 7 - n and not of 7.

For instance, the usual linear order Lz defined on Z belongs to %y,
Second, we denote by F the family of the 2-structures 7 defined on V(1) =N
and satisfying

e {2.3,...} is a module of 7 - 0;

e {0}u{2,3,...} is not a module of 7;

e for every n>1, {n-1,n+ 1} is a module of 7 —n and not of 7.
For instance, the usual linear order Ly defined on N belongs to Fy.

In the next four lemmas, we examine the elements of %y U .%7.

Lemma 8.6. Given a 2-structure T such that V(1) =Z, 7 € Zy if and only if
the following two assertions hold

e [1,0]; #[1,2]+;

e for m,n € Z such that m < n, we have [2m,2n], = [0,2],, [2m,2n-1], =
[0,1], [2m +1,2n], =[1,2],, and [2m +1,2n+ 1], = [1,3],.

Proof. To begin, suppose that 7 € %z. In particular, {0,2} is a module of 7 -1
and not of 7. It follows that [1,0], #[1,2],. For the second assertion, consider
m,n € Z such that m < n. Since {n,n + 2} is a module of 7 - (n + 1), we have

[m,n], = [m,n+2],.
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Furthermore, since {m,m + 2} is a module of 7 — (m + 1), we have
[m,n+2],=[m+2,n+2],.

Therefore, we obtain
[m,n]; =[m+2,n+2],.

By proceeding by induction, we obtain that the second assertion holds.

Conversely, suppose that both assertions above hold. Since the second as-
sertion holds, we obtain the following. Given m,n,p,q € Z such that m <n and
p<gq,

if m = p mod 2 and n = ¢ mod 2, then [m,n], = [p, q]..

It follows that for every n € Z, {n—1,n+1} is a module of 7 — n. To conclude,
we have to verify that [n,n - 1], # [n,n + 1], for every n € Z. Let n € Z. For
instance, suppose that n is even. We obtain

[n,n+1],=1[0,1],.
Moreover, we have [n-1,n], =[1,2]., so
[TL, n-= 1]7’ = [27 1]7’

Since [1,0],; # [1,2],, we obtain [n,n - 1], # [n,n + 1],. The case n odd is
handled similarly. O

Lemma 8.7. Given a 2-structure T such that V(1) =N, 7 € Zn if and only if
the following three assertions hold

e [1,0], #[1,2],;

e for m,n € N such that m < n, we have [2m,2n], = [0,2],, [2m,2n-1], =
[0,1], [2m +1,2n], =[1,2];, and [2m +1,2n+ 1], = [1,3],;

o [1,2], = [1,3],.

Proof. To begin, suppose that 7 € #y. As in the proof of Lemma 8.6, we obtain
that the first two assertions hold. Since 7 € Fy, {2,3,...} is a module of T - 0.
Hence, [1,2], =[1,3],.

Conversely, suppose that the three assertions above hold. Let n > 1. As in
the proof of Lemma 8.6, we obtain that {n-1,n+1} is a module of 7—n and not
of 7. Moreover, it follows from the last two assertions that {2,3,...} is a module
of 7—0. Lastly, {0} u{2,3,...} is not a module of 7 because [1,0], # [1,2],. O

Lemma 8.8. Given 7 € %z, the following four assertions hold

o foreachneZ, {n,n+1,...} is a module of T if and only if [0,1], =[0,2],
and [1,2], = [1,3].;

o foreachneZ,{...,n-1,n} is a module of T if and only if [1,2], =[0,2],
and [0,1]; = [1,3],;
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e cvery module of T is a module of Ly;

e if T is decomposable and T # 0(Ly), then one of the following two situations
holds

» for each nontrivial module M of T, there exists n > 1 such that M =
{n,n+1,...};

» for each nontrivial module M of T, there exists n € Z such that M =
{...,n=1,n}.

Proof. The first two assertions follow from the second assertion of Lemma 8.6.
For the third assertion, consider a module M of 7. Consider p,q € M such
that p+ 2 < ¢q. We verify that

if p=¢ mod 2, then {p,...,q} € M. (8.1)

For instance, suppose that p and ¢ are even. To begin, consider r be an odd in-
teger such that p < r < q. By the second assertion of Lemma 8.6, [r,p], =[1,0]-
and [r,q]r = [1,2],. Since [1,0], #[1,2], by the first assertion of Lemma 8.6,
we obtain r € M. Now, let r be an even integer such that p < r < q. We have
r—1,7+1 € M. Moreover, by the second assertion of Lemma 8.6, we have
[r,r=1], = [2,1]; and [r,r + 1], = [0,1],. Since [0,1]; # [2,1], by the first
assertion of Lemma 8.6, we obtain r € M. The case p and ¢ both odd follows
similarly. Thus, (8.1) holds.

Now, suppose that p # ¢ mod 2. For instance, suppose that p is even and
q is odd. For a contradiction, suppose that ¢—1 ¢ M and g+ 1 ¢ M. By the
second assertion of Lemma 8.6, [¢—1,p], =[2,0], and [¢-1,¢], =[0,1],. Since
q-1¢ M, we obtain [2,0], = [0,1],. Furthermore, by the second assertion of
Lemma 8.6, [¢+ 1,p], = [2,0], and [¢+ 1,q]; = [2,1],. Since ¢+ 1 ¢ M, we
obtain [2,0]; = [2,1],. Therefore, we have [0,1], = [2,1],, which contradicts
the first assertion of Lemma 8.6. Consequently, ¢g—1€ M or g+ 1€ M, and we
conclude by using (8.1).

For the fourth assertion, suppose that there exist p,q € Z, with p < g, such
that {p,...,q} is a module of 7. We have to show that 7 = o(Lz). It follows
from the second assertion of Lemma 8.6 that

[07 1]7’ = [05 2]7’ = [172]7 = [173]7" (82)

By the first assertion of Lemma 8.6, we have [1,0], # [1,2],. By (8.2), [0,1], #
[1,0],. Therefore, 7 =o(Lgz). O

Example 8.9. We consider the tournament Uy obtained from the linear or-
der Lz by reversing all the arcs between the even integers. By Lemma 8.6,
o(Uz) € Zz. It follows from Lemma 8.8 that o(Uz) is prime. We can also
see that o(Uyz) is prime by using Theorem 7.1 as follows. Let F be a finite
subset of Z. There exists n € Z such that F ¢ {-n,...,n}. By Theorem 4.28,
0(Uap+1) is prime (see Figure 4.5). Since (o(Uz))[{-n,...,n}] and o(Uap+1)
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are isomorphic, (a(Uz))[{-n,...,n}] is prime too. It follows from Theorem 7.1
that o(Uz) is prime.

Now, we consider the tournament Wy obtained from the linear order Ly by
reversing all the arcs between the even integers and all the arcs between the
odd integers. As previously for o(Uz), it is not difficult to verify that o(Wy) is
a prime element of %z.

Finally, we consider the bipartite graph Hy defined on Z in the following
way. For p,q € Z, with p # q, {p,q} € E(Hgz) if there exist i,j € Z, with i < j,
such that {p,q} = {2¢,2j + 1}. Once again, o(Hz) is a prime element of .%#7.

Lemma 8.10. Given T € %y, the following four assertions hold
o foreachn>1, {n,n+1,...} is a module of T if and only if [0,1], = [0,2],;
e cvery module of T is a module of Ly;

e if T is decomposable and T + o(Ly), then for each nontrivial module M of
7, there exists n > 1 such that M ={n,n+1,...}.

Proof. The first assertion follows from the last two assertions of Lemma 8.7.
We show the second assertion as in the proof of Lemma 8.8.

For the third assertion, suppose that there exist p > 0 and ¢ > p such that
{p,...,q} is a module of 7. We have to show that 7 = o(Ly). It follows from
the second assertion of Lemma 8.7 that [1,2], = [0,2], and [0,1], = [1,3],. By
the third assertion of Lemma 8.7, we have [1,2], = [1,3],. It follows that (8.2)
holds. By the first assertion of Lemma 8.7, we have [1,0], # [1,2],. By (8.2),
[0,1]; #[1,0],. Therefore, T = 0(Ly). O

Example 8.11. Set
UN = Uz[N], WN = Wz[N], and HN = Hz[N].

As in Example 8.9, we verify easily that o(Uy) and o(Hy) are prime ele-
ments of Fy. Similarly, o(Wy) is prime, but o(Wy) ¢ #n because [1,2],(wy) #
[17 3]0’(WN) :

In fact, o(Wy) is also interesting because it shows that the analogue of
Theorem 7.1, when the primality is replaced by the criticality, doest not hold.
Indeed, o(Wy) satisfies the second assertion of the analogue. Precisely, for
each finite F' ¢ N, there exists n > 2 such that F ¢ {0,...,2n}. Clearly,
o(WN)[{0,...,2n}] = 0(Wans1) (see Figure 4.6). By Theorem 4.37, 0(Wap41)
is critical. But, o(Wy) does not satisfy the first assertion of the analogue.
Clearly, the function N — N~ {0,1}, defined by n —> n+2 for each n € N, is an
isomorphism from o(Wy) onto o(Wx) - {0,1}. Thus, o(Wx) - {0,1} is prime.
Set

X =N~{0,1}.

Since (3,1),(1,2) € A(Wy), we have

LE(X) o (wi)-
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Let n > 1. Since Wy[{1,2n,2n +1}] is a 3-cycle, we have

1 (Xowi) (2n) U Xo (i) (20 + 1)).

By Lemma 3.13,
le EXtU(WN)(X).

Hence, o(Wy)[X u {1}], which is o(Wy) -0, is prime. It follows that o(Wy)
is not critical, so it does not satisfy the first assertion of the analogue. For
the opposite direction, we consider o(Pz). As seen at the beginning of this
chapter, o(Py) is critical. Hence, it satisfies the first assertion of the analogue.
Nevertheless, consider {0,4} for the finite subset F of Z. Let F’ be any subset Z
containing {0,4} and such that o(Pz)[F'] is prime. Since o(Pz)[F’] is prime,
Pz[F'] is connected. Thus, there exists n >4 such that

F'={0,...,n}.

Clearly, o(Pz)[F'] is not critical because o(Pyz)[F']-n is prime. Consequently,
o (Pz) does not satisfy the second assertion of the analogue.

Observation 8.4 leads us to introduce the following definition.

Definition 8.12. An infinite 2-structure o is locally critical if there exist a
partition @ of V(o) and a function ¢ : V(o) — Z satisfying the following two
assertions

(I1) for every Y € @ such that [Y|> 1, ¢y is an isomorphism from o[Y] onto
an element of .Fy U .%7;

(I2) there exists Y € @ such that [Y]> 1.
Note that we do not require a locally critical 2-structure to be prime.

Lemma 8.13. Given an infinite 2-structure o, if o is critical and non finitely
critical, then o is locally critical *. Precisely, Assertions (I1) and (I12) hold for
the partition @ of V(o) and a function ¢ : V(o) — Z defined as in Observa-
tion 8.4.

Proof. Let @ be the partition of V(o) constituted by the vertex sets of the
components of P(¢). Using the axiom of choice, consider also a function ¢ :
V(o) — Z defined as in Observation 8.4.

Consider Y € Q such that |Y| > 1. There exists a nontrivial component C of
P(o) such that Y = V(C). Denote by p the unique 2-structure defined on Z or
N such that ¢y is an isomorphism from o[Y'] onto p. To verify that Assertion
(I1) holds, we distinguish the following two cases.

e Suppose that ¢y is an isomorphism from C' onto Pz. We have to verify
that p € #z. For each n € Z, we have

Npoy (1) ™' (n)) = {(e1y) " (n=1), (ory) ' (n+ 1)}

I'We use the axiom of choice to prove Lemma 8.13.
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It follows from Lemma 4.4 that {(¢1y) ™1 (n-1), (¢1y) "t (n+1)} is a module
of o - (¢yy)~t(n). Thus, {n-1,n+1} is a module of p—n. Since o is
prime, {(¢1y)1(n-1),(p1y) (n+1)} is not a module of o. Hence, we
have

(ery) ™ (n) o {(ery) H(n=1), (o1y) ' (n+ 1)}

It follows that n <f>, {n—1,n+1}. Therefore, {n—1,n+1} is not a module
of p. Consequently, p € Z7.

e Suppose that ¢y is an isomorphism from C' onto Py. We have to verify
that p € #n. Let n > 1. As seen in the first case, {n—1,n+1} is a module
of p—n, but not of p. Furthermore, we have

Nio) ((1v)71(0)) = {(o1v) T (1)}

It follows from Lemma 4.4 that V (o)~ {(¢1v) 7 (0), (p1y) "1 (1)} is a mod-
ule of o - (¢1y)71(0). Thus, {2,3,...} is a module of p - 0. Since o is
prime, V(o) ~ {(¢1y)"1(1)} is not a module of o. Hence, we have

(o)1) o {(orv)7H(0), (o1v) T (2)}-

It follows that 1 </, {0,2}. Therefore, {0} U{2,3,...} is not a module of
p. Consequently, p € Fy.

It follows that Assertion (I1) holds.

By the second assertion of Corollary 8.2, P(c) is nonempty. Thus, P(c)
admits a nontrivial component C. We obtain that V(C') € @ and |[V(C)|> 1. Tt
follows that Assertion (I2) holds. O

Notation 8.14. Let o be a locally critical 2-structure. Consider a partition @
of V(o) and a function ¢ : V(o) — Z satisfying Assertions (I1) and (12).

Let Y € @ such that Y| > 1. Since Assertion (I1) holds, ¢y is an isomor-
phism from o[Y] onto an element of %y U .%z. We denote oy by ¢y. Also,
we denote by 7y the unique 2-structure defined on Z or N such that ¢y is
an isomorphism from o[Y] onto 7v. Moreover, we denote by Cy the unique
component of P(c) such that Y = V(Cy).

Lastly, set

Veven(0) ={v eV (o) : p(v) =0 mod 2}

and
Voad(c) ={veV (o) :p(v) =1 mod 2}.

We consider also the partition

P={YeQ:|Y|=1}u( U {Y nVeven(0),Y nVoaa(o)})
{YeQi|Y|>1}

of V(o).
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8.2 A generalized quotient

Observation 8.15. Let o be an infinite, critical, and non finitely critical 2-
structure. Consider the partition @ of V(o) and a function ¢ : V(o) — Z
defined as in Observation 8.4.

Let Y € @ such that |Y| > 1. For instance, suppose that 7y € .%7. Recall that
py is an isomorphism from Cy onto Pz. Therefore, for each n € Z, we have

Nogoy () 20+ 1)) = {(py) ' (2n), (o) (20 +2)}.

By Lemma 4.4, {(py)~1(2n), (¢y) 1 (2n+2)} is a module of o - (py )1 (2n+1).
In particular, for each v € V(o) \ Y, we have [v, (¢y )1 (2n)], = [v, (py) ' (2n+
2)],. It follows that Y N Viyyen(o) is a module of o[V (o) N (Y n Voaa(e))].
Similarly, Y nV,q4(c) is a module of o[V (o) N (Y N Veyen(0))]. The same holds
when 7y € Fy.

Observation 8.15 leads us to introduce the following definition.

Definition 8.16. Let o be a 2-structure. Consider partitions P and @ of V(o)
such that P is finer than Q). Hence, for each X € P, there exists Y (X) € @ such
that X c Y (X).

We say that P is a modular partition of o according to Q [6] if for any
X, X' e P such that Y(X) # Y(X’), X and X’ are modules of o[ X u X'].

The generalized quotient is defined in the following manner. Consider par-
titions P and @ of V(o) such that P is a modular partition of o according
to Q. The generalized quotient o/qP of o by P according to ) is defined on
V(o/qP) = P as follows. Given Xy, X1, X2, X3 €V (c/qgP), with Xy # X; and
X9 = X3,

(Xo0,X1) Z(o/op) (X2,X35) if

Y(Xo) =Y (X1) and Y (X2) = Y(X3) (8.3)
Y(Xo) #Y(X1), Y(X2) # Y(X3)

and

(xo,21) =4 (22,3), where z; € X; for i € {0,1,2,3}.
A priori, (8.3) might appear arbitrary. In fact, it ensures the following property
(see the second assertion of Lemma 8.17). Let R be a module of ¢/gP such

that {Y € Q: Y n(UR) # @}| > 2. For each Y € Q such that Y n (UR) # @, we
have Y ¢ (UR).

Two results on the generalized quotient follow.

Lemma 8.17. Let o be a 2-structure. Consider two partitions P and Q of
V(o) such that P is a modular partition of o according to Q.

e For eachY € Q, Y is a module of o if and only if (X e P: X cY} isa
module of o/qP.
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o For every R ¢ P such that {Y € Q : Y n(UR) # @} > 2, R is a module
of a/gP if and only if (U{Y € Q : Y n(UR) # @}) = (UR) and UR is a
module of o (see Notation 2.9).

Proof. The first assertion follows from the definition of the generalized quotient.
For the second assertion, consider R ¢ P such that [{Y € Q: Y n(UR) # @}| > 2.
To begin, suppose that (U{Y € Q: Y n(UR) # @}) = (UR) and UR is a module
of o. It follows from the definition of the generalized quotient that R is a
module of o/gP. Conversely, suppose that R is a module of o/gP. Clearly,
(UR)c (u{Y €@Q:Y n(UR) # @}). For a contradiction, suppose that

(UR) ¢ (u{Y €Q:Y n(UR) # @}).

Let ve (U{Y €Q:Y n(UR) # @}) ~ (UR). There exist Xg e P\ R and Yy € Q
such that v € Xy, Xo €Yy, and Yy n (UR) # @. Since Yy n (UR) # @, there exists
X1 € R such that X; ¢ Yg. Since |[{Y € Q: Y n(UR) # @}| > 2, there exist X5 € R
and Y7 € @ \ {Yp} such that Xo € Y;. Since Xgu X; €Yy, Xo€Y] and Yj # Y71,
we have

(X0, X1) #(s/0pP) (X0, X2),
which contradicts the fact that R is a module of o/gP. Consequently, we have

(UR)=(u{Y €Q:Y n(UR) + @}).

It follows from the definition of the generalized quotient that UR is a module of
0. O

The next result follows easily from Lemma 8.17.

Corollary 8.18. Let o be a prime 2-structure. Consider two partitions P and
Q of V(o) such that P is a modular partition of o according to Q. For every
nontrivial module R of o/qP, there exists Y € Q such that (UR) ¢ Y and there
exists v € Y N\ (UR) such that v <f>, (UR).

8.3 The main theorem: Theorem 8.26

In the next lemmas, we pursue the examination of infinite, critical, and non
finitely critical 2-structures.

Lemma 8.19. Let o be an infinite, critical, and non finitely critical 2-structure.
Consider the partition @ of V(o) and a function ¢ : V(o) — Z defined as in
Observation 8.4. The following two assertions hold

(I3) P (see Notation 8.14) is a modular partition of o according to Q;

(14) for each'Y € Q such that V(ry) =N (see Notation 8.14),

(py) (1) <=0 {(py) ' (2)} U (V(9) N Y)).
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Proof. Tt follows from Observation 8.15 that Assertion (I3) holds. For Assertion
(I4), consider Y € @ such that |Y| > 1 and 7y € %y. Since ¢y is an isomorphism
from Cy onto Py, we have

Ny ((0v)71(0)) = {(y) " (D}

By Lemma 4.4, V(o) ~ {(¢y)1(0), (py) 1 (1)} is a module of o - (vy ) *(0).
In particular, we have (y)™2(1) <=, ({(0y)72(2)} U (V(c) \Y)). Therefore,
Assertion (I4) holds. O

Lemma 8.20. Let o be an infinite, critical, and non finitely critical 2-structure.
Consider the partition @ of V(o) and a function ¢ : V(o) — Z defined as in
Observation 8.4. The following assertion holds

(I5) the generalized quotient /g P is prime.

Proof. Since ¢ is prime, Assertion (I5) follows easily from Corollary 8.18 because
forevery Y eQ, {XeP:XcY} =1or2. O

In the next two facts, we consider locally critical 2-structures.

Fact 8.21. Let o be a locally critical 2-structure. Consider a partition @ of
V(o) and a function ¢ : V(o) — Z satisfying Assertions (I1) and (12). Suppose
also that Assertions (18) and (14) hold.
Let Q' € Q such that
{YeQ :|Y|>1} #@.

Set
P ={XeP:Xc(uQ)}.

Suppose that o[UQ'] admits a nontrivial module M. The following statements
hold.

o If M/Q' possesses a unique element Y, then {Y N Veyen(0),Y NnVoaa(o)}
is a module of (o/gP)[P’].

o Suppose that |M[Q'| > 2. Given'Y € (M/Q"), if |[Y]|> 1, then (Y n M) n
Veven(0) # @ and (Y nM)nVoaa(o) # @. It follows that M [P' is a module
of (¢/gP)[P']. Moreover, if M|P" = P', then there exists Y € (M/Q"),
with |Y] > 1, such that P' ~ {Y 0 Veyen(0),Y N Voaa(o)} is a module of
(o/qP)[P'].

Proof. To begin, suppose that M /Q' possesses a unique element Y. Hence, M ¢
Y. By Assertion (M2) of Proposition 2.5, M is a module of o[Y']. Thus, ¢y (M)
is a module of 7y. By Assertion (I1), 7y € #nuUFy. It follows from Lemmas 8.8
and 8.10 that ¢y (M) is a module of Ly or Lz. Therefore, vy (M) contains
even and odd integers. It follows that M N Viyen(o) # @ and M N Vygq(0) # @.
Since P is a modular partition of o according to @ by Assertion (I3), {¥Y n
Veven(0),Y N V5qa(0)} is a module of (/g P)[P'].
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Now, suppose that [M/Q’| > 2. For a contradiction, suppose that there exists
Y € M/Q' such that |Y]|>1 and [Y n M| =1. We have gy : Y — N or py :
Y — Z. Thus, there exists an integer n such that Y n M = {(¢y ) *(n)}. We
distinguish the following two cases. In each of them, we obtain a contradiction.

e Suppose that gy : Y — Z or py : Y —> N and n > 1. Since |M| > 2, there
exists © € M \Y. Since Assertion (I3) holds, P is a modular partition of
o according to . Therefore, we have

z o {(py) " (n-1),(oy) " (n+ 1)}

Since M is a module of o[uQ’] such that {(py)™'(n),z} € M and M n
{(py) 1 (n-1),(¢y) (n+1)} =@, we obtain

(oy) 7 (n) <=6 {(py) T (n=1), (py) T (n+ 1)}
Since @y is an isomorphism from o[Y] onto 7y, we obtain
n<«—, {n-1,n+1},
which contradicts 7y € %7 U Py.

e Suppose that ¢y : Y — N and n = 0. By considering x € M \Y, we
obtain

(py) (1) <=0 {(py)7'(0), 2}

Since Assertion (I4) holds, we have

(py) 7 (1) =0 ({(ov)7H(2), 2}
Hence,
(y) (1) =0 ({(y)71(0), (oy) T (2)}-

Since ¢y is an isomorphism from o[Y] onto 7y, we obtain
1 <—)Ty {07 2})
which contradicts 7y € Fy.

Consequently, for each Y € (M/Q"), we have
if [Y] > 1, then |V n M| > 2. (8.4)

As above, when |[M/Q’| = 1, we obtain (Y n M) N Veyen(o) # @ and (Y n M) N
Vodd(a) + 0.

Let Y € (M/Q") such that Y] > 2, we have |[Y n M| > 2. We obtain (YnM)n
Veven(0) # @ and (Y n M) nVyqa(o) # @. It follows that M/P’ is the family
of X € P’ such that there exists Y € (M/Q') satisfying Y 2 X. Since P is a
modular partition of o according to @ by Assertion (I3), M/P’ is a module of

(o/eP)[F'].
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Lastly, suppose that M /P’ = P’. Since M is a nontrivial module of o[uQ'],
there exists Y € (M/Q") such that Y ~ M # @. Moreover, since M /P’ = P, we
have |Y| > 1. We have ¢y : Y — N or ¢y : Y — Z. For convenience, set

R=P' ~{Y nVeen(0),Y nVoaa(o)}.

Let ye Y N~ M. We obtain
Yy« M.

Since P is a modular partition of o according to Q and M /P’ = P’ we obtain
{Z eY: (py(z) = (py(y) mod 2} <(o/qP)[P’] R. (85)

Therefore, if (Y N\ M) N Veyen(o) #+ @ and (Y N M) nVoqa(o) # @, then R is a
module of (0/gP)[P’]. Thus, suppose that

(YNM)nVeyen(o) =@ or (Y ~M)nVqa(0) =2. (8.6)

By Assertion (M2) of Proposition 2.5, M nY is a module of o[Y]. By (8.4),
IMNnY|>2. Since YN\ M # @, M nY is a nontrivial module of ¢[Y]. Thus,
py (M nY) is a nontrivial module of 7y. Since Assertion (I1) holds, 7y € #y U
Fy. Tt follows from Lemmas 8.8 and 8.10 that ¢y (M NY') is a nontrivial module
of Ly or Lz. It follows from (8.6) that 7y € #y and M nY =Y ~ {(¢y ) 1(0)}.
Since Assertion (I4) holds, we have

(o)™ (1) =0 ({(py) @)} U (V(0) N V).
Since P is a modular partition of ¢ according @), we obtain
(Y N Vodd(a)) (—>(0'/QP)[P’] R.
Furthermore, since (¢y)™'(0) € Y \ M, it follows from (8.5) that
(Y N Veven(0)) <=0/ Py P B-
Therefore, R is a module of (o/gP)[P’]. O
The next fact follows easily from Fact 8.21.

Fact 8.22. Let o be a locally critical 2-structure. Consider a partition @ of
V(o) and a function ¢ : V(o) — Z satisfying Assertions (I1) and (I12). Suppose
also that Assertions (18) and (14) hold.

Let Q' be a nonempty subset of Q such that

{YeQ :|Y|>1} 2.

Set
P ={XeP:Xc(uQ)}.

Suppose that
HY eQ :|Y|>1}>2 or|Q'| > 3. (8.7)

If o[uQ'] is decomposable, then (o/qoP)[P’] is as well.
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We go back to the study of infinite, critical, and non finitely critical 2-
structures. The next lemma follows easily from Fact 8.22.

Lemma 8.23. Let o be an infinite, critical, and non finitely critical 2-structure.
Consider the partition @ of V(o) and a function ¢ : V(o) — Z defined as in
Observation 8.4. The following assertion holds

(16) If
HY eQ:|Y|>1} 22 or|Q| 24, (8.8)

then
{fveV(o):{v}eQ}c(P\F(c/qP)).

Proof. Consider v € V(o) such that {v} € Q. Furthermore, suppose that (8.8)

holds. Set

Q" =Q~{{v}}.
Since Assertion (I2) holds, {Y € Q : |Y| > 1} # @. Furthermore, it follows
from (8.8) that (8.7) holds. By Lemma 8.19, Assertions (I3) and (I4) hold. To
conclude, it suffices to apply Fact 8.22. O

Proposition 8.24. Let o be an infinite, critical, and non finitely critical 2-
structure. Consider the partition Q of V(o) and a function ¢ : V(o) — Z
defined as in Observation 8.4.

Suppose that P(c) admits a unique nontrivial component C' and finitely many
trivial components. If |V (o) NV (C)| > 2, then

o [V(e)\V(O)]=2;
o there exists a unique v € V(o) N V(C) such that v <>, V(C);
e o[V(C)] is decomposable.

Proof. To use Notation 8.14, set Y = V(C). Obviously, Y € Q. To begin, we
show that for each W ¢ V(o) N\ V(C), we have

o[Y u W] is decomposable. (8.9)

Otherwise, consider W ¢ V(¢)\Y such that o[YUW] is prime. Since V (o)~ (YU
W) is finite, it follows from Corollary 3.21 that there exist v,w € V(o) (YUW)
such that o — {v,w} is prime. We cannot have v = w because ¢ is critical.
Moreover, we cannot have v # w because v and w are isolated in P(c). It
follows that (8.9) holds.
Set
SY)={veV(o)\Y: v, Y}

We prove that either for every v e S(Y'), we have

[0, (ey) 71 (0)]o = [(0y) 71 (0), (¢v) 1 (2)]o
and (8.10)

[0, (ey) " (D)]o = [(ey) (1), (v) 7 (3)]o
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or for every v e S(Y), we have

[0, (ey) 7 (0)]o = [(y) 7' (2), (v)H(0)],

and (8.11)

[, (v ) ()] = [(v) 7 3), (93) (D]
Indeed, let v € S(Y). By (8.9), o[Y u{v}] admits a nontrivial module M.
By Lemma 8.19, Assertions (I3) and (I4) hold. We use Fact 8.21 in the fol-
lowing manner. For Q' consider {Y,{v}}. We obtain P’ = {Y N Veyen(0),¥Y n
Voad(0),{v}}. For a contradiction, suppose that |[M/Q'| = 1. We obtain M/Q’ =
{Y'}. Tt follows from Fact 8.21 that {Y N Viyen(c),Y N Voaa(o)} is a module of
(¢/@P)[P’'], which contradicts v € S(Y). Therefore, |M/Q’| > 2. Hence, we

have v € M. Furthermore, it follows from Fact 8.21 that (Y N M) N Veyen(0) + @
and (Y N M) nVyqa(o) # @. Thus, there exist p,q € Z such that

(oy) 1 (2p), (py) H(2¢+1) e Y n M.

In particular, we have |[M nY| > 2. By Assertion (M2) of Proposition 2.5, M nY
is a module of o[Y]. Since ve M and M ¢ (Y u{v}), we have (M nY) # Y.
Moreover, since [M nY| > 2, M nY is a nontrivial module of o[Y]. It follows
that ¢y (Y n M) is a nontrivial module of 7. We distinguish the following two
cases.

e Suppose that there exists n € Z such that
ey(YnM)c{...,n-1,n}. (8.12)

There exists m > 0 such that (¢y )1 (2m), (¢y ) 1 (2m+1) € (Y~\M). Since
(oy)7H(2p), (0y) 1 (2¢+1) € YNM and v € M, we obtain [v, (¢y )™ (2m)]s
[(ey) 71 (2p). (¢v) 7' (2m)]5, and hence

[v. (ov) ™' 2m)]o = [(oy) 7' (0), (o) ' (2)]6-

Since P is a modular partition of o according to @ by Assertion (I3) (see
Lemma 8.19), we have v «—, Y N Viyen(0). It follows that

[0, (ey) ™ (D)5 = [(y) 7 (0), (py) T (2) o
Similarly, we obtain
[v, (pv) (D)o = [(ev) (1), (pv) T (3)]o

Therefore, v satisfies (8.10). Consequently, if M satisfies (8.12), then v
satisfies (8.10).

e Suppose that there exists n € Z such that

{n,n+1,...} Sy (Y nM). (8.13)



8.3. THE MAIN THEOREM: THEOREM 8.26 117

By Assertion (I1), 7y € #nU.Zy. Since oy (Y n M) is a nontrivial module
of 7y, it follows from Lemmas 8.8 and 8.10 that there exists n’ € Z such
that

ey (Y nM)={n,n"+1,...}.

We verify that v satisfies (8.11). We distinguish the following two cases.

» Suppose that v € %7 or 7v € Fy and n’ > 2. There exists m > 0
such that (¢y)71(2m), (¢y ) 1 (2m+1) € (Y~\M). Since (¢y ) (2p) €
Y nM and v € M, we obtain

[0, (py) ™ (2m)]o = [(y) ™ (20), (0y) ™' (2m)]s,

and hence

[0 (o) 2m)]o = [(2y) 7' (2), (o)1 (0)],-

Since P is a modular partition of o according to @ by Assertion (I13),
we obtain v «—, Y N Viyen(o). It follows that

[0, (y) 7 (0)]o = [(ey) 7 (2), (9v) ' (0) o

Similarly, we obtain

[0 (y) ™ (Do = [(ey) 7 (3), (o) (D)o

Therefore, v satisfies (8.11).

» Suppose that 7y € Zy and n' = 1. We have oy (Y n M) = {1,2,...}.
Since v € M, we obtain

[0, (ey) 7 (0)]o = [(y) 7' (2), (py) 1 (0)]s-

Since 1y € Sy, @y is an isomorphism from C onto Py. Hence, we
have

Nio)((2v)71(0)) = {(py) (D}

By Lemma 4.4, V(o) ~ {(¢y)7"(0), (¢y) ™" (1)} is a module of o -
(¢y)7(0). Tt follows that

[0 (py) ™ (Do = [(ey) T (3), (o) (1) ]o-
Thus, v satisfies (8.11).
Consequently, if M satisfies (8.13), then v satisfies (8.11).

It follows that for each v € S(Y), v satisfies (8.10) or (8.11). Let v € S(Y).
Since v <>, Y, we obtain

[0 (o) (0)]o # [0, (o) ()]
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It follows from (8.10) or (8.11) that

[(oy)71(0), (ey) ()]0 = [(oy) (1), (o) (3)]o-

Therefore, [0,2],, #[1,3]+., so 7y # o(L(N) and 7y # o(L(Z). It follows from
Lemmas 8.8 and 8.10 that either (8.12) holds or (8.13) holds. Consequently,
either (8.10) holds for every v € S(Y) or (8.11) holds for every v € S(Y). In
particular, we obtain that

S(Y) is a module of o[Y U S(Y)]. (8.14)

We conclude in the following manner. For a contradiction, suppose that
V(o) NY|>3. We show that

Y uS(Y) is a module of o. (8.15)

Let v e S(Y) and w € (V (o) \Y)\S(Y). We must verify that Yu{v} is a module
of o[Y u{v,w}]. Since |V (c) \Y]| 2> 3, it follows from (8.9) that o[Y u {v,w}]
admits a nontrivial module M. We use Fact 8.21 as follows. Consider

Q" =A{Y.{v},{w}}.

‘We obtain
P ={Y nVeen(0),Y nVoqa(o), {v}, {w}}.

By Fact 8.21, if [M/Q’| = 1, then {Y N Veyen(0),Y N Voga(o)} is a module of
(0/@P)[P’'], which contradicts v € S(Y). Therefore, |[M/Q'| > 2. By Fact 8.21,
(Y nM)nVeen(o) # @ and (Y n M) nVoga(o) # @. It follows that M/P’
is a module of (¢/gP)[P’']. Furthermore, we have v € M because v € S(Y).
For a contradiction, suppose that M /P’ = P’. Tt follows from Fact 8.21 that
{{v},{w}}is amodule of (¢/qP)[P’]. Thus, {v,w} is a module of o[ Y u{v,w}],
which contradicts v € S(Y) and we (V (o) \Y)~ S(Y). Consequently, M /P’ ¢
P’. Since v € M, we obtain

M/P, = {Y n ‘/GVGII(U)7Y n ‘/odd(a')v {U}}

By the second assertion of Lemma 8.17 applied to o[Y U {v,w}] with Q" and
P’ Y u{v} is a module of o[Y U {v,w}]. Tt follows that (8.15) holds. Finally,
it follows from (8.14) and (8.15) that Y u S(Y') is a nontrivial module of o or
S(Y") is a nontrivial module of o, which contradicts the fact that o is prime. It
ensues that

[V(c)\Y]|=2.

Since Y is not a module of o, we have S(Y) # @. It follows from (8.14) that
|S(Y)| = 1. Moreover, since both elements of V(o) \Y are isolated in P(c), we
obtain ¢[Y] is decomposable. O

The next lemma follows from Proposition 8.24.
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Lemma 8.25. Let o be an infinite, critical, and non finitely critical 2-structure.
Consider the partition Q of V(o) and a function ¢ : V(o) — Z defined as in
Observation 8.4. The following assertion holds

(I7) Suppose that |Q| < 3 and there exists a unique Y € Q such that |Y|>1 (i.e.
(8.8) does not hold):

o if V(o) =Y, then ¢y is an isomorphism from o[Y]| onto a prime
element of Iy Fy;

o if|[V(o)\Y]|=1, then (V(o)\Y) <, Y and oy is an isomorphism
from a[Y] onto a decomposable element of FnuU Fy;

o if V(o) \Y]| =2, then there exists a unique v € V(o) \NY such that
v <o Y, and oy is an isomorphism from o[Y'] onto a decomposable
element of Fn U Fy.

Proof. Suppose that there exists a unique Y € @ such that |[Y|>1. f V(o) =Y,
then ¢}y is an isomorphism from o[Y] onto a prime element of .F#yuU.%7 because
o is prime. Suppose that V(¢)\Y contains a unique element v. Since o is prime,
Y is not a module of o, and hence v <f~, Y. Moreover, since o is critical, o — v
is decomposable. Thus, ¢y is an isomorphism from o[Y'] onto a decomposable
element of #yu.%z. Finally, when |V (o)\Y| > 2, we utilize Proposition 8.24. 0

The main theorem follows. It puts together Lemmas 8.13, 8.19, 8.20, 8.23,
and 8.25.

Theorem 8.26 (Boubabbous and Ille [6]?). Consider an infinite, critical, and
non finitely critical 2-structure o. Let Q) be the partition of V(o) constituted by
the vertex sets of the components of P(c). Using the axiom of choice, consider
also a function ¢ : V(o) — Z defined as in Observation 8.4. Then, Assertions

(I1),....(I7) hold.

8.4 Locally critical 2-structures

The purpose of this section is to establish the following theorem.

Theorem 8.27 (Boubabbous and Ille [6]%). Let o be a locally critical 2-structure.
Consider a partition Q of V(o) and a function ¢ : V(o) — Z satisfying As-
sertions (I1) and (12). Suppose also that Assertions (I3),...,(I6) hold. If (8.8)
holds, then o is critical and non finitely critical.

Before proving Theorem 8.27, we establish the following three results.

Lemma 8.28. Let o be a locally critical 2-structure. Consider a partition Q
of V(e) and a function ¢ : V(o) — Z satisfying Assertions (I1) and (12).
Suppose also that Assertions (13), (I4), and (I5) hold. If

HY €Q:|Y]|>1}|22 or|Q| =3, (8.16)

2Boubabbous and Ille [6] proved this theorem (see [6, Theorem 12]) for digraphs.
3Boubabbous and Ille [6] proved this theorem (see [6, Theorem 13]) for digraphs.
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then o is prime.

Proof. We consider the partition P of V(o) defined as in Notation 8.14. Suppose
that (8.16) holds. We have to show that o is prime. We utilize Fact 8.22 as
follows. Set Q' = Q. We obtain P’ = P. Since Assertion (12) holds, {Y € Q :
[Y|> 1} # @. Since (8.16) holds, (8.7) holds too. Since Assertion (I5) holds,
o/qP is prime. It follows from Fact 8.22 that o is prime. O

Lemma 8.29. Let 0 be a locally critical 2-structure. Consider a partition @
of V(o) and a function ¢ : V(o) — Z satisfying Assertions (I1) and (12).
Suppose also that Assertions (13) and (I4) hold. Consider Y € Q such that
[Y|>1. For everyveY, o—v is decomposable.

Proof. Let veY. Set

n =y (v).
Since Assertions (I1) and (I2) hold, we consider the partition P of V(o) defined
as in Notation 8.14.

First, suppose that v € 7 or 7y € Fy and n > 1. We obtain that {n —
1,n+1} is a module of 7y —n. Since py is an isomorphism from o[Y] onto 7y,
{(py) *(n-1),(py)(n+1)} is a module of ¢[Y] - v. Since Assertion (I3)
holds, P is a modular partition of o according to Q. We obtain

{(ev) " (n=1), (oy) " (n+ 1)} <=5 V(o) \ Y.

It follows that {(py)~t(n-1),(¢y) t(n+1)} is a module of o - v.

Second, suppose that 7v € Fy and n = 0. We obtain that {2,3,...} is
a module of 7y — 0. Since ¢y is an isomorphism from o[Y] onto 7y, ¥ ~
{(py)71(0), (py) 1 (1)} is a module of o[Y] - (¢y)*(0). Since Assertion (I4)
holds, we have

(py) (1) <=0 {(er) '@} u V(o) N Y)).
It follows that V(o) ~ {(py)71(0), (¢y) (1)} is a module of o —v. O

Proposition 8.30. Let o be a locally critical 2-structure. Consider a partition
Q of V(o) and a function ¢ : V(o) — Z satisfying Assertions (I1) and (12).
Suppose also that Assertions (13), (14), and (1I5) hold. For every Y € Q) such
that |Y| > 1, the following two assertions hold

(J1) for each n € V(7y) (see Notation 8.14), o - {(py)~*(n), (py) (n+1)}
18 isomorphic to o;

(J2) there exists a nontrivial component C' of P(o) such that Y = V(C), and
py 1s an isomorphism from C onto Py or Py,

Proof. Let Y € @ such that |Y]| > 1. Since Assertion (I1) holds, ¢y is an
isomorphism from o[Y] onto 1y € $#yuU.Fy. Furthermore, since Assertions (13),
(I4), and (I5) hold, it follows from Lemma 8.28 that o is prime. We prove that

for each n e V(1y), {(¢y) (n), (py) (n+1)} € E(P(0)). (8.17)
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More strongly, we establish that
for each n e V(1y), 0 - {(py) (1), (py) ' (n+1)} is isomorphic to o, (8.18)
that is, Assertion (J1) holds. Let n € V(7y). Consider the function

f+ V(ry) — V(ry)~{n,n+1}
p<n-1 — p, (8.19)
p=>n — p+2.

Clearly, f is strictly increasing and preserves the parity. Since 1y € %y U Zy,
it follows from Lemmas 8.6 and 8.7 that f is an isomorphism from 7y onto
Ty —{n,n +1}. Since Assertion (I1) holds, ¢y is an isomorphism from o[Y]
onto 7y. Thus, ((¢y )™ )v(ry)~{nn+1} © f © @y is an isomorphism from o[Y']
onto o[Y] - {(vy) 1 (n), (¢y) ' (n+1)}. For convenience, set

Y= ((SDY)_I)[V(TZ)\{n,rHl} o f °Qy.

Consider the extension 1 Uld(y (5).y) of ¥ by the identity function on V(o) \Y
defined by

V(o) — V(o) {(ey) ' (n), (py) (n+ 1)}
weyY —  (w), (8.20)
we(V(e)\Y) — w.

Since Assertion (I3) holds, P is a modular partition of o according to Q. It fol-
lows that YUId(y (5).y) is an isomorphism from o onto o—{(¢y )" (n), (py) ' (n+
1)}. Consequently, (8.18) holds, so Assertion (J1) holds. Moreover, (8.17) holds
because ¢ is prime.

To prove that Assertion (J2) holds, we distinguish the following two cases.

e Suppose that ¢y : Y — Z. Let n € Z. Since (8.17) holds,

{(ey) ™ (n=1),(oy) " (n+ 1)} € Neoy () 7' (n)).

Since Assertions (I3) and (I4) hold, it follows from Lemma 8.29 that o —
(¢y)~t(n) is decomposable. By Lemma 4.4,

Neo) ((py)7H(n)) = {(y) " (n = 1), (py) " (n+ 1)}

It follows that P(c)[Y] is a component of P(c), and py is an isomorphism
from P(0)[Y] onto Py.

e Suppose that ¢y : Y — N. As previously, we have

Neo) ((py) 71 (n)) = {(y) " (n = 1), (py) T (n+ 1)}

for each n > 1. Furthermore, since (8.17) holds, we have

(pv) 7 (1) € Ny ()71 (0)). (8.21)
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Since Assertion (I4) holds, we have

(py) 71 (1) <=0 {(py) ' (2)} U (V(0) N Y)). (8.22)

Moreover, since Assertion (I1) holds, 7y € Z. It follows from Lemma 8.7
that
Ler (V(ry) ~{0,1}).

Since @y is an isomorphism from o[Y] onto 7y, we obtain

(py) (1) <=0 (Y~ {(y)TH0), (py) (D). (8.23)

It follows from (8.22) and (8.23) that
(py) (1) <=0 (V(0) N {(y) 7 (0), (py) T (D)}).

Thus, v ¢ Np(o) ((19y)71(0)) for every v e V(o) N {(py)7(0). (o) (1)}
Since (¢y )™ (1) € Npoy ((¢y)71(0)) by (8.21), we obtain

Ne(o)((0v)71(0)) = {(py) (D)}

Consequently, P(c)[Y] is a component of P(¢), and ¢y is an isomorphism
from P(o)[Y] onto Py. O

Proof of Theorem 8.27. Since (8.8) holds, (8.16) holds as well. Since Assertions
(I3), (I4), and (I5) hold, it follows from Lemma 8.28 that o is prime.

To continue, we prove that o is critical. Let v e V(o). We must verify that
o — v is decomposable. Denote by Y the unique element of ) containing wv.
To begin, suppose that [Y| > 1. Since Assertions (I3) and (I4) hold, it follows
from Lemma 8.29 that o — v is decomposable. Now, suppose that Y = {v}.
Since Assertion (I6) and (8.8) hold, (¢/gP) — {v} is decomposable. Let R be a
nontrivial module of (o/gP) - {v}. Set

Q' =Q~ {{v}} and P’ = P {{v})}.

Clearly, P’ is a modular partition of o — v according to Q. Moreover, we have

(0/qP) —{v}=(0-v)/(p)Q".

We apply Lemma 8.17 to o — v together with partitons P’ and Q' as follows.
We distinguish the following two cases.

e Suppose that [(UR)/Q’| = 1. Denote by Z the unique element of (UR)/Q".
Since |R| 22 and {X eP : X <cZ}|<2, wehave R={XeP' : XcZ}. It
follows from the first assertion of Lemma 8.17 that Z is a module of o —v.

e Suppose that |[(UR)/Q'| > 2. It follows from the second assertion of
Lemma 8.17 that (Uu{Y € Q" : Y n (UR) # @}) = (UR) and (UR) is a
module of o —v. Since (U{Y € Q' : Y n(UR) + @}) = (UR) and R is a
nontrivial module of (¢ —v)/(p @', (UR) is a nontrivial module of o - v.
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Consequently, o is critical.

Finally, we verify that o is not finitely critical. Since Assertion (I2) holds,
there exists Y € @ such that |Y| > 1. Moreover, since Assertions (I3), (I4), and
(I5) hold, it follows from Assertion (J2) of Proposition 8.30 that there exists a
nontrivial component C' of P(¢) such that Y = V' (C). Hence, there exist distinct
v,w €Y such that o — {v,w} is prime. O

Remark 8.31. Consider the tournament 7" defined on V(T') = Z x {0,1} which
satisfies

e for i =0 or 1, the function ¢; : Z — Z x {i}, defined by n — (n,i) for
every n € Z, is an isomorphism from Uz onto T[Z x {i}];

e for p,q € Z, we have ((2p,0), (2¢,1)) € A(T), ((2p+1,0), (2¢+1,1)) € A(T),
((2p+1,1),(2¢,0)) € A(T), and ((2p,1), (2q+ 1,0)) € A(T).

First, consider the partition

Q ={Zx{0},Zx{1}}

of V(o(T)) and the function ¢ : V(o(T)) —> Z defined by ¢yzx{0y) = (¢0) ™"
and @y(zx{1}) = (11)"*. We obtain

P={(2Z2) x{0},(2Z+1) x{0},(2Z) x {1}, (2Z + 1) x {1}}.

It is not difficult to verify that o(7") satisfies Assertions (I1),...,(I6) with @ and
©. Furthermore, since {Y € Q : |Y| > 1}| = 2, (8.8) holds. By Theorem 8.27,
o(T) is critical but not finitely critical. Moreover, it follows from Assertion (J2)
of Proposition 8.30 that Zx{0} and Zx {1} are the vertex sets of the components
of P(o(T)).

Second, consider the partition

Q=AZx{0}}u{{(n,1)} : neZ}

of V(o(T)) and the same function ¢ as before. We obtain

P={(22)x{0},(2Z+1) x{0}} u{{(n,1)} : neZ}.

Once again, o(T) satisfies Assertions (I1),...,(I6) with @ and . Furthermore,
since @ is infinite, (8.8) holds. Nevertheless, it follows only from Proposition 8.30
that Z x {0} is the vertex set of a component of P(a(T')).

Consequently, it is not possible to determine the primality graph from As-
sertions (I1),...,(I6) only.

The next result follows from Theorems 8.26 and 8.27.

Corollary 8.32 (Boubabbous and Ille [6]*). Given an infinite 2-structure o, if
o s critical and non finitely critical, then the following two assertions hold

4Boubabbous and Ille [6] proved this theorem for digraphs.
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e for any distinct v,w € V(o), o — {v,w} is prime if and only if o - {v,w}
18 tsomorphic to o;

o there exist distinct v,w € V(o) such that o — {v,w} is isomorphic to o.

Proof. Suppose that o is an infinite, critical, and non finitely critical 2-structure.
By the second assertion of Corollary 8.2, there exist distinct v,w € V(o) such
that o — {v,w} is prime.

Now, consider any distinct v,w € V(o) such that o - {v,w} is prime. We
have to verify that o — {v,w} is isomorphic to o. Consider the partition Q
of V(o) and a function ¢ : V(o) — Z defined as in Observation 8.4. There
exists Y € @ such that v,w € Y. We have {v,w} € E(P(c)). Since py is an
isomorphism from P(c)[Y'] onto Py or Pz, there exists n € Z such that

{v.w} = {(py) ™ (), (py) " (n+ 1)}

Since Assertions (I3), (I4), and (I5) hold, it follows from Assertion (J1) of Propo-
sition 8.30 that o — {(¢y )™t (n), (py ) (n+1)} is isomorphic to o. O

The next result follows from Corollary 8.32 and Theorem 5.8. It is the
analogue of Theorem 5.3 in the infinite case.

Corollary 8.33. Given an infinite and prime 2-structure o, if there exists a
finite subset F' of V(o) such that |F| > 2 and o — F is prime, then there exist
distinct v,w € V(o) such that o — {v,w} is prime.

Proof. 1t follows from Corollary 3.20 that there exists F’ ¢ F' such that |F'| =2
or 3 and o — F’ is prime. The conclusion is obvious when |F’| = 2. Hence,
suppose that |F’| = 3. By Corollary 3.20 again, there exists 2 € F’ such that
o — x is prime. Set

T=0-2.

Clearly, if 7 is not critical, then we conclude directly. Thus, suppose that 7
is critical. By denoting by y and z the two elements of F’ \ {z}, we obtain
7—{y, 2} is prime. Therefore, T is not finitely critical. By applying three times
the second assertion of Corollary 8.32 from 7, we obtain F”' ¢ V(1) such that
|F”"| = 6 and 7 — F" is isomorphic to 7. Since 7 — F" = 0 — ({z} U F"), we
obtain that o — ({z} u F") is prime. It follows from Theorem 5.8 applied to
o - ({z} UF") that there exist distinct v,w € ({x} U F") such that o - {v,w} is
prime. O

Remark 8.34. Observe that Corollary 8.32 does not hold if we only suppose
that o is prime but not finitely critical. Similarly, Corollary 8.33 does not hold if
we only suppose that the finite subset F' of V(o) is nonempty. Indeed, consider
the graph G defined on V(G) =Z u {oo} by

G[Z] = P; and E(G) = B(Py) u {{0, 00}}.
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As observed at the beginning of this chapter, G — o0 = Py is prime. Hence,
c(G) — oo is prime as well. Set

X =V(G) ~ {oo}.
Since {0,000} € E(G) and {1,000} ¢ E(G), we have
0 £ (X)o(c)-
Furthermore, since dg(o0) =1 and d(g_«)(n) = 2 for every n € Z, we obtain
oo ¢ X, (i)(n) for each n € Z.

It follows from Lemma 3.13 that co € Ext,(g)(X), so o(G) is prime too. How-
ever, for each finite subset F of Z, with |F| > 2, G- F is disconnected. It follows
that o(G) - F is decomposable for each finite subset F' of Z such that |F| > 2.

We complete this section with the following example which is constructed
from the graph Hy (see Example 8.9) and the graph G defined on V(G) =
Z U {oo} in Remark 8.34. It shows that Proposition 8.24 does not hold if we do
not suppose that the primality graph admits finitely many trivial components.

Example 8.35. Consider the graph H defined on V(H) = Zu{oo,, : n € Z} and
saisfying

[ H[Z] IHz;

e the bijection Z — {oo,, : n € Z}, defined by n —> oo, for each n € Z, is
an isomorphism from Pz onto H[{oo, : n € Z}];

e for every peZ, {2p, 000} € E(H).

We prove that o(H) is prime, critical, but not finitely critical. Precisely, we
show that P(c(H))[Z] = Pz, P(c(H))[Z] is a component of P(c(H)), and oo,
is isolated in P(c(H)) for each n € Z.

Set

R={{co,}:neZ}.

Consider the partition
Q={Z}uR
of V(¢(H)) and the function ¢ : V(c(H)) — Z defined by

1z =1dz and ¢(c0,) =0 for every n € Z.

We verify that o(H) satisfies Assertions (I1),...,(I6) with @ and . As seen at
the end of Example 8.9, oc(Hyz) € %7. Hence, Assertion (I1) holds. Assertion
(I2) holds because Z € Q). For Assertion (I3), we obtain

P={27,2Z+1}UR.
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It follows from the definition of H that for each n € Z, we have co,, <=, () (27Z)
and oo, <—,(x) (2Z+1). Thus, Assertion (I3) holds. Obviously, Assertion (14)
holds. Clearly, (6(H)/qP)[R] = o(H)[{ooy :n€Z}]. Since H[{oo, :n € Z}] =
Py, we obtain that (c(H)/qP)[R] is prime. Clearly,

27+ 1 € <R>(0'(H)/QP) (see Notation 3.12).
Furthermore, the function

Zu{c} — {0}u{oo,:neZ}
00 — 0,
nez —> 00y,

is an isomorphism from the graph G defined in Remark 8.34 onto H[{0} u{oo,, :
n € Z}]. Since P is a modular partition of o(H) according to @, we have
(c(H)/qP)[Ru{2Z}] ~ o(H)[{0} U {o0y, : n € Z}]. As seen in Remark 8.34,
0(@G) is prime. It follows that (o(H)/qP)[Ru{2Z}] is prime, so

27, € EXt(o(H)/QP)(R)~

It follows from the definition of the generalized quotient (see Definition 8.16)
that

[2Z + 1,{o00}](o(m)/oP) * [2Z+ 1,2Z] (5(11) ) P)-

Hence, Ru {2Z} is not a module of o(H)/gP. It follows from Assertion (P2)
of Lemma 3.17 that o(H)/qP is prime. Therefore, Assertion (I5) holds. For
Assertion (I6), consider n € Z. We must show that (c(H)/qP) — {o0,} is
decomposable. Suppose that n > 0. We obtain that

{00541, %042, ...} is & component of H — (o0,,). (8.24)

It follows that {{oc0,11},{00n+2},...} is a nontrivial module of (¢(H)/qP) -
{00, }. Suppose that n < 0. We obtain that

{...,005-2,00,_1} is a component of H — (o0,,). (8.25)

It follows that {...,{c0n_2},{c0n_1}} is a nontrivial module of (c(H)/qP) -
{c0,, }. Thus, Assertion (I6) holds. Consequently, Assertions (I1),...,(I6) hold.

Since @ is infinite, (8.8) holds. It follows from Theorem 8.27 that o is
critical and non finitely critical. Precisely, it follows from Assertion (J2) of
Proposition 8.30 that P(c(H))[Z] = Pz and P(c(H))[Z] is a component of
P(o(H)). Finally, we verify that for each n € Z, oo, is isolated in P(c(H)).
It follows from (8.24) and (8.25) that H — (o0,,) admits a module M such that
M and (V(o(H)) ~ {00, }) N M are infinite. It follows that (H - (c0,)) — v
is decomposable for every v € (V(o(H)) \ {o0,}). Hence, oo, is isolated in
P(o(H)).

Consequently, P(c(H)) admits a unique nontrivial component and infinitely
many trivial components.
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8.5 Epilogue on Assertion (I7)

In the next four facts, we complete the study begun in Assertion (I7) of The-
orem 8.26, and in Theorem 8.27 when (8.8) does not hold. Precisely, we are
interested in the infinite, critical, and non finitely critical 2-structures the pri-
mality graph of which admits one nontrivial component and one or two trivial
ones.

Fact 8.36. Given a 2-structure o defined on V(o) = Z u {co}, o is critical,
P(0)[Z] = Pz, and oo is isolated in P(o) if and only if the following assertions
hold

® J— 00 € egz.z,'
o 00 <, (27Z), 00 <>, (2Z +1), and [0,00], #[1,00],;

e at least one of the following two cases occurs:

[Oa 1]0 = [Oa Q]Uv [1’2]0 = [173]07
and (8.26)
[0,1], #[0,00], or[1,2]s # [1,00]0,

. [1,2]5 =[0,2]s, [0,1]5 =[1,3]s,
and (8.27)
[0,2], # [00,2], or [0,1]5 # [00,1]5.

Proof. To begin, suppose that ¢ is critical, P(¢)[Z] = Pz, and oo is isolated in
P(o). First, we verify that o — co € . Let n € Z. Since P(0)[Z] = Pz and oo
is isolated in P(o0), we have

Np() (n)={n-1,n+1}.

Since o is critical, it follows from Lemma 4.4 that {n - 1,n + 1} is a module
of o —n. By Assertion (M2) of Proposition 2.5, {n - 1,n + 1} is a module of
(0—00)—n. Since o is prime, {n—1,n+1} is not a module of . Since {n-1,n+1}
is a module of o —n, we obtain n </, {n-1,n+1}. It follows that {n-1,n+1}
is not a module of o — co. Consequently, o — oo € %7.

Second, we show that co «—, (2Z), 00 <, (2Z+1), and [0, 00], # [1, 00],.
Let n € Z. As seen above, {2n,2n + 2} is a module of o — (2n + 1). Hence,
00 «—, {2n,2n + 2}. Tt follows that oo «<—, (2Z). Similarly, we have co «—,
(2Z +1). Since o is prime, Z is not a module of o. Since co «—, (2Z) and
00 <>, (2Z + 1), we obtain [0, c0], # [1,00],-.

Third, we prove that (8.26) or (8.27) hold. Since o is critical, o — oo is
decomposable. Let M be a nontrivial module of o — co. By the third assertion
of Lemma 8.8, M is a nontrivial module of Lz. Thus, M admits a least or a
greatest element. In the first instance, there exists n € Z such that n,n+1e M
and M ¢ {n,n+1,...}. We obtain [0,1], = [0,2], and [1,2], = [1,3], as in
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the first assertion of Lemma 8.8. Furthermore, since M U {oo} is not a module
of o, we obtain [0,1], # [0,00], or [1,2]s # [1,00],. Therefore, (8.26) holds.
Similarly, when M admits a greatest element, (8.27) holds.

Conversely, suppose that the three assertions above hold. To begin, we verify
that Assertions (I1),...,(I5) hold. Set

Q ={Z,{co}}
and consider the function ¢ : V(o) — Z defined by
¢z = Idz and p(o0) = 0.

‘We obtain
P={2Z,27Z+1,{c0}}.

Since o— o0 € .Fy, o satisfies Assertion (I1) with @ and ¢. Since Z € @), Assertion
(I2) holds. It follows that o is locally critical. Furthermore, since oo «—, (2Z)
and oo «—, (2Z + 1), P is a modular partition of o according to . Hence,
Assertion (I3) holds. Since [0, 0], # [1, 00],, we have

[2Z, {oo}](a/QP) # [QZ +1, {Oo}](cr/QP)~

It follows from the definition of the generalized quotient (see Definition 8.16)
that o/g P is prime. Thus, Assertion (I5) holds. Obviously, Assertion (I4) holds.

For a contradiction, suppose that o admits a nontrivial module M. We
utilize Fact 8.21 with Q' = @ as follows. Since [0, 0], # [1,00],, {2Z,2Z +1} is
not a module of o/ P. It follows from Fact 8.21 that Mn(2Z) + @, Mn(2Z+1) #
@, and oo € M. Thus, M \ {oco} is a nontrivial module of o — co. For instance,
assume that M \ {oo} admits a least element n. Hence, n,n+1¢e M \ {oo} and
M~{oo}c{n,n+1,...}. Since o — 00 € F#z, we obtain that {n,n+1,...} is a
module of o — co. By the first assertion of Lemma 8.8, we have [0,1], = [0,2],
and [1,2], = [1,3],. Since M is a module of o, we obtain [0,1], = [0, o], and
[1,2], =[1,00],. Hence,

(8.26) does not hold.

Since [0,00], # [1,00],, we have [0,1], # [1,2],. Since [0,1], = [0,2],, we
obtain [0,2], # [1,2],. Thus,

(8.27) does not hold.

It follows that o is prime.

Since Assertions (I3) and (I4) hold, it follows from Lemma 8.29 that o —n is
decomposable for each n € Z. Since (8.26) or (8.27) hold, {0,1,...} is a module
of 0 —oo or {...,0,1} is a module of o — co. Hence, o — oo is decomposable.
Consequently, o is critical.

Finally, since Assertions (I3), (I4), and (I5) hold, it follows from Assertion
(J2) of Proposition 8.30 that P(¢)[Z] is a component of P(¢) and P(c)[Z] = P;.
Since P(0)[Z] is a component of P(o), oo is isolated in P(o). O
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Example 8.37. We consider the tournament 77 defined on V(1z) = Z u {o0}
and satisfying

o Ty — o0 =Ly
e for each ne€Z, (00,2n) € A(Tz) and (2n+1,00) € A(T%).

It follows from Fact 8.36 that o(T%) is critical, P(c(1%))[Z] = Pz, and oo is
isolated in P(0(7%)). Observe that for n € Z and p > 1, Tyz[{2n,...,2n + 2p -
1} U {o0}] is isomorphic to Tope1 (see Figure 1.2).

Fact 8.38. Given a 2-structure o defined on V(o) = Nu{eo}, o is critical,
P(¢)[N] = Py, and oo is isolated in P(o) if and only if the following assertions
hold

e 0— 00 €. Fy;
[152](7 = [1700]0';
0 4 (2N)7 0 4 (2N+ 1)7 and [0, oo]a * [1700]07'

at least one of the following two cases occurs:
[0,1], =[0,2]s and [0,1], # [0, 00],, (8.28)

. [1,2], =10,2]s, [0,1]s =[1,3]s,
and (8.29)
[0,2]5 # [00,2]5 or [0,1]5 # [00,1],.

Although the proof of Fact 8.38 is close to that of Fact 8.36, we provide it
because some differences desserve to be pointed out.

Proof of Fact 8.38. To begin, suppose that o is critical, P(c)[N] = Py, and oo
is isolated in P(o). First, we verify that o — co € #y. Let n > 1. As seen in the
proof of Fact 8.36, {n —1,n + 1} is a module of (¢ — 00) — n, but not of o — .
Now, we have to show that N\ {0,1} is a module of (o —00) -0, but N\ {1} is
not a module of o — co. Since P(c)[N] = Py and oo is isolated in P(o), we have

NP(G)(O) = {1}

Since o is critical, it follows from Lemma 4.4 that V(o) \ {0,1} is a module of
o — 0. In particular, we have

[1,2]5 = [1, 00],-

Moreover, by Assertion (M2) of Proposition 2.5, N\ {0,1} is a module of (o -
00)—0. Since ¢ is prime, V(o)~{1} is not a module of o. Hence, [1,2], #[1,0],.
Therefore, {0} u{2,3,...} is not a module of o — co. Consequently, o — co € Fy.

Second, we show that co «+—, (2N), co «—, (2N +1), and [0, 00], # [1, 0],
Let n > 0. As seen above, {2n,2n + 2} is a module of o - (2n + 1). Hence,
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00 «—, {2n,2n + 2}. It follows that oo «<—, (2N). Similarly, we have oo «—,
(2N +1). Since o is prime, N is not a module of o. Since oo «—, (2N) and
00 <, (2N + 1), we obtain [0, c0], # [1, 00],.

Third, we prove that (8.28) or (8.29) hold. Since o is critical, o — co admits
a nontrivial module M. By the second assertion of Lemma 8.10, M is a module
of Ly. Since |M| > 2, M contains even and odd integers. We distinguish the
following two cases.

e Suppose that 0 ¢ M. Since M contains even and odd integers, we obtain
[0,1], =[0,2],.
Since o is prime, V(o) \ {0} is not a module of . Thus,
[0,1]5 # [0, eo ],
It follows that (8.28) holds.

e Suppose that 0 € M. Since M is a nontrivial module of Ly, there exists
n > 1 such that
M ={0,...,n}.

We obtain that (8.29) holds.

Conversely, suppose that the four assertions above hold. To begin, we verify
that Assertions (I1),...,(I5) hold. Set

Q = {N,{oo}}
and consider the function ¢ : V(o) — Z defined by
oy = Idy and p(o0) = 0.

‘We obtain
P={2N,2N+1,{c0}}.

Since o0 —o0 € Fy, o satisfies Assertion (I1) with @ and . Since N € @), Assertion
(I2) holds. It follows that o is locally critical. Furthermore, since co «<—, (2N)
and oo «—, (2N + 1), P is a modular partition of o according to Q). Hence,
Assertion (I3) holds. Moreover, since [1,2], = [1,],, Assertion (I4) holds.
Lastly, since [0, 00], # [1, 00],, we have

[2N7 {OO}J(U/QP) # [2N +1, {OO}J(U/QP)-

It follows from the definition of the generalized quotient (see Definition 8.16)
that o/gP is prime. Thus, Assertion (I5) holds.

For a contradiction, suppose that o admits a nontrivial module M. We
utilize Fact 8.21 with Q' = @ as follows. Since [0,00], # [1,0]5, {2N,2N+1} is
not a module of o/gP. It follows from Fact 8.21 that Mn(2Z) + @, Mn(2Z+1) #
@, and oo € M. Thus, M \{oo} is a nontrivial module of c—o0. Since o—o00 € Fy,
M ~ {00} is a nontrivial module of Ly by the second assertion of Lemma 8.10.
In particular, M \ {oo} contains even and odd integers. We distinguish the
following two cases. In each of them, we obtain a contradiction.
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e Suppose that 0 ¢ M. Since M contains even and odd integers, we obtain
[0,1], =[0,2],.
Furthermore, since oo € M, we obtain
[0,1]5 = [0, 00]s,
which contradicts the fact that (8.28) holds.
e Suppose that 0 € M. Since M is a nontrivial module of Ly, there exists

n > 1 such that
M ={0,...,n}.

We obtain

[072]0 = [L 2]0 = [0072]0
and

[07 1:|rr = [173]0 = [OO, 1]07
which contradicts the fact that that (8.29) holds.

Consequently, ¢ is prime.

Since Assertions (I3) and (I4) hold, it follows from Lemma 8.29 that o —n is
decomposable for every n € N. Moreover, since (8.28) or (8.29) hold, {1,2,...} is
a module of 0 — o0 or {0,1} is a module of o —co. Hence, o — oo is decomposable.
Consequently, o is critical.

Finally, since Assertions (I3), (I4), and (I5) hold, it follows from Assertion
(J2) of Proposition 8.30 that P(¢)[N] is a component of P(c) and P(¢)[N] = Py.
Since P(¢)[N] is a component of P(c), oo is isolated in P(o). O

Example 8.39. We consider the tournament Ty = Tz[N]. It follows from
Fact 8.38 that o(Ty) is critical, P(o(Tx))[N] = Py, and oo is isolated in P(c(Tk)).
Fact 8.40. Given a 2-structure o defined on V(o) =Z U {o0, 00"}, o is critical,
P(c)[Z] = Pz, and oo and oo’ are isolated in P(c) if and only if, by exchanging
oo and oo’ if necessary, we have
o g—{o00,00'} € Fy;
o 00 <, (27Z), 00 <, (2Z +1), and [0,00], # [1,00],;
o oo «—, 7 and [0,00"], # [00,00"],;
e at least one of the following two cases occurs:
[07 ]-]U = [07 2]07 [172]0 = [173]07
and (8.30)
[O, 1]0 = [O, 00]07 [1a2]o = [17 Oo]oa
or
[17 2]0 = [07 2]07 [07 1]0 = [173]07
and (8.31)
[052]0 = [0072]07 [Oa 1]0 = [00, 1]0-
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Proof. To begin, suppose that o is critical, P(¢)[Z] = Pz, and oo and oo’ are
isolated in P(¢). By Proposition 8.24,

[{ve (00,00} s v fory Z)| = 1.

By exchanging oo and oo’ if necessary, we can assume that oo </, Z and
oo’ «—, Z. Since o is prime, Z U {oo0} is not a module of 0. Thus, we have
[0, 00"], # [00,00],.

First, we verify that o — {co0, 00’} € F7. Let n € Z. Since P(c)[Z] = Pz and
oo and oo’ are isolated in P(c), we have

Npy(n) ={n-1,n+1}.

Since o is critical, it follows from Lemma 4.4 that {n - 1,n + 1} is a module
of o —n. By Assertion (M2) of Proposition 2.5, {n —1,n + 1} is a module of
(0= {00,00'}) = n. Since o is prime, {n —1,n+ 1} is not a module of . Hence,
n <, {n-1,n+1}. It follows that {n—-1,n+1} is not a module of - {oco, 00'}.
Consequently, o — {co0, 00’} € F7.

Second, we verify that co «—, (2Z) and oo «—, (2Z+1). Let n € Z. As seen
above, {2n,2n + 2} is a module of o — (2n + 1). Hence, co «<—, {2n,2n +2}. Tt
follows that co «—, (2Z). Similarly, we have co «—, (2Z+1). Since oo <>, Z,
we obtain [0, 00], # [1, 00],.

Third, we prove that (8.30) or (8.31) hold. Since o is critical, o — oo’ is
decomposable. Consider a nontrivial module M of o — co’. Since [0, 0], #
[1,00],, we have oo € M. By Assertion (M2) of Proposition 2.5, M nZ is a
module of o — {00, 0"}, For a contradiction, suppose that |M nZ| = 1. Denote
by n the unique element of M nZ. Since oo <, (2Z) and co «<—, (2Z+1), we
obtain n <—, {n—1,n+ 1}, which contradicts o — {oo, 00’} € F. It follows that
M nZ|>2. Hence, M nZ is a nontrivial module of o — {o0, c0’}. For instance,
suppose that M NnZ admits a least element. Since oo € M, we obtain that (8.30)
holds.

Conversely, suppose that the four assertions above hold. To begin, we verify
that Assertions (I1),...,(I5) hold. Set

Q ={Z,{oo},{c0"}}
and consider the function ¢ : V(o) — Z defined by
¢z = 1dz, p(c0) =0, and p(c0’) = 0.
We obtain
P ={27,27.+1,{c0},{c0"}}.

Since o — {00, 00’} € Fy, o satisfies Assertion (I1) with @ and ¢. Since Z € @,
Assertion (I2) holds. It follows that o is locally critical. Furthermore, since
0o «—, Z, 00 <, (2Z), and oo <, (2Z + 1), P is a modular partition
of o according to Q). Hence, Assertion (I3) holds. Since [0,00], # [1,00],,
{2Z,2Z + 1} and {2Z,2Z + 1,{c0’}} are not modules of o/gP. Moreover, since
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[0,00"], # [00, 00", {27Z,2Z + 1,{00}} is not a module of o/ P. Lastly, since
[0,00], # [1,00], and oo’ «—, Z, {{c0},{c0’}} is not a module of o/gP. It
follows from the definition of the generalized quotient (see Definition 8.16) that
o/gP is prime. Thus, Assertion (I5) holds. Obviously, Assertion (I4) holds.

To verify that o is prime, we utilize Fact 8.22 with Q' = Q as follows. Clearly,
(8.7) holds. Moreover, we have P’ = P. As previously observed, o/gP is prime.
Since Assertions (I3) and (I4) hold, it follows from Fact 8.22 that o is prime.

Since Assertions (I3) and (I4) hold, it follows from Lemma 8.29 that o —n
is decomposable for each n € Z. Since (8.30) or (8.31) hold, {0,1,...} u{oo} is
a module of 0 — o0 or {...,0,1} u{oo} is a module of o — co’. Hence, o — oo’ is
decomposable. Lastly, since oo’ «—, Z, 0 — oo is decomposable. Consequently,
o is critical.

Finally, since Assertions (I3), (I4), and (I5) hold, it follows from Assertion
(J2) of Proposition 8.30 that P(0)[Z] is a component of P(o) and P(0)[Z] = Px.
Lastly, it follows from Corollary 8.3 that co and oo’ are isolated in P(o). O

Fact 8.41. Given a 2-structure o defined on V(o) =Nu{oco,00'}, o is critical,
P(c)[N] = Py, and oo and oo are isolated in P(c) if and only if, by exchanging
oo and oo’ if necessary, we have

e 0 —{o0,00'} € Fy;
e 00 <>, (2N), 00 «—, (2N +1), and [0,00], # [1,00],;

o oo’ > N and [0, 00’]0' * [OO, OOI]U;

[1,2], =[1,00], and [1,2], = [1,00'],;

at least one of the following two cases occurs:
[0,1], =[0,2]s and [0,1], = [0, 00],, (8.32)

" [17 2]0 = [07 2]0’ [O’ 1]0 = [1,3]07
and (8.33)
[0,2]5 =[00,2]5, [0,1]5 =[00,1],.

Proof. To begin, suppose that o is critical, P(¢)[N] = Py, and oo and oo’ are
isolated in P(¢). By Proposition 8.24,

[{v € {oo, 00} 10 <>, N}| = 1.

By exchanging oo and oo’ if necessary, we can assume that co </, N and
oo’ «—, N. Since o is prime, NuU {o0o} is not a module of o. Thus, we have
[0, 00]5 # [00, 00 ;.

First, we verify that o — {co, 00"} € #y. Let n > 1. As seen in the proof of
Fact 8.40, {n—1,n+1} is a module of (o — {00, c0’}) —n, but not of o - {co, c0’}.
Since P(¢)[N] = Py and oo and oo’ are isolated in P(c), we have

NP(G)(O) = {1}
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Since o is critical, it follows from Lemma 4.4 that V(o) \ {0,1} is a module of
o — 0. In particular, we obtain

[1,2], = [1,00], and [1,2], = [1,00'],. (8.34)

Furthermore, by Assertion (M2) of Proposition 2.5, V(o) \ {0,1} is a module
of (o = {c0,0'}) - 0. Since o is prime, V(o) \ {1} is not a module of o. Hence,
1 «bo (V(o)~{1}). Tt follows that N\ {1} is not a module of o — {0, c0’}.
Consequently, o — {co, 00’} € Fy.

Second, we verify that co «—, (2N) and co «—, (2N+1). Let n € N. As seen
above, {2n,2n + 2} is a module of o — (2n + 1). Hence oo «—, {2n,2n +2}. Tt
follows that oo «<—, (2N). Similarly, we have co «—, (2N +1). Since oo />, Z,
we obtain [0, 00], # [1, 00],-.

Third, we prove that (8.32) or (8.33) hold. Since o is critical, o — oo’ admits
a nontrivial module M. Since co <, (2N), oo «—, (2N + 1), and [0,00], #
[1,00],, we have oo € M. By Assertion (M2) of Proposition 2.5, M nN is a
module of o - {o0,00"}. For a contradiction, suppose that |[M nN| = 1. Denote
by n the unique element of M N N. We distinguish the following two cases. In
each of them, we obtain a contradiction.

e Suppose that n > 1. Since oo «—, (2N) and oo «<—, (2N + 1), we obtain
n <, {n—1,n+ 1}, which contradicts o — {0, 00’} € Fy.

e Suppose that n = 0. We have
[1,0]5 = [1, 0],
By (8.34), we have [1,2], = [1,00],. It follows that
[1,0]6 = [1,2]5,
which contradicts o — {o0, 00’} € Fy.

It follows that |[MnN| > 2. Hence, M nN is a nontrivial module of 0—{ o0, c0’}. By
the second assertion of Lemma 8.10, M nN is a nontrivial module of Ly. Since
M nN| > 2, M contains even and odd integers. We distinguish the following
two cases.

e Suppose that 0 ¢ M nN. Since M NN contains even and odd integers, we
obtain

[0,1], =[0,2],.
Moreover, since oo € M, we obtain
[Ov 1]0 = [O’ 00]0'

It follows that (8.32) holds.



8.5. EPILOGUE ON ASSERTION (I7) 135

e Suppose that 0 € M. Since M NN is a nontrivial module of Ly, there exists
n > 1 such that
MnN={0,...,n}.

Since oo € M, we obtain
M ={0,...,n}u{oc}.
We obtain that (8.33) holds.

Conversely, suppose that the five assertions above hold. To begin, we verify
that Assertions (I1),...,(I5) hold. Set

Q= {Na {00}7 {ool}}
and consider the function ¢ : V(o) — Z defined by
o = Idy, p(00) =0 and ¢(o0’) = 0.

‘We obtain
P={2N,2N +1,{oco},{c0"}}.

Since o — {co0, 0’} € %y, o satisfies Assertion (I1) with @ and ¢. Since N € Q,
Assertion (I2) holds. It follows that o is locally critical. Furthermore, since
00 «—, (2N), o0 «—, (2N + 1), and oo’ «—, N, P is a modular partition
of o according to Q. Hence, Assertion (I3) holds. Since [0,00], # [1,00],,
{2N,2N + 1} and {2N,2N + 1, {c0’}} are not modules of /g P. Moreover, since
[0,00"]5 # [00,00" ], {2N,2N +1,{c0}} is not a module of o/gP. Lastly, since
[0,00], # [1,00], and oo’ «—, N, {{oo},{c0’}} is not a module of o/gP. It
follows from the definition of the generalized quotient (see Definition 8.16) that
o/qP is prime. Thus, Assertion (I5) holds. To verify that Assertion (I4) holds,
recall that [1,2], =[1,00], and [1,2], = [1, 00’],. We obtain

1«4 {2,00,00"}.

Tt follows that Assertions (I4) holds.

To verify that o is prime, we utilize Fact 8.22 with Q' = @ as follows. Clearly,
(8.7) holds. Moreover, we have P’ = P. As previously observed, o/oP is prime.
Since Assertions (I3) and (I4) hold, it follows from Fact 8.22 that o is prime.

Since Assertions (I3) and (I4) hold, it follows from Lemma 8.29 that o —n
is decomposable for each n € N. Since (8.32) or (8.33) hold, {1,2,...} u {co}
is a module of o — o0 or {0,1} U {oo} is a module of o — co. Hence, o — o0’ is
decomposable. Lastly, since oo’ «—, N, 0 — o0 is decomposable. Consequently,
o is critical.

Finally, since Assertions (I3), (I4), and (I5) hold, it follows from Assertion
(J2) of Proposition 8.30 that P(c)[N] is a component of P(¢) and P(c)[N] = Py.
Lastly, it follows from Corollary 8.3 that co and oo’ are isolated in P(o). O
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Chapter 9

Partially critical
2-structures

We consider the following weakening of the notion of a critical structure (see
Definition 4.1).

Definition 9.1. Let o be a prime 2-structure. Given W ¢ V (o), o is W-critical W -critical

if all the elements of W are critical vertices of o.
A prime 2-structure o is partially critical if there exists a proper subset X
of V(o) such that o[X] is prime and o is (V (o) \ X )-critical.

Finite partially critical graphs were characterized by Breiner et al. [5] . Fur-
thermore, finite partially critical tournaments were characterized by Sayar [32]
who adapted the examination of partial criticality presented in [5] to tourna-
ments. A nice presentation of finite and partially critical tournaments is pro-
vided in [2] (see[2, Theorem 2 and Corollary 1] ). Lastly, Belkhechine et al. [3]
characterized the finite or infinite partially critical 2-structures. In the finite
case, they followed the same approach as that of [5].

Theorem 3.19 leads us to introduce the outside graph as follows. The outside
graph is the main tool to characterize the partially critical 2-structures. It is
frequently used in the study of prime digraphs [22, 25]. We need the next
notation.

Notation 9.2. Given a 2-structure o, consider X ¢ V(o) such that o[X] is
prime. The set of the nonempty subsets Y of V(o) \ X, such that o[ X uY] is
prime, is denoted by &, x) (compare with Notation 3.1). Hence, we have

Ext,(X)={veV(o)\ X :{v} e P, x)} (see Notation 3.12).

Furthermore, suppose that [V (o) ~ X| > 2. By Theorem 3.19, &, x) contains
an unordered pair.

Definition 9.3. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. The outside graph I, xy is defined on V(I'(,,x)) = V(o) ~ X by

137
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E(P(mx)) = {Y € 32(07)() : |Y| = 2}
By Theorem 3.19, the outside graph I'(, x) is nonempty when o is prime and
V(o) X|>2.

Remark 9.4. Given a 2-structure o, consider X ¢ V(o) such that o[X] is
prime. Given k€ {1,...,|V (o) \ X| -1}, we consider the following statement

{YeZox): Y=k} =2 (Sk)

Clearly, Ext,(X) = @ means that Statement (S1) holds.

First, we make the following observation. Consider k€ {1,...,|[V (o)~ X|-1}
and m e {1,...,k -2} such that k—m =0 mod 2. If Statement (Sk) holds, then
it follows from Corollary 3.20 that Statement (Sm) holds.

Second, suppose that o is (V (o) \ X)-critical and

V(o) \ X is finite.

We verify that Statement (Sk) holds for each k € {1,...,|V(c) ~ X| -1} such
that £ is odd.
To begin, we verify that

[V (o) N X]| is even. (9.1

Otherwise, it follows from Corollary 3.20 that o admits a noncritical vertex v
such that v € V(o) \ X, which contradicts the fact that o is (V (o) \ X)-critical.
Now, consider Y € &, xy such that Y # V(o) \ X. Since o is (V(o) ~
X)-critical, o is (V (o) N (X uY))-critical as well. It follows from (9.1) that
[V(c)~ (X uY)|is even. Since |V (o)~ X|is even, |Y] is even too. Consequently,
Statement (Sk) holds for each k€ {1,...,|V(c) ~ X| -1} such that k is odd.

9.1 Main results

We begin with a hereditary property of primality through the components of
the outside graph.

Theorem 9.5 (Belkhechine et al. [3]). Given a 2-structure o, consider X &
V(o) such that o[ X] is prime. Suppose that Statement (S3) holds. The follow-
ing three assertions are equivalent

1. o is prime;
2. for each component C of T, xy, o[ X uV(C)] is prime;
3. for each component C of T, xy, v(C) =2 or v(C) 24 and C is prime.

Theorem 9.5 allows us to provide a simple and short proof of Theorem 5.8
(see Section 9.6). Furthermore, Theorem 9.5 is proved for finite graphs in [25]
(see [25, Theorem 17] and [25, Corollary 18]). We pursue with a hereditary
property of partial criticality through the components of the outside graph. The
next theorem also provides a characterization of partially critical 2-structures
in terms of criticality of the components of their outside graph.
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Theorem 9.6 (Belkhechine et al. [3]). Given a 2-structure o, consider X &
V(o) such that o[ X] is prime. Suppose that Statement (S5) holds. The follow-
ing three assertions are equivalent

1. 0 is (V(o) \ X)-critical;
2. for each component C of T, xy, o[ X uV(C)] is V(C)-critical;
8. for each component C of T, xy, v(C) =2 or v(C) 24 and C is critical.

Remark 9.7. As seen at the beginning of Chapter 8, o(Py) is finitely critical.
Set
X={2€Z:2<0}.

As for o(Py), it follows from Theorem 7.1 that o(Pz)[X] is prime. Similarly,
o(Pz)[X u{l,...,k}] is prime for every k > 1. Consequently, for each k > 1,
Statement (Sk) does not hold. Moreover, {1,2} is the only edge of I';(p,),x)-
Hence, for every z > 3, z is an isolated vertex of I'(;(p,) x). It follows that
Theorem 9.5 does not hold when Statement (S3) is not satisfied. Similarly,
Theorem 9.6 does not hold when Statement (S5) is not satisfied.

We introduce a weakening of the partial criticality in the following way. We
obtain the next result by using Theorem 7.4 several times.

Corollary 9.8. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. The following two assertions are equivalent

1. o is prime;

2. for each finite subset F' of V(o) \ X, there exists I’ € P, xy such that
F' is finite and F ¢ F'.

Corollary 9.8 and the fact that Statement (S5) is supposed to be satisfied in
Theorem 9.6 lead us to introduce the next definition. The next definition is a
weakening of partial criticality (see Theorem 9.10).

Definition 9.9. Given a 2-structure o, consider X ¢ V(o) such that o[X] is
prime. We say that o is finitely (V (o) \ X)-critical if for each finite subset F' of
V(o) X, there exists F' € &, x) such that F" is finite, F' ¢ F', and o[ X U F’]
is (F")-critical.
Theorem 9.10. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. The following two assertions are equivalent

1. Statement (S5) holds and o is prime;

2. o is finitely (V (o)~ X)-critical.

Theorem 9.10 is discussed in Remark 9.57. Precisely, in Remark 9.57, we
provide a prime 2-structure showing that we do not have a compactness theorem
with partial criticality. We prove Theorem 9.10 at the end of Section 9.5. The
last main result ends this section. It shows that Theorem 5.8 is satisfied in the
infinite case when the 2-structure ¢ is also supposed to be (V (o) \ X)-critical.
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Theorem 9.11. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. Suppose that Statement (S5) holds. Suppose also that o is (V (o) \ X)-
critical. For each v € V(o) N X, there exists w € (V (o)~ X) \ {v} such that
o—{v,w} is (V(o) \{v,w}) ~ X)-critical. In particular, we obtain

for each ve V(o) N X, Nppy(v)n(V(o)\ X) # @ (see Definition 4.3).
We prove Theorem 9.11 at the end of Section 9.5.

Remark 9.12. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. Suppose that Statement (S5) holds. Suppose also that o is (V (o) \
X)-critical. Lastly, suppose that V(o) ~ X is infinite. Consider a finite and
nonempty subset F' of V(o) \ X. By applying several times Theorem 9.11, we
obtain a finite subset F’ of V(o) \ X such that F ¢ F' and o — F' is ((V (o) ~
F') N X)-critical. Furthermore, it follows from Corollary 3.20 that |F’| is even.

9.2 Modules of the outside graph

We begin with two preliminary results on the isolated vertices of an outside
graph. We utilize the following remark.

Remark 9.13. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. It follows from Remark 3.15 that for each B € p(, x) N {Exto(X)},
I'(,x)[B] is empty. In other words, if Ext,(X) = @, then I, x is multipartite
with partition p(,, x (see Lemma 3.13).

Lemma 9.14 (Breiner et al.'[5]). Given a 2-structure o, consider X ¢ V(o)
such that o[ X] is prime.

1. If M is a module of o such that X € M, then the elements of V(o) N M
are isolated vertices of I' (5 x)-

2. Given y € X, if M is a module of o such that M n X = {y}, then the
elements of M\ {y} are isolated vertices of T'(, x.

Proof. For the first assertion, consider a module M of ¢ such that X ¢ M. Let
v eV (o) N M. Moreover, consider w € (V (o)~ X))~ {v}. We have to verify that

o[X u{v,w}] is decomposable.

By Remark 3.16, (V (o) N M) € (X),. It follows from Remark 9.13 that o[X u
{v,w}] is decomposable when w ¢ M. Now, suppose that w € M \~ X. By
Assertion (M2) of Proposition 2.5, M n (X u {v,w}), which is X u {w}, is a
module of o[ X U {v,w}]. Thus, o[ X u{v,w}] is decomposable.

For the second assertion, consider y € X and a module M of o such that
MnX ={y}. Let ve M~ {y}. Moreover, consider w e (V(o) ~ X) ~ {v}. We
have to verify that

o[X u{v,w}] is decomposable.

! Breiner et al. [5] proved this lemma for (finite) graphs (see [5, Lemma 2.7]).
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By Remark 3.16, M ~ {y} ¢ X,(y). It follows from Remark 9.13 that o[X u
{v,w}] is decomposable when w € M. Now, suppose that w ¢ M. By Asser-
tion (M2) of Proposition 2.5, M n (X u {v,w}), which is {y,v}, is a module of
o[X u{v,w}]. Thus, o[X U {v,w}] is decomposable. O

The next result is an immediate consequence of Remark 3.16 and Lemma 9.14.

Corollary 9.15. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. If o admits a nontrivial module M such that M n X # @, then T'(, x)
possesses isolated vertices.

Now, we study the modules of the outside graph. We need the following
refinement of the outside partition (see Notation 3.12).

Notation 9.16. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. We consider the following subsets of V(o) \ X

o fore, feE(0),
(X)((f’f) =(X)o N Née’f)(y) (see Notation 3.7),
where y € X;
o fore,feFE(o) and ye X,

XD (y) = X, (y) n NP (y) (see Notation 3.7).

The set {Ext,(X)}u{(X)5 ce, fe B(o)} u{X{D(y) e, f e E(o),ye X}
is denoted by q(s,x)-

Lemma 9.17. Given a 2-structure o, consider X ¢ V(o) such that o[X] is
prime. Suppose that Statement (S1) holds. Given M < (V(o) N X), if M is
a module of o, then M is a module of I (5 x), and there exist B, € p(, x) and
By € q(o,x) such that M ¢ By € By, and M is a module of o[By].

Proof. Consider a module M of ¢ such that M n X =@. Let v e M. Denote by
By, the unique block of g4, x) containing v. Consider w e M ~ {v}. Since M is
a module of o such that M n X = @, we have y «—, {v,w} for every y e X. It
follows that w € B,. Consequently, M ¢ B,. Denote by B, the unique block of
P(o,x) containing B,. We obtain

M < B, < B,.

Since M is a module of o, M is a module of o[ B,] by Assertion (M2) of Propo-
sition 2.5.

Lastly, we prove that M is a module of T'(, x). Let w € (V(o) N\ X) \ M.
Recall that Ext,(X) = @ because Statement (S1) holds. If w € B,, then it
follows from Remark 9.13 that {v,w} ¢ E(I'(, x)) for every v € M. Hence,
suppose that w € (V(o) \ X) ~ B,. Since Ext,(X) = @, we distinguish the
following two cases.
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e Suppose that B), = (X),. Consider y € X and u € M.

First, suppose that u <—, {y,w}. Let v € M. Since M is a module of &, we
obtain v «—, {y,w}. Since v «—, X, we obtain v «—, X U {w}. Hence,
X u{w} is a module of o[ X U {v,w}]. It follows that {v,w} ¢ E(T'(, x)).
Second, suppose that u <>, {y,w}. Let v e M. Since M is a module of

o, we have v <>, {y,w}. Thus, X u{v} is not a module of o[ X U{y,v}].
It follows from Assertion (Q1) of Corollary 3.18 that {v,w} € E(I'(, x))-

e Suppose that B, = X, (y), where y € X. Consider ue M.
First, suppose that w «—, {y,u}. Let v e M. Since M is a module of o,
we obtain w «—, {y,v}. Since {y,v} is a module of o[ X U {v}], {y,v} is
a module of o[X u{v,w}]. It follows that {v,w} ¢ E(I'(, x)) for every
velM.

Second, suppose that w </, {y,u}. Let v e M. Since M is a module of
o, we obtain w «f>, {y,v}. Therefore, {y,v} is not a module of o[ X U
{v,w}]. It follows from Assertion (Q2) of Corollary 3.18 that {v,w} €
E(To.x)): .

The opposite direction in Lemma 9.17 is false. Nevertheless, it is true for
(finite) graphs (see the second assertion of [5, Lemma 2.6]). Moreover, the
opposite direction in Lemma 9.17 is true if we require that Statement (S3)
holds (see Corollary 9.19 below). We need the following fact.

Fact 9.18 (Breiner et al.?[5]). Given a 2-structure o, consider X ¢ V(o) such
that o[ X ] is prime. Suppose that Statement (S3) holds. Given distinct elements
u,v,w of V(o) N X, if {u,v},{u,w} € E(I'(, x)), then {v,w} is a module of
o[ X u{u,v,w}], and hence there evists By € q(o,x) such that v,w € By.

Proof. Since {u,v} € E(I'(4 x)), o[ X u{u,v}] is prime. Set
Y = X u{u,v}.

Since Statement (S3) holds,
w ¢ Ext, (V).

For a contradiction, suppose that w € (Y),. We obtain that X u {u,v} is a
module of o[ X U {u,v,w}]. By Assertion (M2) of Proposition 2.5, X u{u} is a
module of o[ X u {u,w}], which contradicts {u,w} € E(T'(, x)). Consequently,

w ¢ (Y ),.
It follows from Lemma 3.13 that there exists z € Y such that
w e Yy (2).

Hence, {z,w} is a module of o[ X U {u,v,w}]. By Assertion (M2) of Propo-
sition 2.5, (X u {u,w}) n{z,w} is a module of o[X U {u,w}]. Since {u,w} €

2Breiner et al. [5] proved this lemma for (finite) graphs (see [5, Lemma 4.3]).
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E(T . xy), (X u{u,w})n{z,w} is a trivial module of o[X u {u,w}]. Since
w e (X u{u,w})n{z,w}, we obtain z ¢ X u{u}. It follows that z = v. There-
fore, w € Y, (v), that is, {v,w} is a module of o[ X u{u,v,w}]. By Lemma 9.17,
there exists B, € q(,,x) such that v,w € B,. O

The next result follows from Fact 9.18.

Corollary 9.19. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. Suppose that Statement (S3) holds. Consider M c (V (o) \ X)) such that
there exist By € p(,,x) and By € qs,x) with M ¢ B, ¢ By,. Suppose that M is a
module of o[By]. If M is a module of T'(, xy, then M is a module of o.

Proof. Suppose that M is a module of I'(, xy. Consider u,v € M and w €
V(o) ~ M. Tt suffices to verify that

w «—, {u,v}. (9.2)

Since M is a module of o[B,], (9.2) holds when w € B, ~x M. Furthermore, by
Remark 9.4, Statement (S1) holds because Statement (S3) holds. It follows that

Ext,(X) = @.

Since u and v belong to the same block of ¢(,. x), (9.2) holds when w € X. Now,
suppose that
weV(o)N (X UB,).

Since M is a module of I'(,, x), we have

{uvw}v {va} € E(F(U,X))
or (9:3)

{uv w}v {Uv ’LU} ¢ E(F(U,X))'

Suppose that {u,w}, {v,w} € E(T'(, x)). By Fact 9.18, {u,v} is a module of
o[ X u{u,v,w}], so (9.2) holds.

Lastly, suppose that {u,w}, {v,w} ¢ E(I'( x)). Since Ext,(X) = @, we
distinguish the following two cases.

e Suppose that By, = (X),. Since {u,w},{v,w} ¢ E(I'(4 x)), it follows from
Assertion (Q1) of Corollary 3.18 that X u{w} is a module of o[ X U{u,w}]
and o[ X u{v,w}]. Given y € X, we obtain u <—, {y,w} and v <—,
{y,w}. Since u,v € By and By € (X),, y <, {u,v}. It follows that (9.2)
holds.

e Suppose that B, = X, (y), where y € X. Since {u,w},{v,w} ¢ E(I'(, x)),
it follows fromAssertion (Q2) of Corollary 3.18 that {y,u} is a module of
o[ X u{u,w}], and {y,v} is a module of o[ X U{v,w}]. Therefore, we have
w «—, {y,u} and w «—, {y,w}. It follows that (9.2) holds. O

The next fact follows from Lemma 9.17.
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Fact 9.20 (Breiner et al.?[5]). Given a 2-structure o, consider X ¢ V(o) such
that o[ X] is prime. Suppose that Statement (S3) holds. Given By, Dy € p(s x),
consider w € By and v,w € D, such that {u,v} € E(T'(, x)) and {u,w} ¢
E(T(5.x))-

1. If Dy =(X),, then X u{u,v} is a module of o[ X U {u,v,w}].

2. If D, = X,(y), where y € X, then {y,w} is a module of o[ X u{u,v,w}].
Proof. To begin, we establish two preliminary statements (see (9.4) and (9.5)).
Since {u,v} € E(I'(4,x)), o[X u{u,v}] is prime. Set

Y = X u{u,v}.
Since Statement (S3) holds,

w ¢ Ext, (V).
Since {u,v} € E(I'(4,x)), we have

B, + D, (9.4)

by Remark 9.13. For a contradiction, suppose that w € Y, (u). Hence, {u,w}
is a module of o[ X U {u,v,w}]. By Remark 9.4, Statement (S1) holds because
Statement (S3) holds. It follows from Lemma 9.17 applied to o[ X u {u,v,w}]
that B, = Dj,, which contradicts (9.4). Thus,

w ¢ Yo (u).

Now, suppose for a contradiction that w € Y, (v). Hence, {v,w} is a module of
o[X u{u,v,w}]. It follows from Lemma 9.17 applied to o[X U {u,v,w}] that
{v,w} is a module of I, x), which is impossible because {u,v} € E(I'(4,x)) and
{u,w} ¢ E(T'(, x)). Therefore,

w ¢ Y, (v).
Since w ¢ (Yo (u) U Y, (v)), it follows from Lemma 3.13 applied to o[Y] that
we(Y), or weY,(y), where y € X. (9.5)

First, suppose that D, = (X),. If w e Y, (y), where y € X, then w € X, (y),
and hence w € Y,(y) n{(X),, which contradicts Lemma 3.13. Tt follows from
(9.5) that w € (Y),, that is, X u {u,v} is a module of o[ X U {u,v,w}].

Second suppose that D, = X, (y), where y € X. If w e (Y),, then w € (X),,
and hence w € X, (y) n (X),, which contradicts Lemma 3.13. It follows from
(9.5) that w € Y,(z), where z € X. Hence, we have w € X,(z). We obtain
w € X,(y) N X,(2). By Lemma 3.13, we have y = z. Consequently, w € Y, (y),
that is, {y,w} is a module of o[ X U {u,v,w}]. O

The next two results follow from Fact 9.20.

3Breiner et al. [5] proved this lemma for (finite) graphs (see [5, Lemma 4.4]).
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Corollary 9.21. Given a 2-structure o, consider X ¢ V(o) such that o[ X]
is prime. Suppose that Statement (S3) holds. Let By € q(o,x). For each v €
(V(e)NX)\By, {ue By : {u,v} € E(T (s x))} and {u € By : {u,v} ¢ E(T'(, x))}
are modules of o[B,]. Precisely, if {u € By : {u,v} € E(I'(s,x))} # & and
{ue By {u,v} ¢ E(T'(5,x))} # @, then the following two assertions hold.

1. If By = (X)), where e, f € E(o), then

{ueBy:{u,0} ¢ E(Uo.x))} {ue By {u,v} € E(Uo.x))}o = (f€)
(see Notation 2.1).

2. If By = X[(,e’f)(oz), where € X and e, f € E(o), then
[{ueBg:{u,v} ¢ E(Lox))}{ueBy: {u,v} e E(Uox)) o = (e, f).

Proof. Let v e (V (o)~ X)~\ By. Suppose that {u € By : {u,v} € E(I'(, x))} # @
and {u € By : {u,v} ¢ E(I'(;,x))} # @. Consider u*,u~ € B, such that {u",v} €
E(T(s,xy) and {u™,v} ¢ E(T'(, x)). We distinguish the following two cases.

1. Suppose that By = (X)((f’f), where e, f € E(c). By the first assertion of
Fact 9.20 applied to u™,u™,v, Xu{u*,v} is a module of o[ X u{u*,u™,v}].
Since u~ € (X)), we obtain [u™,u*], = (f,€).

2. Suppose that B, = X,ge’f)(y), where y € X and e,f € E(o). By the
second assertion of Fact 9.20 applied to u*,u”,v, {y,u”"} is a module of
o[X u{u*,u",v}]. Hence, [u,u*], = [y,u*],. Since u* € Xge’f)(y), we
obtain [y,u*], = (e, f), so [u™,u*], = (e, f). O

The proof of the next corollary follows from Corollary 3.18 and Fact 9.20.

Corollary 9.22 (Breiner et al.*[5]). Given a 2-structure o, consider X ¢ V(o)
such that o[X] is prime. Suppose that Statement (S3) holds. If o is prime,
then T xy has no isolated vertices.

Proof. We denote by Z the set of the isolated vertices of I'; x). By Re-
mark 9.4, Statement (S1) holds because Statement (S3) holds. Therefore, we
have Ext,(X) = @. By Lemma 3.13, to show that Z = @, it suffices to verify
that

In(X), =2 (9.6)

and
InX,(y)=o (9.7)

for each y € X.

To verify that (9.6) holds, we show that V(o) \ (Zn (X),) is a module of
o. Consider ue Zn{X), and ve V(o) N (Zn(X),). We verify that X u{v} is
a module of o[ X u{u,v}]. This is clear when v € X because u € (X),. Hence,
suppose that v ¢ X. We distinguish the following two cases.

4Breiner et al. [5] proved this lemma for (finite) graphs (see [5, Corollary 4.5]).
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e Suppose that v ¢ (X),. Since u € Z, we have {u,v} ¢ E(I'(x)). It
follows from Assertion (Q1) of Corollary 3.18 that X u{v} is a module of
o[ X u{u,v}].

e Suppose that v e (X),. Since v e V(o) (Zn(X),), we have v ¢ Z. Since
v ¢ Z, there exists w € V(o) N X such that {v,w} € E(T'(, x)). Since u€Z,
we have {u,w} ¢ E(T'(, x)). By the first assertion of Fact 9.20, X u {v,w}
is a module of o[ X U {u,v,w}]. By Assertion (M2) of Proposition 2.5,
X u{v} is a module of o[ X U {u,v}].

In both cases above, X u {v} is a module of o[X U {u,v}]. It follows that
V(o) N (Zn(X)s) is a module of o. Since o is prime, V(o) N (Zn(X),) is a
trivial module of o. Thus, we obtain V(o) N\ (Zn(X),) = V(o). Hence, (9.6)
holds.

To verify that (9.7) holds, consider y € X. We show that {y} u(ZnX,(y)) is
a module of 0. Counsider ue Zn X, (y) and ve V(o) {y}u(ZnX,(y))). We
verify that {y,u} is a module of o[ X U {u,v}]. This is clear when v € X \ {y}
because u € X,(y). Hence, suppose that v ¢ X. We distinguish the following
two cases.

e Suppose that v ¢ X,(y). Since u € Z, we have {u,v} ¢ E(I',,x)). It
follows from Assertion (Q2) of Corollary 3.18 that {y,u} is a module of
o[ X u{u,v}].

e Suppose that v € X,(y). Since v e V(o) ({y} u(Zn X,(y))), we have
v ¢T. Since v ¢ Z, there exists w € V(o) \ X such that {v,w} € E(I'(, x))-
Since u € Z, we have {u,w} ¢ E(I'(, x)). By the second assertion of
Fact 9.20, {y,u} is a module of o[ X U {u,v,w}]. By Assertion (M2) of
Proposition 2.5, {y,u} is a module of o[ X U {u,v}].

In both cases above, {y,u} is a module of o[ X U {u,v}]. It follows that {y} U
(ZnX,(y)) is a module of . Since o is prime, {y} U (Zn X,(y)) is a trivial
module of o. Thus, we obtain Zn X,(y) = @. Hence, (9.7) holds. O

9.3 Blocks of the outside partition and of its re-
finement
Lemma 9.23. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is

prime. Suppose that Statement (S3) holds. Consider e, f € E(c), and ye X. If
['(5,x) does not have isolated vertices, then the following two assertions hold

1. if (X)) = o, then (X)((fl’f,) =@ for anye', f' € E(0) such that {e', f'} #
{e, f};

2. if XC(,e’f)(y) + &, then X(Se,’f’)(y) = @ for any €', f' € E(c) such that
{e/,f'} #{e [}
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Proof. Consider e, f,e’, f' € E(c). For the first assertion, suppose that there
exist v € (X)E,e’f) and v’ € (X)((f ) We have to prove that

{e.f}={e.f'}. (9-8)

Since v,v" € (X),, we have {v,v"} ¢ E(I'(,,x)) by Remark 9.13. Furthermore,
since I'(,, x) does not have isolated vertices, there exist w,w’ € (V (o)~ X) \
{v,v"} such that {v,w},{v,w'} € E(I'(, x)). Suppose that w = w'. We obtain
{w,v},{w,v"} € E(T'(,,x)). It follows from Fact 9.18 that (e, f) = (¢, f'), so
(9.8) holds. We obtain the same conclusion when {v,w’} € E(I'(4, x)) or {v',w} €
E(T'(5,xy). Thus, suppose that w # w', and {v,w'},{v",w} ¢ E(I'(,x)). It
follows from the first assertion of Fact 9.20 applied to v,v’,w’ that X u {v', w'}
is a module of o[ X U {v,v',w’}]. Since v € (X)S,e’f), we obtain [v,v’], = (f,e).
Similarly, it follows from the first assertion of Fact 9.20 applied to v,v’,w that
[v',v]o = (f',€"). Therefore, we have e = f" and ¢’ = f. Consequently, (9.8)
holds.

For the second assertion, suppose that there exist v € Xée’f )(y) and v’ €

X((,e”f’)(y)7 where y € X. We have to prove that (9.8) holds. Since v,v’ € X, (y),
we have {v,v"} ¢ E(I'(; x)) by Remark 9.13. Furthermore, since I'¢, x) does
not have isolated vertices, there exist w,w’ € (V (o)~ X) \ {v,v'} such that
{v,w},{v',w'} € E(T'(,,x)). Suppose that w = w’. We obtain {w,v},{w,v"} €
E(T'(4,x)). By Fact 9.18, (e, f) = (¢/, f'), so (9.8) holds. We obtain the same
conclusion when {v,w'} € E(I'(, x)) or {v',w} € E(I'(4 x)). Now, suppose that
w # w', and {v,w'}, {v',w} ¢ E(T'(, x)). It follows from the second assertion
of Fact 9.20 applied to v,v’,w’ that {y,v} is a module of o[X U {v,v',w'}].
We obtain [v',y], = [v',v]s. Since v’ € Xc(,er’f,)(y)7 we have [y,v'], = (¢/, 7).
Therefore, we obtain [v',v], = (f',€’). Similarly, it follows from the second
assertion of Fact 9.20 applied to v,v',w that [v,v'], = (f,e). Thus, we have
e=f"and e = f. Consequently, (9.8) holds. O

Lemma 9.24. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. Suppose that Statement (S3) holds. Consider e, f € E(o) and y € X.

Suppose that
e+ f. (9.9)

If T'(5,x) does not have isolated vertices, then the following two assertions hold
Lif (X)5D 2 @ and (X)) 2 @, then [(X)$D (X)), = (f.e);
2. if X3P (y) 2 & and X§(y) # @, then [X5D (1), X ()]0 = ().

Proof. For the first assertion, consider v € (X)) and v/ ¢ (X)), Since
v,v" € (X)s, we have {v,v'} ¢ E(I'(,,x)) by Remark 9.13. Furthermore, since
I'(+,x) does not have isolated vertices, there exists w’ € (V(o) \ X))~ {v,v"} such
that {v",w'} € E(I'(4 x)). Suppose for a contradiction that {v,w’} € E(I'(, x)).
We obtain {v,w'}, {v',w'} € E(I'(,x)). It follows from Fact 9.18 that e = f,
which contradicts (9.9). Therefore, we have {v,w’} ¢ E(I'(,, x)). It follows from
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the first assertion of Fact 9.20 applied to v,v’,w’ that X u{v’,w'} is a module
of o[ X u{v,v',w'}]. Since ve (X),(,e’f)7 we obtain [v',v], = (e, f).

For the second assertion, consider v € X 7 (y) and v’ ¢ X9 (y). Since
v,v" € Xo(y), we have {v,v'} ¢ E(I'(4,x)) by Remark 9.13. Furthermore, since
I'(+,x) does not have isolated vertices, there exists w’ € (V(0) N X))\ {v,v"} such
that {v",w'} € E(I'(4 x)). Suppose for a contradiction that {v,w’} € E(I'(, x)).
We obtain {v,w'}, {v',w'} € E(I'(, x)). It follows from Fact 9.18 that e = f,
which contradicts (9.9). Therefore, we have {v,w’} ¢ E(I'(4, x)). It follows from
the second assertion of Fact 9.20 applied to v,v’,w" that {y,v} is a module of

o[X u {v,v',w'}]. Thus, we obtain [v,v'], = [y,v']s. Since v’ € X,gf’e)(y)7 we
have [y,v"], = (f,e), so [v,v"], = (f,e€). O

To state the next result, we use the following notation and definition.

Notation 9.25. Let o be a 2-structure. For e € (o) and W ¢ V (o), set
e[W]l=en(W xW).

Given e € E(0) and W ¢ V (o), we do not have e € E(c[W]), but we have
e[W] e E(c[W]) when e[W] # @.

Lemma 9.26. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. Suppose that Statement (S3) holds. If o is prime, then the next two
assertions hold.

1. Letee E(o). If |(X)((f’e)| >2, then o[(X)o] is constant and
E(o[(X)o]) = {e[{(X)o]}.

Similarly, given y € X, if |X(§e’e) (y)| > 2, then o[X,(y)] is constant and

E(o[Xs(y)]) = {e[Xo ()]}

2. Consider distinct e, f € E(o). If |(X)((f’f)\ > 2, then o[(X),] is linear and
E(o[(X)s]) ={el(X)s], fF[{X)o]}

Similarly, given y € X, if |X<(,e’f)(y)| > 2, then o[X,(y)] is linear and
E(o[Xo(y)]) = {e[Xo(y)], [[ X (1)1}

Proof. Consider By € q(,,x), with |By| > 2. There exist e, f € E(o) such that
By = (X)) or X9 (y), where y € X. Consider C e Cery(a[Bq]) (see
Definition 2.2). We prove that C' is a module of 0. We utilize Corollary 9.19
in the following manner. Since By € q(,, x), there exists B), € p(, x) such that
B, ¢ B,. By Lemma 2.4, C is a module of o[ B,].

Now, we show that C' is a module of o[B,]. Suppose that e = f. It follows
from Lemma 9.23 that B, = B,,. Hence, C' is a module of ¢[B,]. Suppose that
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e+ f. If By = B,, then we proceed as previously. Hence, suppose that B, # B,.
It follows from Lemma 9.23 that B, \ B, € q(,x) and

(X)) if B, = (x)§9)
p N\ By = jor
x5y) it By = X5 (y).

It follows from Lemma 9.24 that B, is a module of o[B,]. Since C is a module
of o[By], it follows from Assertion (M3) of Proposition 2.5 that C' is a module
of o[B,].

Lastly, we prove that C' is a module of I'(, xy. Since C' ¢ B,, we have
{c,v} ¢ E(T'(5,x)) for ce C and v € By~ C by Remark 9.13. Therefore, we have
to verify that C'is a module of I'(, x)[C U {v}] for each v € (V (o) N X) \ B).
Let ve (V(o) N X))\ Bp. Set

C*=CnNr, ,(v)and C” =C~ Nr, ,,(v).

For a contradiction, suppose that C~ # @ and C* # @. It follows from Corol-
lary 9.21 that [C™,C" ], = (e, f) or (f,e), which contradicts C' € Cy., y(o[By])-
Therefore, C~ = @ or C* = @, that is, C' is a module of ', x)[C'u{v}] for each
ve(V(o)N X)\ By,. Thus, C is a module of I', x).

Consequently, C' is a module of o[B,] and C is a module of I, x). It
follows from Corollary 9.19 that C' is a module of o. Since o is prime, C is
trivial. Hence, we obtain |C| =1 because C' # @ and Cn X = @. We conclude as
follows by distinguishing the following two cases.

e Suppose that e = f. Recall that B, = B, by Lemma 9.23. Hence, all
the {e, f}-components of o[B,] are reduced to singletons. It follows
from Proposition 2.8 that o[B,] is constant. Precisely, it follows from
Lemma 2.4 that (v,w), = e for distinct v,w € By,. In other words, o[B,]
is constant and E(o[Bp]) = {e[B,]}.

e Suppose that e # f. For instance, suppose that B, = (X)((,e’f). All the

{e, f}-components of o[ (X )f,e’f >] are reduced to singletons. It follows from
Proposition 2.8 that o[ B,] is linear. Precisely, it follows from Lemma 2.4

that (v,w), = e or f for distinct v,w € B,. In other words, 0[(X),(,e’f)] is
lincar and E(o[(X)5"7]) = {([(X)& 1], /[(x)5]).

Lastly, suppose that B, ¢ By,. It follows from Lemma 9.23 that B, \ B, =
(X)gf’e). Similarly, we have 0[(X>gf’e)] is linear and E(a[(X)gf’e)]) =
{e[(X)9, (X)), Moreover, we have

()& (X)F0 = (f,e)

by the first assertion of Lemma 9.24. Consequently, o[(X),] is linear and
E(o[(X)s]) = {e[{(X)o], F[(X)o]}- =
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We complete Section 9.3 with a result on the components of the outside
graph, which follows from Fact 9.18 and the following easy consequence of
Fact 9.20. We use the following notation.

Notation 9.27. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. First, the set {(X)((,e’e) tee E(o)}u {X(Se’e)(a) tee E(o),a e X} is
denoted by g(, y). Second, the set g, x) (qfa’X) U {Ext,(X)}) is denoted by

Ao x)"

Fact 9.28. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is prime.
Suppose that Statement (S3) holds. Consider distinct v,v",w,w’ € V(o) X
such that {v,w}, {v',w'} € E(T'(, x)) and {v,w'},{v',w} ¢ E(T(, x)). If there
exist By € q(s,x) such that w,w' € By, then By € qfo’,X)'

Proof. Since w and w’ belong to the same block of p(,, x), we have {w,w'} ¢
E(T'(5,xy) by Remark 9.13. Besides, there exist e, f € E(o) such that B, =

(X)) or B, = X$9(y), where y € X.

First, suppose that B, = (X )E,.e’f ). By the first assertion of Fact 9.20 applied
to v,w,w’, X u{v,w} is a module of o[ X U {v,w,w'}]. Since w’ ¢ (X)f,e’f), we
have [w', X ], = (f,e). It follows that [w',w], = (f,e). Similarly, it follows from
the first assertion of Fact 9.20 applied to v, w,w’ that [w’,w], = (e, f). Thus,
we obtain e = f, and hence By ¢ qfoyx).

Second, suppose that B, = Xée’f)(y)7 where y € X. By the second assertion
of Fact 9.20 applied to v, w, w’, {y,w'} is a module of o[ X u{v,w,w’}]. Thus, we
have [w,w']y = [w,y],. Since w € X((,e’f)(y)7 we have [w,y], = (f,€). We obtain
[w,w']s = (f,e). Similarly, it follows from the second assertion of Fact 9.20
applied to v',w,w’ that [w’,w], = (f,e). Therefore e = f, so By € U x)- O

Proposition 9.29. Given a 2-structure o, consider X ¢ V(o) such that o[ X]
is prime. Suppose that Statement (S3) holds. If T'(, x) does not have isolated
vertices, then the following two assertions hold.

1. For each component C' of T4 xy, there exist distinct By, Dy € p(, xy and
By, Dy € qo,x) such that By ¢ By, Dy € Dy, and C is bipartite with
bipartition {V(C) n By, V(C) N D,}.

2. For a component C of I'(; x) and for Bq € q(, x, if V(C)n By + @, then
B, cV(C).

Proof. For the first assertion, consider a component C' of I, x). Since I'(, x)
does not have isolated vertices, v(C) > 2. Hence, there exist distinct ¢, d €
V(C) such that {c,d} € E(I'(, x)). Furthermore, there exist By, D, € p(s x)
and By, Dy € q(,,x) such that c € By, d € Dy, B, € B, and D, € D,. Since
{c,d} € E(T' (5 x)), we have B, # D, by Remark 9.13. Let v € V(C) ~ {c,d}.
Since C' is a component of I'(, x), there exists a sequence vy, ..., v, of vertices
of C satisfying
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e v € {c,d};
o v, =v; {vg,...,vn} n{c,d} = {vo};
o fori,je{0,...,n}, {vi,v;} € E(I'(, x)) if and only if |i - j| = 1.

Since vy € {¢,d} and v, € V(C) ~ {¢,d}, we have n > 1. We distinguish the
following two cases.

1. Suppose that n is even. It follows from Fact 9.18 that vy, vs, ..., v, belong
to the same block of g, x). Since vy € {c,d} and v, = v, we obtain
veB,uD,.

2. Suppose that n is odd. Set

dif vg=c
v_1 = Jand
cif vg =d.

We have v_; € B,uD,. By considering the sequence v_1vg ... vy, it follows
from Fact 9.18 that v and v_; belong to the same block of ¢, x). Hence,
veByuD,.

Therefore, we obtain V(C) \ {¢,d} ¢ B, u D,, and hence V(C') ¢ B,u D,. By
Remark 9.13, C' is bipartite with bipartition {V(C) n By, V(C) n D,}.
For the second assertion, consider a component C' of I'(, x) and an element
By of q(, xy such that V(C') n B, # @. Consider v € V(C) n By. For a contra-
diction, suppose that
B,\V(C)+ 2,

and consider v" € B, \ V(C). Since I'(,, x) does not have isolated vertices, there
exist u € (V(o)N X)~{v} and v’ € (V (o) \ X) N {v'} such that {u,v},{u,v"} €
E(T(5,xy). Furthermore, since C' is a component of I'¢, x), with v € V/(C)
and v' ¢ V(C), we obtain v € V(C) and v’ ¢ V(C). Therefore, u # u', and
{u,v'},{u';v} ¢ E(T(5,x)). It follows from Fact 9.28 that By € q(, y), which
contradicts By € q?U’X). Consequently, we have B, < V(C). O

9.4 Proofs of Theorems 9.5 and 9.6

We use the following notation.

Notation 9.30. Given a graph I', C(T") denotes the set of the components of
I

Proof of Theorem 9.5. To begin, suppose that ¢ is not prime. We prove that
there exists C' € C(I'(,,x)) such that o[X uV(C)] is not prime. First, suppose
that I'(, x) admits isolated vertices. Hence, consider v € V(o) \ X such that
{v} €eC(T'(5,x)). Since Statement (S3) holds, Ext,(X) = @ by Remark 9.4. Thus
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o[X u {v}] is not prime. Second, suppose that I'(, x) does not have isolated
vertices. Since ¢ is not prime, ¢ admits a nontrivial module M. It follows from
Corollary 9.15 that M n X = @. By Lemma 9.17, there exists B), € p(, x) such
that M c Bj and M is amodule of ', x). Let u € M. Since I, x) does not have
isolated vertices, there exists v € (V (o) ~ X) \ {u} such that {u,v} € E(T'(, x))-
Since M ¢ By, we have v ¢ M by Remark 9.13. Denote by C' the component of
I'(s,x) containing u. We obtain v € V/(C') because {u,v} € E(T'(, x)). Since M
is a module of T'(, xy, we obtain {u’, v} € E(I'(, x) for every u’ € M. Therefore,
we have M c V(C). It follows that M is a nontrivial module of o[ X UV (C)].
Now, we suppose that there exists C' € C(I'(,, x)) such that o[ X UV (C)] is
not prime. Since o[X uV(C)] is not prime, we have v(C) # 2. Assume that
v(C) > 4. We have to prove that C is not prime. Consider a nontrivial module
M of o[ X uV(C)]. Clearly, o[ X uV(C)] satisfies Statement (S3). Moreover,

Lorxovonviey =C.

Since v(C) > 4, it follows from Corollary 9.15 applied to o[X u V(C)] that
M cV(C). By Lemma 9.17 applied to o[ X UV (C)], there exists

By € pio[xuv ey vicy)

such that M ¢ B, and M is a module of C. We have to verify that M = V(C).
Let uwe M. Since v(C) > 4, there exists v € V(C) \ {u} such that {u,v} € E(C).
In particular, we have v € V/(C). Since u € By, we have v ¢ B, by Remark 9.13
applied to o[ X uV(C)]. Since M ¢ B,, we obtain v e V(C)~ M.

Lastly, we suppose that there exists C' € C(I'(,,x)) such that v(C') = 1 or
v(C) >3 and C is not prime. We have to prove that o is not prime. Therefore,
by Corollary 9.22, we can suppose that

I'(+,x) does not have isolated vertices. (9.10)

In particular, we obtain v(C') > 3. Consider a nontrivial module M of C.
Clearly, M is a module of I, x) because C' is a component of I, x). Since
I'(+,x) does not have isolated vertices by (9.10), it follows from the first assertion
of Proposition 9.29 that there exist distinct By, D), € p(, x) and By, Dy € q(4,x)
such that B, € B,, D, ¢ D,, and C is bipartite with bipartition {V(C) n
B,,V(C)nD,}. Since C is connected, we have M ¢ V(C)nB, or M ¢ V(C)nD,.
For instance, assume that M ¢ V(C) n B,. To conclude, we distinguish the
following two cases.

1. Suppose that By € qf, y). There exists e € E(0) such that B, = (x)8e)

or X9 (y), where y € X. If 0[B,] is not constant, then it follows from
the first assertion of Lemma 9.26 that o is not prime. Thus, suppose that
o[Bp] is constant. It follows that any subset of By, is a module of o[B)].
In particular, M is a module of o[B,]. Since M is a module of I'(, x), it
follows from Corollary 9.19 that M is a module of o.
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2. Suppose that B, € q?g X)- Since I'(,, x) does not have isolated vertices by
(9.10), it follows from the second assertion of Proposition 9.29 that

B, cV(C).

In general, M is not a module of o[B,], and hence M is not a module of
o[Byp]. Therefore, we cannot apply Corollary 9.19 to M. Nevertheless, we
construct a superset of M, which is a module of I'(, x) and a module of
o[B,]. Consider the set M of the nontrivial modules M’ of C such that
Mc M'. Set
M =M.

Clearly, M € M. Since M # @& and all the elements of M contain M, it
follows from Assertion (M5) of Proposition 2.5 that M is a module of C.
Since C' is a component of I' (4 x, M is a module of [(,x)- As previously
seen for M, M ¢ V(C)n B, or M ¢ V(C)n D,. Since M ¢ M and
M ¢ V(C)n By, we have M ¢ V(C) n B,. Therefore, M ¢ B,. Set

N={veB,~M:v <>, M}.

We verify that M U N is a module of C. It suffices to show that for any
weV(C)nDy, ue M and v € N, we have {u,w},{v,w} € E(T(,x))
or {u,w},{v,w} ¢ E(I', x)). Since v € N, there exist u’,u” € M such
that v />, {u/,u”}. Furthermore, since M is a module of C, we have
{u’ w}7 {ula ’U)}, {u”,w} € E(F(J,X)) or {U,UJ}, {u,7 w}’ {u"’ w} ¢ E(F(O‘,X))'
For instance, suppose that {u,w},{u’,w}, {u",w} € E(I'(4 x)). By Corol-
lary 9.21, {z € By : {z,v} € E(T(s,x))} is a module of o[B,]. Since
u,u’,u" € {z € By : {z,v} € E('(4,x))} and v </, {z’,2"}, we obtain
ve{zeBy:{zv}e E(lx))}. Hence {u,w}, {v, w}, {uv"  w}, {v,w} e
E(T(5,xy). Similarly, if {u,w}, {v',w},{u",w} ¢ E(I'(, x)), then if fol-
lows from Corollary 9.21 that {u,w}, {u',w},{u",w},{v,w} ¢ E(T (4 x))-
Consequently, M U N is a module of C. It follows from the definition of
M that N ¢ M. Therefore, we have N = @, and hence, M is a module of
o[Bg]. Since I'(, x) does not have isolated vertices by (9.10), it follows
from Lemmas 9.23 and 9.24 that M is a module of o[ B,]. Lastly, since M
is a module of I', x), it follows from Corollary 9.19 that M is a module
of 0. O

The next result is an easy consequence of Theorem 9.5.

Corollary 9.31. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. If Statement (S5) holds, then T'(, x) does not embed Ps (see Figure 1.1).

Proof. For a contradiction, suppose that there exists Y ¢ (V (o) \ X) such that
['(s,x)[Y] = P5. Since Ps is connected, there exists a component C' of T', x)
such that Y ¢ V(C). We have

Lorxuvyx) = Do x)[Y]



154 CHAPTER 9. PARTIALLY CRITICAL 2-STRUCTURES

Since T'(,x)[Y] = C[Y], T(sxuy],x) is prime. It follows from Theorem 9.5
applied to o[X uY] that o[X UY] is prime, which contradicts the fact that
Statement (S5) holds. O

Since the proof of the next observation is obvious, we omit it.

Observation 9.32. Given a connected and bipartite graph I', I embeds Ko® Ko
if and only if I" embeds Ps.

Proof of Theorem 9.6. We make a preliminary observation. Since Statement
(S5) holds, it follows from Remark 9.4 that Statement (S3) holds as well.

To begin, suppose that the first assertion holds, that is, o is (V (o) \ X)-
critical. We have to prove that the second assertion holds. Consider C' ¢
C(T(5,x)). By Theorem 9.5 applied to o, o[ X uV(C)] is prime. We have to
show that o[ X uV (C)] is V(CO)-critical. Let ce V(C). Since o is (V (o) \ X)-
critical, o — ¢ is not prime. We have

Fioee,xy =T(o,x) —

Therefore, we obtain

C(T(o-c,x)) = (C(T(4,x)) N {C}) UC(C ~c). (9.11)

Since o — ¢ is not prime, it follows from Theorem 9.5 applied to o — ¢ that there
exists C" € C(I'(g—¢,x{c})) such that o[ X uV(C")] is not prime. By (9.11),
C" e (C(T(4,x))N{C})uC(C~c). By Theorem 9.5 applied to o, o[ X UV (D)] is
prime for every D € (C(I'(,,x)) ~ {C}). Thus, we obtain C' € C(C - c¢). Finally,
since

Leoxov@-eviongen =C -6

it follows from Theorem 9.5 applied to o[ X UV (C)]-c that o[ X uV (C)]-cis
not prime. Consequently, o[X uV (C)] is V(C)-critical.

To continue, suppose that the second assertion holds. We have to prove that
the third assertion holds. Consider C' € C(I'(,,x)). By Theorem 9.5 applied to
o, v(C)=2orv(C) >4 and C is prime. Suppose that v(C) >4 and C is prime.
We have to show that C is critical. Let ¢ € V/(C'). We have to show that C —¢
is not prime. If C' - ¢ is disconnected, then C' - ¢ is not prime. Thus, suppose
that C — ¢ is connected. It follows that

Lorxuve)-e,vengen =C - c

Since the second assertion holds, o[ X UV (C)] - ¢ is not prime. It follows from
Theorem 9.5 applied to o[ X UV (C)] - ¢ that C - ¢ is not prime.
Lastly, suppose that the third assertion holds. Hence, for every C' € C(T'(, x)),
we have
v(C) =2 or v(C) >4 and C is critical. (9.12)

We have to prove that o is (V (o) \ X)-critical. By Theorem 9.5 applied to
o, o is prime. Let v € V(o) N\ X. We have to prove that o — v is not prime.
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Denote by C' the component of I, x) containing v. Since o is prime, it follows
from Corollary 9.22 that I'(, x) has no isolated vertices. By the first assertion
of Proposition 9.29, C is bipartite. Moreover, C' does not embed P; by Corol-
lary 9.31. It follows from Observation 9.32 that C' does not embed Ky & Ks.
Therefore,

C - v does not embed K3 & Ks. (9.13)

As seen in (9.11),
C(C -v) cC(T(5-,x))- (9.14)

Suppose that C'—v admits isolated vertices. By (9.14), I'(,_,, x) admits isolated
vertices as well. It follows from Corollary 9.22 that ¢ — v is not prime. Finally,
suppose that C — v does not admit isolated vertices. Hence, v(C") > 2 for each
C'" € C(C - v). In particular, we do not have v(C) = 2. It follows from (9.12)
that

v(C) 24 and C is critical. (9.15)

Since v(C") > 2 for each C' € C(C - v), it follows from (9.13) that C' — v is
connected. By (9.14), C' - v € C(I'(4—5,x)). Furthermore, it follows from (9.15)
that v(C' —v) >3 and C' —v is not prime. By Theorem 9.5 applied to o —v, o —v
is not prime. O

9.5 Outside graph and half graph

Given a 2-structure o, consider X ¢ V(o) such that o[X] is prime. Suppose
that Statement (S5) holds. Suppose also that o is (V (o) \ X )-critical. Consider
a component C' of I'(, xy such that v(C) > 4. By Remark 9.4, Statement (S3)
holds because Statement (S5) holds. It follows from Proposition 9.29 that C
is bipartite. It follows from Theorem 9.6 that C is critical. Moreover, since
Statement (S5) holds, C does not embed Ps by Corollary 9.31. In Theorem 9.38
below, we characterize the bipartite graphs I' such that I" does not embed P;
and T is critical. We need the following three definitions (see Definitions 9.33,
9.35, and 9.36).

Definition 9.33. We extend to the infinite case the definition of the half graph
Hs,,, (see Figure 4.1). Given a bipartite graph I', with bipartition {X,Y}, T is
a half graph [15] if there exist a linear order L defined on X, and a bijection ¢
from X onto Y such that

EM)={{z,p(z")} 2 < 2"} (9.16)

Clearly, a finite half graph is isomorphic to the graph Ha,,, where m > 1 (see
Figure 4.1).

Remark 9.34. Given a bipartite graph T", with bipartition {X,Y}. Suppose
that I is a half graph. There exist a linear order L defined on X, and a bijection
o from X onto Y such that (9.16) holds. Given x,y € X, we obtain that

x <p, y if and only if Nr(x) 2 Nr(y).
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Therefore, the linear order L is unique.
Furthermore, denote by ¢(L) the unique linear order defined on Y such that
 is an isomorphism from L onto ¢(L). We obtain

ET) ={{y. o ()} 1y <oy ¥}

Consequently, T is also a half graph by considering the linear order p(L)* defined
on Y (see Section 1.3), and the bijection ¢™1: Y — X.

Definition 9.35. A linear order L is discrete [30] if the following two conditions
are satisfied

1. for every v € V(L), if v is not the least element of L, then v admits an
immediate predecessor;

2. for every v € V(L), if v is not the greatest element of L, then v admits an
immediate successor.

Definition 9.36. A half graph is discrete if the linear order L in Definition 9.33
is discrete.

In the next observation, we explain how to decompose suitably a discrete
linear order (see Definition 9.35).

Observation 9.37. Given an infinite linear order A, X is discrete if and only if
A admits a modular partition P satisfying the following conditions.

1. If |P| =1, then A~ Ly or (Ly)* or Lz.

2. For each M € P, if M is neither the least nor the greatest element of the
quotient A\/P ® | then A\[M] ~ Lg.

3. If |P| > 2 and A/P admits a least element denoted by Min, then A[Min] ~
LN or Lz.

4. If |P| > 2 and A\/P admits a greatest element denoted by Max, then
A[Max] ~ (Ly)* or Ly.

Idea of proof. For a linear order, both notions of an interval and a module coin-
cide. Consider an infinite discrete linear order A. We define on V() the binary
relation ~ as follows. Given v,w € V(A), v ~ w if the smallest module of A
containing v and w is finite. Clearly, ~ is an equivalence relation. Furthermore,
the equivalence classes of ~ are modules of A\. Thus, the set P of the equivalence
classes of ~ is a modular partition of A. Since A is discrete, it is is easy to verify
that for each M € P, \[M] is isomorphic to Ly, (Ly)*, or Lz. O

Theorem 9.38 (Belkhechine et al. [3]). Given a bipartite graph ', with v(T") >
4, the following assertions are equivalent

1. T is a discrete half graph;

5Tt is easy to verify that a quotient of a linear order is a linear order as well.
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2. T does not embed Ps and I' is critical.

Now, we examine Theorem 9.38 in the finite case (see Proposition 9.41). We
need the following result which follows from the characterization of finite critical
2-structures done in Section 4.2.

Corollary 9.39. Given a finite and symmetric 2-structure T, with v(7) 25, T
is critical if and only if T is isomorphic to o(Hay, ), where n > 3.

Proof. To begin, suppose that 7 is isomorphic to o(Ha,), where n > 3. By
Corollary 4.20, 7 is critical.

Conversely, suppose that 7 is critical. By Corollary 4.6, there exists n > 3
such that P(7) is isomorphic to Ps, or there exists n > 3 such that P(7) is
isomorphic to Pan® K2y}, Pan+1, or Conye1. Since 7 is symmetric, it follows from
Propositions 4.23, 4.27, and 4.36 that P(7) is not isomorphic to P, ® K{2,},
Pyy,11, or Capy1. Consequently, P(7) is isomorphic to Ps,. It follows from
Corollary 4.20 that 7 is isomorphic to o(Hsy,), where n > 3. O

The next result is an immediate consequence of Corollary 9.39.

Corollary 9.40. Given a finite and bipartite graph T, with v(T') > 5, T is
critical if and only if T is a half graph.

Proof. To begin, suppose that I' is critical. We obtain that o(I") is symmetric
and critical. By Corollary 9.39 that o(T") is isomorphic to o(Ha, ), where n > 3.
We obtain that I' is isomorphic to Hs, or its complement Hs,. Since n > 3,
H,,, embeds the complete graph K3. Since I is bipartite, we obtain that I is
isomorphic to Ha,. As seen at the end of Definition 9.33, Hs,, is a half-graph.

Conversely, suppose that I' is a half graph. As seen at the end of Defini-
tion 9.33, T' is isomorphic to Hs,, where n > 3. By Corollary 9.39, o(Hay,) is
critical. Hence, Ho, is critical too. Therefore, I" is critical. O]

Proposition 9.41. For a finite and bipartite graph T, with v(T') > 4, the fol-
lowing assertions are equivalent

1. T does not embed Ps and I is prime;
2. T is critical;
8. T is a half graph.

Proof. First, suppose that v(T') = 4. We have T is prime if and only if T is
isomorphic to Py, which is isomorphic to the half graph H,. Therefore, the
three assertions above are equivalent when v(T") = 4.

Second, suppose that v(I') = 5. The first assertion does not hold because

a prime and bipartite graph defined on 5 vertices® is isomorphic to Ps. (9.17)

Furthermore, by Corollary 9.40, the last two assertions do not hold because
v(T") is odd. Thus, the three assertions above are equivalent when v(T") = 5.
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Now, suppose that v(T") > 6. By Corollary 9.40, the last two assertions are
equivalent. To begin, suppose that the first assertion holds. By (9.17),

T" does not embed a prime graph of size 5. (9.18)

It follows from Theorem 5.3 that v(I') is even. If v(I') = 6, then I' is critical
by (9.18). Hence, suppose that v(I') > 7. Since v(T") is even, it follows from
Theorem 5.3 and (9.18) that T' is critical. Consequently, the first assertion
implies the second one.

Lastly, suppose that T" is both critical and a half graph. If v(T") = 6, then
I' does not embed Ps. Suppose that v(I') > 7. Since I' is a half graph, v(T") is
even. Since I is critical, it follows from Corollary 3.20 that I" does not embed
Ps. O

The next result is a consequence of Proposition 9.41 and Theorem 7.1.
Corollary 9.42. A half graph T, with v(T') > 4, is prime.

Proof. There exists a bipartition {X,Y} of V(T"), a linear order L defined on X,
and a bijection ¢ from X onto Y such that E(T') = {{z,¢(z')} : 2 < 2'}. By
Proposition 9.41, we can suppose that I' is infinite. Consider a finite subset F'
of V(I'). Let X' be a finite subset of X such that FnX ¢ X', o} (FnY) c X',
and |X'| > 2. Set
F'=X"up(X").

Clearly, we have F' € F'. By considering Y’ = ¢(X"), the linear order L' = L[ X ],
and the bijection p;x/ : X' — Y’ we obtain that T'[F'] is a half graph. By
Proposition 9.41, T'[F'] is prime. To conclude, it suffices to use Theorem 7.1. O

Now, we are ready to demonstrate Theorem 9.38.

Proof of Theorem 9.38. By Proposition 9.41, we can suppose that I is infinite.
To begin, suppose that I' is a discrete half graph. There exists a bipartition
{X,Y} of V(I), a discrete linear order L defined on X, and a bijection ¢ from X
onto Y such that E(T') = {{z,¢(2')} : 2 <, 2'}. By Corollary 9.42, T is prime.
Hence, T' is connected. Since I' is a half graph, I" does not embed K> & Ks.
It follows from Observation 9.32 that I' does not embed Ps;. Now, we have to

verify that
for every x € X, I' — x is not prime. (9.19)

First, suppose that x is not the least element of L. Since L is discrete, z admits
an immediate predecessor z~. It is easy to verify that {¢(27), ¢(z)} is a module
of I' - z. Second, suppose that x is the least element of L. Clearly, p(z) is an
isolated vertex of I' — z, so I — x is not prime. Thus (9.19) holds. Similarly, it
follows from Remark 9.34 that I' — y is not prime for each y € Y. Consequently,
I is critical.

Conversely, suppose that I' does not embed Ps and T is critical. Since T’
is bipartite, there exists a bipartition {X,Y} of V(I') such that X and Y are
stable sets of I". To complete the proof, we establish the next claims. To begin,
we define a linear order L on X as follows.
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Definition 9.43. Since I' is prime, we have Np(z) # Np(z') for distinct z, 2’ €
X. Moreover, since I' does not embed Ps, I' does not embed Ky & K5 by
Observation 9.32. Tt follows that for distinct x,z" € X, we have Nr(x) € Nr(z')
or Np(z') € Np(x). Therefore, we can define on X a linear order L as follows.
Given distinct z,2" € X,

x <p " if Nr(z) 2 Nr(z').

We show that T' is the half graph defined from the linear order L (see
Claim 9.51). We have also to define a suitable bijection from X onto Y (see
Definition 9.47). We use the fact that I' is critical.

Claim 9.44. Given x € X, if I'—x is disconnected, then the following assertions
hold

1. T' = x admits a unique isolated vertex i, and i, €Y;
2. Nr(z) =Y, so x is the least element of L;
3. i, is the unique element of V(T') ~ {z} such that T - {x,i,} is prime.

Proof. Since I' is connected, the set of the isolated vertices of I' — x is a module
of I'. Thus, we have

{CeC(T-2z):v(C)=1}<1.

Furthermore, since I" does not embed K>® K5, I'-x admits at most one nontrivial
component. Therefore, we have also

[{CeC(T-z):v(C)>2}<1.

Since I' - z is disconnected, |C(T" - z)| > 2. It follows that I' — 2 admits a unique
isolated vertex i, and T" - {x,i,} is connected. Since i, is an isolated vertex of
-2, {z,i;} € E(T') because T is connected. Hence, i, €Y.

Now, we verify that Np(x) =Y. Let y € Y \ {i,}. Since I" = {z,i,} is con-
nected, there exits ' € X \ {z} such that {z',y} € E(T). Since I'[{z,2',y,i,}] #
Ky Ky, we obtain {x,y} € E(T) or {a',i,} € E(T'). Since i, is isolated in T -z,
we have {2,i,} ¢ E(T'). Therefore, we obtain {z,y} € E(T'). It follows that
Nr(z) =Y. Hence, x is the least element of L.

Lastly, we verify that I'={x, i, } is prime. Otherwise, I'-{x, i, } admits a non-
trivial module M. Since I' - {z,4, } is connected and bipartite with bipartition
{X ~A{a}, Y ~{ip}}, we have M ¢ X N\ {z} or M €Y ~{i,}. Since Np(z) =Y
and Nr(i;) = {}, M is a module of T', which contradicts the fact that T' is
prime. Consequently, I'—{x, i, } is prime. Moreover, consider v € V(T') N {z, i, }.
Since i, is isolated in I — x, it is also isolated in " — {x, v}. Therefore I' — {x, v}
is not prime. It follows that ¢, is the unique element of V(I") N {x} such that
I'—{x,i,} is prime. O

Claim 9.45. Let x € X such that T'—x is connected. For any nontrivial module
M of T -z, there exist x~,x* €Y such that M = {x~,2*}, {z,2"} ¢ E(T'), and
{z,2*} e E(T).
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Proof. Let M be a nontrivial module of I'—z. Since I' -z is connected, we have
Mc X ~{z} or M cY. In the first instance, M is a module of I'". Therefore,
we have M cY. Set M~ ={ye M :{x,y} ¢ E(T)} and M* ={ye M : {x,y} €
E(T")}. Clearly, M~ and M* are modules of I'. Since I' is prime and |M| > 2,
we obtain |[M | =1 and |[M*| = 1. Denote by =~ the unique element of M~ and
denote by z* the unique element of M*. We obtain M = {z~,z*}. Furthermore,
we have {z,2”} ¢ E(T) and {z,z*} € E(T). O

Claim 9.46. Given x € X, if I' — x is connected, then there exist v~ ,x* € Y
satisfying the following assertions

1. {z7,x*} is the only nontrivial module of T — x;
2. {z,2"} ¢ E(T") and {z,z"} ¢ E(T);

3. for everyue X, if u<g x, then {u,z"} € E(T');
4. for everyue X, if x <g u, then {u,x*} ¢ E(T);
5. T —{z,z7} and T - {x,x*} are prime;

6. x* is the unique element of V(T') ~ {z} such that {x,z*} ¢ E(T) and
T —{xz,z*} is prime.

Proof. Since I is critical, I' - z admits a nontrivial module M. By Claim 9.45,
there exist 7,2 € Y such that M = {7, 2"}, {z,2"} ¢ E(T), and {z,2*} €
E(T). Hence, {z~,z*} is a nontrivial module of T - z.

For a contradiction, suppose that M is not the only nontrivial module of
I' — 2. Thus, there exists a nontrivial module N of I — z such that N = M. By
Claim 9.45, there exist z7,z% € Y such that N = {z7,2"}, {z,27} ¢ E(T), and
{z,2*} e BE(T). If Mn N # @, then M UN is a nontrivial module of T — z of
size 3, which contradicts Claim 9.45. Hence, we have M n N = @. We show
that M U N is a module of I' — z. Let w e (X ~ {z}). It suffices to verify that
M u N is a module of T[M u N u {u}]. Suppose that there exists v € M U N
such that {u,v} € E(T'). For instance, suppose that v € M. Since M is a
module of T' - x, we have {u,z”},{u,z*} ¢ E(T'). We obtain {u,z"} € E(T),
{z,27} ¢ E(T'), and {z,2*} € E(T"). Since I" does not embed K, ® K5, we obtain
{u,2*} € E(T'). Since {27, 2%} is a module of T" — z, we have {u,2"} € E(T).
Therefore, {u,w} € E(T) for every w € MUN. Tt follows that M UN is a module
of ' — , which contradicts Claim 9.45 because |[M u N| = 4. Consequently,
{z~,z*} is the only nontrivial module of T — z. It follows that T - {z,z”} and
I'—{x,a*} are prime.

Let u € X such that u <z, x. Since u <y x, we have Nr(u) 2 Nr(z). Hence,
we have {u,z*} € E(T") because {z,z*} € E(T"). Since {z~,x2*} is a module of
I' -z, we obtain {u,x”} € E(T).

Let w € X such that x <g u. Since x < u, we have Nr(z) 2 Nr(u). Hence,
we have {u,z”} ¢ E(T) because {z,2~} ¢ E(T'). Since {z™,2"} is a module of
I' -z, we obtain {u,z*} ¢ E(T).
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As previously seen, T'— {z,2”} and T - {z,2*} are prime. Now, consider
v e V(D) A{x,2”,2"}. Clearly, {«7,2"} is a nontrivial module of T' - {z,v},
so I' = {z,v} is not prime. Since {z,z"} ¢ F(T), z* is the unique element of
V(') ~ {z} such that {z,2*} € E(T') and " - {z,x*} is prime. O

Definition 9.47. We define a function ¢ : X — Y as follows. Given z € X,

iy if I' — x is disconnected (see Claim 9.44),
p(x) = qor
x* if T' -z is connected (see Claim 9.46).

The next claim follows easily from Claims 9.44 and 9.46.

Claim 9.48. For every x € X, ¢(x) is the unique element of V(I') \ {z} such
that {x,o(x)} € E(T) and T - {x,p(x)} is prime.

In the next two claims, we verify that ¢ is bijective.

Claim 9.49. ¢ is injective.

Proof. Consider distinct u,v € X. For instance, suppose that v <7 v. In par-
ticular, v is not the least element of L. It follows from Claim 9.44 that I' — v
is connected. By Claim 9.46, there exist v™,v" € Y such that {v,v”"} ¢ E(T),
{v,v"} € E(T), and {v™,v*} is the only nontrivial module of T - v. We have
p(v) =v*.

First, suppose that T' — u is disconnected. We have ¢(u) = i,, where i, is
the unique isolated vertex of I' — u by Claim 9.44. We obtain {v, p(u)} ¢ E(T).
Thus, we have ¢(u) # p(v) because {v,p(v)} € E(T") (see Claim 9.48).

Second, suppose that I'—u is connected. By Claim 9.46, there exist v, u* € Y’
such that {u,u"} ¢ E(T), {u,u*} ¢ E(T), and {u",u*} is the only nontrivial
module of T' = u. We have ¢(u) = u*. Since u <y, v, it follows from the fourth
assertion of Claim 9.46 applied to u that {v,p(u)} ¢ E(T). Since {v,¢(v)} €
E(T) (see Claim 9.48), p(u) # ¢(v). O

Claim 9.50. ¢ s surjective.

Proof. Let v € Y. Since I' is critical, I — v is not prime. First, suppose that
I' - v is disconnected. As in Claim 9.44, we obtain that I" — v admits an isolated
vertex 4,. Thus, we have Nrp(i,) = {v}. Since {iy,¢(iy)} € E(T'), we obtain
p(iy) = (iy)" = 0.

Second, suppose that I'—v is connected. As in Claim 9.46, there exist v™,v* €
X such that {v7,v*} is the only nontrivial module of T'—v, {v,v™} ¢ E(T), and
{v,v*} € E(T"). Furthermore, I' - {v,v"} and T - {v,v"} are prime. Thus, we
obtain T" = {v,v*} is prime and {v,v*} € E(T"). It follows from Claim 9.48 that
v =p("). O

It follows from Claims 9.49 and 9.50 that ¢ is bijective.
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Claim 9.51. T is the half graph defined from the linear order L, and the bijec-
tion @.

Proof. Consider distinct u,x € X. We have to verify that
{u,p(x)} € E(T') if and only if u <, .

Suppose that uw <r x. We obtain Np(z) ¢ Np(u). By Claim 9.48, we have
©(x) € Nr(z). Hence, we obtain ¢(z) € Nr(u). Conversely, suppose that
x <r, u. In particular, u is not the least element of L. It follows from Claim 9.44
that ' — w is connected. By the fourth assertion of Claim 9.46 applied to x,
{u,z*} ¢ E(T), that is, {u, p(z)} ¢ E(T). O

Claim 9.52. Giwen x € X, if x is not the least element of L, then x admits an
immediate predecessor in L.

Proof. Let © € X. Suppose that = is not the least element of L. It follows
from Claim 9.44 that I" — x is connected. By Claim 9.46, there exist 7,27 ¢ Y
such that {z~,2"} is the only nontrivial module of T' — z, {z,2"} ¢ E(T'), and
{z,2*} € E(T'). Furthermore, for every u € X, we have

if u<y, x, then {u,z”} € E(T), (9.20)
by the third assertion of Claim 9.46 applied to z. Set
t=pt(z).

By Claim 9.48, {t,o(t)} € E(T), that is, {t,2"} € E(I'). We obtain =~ «
Nr(t) ~ Nr(z). Hence, we have Nr(t) 2 Nr(z), so t <, x. We prove that t
is the immediate predecessor of . We must verify that

{ueX:t<pu<pz}=0.

First, suppose that I' — ¢ is disconnected. By Claim 9.44, there exists i; € Y
such that i, is an isolated vertex of I" — . Since p(t) = 4y, iy = ~. We obtain
that {u,z"} ¢ E(T) for every u € V(T') \ {¢t,2"}. It follows from (9.20) that
{ueX:t<pu<pz}=a.

Second, suppose that I'—¢ is connected. By Claim 9.46, there exist t™,t" € Y
such that {t7,¢*} is the only nontrivial module of T' - ¢, {¢t,¢"} ¢ E(T), and
{t,t*} € E(T"). Furthermore, for every u € X such that ¢ <y, u, we have {u,t*} ¢
E(T') by the fourth assertion of Claim 9.46 applied to ¢t. Recall that ¢+ = ¢(¢).
Since t = ¢! (z7), we obtain t* = z~. Therefore, for every u € X such that t <z, u,
we have {u, 2™} ¢ E(T). It follows from (9.20) that {u e X :t<pu<gpz} =@. O

By Remark 9.34, T is also the half graph defined from the linear order ¢(L)*
defined on Y, and the bijection ¢! :Y — X. The analogue of Claim 9.52 for
p(L)* follows.

Claim 9.53. Giveny €Y, if y is not the least element of p(L)*, then y admits
an immediate predecessor in o(L)*.
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The next claim is an immediate consequence of Claims 9.53.

Claim 9.54. Given x € X, if x is not the greatest element of L, then x admits
an immediate successor in L.

It follows from Claims 9.52 and 9.54 that L is discrete, which completes the
proof of Theorem 9.38. O

The next theorem follows from Theorems 9.6 and 9.38.

Theorem 9.55. Given a 2-structure o, consider X ¢ V(o) such that o[X] is
prime. Suppose that Statement (S5) holds. Suppose also that o is (V (o)~ X)-
critical. For each component C of T'(, xy, with v(C) 2 3, C is a discrete half
graph.

Proof. Let C be a component of I'¢, xy such that v(C) > 3. By Theorem 9.6,
v(C) 24 and C is critical. Furthermore, since Statement (S5) holds, C' does not
embed P; by Corollary 9.31. Finally, to use Theorem 9.38, we must verify that C'
is bipartite. Indeed, since o is prime, it follows from Corollary 9.22 that I'(, x)
has no isolated vertices. Furthermore, since Statement (S5) holds, Statement
(S3) holds too by Remark 9.4. Therefore, it follows from Proposition 9.29
that there exist distinct By, D), € p,,x) and By, D, € q(, x) such that B, € By,
D, ¢ Dy, and C is bipartite with bipartition {V(C)nB,, V(C)nD,}. Therefore,
it follows from Theorem 9.38 that C' is a discrete half graph. O

The next result follows from Theorems 9.5 and 9.6, Proposition 9.41, and
Corollary 9.31. It is the finite version of Theorem 9.10. Moreover, we use it in
the proof of Theorem 9.10.

Corollary 9.56. Given a 2-structure o, consider X ¢ V(o) such that o[X] is
prime. Suppose that
V(o) \ X is finite.

The following two assertions are equivalent
1. Statement (S5) holds and o is prime;
2. o is (V (o)~ X)-critical.

Proof. To begin, suppose that o is (V (o) X)-critical. In particular, o is prime.
Furthermore, by Remark 9.4, Statement (S5) holds.

Conversely, suppose that Statement (S5) holds and o is prime. Since State-
ment (S5) holds, we can use Theorem 9.6 to prove that o is (V (o) \ X)-critical.
Consider a component C of I'(,, x) such that v(C) > 3. We have to show that
C'is critical. Since o is prime, it follows from Theorem 9.5 that v(C') >4 and C
is prime. Moreover, since Statement (S5) holds, it follows from Corollary 9.31
that C' does not embed Ps. By Proposition 9.41, I' is critical. It follows from
Theorem 9.6 that o is (V (o) \ X)-critical. O
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Proof of Theorem 9.10. To begin, suppose that o is finitely (V (o)~ X )-critical.
Let v e V(o)\X. Since o is finitely (V (o)~ X)-critical, there exists a finite sub-
set F of V(o)~X such that o[ X UF] is F-critical. It follows from Corollary 9.56
that Statement (S5) holds and o is prime.

Conversely, suppose that Statement (S5) holds and o is prime. We prove
that o is finitely (V' (o) \ X)-critical. Let F be a finite subset of V(o) \ X. We
have to find a finite subset F' of V(o) \ X such that F' ¢ F’ and o[X U F'] is
(F")-critical. We distinguish the following two cases.

e Suppose that V(o) \ X is finite. It follows from Corollary 9.56 that o is
(V (o) ~ X)-critical. Hence, we can consider V(o) ~ X for F”.

e Suppose that V(o) \ X is infinite. By Corollary 9.8, there exists a finite
subset F' of V(o) ~ X such that F ¢ F’ and o[X U F'] is prime. Since
Statement (S5) holds, it follows from Corollary 9.56 applied to o[ X u F']
that o[ X U F'] is (F')-critical. O

As announced in Subsection 9.1, we discuss Theorem 9.10 in the next remark
by using Theorems 9.6 and 9.38.

Remark 9.57. We denote by Lg the usual linear order on the set of rational
numbers. Obviously, Lg is not discrete. We consider the graph G defined on

{0,1,2,3}u ({0,1} x Q) by

E(G) = {{0,1},{1,2},{2,3}} u{{1,(1,9)} : ¢ Q}
U (%{{(O,Q), (1,7)}:r2q}).

Set X ={0,1,2,3}, Y = {0} xQ and Z = {1} x Q. We have G[X] is prime
because G[X] = P4 (see Fact 2.6). We consider the 2-structure o(G) associated
with G. Since G[X] is prime, o(G)[X] is prime too. We have

Y =(X)o(q), Z = Xo()(0), and p(o(a).x) = {Y. Z}.
Furthermore, it follows from Corollary 3.18 that
F(O’(G),X) :G[YUZ]. (921)

We verify that o(G) is finitely (V (o) \ X)-critical (see Definition 9.9) without
being (V (o) \ X)-critical.

First, we show that Statement (Sk) holds for every odd integer k > 1. Let
W be a finite and nonempty subset of Y u Z such that W e &, x) (see Nota-
tion 9.2). We have to show that W is even. If WnY = g, then {0} uW is a
module of ¢(G)[X u W] because Z = X, (0). Hence, we have WnY = @. We
denote the elements of WnY by (0,qo),- -, (0,¢n), where m > 0, in such a way
that ¢o < - < ¢m, when m > 1. Set

Z = {j<q: (1,5) e W},
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Since Z = X,((0), {0} u ({1} x Z7) is a module of o(G)[X uW]. Hence, we
have Z~ = @. Set

Z"={j>2qm:(1,5) e W}

We obtain that {1} x Z* is a module of o(G)[X uW]. Hence, we have |Z*| < 1.
If Z* = @, then (X uW) ~ {(0,¢)} is a module of o(G)[X U W] because
(0,9m) € {X)s(c)- Thus, we obtain |Z*| = 1. Therefore, [W| =2 if m = 0. Now,
suppose that m > 1. Set

Zi={qi <j<qis1:(1,j) e W}

for i =0,...,m—-1. Given i =0,...,m—1, we have {1} x Z; is a module of
o(G)[X uW]. Hence, we have |Z;| < 1. Moreover, {(0,¢;), (0,¢;+1)} is a module
of o(G)[X uW]if Z; = @. Therefore, we obtain |Z;| = 1. Consequently, Z~ = @,
|Z*| =1, and |Z;] =1 for i = 0,...,m - 1. Thus, |WnZ| =m+1, and hence
[W|=2m+2.

Second, we prove that o¢ is finitely (V (o) N X)-critical. Let F' be a finite
subset of Y U Z. There exists a finite subset F’ of @ such that [F’| > 2 and
F < ({0,1} x F'). We have G[{0,1} x F'] ~ Hyyps| (see Figure 4.1). It follows
from Proposition 9.41 that G[{0,1} x F'] is critical. Set F = {0,1} x F'. We
obtain that

F c F and G[F] is critical. (9.22)

It follows from (9.21) and (9.22) that Lo (e)xuF), F) Is critical. Since State-

ment (S5) holds, it follows from Theorem 9.6 that o(G)[X U F] is F-critical.
Consequently, o(G) is finitely (V (o) \ X)-critical.

Third, we verify that o(G) is not (V(o(G)) \ X)-critical. To begin, we
verify that G[Y u Z] is a non discrete half graph. Clearly, G[Y u Z] is bipartite
with bipartition {Y, Z}. Consider the bijection ¢ : Y — Z, which maps (0, q)
to (1, q) for each g € Q. Moreover, consider the linear order Ly defined on Y as
follows. Given distinct ¢,7 € Q, (0,q) <z, (0,7) if ¢ <, 7. Clearly, G[Y u Z] is
the half graph defined from Ly and ¢. Recall that the linear order Ly is unique
by Remark 9.34. Since Ly ~ Lg, G[Y U Z] is not discrete.

Since Statement (S5) holds, I'(, (), x) does not embed Ps by Corollary 9.31.
Since G[Y'uZ] is a non discrete half graph, I'(, (), x) is a non discrete half graph
by (9.21). It follows from Theorem 9.38 that I'(,(g),x) is not critical. Clearly,
G[Y u Z] is connected. Therefore, I ;(),x) is connected by (9.21). Since
Statement (S5) holds, it follows from Theorem 9.6 that o(G) is not (V (o)~ X)-
critical. Since o(G) is finitely (V(o(G)) \ X)-critical, it follows from The-
orem 9.10 that o(G) is prime. Consequently, there exists v € V(o(G)) ~ X
such that o(G) — v is prime. In fact, we have o(G) — w is prime for every
weV(o(G))\ X.

Proof of Theorem 9.11. Since Statement (S5) holds, we can use Theorem 9.6 as
follows. Let v € V(o) \ X. Denote by C' the component of I, xy such that
v e V(C). By Theorem 9.6 applied to o, v(C) =2 or v(C) >4 and C is critical.
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First, suppose that v(C) = 2. We have

Lo-vc),x) =Tox) - V(C).

Therefore, the components of T'(,_y (¢ x) are the components of T'(, x) that
are distinct from C. Let D be a component of I, x) such that D # C. By
Theorem 9.6 applied to o, v(D) = 2 or v(D) >4 and D is critical. It follows
from Theorem 9.6 applied to o - V(C) that 0 -V (C) is ((V (o)~ X)\V(C))-
critical. Hence, we consider for w the unique element of V(C) \ {v}.

Second, suppose that v(C) > 4 and C' is critical. By Theorem 9.55, C' is a
discrete half graph. As seen in the proof of Theorem 9.55, there exist distinct
By, Dy € q(5,x) such that C' is bipartite with bipartition {V(C)n By, V(C)nDg}.
For instance, assume that v € V(C)nB,. Since C is a discrete half graph, there
exists a discrete linear order L defined on V(C)n B, and a bijection ¢ : V(C)n
B, — V(C) n D, such that C is defined from L and ¢ (see Definition 9.33).
By Claim 9.48, C - {v,p(v)} is prime. Hence, C - {v,p(v)} is connected.
Consequently, the components of I'(,_(, ,(v)},x) are the components of I'(, x)
that are distinct from C' and C'—{v,¢(v)}. Let D be a component of ', xy such
that D # C. By Theorem 9.6 applied to o, v(D) = 2 or v(D) > 4 and D is critical.
If v(C) =4, then v(C - {v,¢(v)}) = 2 and it follows from Theorem 9.6 applied
to o —{v,p(v)} that o — {v,p(v)} is (V (o) N X) ~ {v,p(v)})-critical. Lastly,
suppose that v(C) > 5. To apply Theorem 9.6 to o — {v, p(v)}, we must verify
that v(C—{v,p(v)}) 2 4 and C—{v,(v)} is critical. Since C is a half graph with
v(C) > 5, we have v(C) > 6, and hence v(C - {v,p(v)}) >4. Clearly, L-v is a
discrete linear order. Moreover, C'—{v, ¢(v)} is the half graph defined from L-x
and the bijection ¢y (0)nB,) v} 1 (V(C)NBy) N {v} — (V(C)nDy)~{p(v)}.
Therefore, C'—{v,(v)} is a discrete half graph. By Theorem 9.38, C—{v, o(v)}
is critical. Consequently, it follows from Theorem 9.6 applied to o — {v,o(v)}
that o = {v,p(v)} is (V(e) N~ X) \ {v, p(v)})-critical. O

9.6 Proofs of Theorems 5.8 and 5.9

Proof of Theorem 5.8. Let ¢ be a prime 2-structure. Consider X ¢ V(o) such
that o[ X] is prime. Suppose that V(o) \ X is finite and |V (o) ~ X| 2 6.
For a contradiction, suppose that for each proper subset Y of V(o) \ X, we
have
if o[ X Y] is prime, then |V (o) N (X uY)| is odd. (9.23)

For Y = @ in (9.23), we obtain |V ()~ X| is odd. Hence, we have [V (o)\ X| 2 7.
For Y ¢ (V(o) \ X), with |Y] =5, it follows from (9.23) that o[ X U Y] is not
prime. Consequently, Statement (S5) holds. Since |V (o) \ X| is odd, there
exists a component C' of I'(, xy such that v(C) is odd. Since Statement (S5)
holds, Statement (S3) holds too by Remark 9.4. Since o is prime, it follows
from Theorem 9.5 that o[ X uV(C)] is prime. We have

V(o)X =V(C)u V(o) (XuV(C))).
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Since |V (o) \ X| and v(C) are odd, we obtain that |V (o) N (X uV(C))| is even.
It follows from (9.23) that V/(C) = V(o) \ X. Thus, I'¢, x) is connected. Since
o is prime, it follows from Theorem 9.5 that I'(, x) is prime. Furthermore, since
o is prime, it follows from Corollary 9.22 that I'(, x) has no isolated vertices.
Since Statement (S3) holds, it follows from Proposition 9.29 that C' is bipartite.
Finally, since Statement (S5) holds, I(,, xy does not embed Ps by Corollary 9.31.
It follows from Proposition 9.41 that I'(,, x) is a half graph, which is impossible
because v(I' (4, x)) = |V (o) N~ X[ and [V (o) \ X] is odd.

Consequently (9.23) does not hold. Therefore, there exists Y ¢ (V (o) \ X)
such that o[ X uY'] is prime and [V (o) N\ (X UY)] is even. Recall that V(o) X
is finite, so V(o) N\ (X UY) is as well. It follows from Corollary 3.20 applied to
o[X uY] that there exist distinct v,w € V(o) N (X UY') such that o — {v,w} is
prime. O

Proof of Theorem 5.9. Since Statement S; or Statement Sy hold, we have
U0 x) * D (9.24)

By Theorem 5.8, we can assume that [V (o)~ X|=4 or 5. If [V (o) \ X| =4,
then it suffices to apply Theorem 3.19. Hence, suppose that [V (o) \ X| = 5.

For a contradiction, suppose that Statement (S3) holds. It follows from
Theorem 9.5 that for each component C of I' , x, we have v(C) =2 or v(C) > 4
and C'is prime. Since [V (o) \ X| =5, we obtain that I'(, x) is connected. Thus,
['(5,x) is prime. Since o is prime, it follows from Corollary 9.22 that I'(, x)
has no isolated vertices. Since Statement (S3) holds, it follows from the first
assertion of Proposition 9.29 that p(s, x) = ¢(s,x), and g, x) has two elements,
denoted by B, and D,. Moreover, I, x) is bipartite, with bipartition { By, Dy }.
Since I'(,, xy is prime and bipartite, we have I'(, x) ~ P5. Hence, I'(, x) embeds
K3 @ Ky. Thus, there exists distinct v, v’ € B, and distinct w, w’ € D, such that
{v,w}, {v',w'} € E(T'(,x)) and {v,w'},{v,w} ¢ E(T'(, x)). It follows from
Fact 9.28 that By, Dg € q(, ), which contradicts (9.24).

Consequently, Statement (S3) does not hold. Therefore, there exists Y ¢
(V(e)\ X) such that |Y| =3 and o[ X Y] is prime, which completes the proof
because |X| = 5. O
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Chapter 10

The Rigollet-Thomassé
theorem

The aim of this chapter is to demonstrate the following theorem.

Theorem 10.1 (Rigollet and Thomassé! [29]). Given an infinite prime 2-
structure o, there exists X € V(o) such that 2

X £V (o),
X s equipotent to V (o), (RT)

and

o[ X] is prime.
Observation 10.2. Let ¢ be an infinite prime 2-structure. Suppose that o
is not finitely critical (see Definition 8.1). Hence, there exists a finite and
nonempty subset F' of V(o) such that o — F is prime. Clearly, V(o) \ F is

a proper subset of V(o) and V(o) \ F is equipotent to V(o). Therefore, The-
orem 10.1 holds for infinite prime 2-structure that are not finitely critical.

Rigollet and Thomassé [29] associated the following digraph with a critical
2-structure.

Definition 10.3. Consider an infinite prime 2-structure o. The criticality
digraph C(c) of o is defined on V(C(c)) = V(o) as follows. Given distinct
v,weV(o), (w,v) e A(C(0)) if 0 —v admits a nontrivial module containing w.

10.1 Modular decomposition in the infinite case

Notation 10.4. We associate with each 2-structure o the set Y (o) of the
modules of ¢ that are maximal under inclusion among the proper modules of

IRigollet and Thomassé [29] proved this theorem for infinite digraphs
2We use the axiom of choice to prove Theorem 10.1. We also use the axiom of choice to
prove some of the preliminary results that follow, and we mention its use in their proofs only.
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o. (Note that T (o) can be empty when ¢ is infinite.)

Proposition 10.5. Let o be a connected 2-structure. If Y (o) + @, then Y (o)
is a modular partition of o and /Y (o) is prime.

Proof. Since o is connected, it follows from Proposition 2.12 that o is uncut-
table.
First, we prove that

U (o) = V(o). (10.1)

Consider M € T (o). Let v € V(o) x M. Consider the family A, of the proper
modules of ¢ containing v. Set

N =N,

It is easy to verify that A is a proper module of o. Indeed, consider x,y € N
and w e V(o) N M. We have to verify that

w <, {z,y}.

Since z,y € N, there exist N, N’ € N, such that x ¢ N and y € N’. Since
N,N’ e N,, we have v e NnN'. By Assertion (M5) of Proposition 2.5, NUN" is
a module of o. Since w ¢ N, we have w ¢ NuN'. Tt follows that w «—, NUN’.
In particular, we have w «—, {x,y}. Therefore, N is a module of . For a
contradiction, suppose that A’ = V(o). Hence, there exists N € N, such that
NnM % @. By Assertion (M5) of Proposition 2.5, N u M is a module of o.
Since v € N x M, we have M ¢ N u M. It follows from the maximality of
M that NuM = V(o). Since N\ M = &, it follows from Assertion (M6) of
Proposition 2.5 that M \ N is a module of . Since N u M = V (o), we have
M~ N =V(o) N\ N. Consequently, N is a modular cut of o. Since v € N and
N #V(0), N is a nontrivial modular cut of o, which contradicts the fact that
o is uncuttable. It follows that

N V(o).

Hence, (10.1) holds.

Second, we show that T(o) is a modular partition of o. Since (10.1) holds,
it suffices to verify that the elements of Y(o) are pairwise disjoint. Consider
M,N € T(c) such that M nN # @. By Assertion (M5) of Proposition 2.5,
M U N is a module of o. For a contradiction, suppose that M uN = V(o).
Since N # V(0), we have M\ N # @. By Assertion (M6) of Proposition 2.5,
N N M is a module of o. Since MUN =V (o), we have N\ M =V (c) \ M.
Thus, M is a nontrivial modular cut of ¢, which contradicts the fact that o is
uncuttable. It follows that

MUN V(o).

It follows from the maximality of M and N that M = MUN and N = MUN.
Consequently, we have M = N. Tt follows that Y(o) is a modular partition of
0.
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Third, we prove that o/Y(c) is prime. Since o is uncuttable, we have
[T (0)| > 3. Let ¥ be a module of /Y (o) such that |P| > 2. We must verify that
U = T(0). By the second assertion of Lemma 2.10, UV is a module of 0. Let
M e V. Since |¥| > 2, we have M ¢ UW. It follows from the maximality of M
that U¥ = V(o). Hence, we obtain ¥ = Y (o). O

The following fact is useful to utilize Proposition 10.5.

Fact 10.6. Let o be a 2-structure. Consider X ¢ V(o) such that o[ X] is prime.
Let M be a module of . If X ¢ M, then

(V(o)N(X)s) S M (see Notation 3.12).
Consequently, o — (X ), is connected.

Proof. To begin, consider a module M of o such that X ¢ M. Let v e (V(o)~
(X)s). By Lemma 3.13, v € Ext, (X) or v € X,(y), where y € X. First, suppose
that v € Ext, (X). Set

Y =X u{v}.

Since v € Ext,(X), o[Y] is prime. By Assertion (M2) of Proposition 2.5, M nY
is a module of o[Y]. Since X ¢ (M nY), we obtain M nY =Y. Thus, v e M.
Second, suppose that v € X,(y), where y € X. Set

Y = (X {y}) U {o).

Since v € X, (y), {y,v} is a module of o[ X U {v}]. It follows that o[Y] is iso-
morphic to o[ X]. Hence, o[Y] is prime. By Assertion (M2) of Proposition 2.5,
M nY is a module of ¢[Y]. Since (X ~{y})c (M nY), we obtain MnY =Y.
Therefore, v € M. Consequently, (V (o)~ (X),) € M.

Now, we prove that ¢ — (X), is uncuttable. Consider a modular cut C
of 0 - (X),. By exchanging C and (V (o) \ (X)) \ C if necessary, we can
assume that |C'nX| > 2. Since Cn X is a module of o[ X] by Assertion (M2) of
Proposition 2.5, we obtain X ¢ C. It follows from the first assertion above that
(V(o) N {X),) € C. Hence, C is a trivial modular cut of o - (X),. It follows
that o — (X), is uncuttable. By Proposition 2.12, ¢ — (X}, is connected. O

10.2 Extreme vertices

Rigollet and Thomassé [29] introduced the following definition.

Definition 10.7. Consider a critical 2-structure o. A vertex v of ¢ is extreme
if there exists w € V(o) \ {v} such that V(o) {v,w} is a module of o —v. The
set of the extreme vertices of o is denoted by & (o).

For instance, as seen in Example 8.11, o(Hy) is a prime element of Fy.
Hence, o(Hy) is critical. Furthermore, {2,3,...} is a module of o(Hy) - 0.
Therefore, 0 is an extreme vertex of o(Hy).

We use the next notation to prove Proposition 10.9.

extreme
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Notation 10.8. Consider an infinite critical 2-structure o. By using the axiom
of choice, we obtain a function

Fé"(o’) : (9@(0-) - V(U)
satisfying for each v € &(0), v # Fe(,)(v) and
Fe(oy(v) =5 V(o) N {v, Fg(s)(v)} (see Notation 2.1),

that is, V(o) N {v, Fg(5)(v)} is a module of o —v.

Lastly, observe that Fig (. is injective. Indeed, consider distinct v,v" € &(o).
If Fg(o)(v) = Feoy(v'), then V(o) \ {Fg(s)(v)} is a module of o, which con-
tradicts the fact that o is prime. Consequently, Fg(,) is injective.
Proposition 10.9. Given an infinite critical 2-structure o, V(o) and V(o) ~
& (o) are equipotent.

Proof. Clearly, if &(o) is finite, then V(o) and V(o) \ (o) are equipotent
because V(o) is infinite. Thus, suppose that &(c) is infinite.

To begin, we show that Fig(,) does not contain cycles. Otherwise, there exists
extreme vertices vo,...,v, of o, where n > 1, such that Fg(s)(vo) = v1,...,
Feoy(Vn-1) = vn, and Feoy(vn) = vo. We obtain that V(o) N {Fg(o)(vi) :
i €{0,...,n}} is a module of o, which contradicts the fact that o is prime.

Consequently, Fi(,) does not contain cycles.
Now, given v € &(o), we prove that

if Fg(oy(v) € &(0) and (Fg(g))Q(v) € &(0), then (F(g(,,))g(v) ¢&(0). (10.2)
For a contradiction, suppose that there exists v € (o) such that

Fa(e)(v), (Fe(0))? (), (Fe(0))*(v) € £(0).
Set
v=(Fs())’(v) and Fie(0)(v) = (Fe(o))" (v).
Since Fg(,y does not contain cycles, (Fg(g))o(v)7 (Fg((,))l(v), (Fg(g))z(v),
(Fs(0))*(v) and (Fg(,))*(v) are pairwise distinct. For i =0,1,2,3, there exists
€i+1, fi+1 € E(0) such that

[(Fs(o)) ™ (v),V(0) NM{(Fa0)) (0), (Fe(o)) " () o = (€541, fiv1).  (10.3)

Moreover, for i =0,1,2,3, we have
(eir1s fir1) # [(Fe(o)) ™ (0): (Fo(o))' (v)]o (10.4)
because V(o) N\ {(Fg(,))"*" (v)} is not a module of o. Using (10.3) and (10.4),

we obtain
[(Fs(o))' (v), (Fis(0))* ()]0 = (e1, f1),
[(Fg(g))2(’l)), (Fg(o))s(v)]d = (627f2)7
[(Fe())* (), (Fe(e))' (v)]o = (e3, f3),
and

[(Fe(0))*(0), (Fe(0))*(v)]o # (€3, f3).
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Therefore, we have

(e1, f1) # (€2, f2). (10.5)
Using (10.3), we obtain

[(Fé”(a))l(v)v (Fg(o))4(v)]a = (elvfl)v
[(Fs(0))*(v), (Fa(o)) (v)]o = (e2, fo),
[(Fs(0)) (v), (Fe(o)) ' (v)]o = (ea, fa),
and

[(Fg(a))4(11), (Fg(a))Z(v)]a = (64’f4)'

It follows that
(elafl) = (627f2)a

which contradicts (10.5). Consequently, (10.2) holds.
To conclude, set

&%) ={ve&(0): Fe(o)(v) ¢ E(0)},

ENo)={ve& (o) E%(0): (Fs(0))*(v) ¢ £(0)},

and

£2(0) = (v e E(0) ~ (%) UEN (@) : (Fa(o))*(v) £ E(0)).

By (10.2), {&%(0), & (0),&2%(0)} is a partition of &(o). Since & (o) is infinite,
we obtain
|6 (0)] = max(|6° (o), |67 (o)1, 16% (o)) (10.6)

We obtain

sz(a)(go(a)) S V(J) N g(o—)a

Fe(5)(6'(0)) € 6%(0),

and

Fg(0y(6%(0)) € £ (0).

Since Fig(,) is injective, we obtain
62(0) <61 (o) < |6° (o) < [V(o) N E(0)-

It follows from (10.6) that |&(0)| < |V (o) \ &(o)|. Therefore, we have |V (0)| =
V(o) &(o). 0

The next result follows from Proposition 10.5.

Corollary 10.10. Let o be an infinite critical 2-structure. Consider distinct
v,weV(o). Ifv¢&(o) and (w,v) ¢ A(C(0)), then {w} € Y(o-v), T(c-v)
is a modular partition of o —v, and (o —v)/Y (o —v) is prime.

Proof. Since (w,v) ¢ A(C(c)), we have {w} € T(o —v). For a contradiction,
suppose that o — v is not connected. There exist e, f € F(c —v) such that ¢ — v
is not {e, f}-connected. Consider X € Cy. sy(0 —v) (see Definition 2.2) such
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that w € X. It follows from Lemma 2.4 that X is a module of o —v. Since
(w,v) ¢ A(C(0)), we have
X ={w}.

Using Proposition 2.8, we distinguish the following two cases. In each of them,
we obtain a contradiction.

e Suppose that e = f. By Proposition 2.8, (0 —v)/Cy. (0 —v) is constant.
Since {w} € Cey (0 —v), we obtain Cy.y (0 —v) N {{w}} is a module of (o~
v)/Cyey (0 ~v). By the second assertion of Lemma 2.10, (V (o) {v}) ~ {w}
is a module of o — v, which contradicts v ¢ & (o).

e Suppose that e # f. By Proposition 2.8, (o —v)/Cy. sy(0 —v) is linear.
Given ¢ € E((0 -v)/Cic. ;1 (0 -v)), (0 -v)/Ce 51 (0 —v) is the 2-structure
associated to the linear order (C¢. (0 —v),€) (see Remark 1.3). Set

X ={Y eCpry(0-v): (Y, X) ee}.

Clearly, X~ u {{w}} is a module of (¢ —v)/Cy. ;(0 —v). By the second
assertion of Lemma 2.10, U(X~ u {{w}}) is a module of o — v. Since
(w,v) ¢ A(C(0)), we obtain

U@~ o {{w}}) = {w} or UX™ v {{w}}) = V(o) ~ {v}.

We obtain that {w} is the least vertex or the greatest vertex of the linear
order (Cy., ry(0 —v),e). In both cases, it follows from the second asser-
tion of Lemma 2.10 that (V (o) \ {v}) ~ {w} is a module of ¢ — v, which
contradicts v ¢ & (o).

Consequently, o —v is connected. It follows from Proposition 10.5 that T (o —v)
is a modular partition of o — v and (o —v)/Y (¢ —v) is prime. O

Corollary 10.10 leads us to introduce the following notation.

Notation 10.11. Consider an infinite critical 2-structure o. Set
W(o)=V(o)\&(0).

We consider the following subsets of W (o). First, we denote by Wy (o) the set
of v e W(o) such that Y(o -v) = @. Second, we denote by Ws(o) the set of
v € W(o) such that o—v is not connected. Third, we denote by W, (o) the set of
v € W(o) such that T(o-v) is a modular partition of o —v and (¢ -v)/Y (o -v)
is prime.

Let v € Ws(o). Since o — v is not connected, there exist e,, f, € E(o —v)
such that o — v is not {e,, f, }-connected. Hence, there exist e, f € F(c) such
that e, =en(V(c-v)xV(oc-v))and f, = fn(V(c-v)xV(c-v)). We denote
{e, [} by A(v).
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Observation 10.12. Consider an infinite critical 2-structure o. It follows from
Proposition 10.5 that

W(o)=Wg(o)uWs(o)uWr(o).
Furthermore, we have
(Wy(a)uWs(o))nWe(o) = 2.

Clearly, we have Wy(o) n W, (o) = @. To verify that Ws(o) n W, (o) = @, it
suffices to show that if v € Ws(o) and Y (o —v) is a modular partition of o — v,
then |T(o - v)| = 2. Indeed, consider v € Ws(o) and Y (o —v) is a modular
partition of o —v. Since v € Ws(o), 0 — v is not connected. It follows from
Proposition 2.12 that o — v admits a nontrivial modular cut C. Set

P={MeY(c-v): MnC +z}.

Since C'is a nontrivial modular cut, C' + @, and hence, P # &. By the first asser-
tion of Lemma 2.10, P is a module of (¢ —v)/Y (o -v). By the second assertion
of Lemma 2.10, UP is a module of (¢ —v). It follows from the maximality of
the elements of Y (o —v) that |P| =1 or P = T(o —v). For a contradiction,
suppose that P = T (¢ —v). Since C' is a nontrivial modular cut of ¢ — v, there
exists M € T (o —v) such that M ~ C # @. Consider N € T(o - v) ~ {M}. Since
P=Y(oc-v), NnC # @. By Assertion (M5) of Proposition 2.5, C UN is a
module of ¢ —v. Since P = Y(o-v), MnC # @. Thus, we have N ¢ C U N.
Furthermore, since M \ C # &, we obtain

Ng(CuN)gV(oc-v),

which contradicts the maximality of N. It follows that |P| = 1. Therefore, there
exists M € T(o - v) such that C ¢ M. Similarly, there exists N € T (o - v) such
that (V(ec -—v)~C) c N. Since T (o —v) is a modular partition of o — v, we
obtain Y(o —v) = {M,N}.

Lastly, note that we can have

Wy(o) nWs(o) + @.
Consider the 2-structure o(7%z) introduced in Example 8.37. We have
O'(Tz) — 00 = O’(Lz).

Consequently, we have oo € Wy (o (Tz)) nWs(o(1%)).

10.3 The criticality digraph

Fact 10.13. Let o be an infinite prime 2-structure. Consider distinct v,w €
V(o). Suppose that o —v admits a nontrivial module M, and o —w admits a
nontrivial module M,. If w ¢ M, and v ¢ M,,, then |M, n M,|< 1.



176 CHAPTER 10. THE RIGOLLET-THOMASSE THEOREM

Proof. Suppose that w ¢ M,, and v ¢ M,,. We obtain that M, n M,, is a module
of . Since o is prime, we have |M, n M| < 1. O

Fact 10.14. Let o be an infinite prime 2-structure. Consider distinct v,w €
V(o). Suppose that o —v admits a nontrivial module M, and o —w admits a

nontrivial module M,,. If w e M, and v ¢ M,,, then M, n M, + @.

Proof. For a contradiction, suppose that M, n M,, = @. We verify that M,
is a module of o. Since M, is a module of ¢ — w, we have only to verify
that w «—, M, (see Notation 2.1). Thus, consider x,y € M,,. Since M, is
a nontrivial module of o — v, |M,| > 2, and hence there exists w’ € M, \ {w}.
Since M, is a module of o — v, we have [w,z], = [w', 2], and [w,y]s = [, y]o-
Furthermore, we have [w’,z], = [w',y], because M, is a module of o — w.
Therefore, we obtain [w,z], = [w,y],. It follows that M, is a module of o,
which contradicts the fact that o is prime. Consequently, M, n M,, # @. O

Fact 10.15. Let o be an infinite prime 2-structure. Consider distinct u,v,w €
V(o). Suppose that u,v € W(o) and (v,u) € A(C(0)). If o —v admits a
nontrivial module M, such that w € M, and uw ¢ M,, then o —u admits a
nontrivial module containing v and w.

Proof. Since (v,u) € A(C(0)), 0 —u admits a nontrivial module M, containing
v. We can conclude if w € M,. Hence, suppose that w ¢ M,. Thus, we have
w € M, ~ M,. By Fact 10.14, M,, n M,, # @. Since u ¢ (M, u M,), we obtain
that M, u M, is a module of ¢ —u. We distinguish the following two cases to
verify that M, u M, is a nontrivial module of ¢ — u.

e Suppose that |M, \ M,| > 2. We show that M, \ M, is a module of o.
Clearly, for every z € V(o) ~ (M, U {v}), we have x «—, M, ~ M, (see
Notation 2.1). Consider x € (M, n M,) u{v}. Since |M, \ M,| > 2, there
exists o’ € (M, ~ M) ~v. Let y,z € M, ~ M,,. Since M,, is a module
of 0 —u, we have [x,y], = [2',y], and [z,2], = [2,2],. Furthermore,
since M, is a module of o — v, we have [2',y], = [2',2]s. It follows that
[z,y]o = [z, 2]o. Thus, x «—, M, ~ M, for every x € (M, n M,) u {v}.
Consequently, M, ~ M, is a module of ¢. Since ¢ is prime, M, \ M,, is
a trivial module of 0. Hence, we obtain M, \ M, = {w}. If M, u M,
is a trivial module of o — u, then M, u M, = V(o) \ {u}, and hence
M, =V (o)~ {u,w}, which contradicts u ¢ &(co). Therefore, M, UM, is a

nontrivial module of o — u.

e Suppose that |M, \ M,| < 1. Since v € M, \ M,,, we obtain M, \ M,, = {v}.
If M, u M, is a trivial module of o — u, then M, U M, =V (o) \ {u}, and
hence M, = V(o) ~{u,v}, which contradicts v ¢ & (o). Therefore, M, UM,
is a nontrivial module of o — .

Consequently, M, U M, is a nontrivial module of o —u containing v and w. [

The next result follows from Fact 10.15.
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Corollary 10.16. Let o be an infinite prime 2-structure. Consider distinct
u,v,w € V(o). Suppose that u,v € W(o). If (v,u),(w,v) € A(C(c)) and
(u,v) ¢ A(C(0)), then o —u admits a nontrivial module containing v and w.

The next result follows from Corollary 10.16.

Corollary 10.17. Let o be an infinite prime 2-structure. Consider distinct
u,v,w e W(o) (see Notation 10.11). If (v,u), (w,v) € A(C(0)) and (u,v), (v, w) ¢
A(C(0)), then (w,u) € A(C(c)) and (u,w) ¢ A(C(0)).

Proof. Suppose that (v,u), (w,v) € A(C(c)) and
(u,v), (v,w) ¢ A(C(0)). (10.7)

Since (v,u), (w,v) € A(C(0)) and (u,v) ¢ A(C(0)), we obtain (w,u) € A(C(o))
by Corollary 10.16.

For a contradiction, suppose that (u,w) € A(C(o)). Since (w,v) € A(C(0))
and (v,w) ¢ A(C(0)), it follows from Corollary 10.16 that (u,v) € A(C(0)),
which contradicts (10.7). Consequently, we have (u,w) ¢ A(C(0)). O

The next result is an immediate consequence of Corollary 10.10 and Nota-
tion 10.11.

Corollary 10.18. Let o be an infinite critical 2-structure. Consider v e W (o).
If ve Wy(o) uWs(o), then (w,v) € A(C(o)) for every we V(o) \ {v}.

Corollary 10.18 leads us to introduce the following notation.

Notation 10.19. Let o be an infinite critical 2-structure. Given v, w € W (o),
v~y w means v = w or v # w and (v,w),(w,v) € A(C(c)). Clearly, ~, is a
symmetric and reflexive binary relation defined on V(o) \ & (). It follows from
Corollary 10.18 that v ~, w for any v, w € Wy (o) u Ws(0o).

In the next lemmas, we examine the binary relation ~.

Lemma 10.20. Let o be an infinite critical 2-structure. Consider distinct v, w €
W(c). If v~y w and v e W, (o), then we W, (o).

Proof. Since (w,v) € A(C(c)) and v € W (o), there exists M, € T(o —v) such
that w € M, and [M,| > 2. Consider the set X of X ¢ (V (o)~ {v,w}) such that
|X nM|=1 for each M € YT (o —v). Using the axiom of choice, we obtain

X +@.
Since v € Wi (o), (0 —v)/Y (0 —v) is prime. It follows that o[ X] is prime for
each X e X.
Let X € X. We show that

(V(o)~ (X u{v}))c L;(Xg(z) (see Notation 3.12). (10.8)
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Let we (V(o) N (X u{v})). Since u # v, there exists N, € T(o —v) such that
u € N,. By denoting by 2z the unique element of N, n X, we obtain u € X, (2).
Hence, (10.8) holds.
Consider a nontrivial module M,, of 0 —w containing v. For each X € X, we
show that
My n X|<1. (10.9)

As seen in Remark 3.16, we have |M, n X| <1 or X ¢ M,,. It follows from
Fact 10.6 and (10.8) that |M,, n X| < 1. Hence, (10.9) holds.
Given X € X, we show that there exists y € X such that

ve X, (y). (10.10)

Since (v,w) € A(C(c)), o —w admits a nontrivial module M,, containing v. By
(10.9), |[My n X| < 1. Clearly, if [M,, n X| = 1, then (10.10) holds by denoting
the unique element of M,, n X by y. Hence, suppose that M, n X = @. Let
u € My~ {v}. Since u # v and u # w, it follows from (10.8) that u € X, (y),
where y € X. We verify that v € X,(y) too. Let z € X \ {y}. Since u € X,(y),
we have z «—, {y,u} (see Notation 2.1). Furthermore, since M,, n X = @, we
have z ¢ M,,. Tt follows that z «<—, {u,v}. Therefore, we obtain z «—, {y,v}.
Consequently, {y,v} is a module of o[X u {v}]. Hence, v € X,(y), so (10.10)
holds.

Now, we show that Y(o-w) # @. Consider any nontrivial module M,, of o—w
containing v. By (10.9), we have |[M,, n X| < 1. By (10.10), there exists y € X
such that v € X,(y). It follows from Remark 3.16 that M, < ({y} u X, (v)).
Consequently, there exists M, € T(o —w) such that v € M,,.

Lastly, we prove that w € W;(o). Consider again M,, € T(o - v) such that
w € M, and |M,| > 2. There exists X € X such that w ¢ X nM,,. It follows from
(10.8) and (10.10) that

(V(e)~X) e U X, (2).

zeX

Therefore, it follows from Fact 10.6 that o —w is connected. Since Y (o-w) # @,
it follows from Proposition 10.5 that w e Wy (o). O

The next result follows from Lemma 10.20.

Corollary 10.21. Let o be an infinite critical 2-structure. Given distinct v, w €
Wa(o), if v~y w, then there exists X € (V (o) N {v,w}) satisfying

o o[X] is prime;

o there exist distinct y,z € X such that v e X, (y) and w € X, (2);
T(o-v)={({y} v Xo(y) ~{v}, {z} v Xo(2))}u{{u} :ue X\ {y, 2}};
Y(o-w)={{y} v Xe(y)), ({2} vXo(2)) N {w}} v {{u} rue X N {y,2}}:
P(o,x) = {Xo(y), Xo(2)} and E(T (5, x)) = {{v,w}}.
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Proof. As in the proof of Lemma 10.20, consider the set X of X ¢ V(o) \{v,w}
such that | X n M,| =1 for each M, € T(o —v). Using the axiom of choice, we
obtain X # @. Since v € W, (c), T(o - v) is a modular partition of ¢ — v and
(6 =v)/Y (0 -v) is prime. It follows that o[ X] is prime for each X € X.

Let X € X. It follows from (10.8) and (10.10) (see the proof of Lemma 10.20)
that

(V(e)~X)<c | Xo(y) (see Notation 3.12). (10.11)
yeX

In particular, there exist y, z € X such that v € X,(y) and w € X,(z). For each
te X\ {y}, we have
{t}uX,(t)) e Y(o—-v). (10.12)

Indeed, consider u € X,(t). Since t # y, we have u # v. Thus, there exists
MY € T(o —v) such that u € M*. Since X € X, there exists t' € X such that
M¥n X ={t'}. We obtain u € X,(¢'). It follows from Lemma 3.13 that ¢’ = ¢.
Therefore, t € M} for each u € X, (¢). Since M} is a module of o — v for each
u € X,(t), it is not difficult to verify that

U My
ueX, (1)

is a module of o —v. Let u € X,(t). Since ¢t € MY, it follows from Remark 3.16
that (MY~ {t}) € X,(t). We obtain

U M= {1} uX, (D).

ueX,(t)

It follows from the maximality of the elements of Y(o —v) that ({t} U X, (¢)) €
T (o —v). Hence, (10.12) holds. Similarly, we have

(({y} v Xo(y)) N {v}) e T(o -v). (10.13)

By Lemma, 10.20, we have w € W (o). Hence, YT (o-w) is a modular partition
of 0 —w and (0 - w)/Y (0 —w) is prime. Now, we establish the analogues of
(10.12) and (10.13) for Y (o —w). We verify that for each M, € T(o - w), we
have

[My,nX|<1 (see (10.9) in the proof of Lemma 10.20). (10.14)

We can assume that |M,| > 2, so M, is a nontrivial module of ¢ — w. As
seen in Remark 3.16, we have |M,, n X| <1 or X ¢ M,,. For a contradiction,
suppose that X ¢ M,,. Let u € V(o - w)~ M,. Since X ¢ M,,, we have
u € {X), (see Notation 3.12). By (10.11), u € X, (t), where ¢t € X. We obtain
u € X5(t) n(X)s, which contradicts Lemma 3.13. Tt follows that |M,, n X| < 1.
Hence, (10.14) holds. Consequently, there exists Y ¢ V(o) ~ {w} such that for
each M, € T(o - w), the following three assertions hold

o Y NnMy|=1;
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o if |M, nX|=1, then M\, nY = M,, n X;

o if v e M, then |M,]| > 2 because (v,w) € A(C(c)), so that we can require
that |V n (M, ~ {v})|=1.

It follows that
XcYc(V(o)~{v,w}).

Since (0 —w)/Y (o - w) is prime, o[Y] is prime. We show that
X-=vY. (10.15)

For a contradiction, suppose that there exists u € Y N\ X. There exists M «
Y (o —w) such that u € MY. Since M nY = {u} and u ¢ X, we have M* n
X = @. It follows from (10.11) that M* < X,(t), where t € X. Moreover,
it follows from (10.12) and (10.13) that ({t} u X,(¢)) \ {v} is a module of
o —v. By Assertion (M2) of Proposition 2.5, (({t} u X,(¢)) ~{v})nY is a
module of o[Y]. Since X ¢ Y ¢ (V(o)  {v,w}) and MY ¢ X,(t), we obtain
({t}u X)) N{v)nY = {t}uX,(t))nY and u,t € ({t} uX,(t))nY.
Furthermore, given ¢’ € (X \ {t}), we have t' ¢ Y \ ({t} U X,(t)). Therefore,
({t} u X,(t)) nY is a nontrivial module of ¢[Y], which contradicts the fact
that o[Y] is prime. Consequently, (10.15) holds. The analogues of (10.12) and
(10.13) for Y (o —w) follow. They are proved as previously. For each ¢t € X \{z},
we have

({t} UX, (1)) € T(o - w). (10.16)
Similarly, we have
({2} v Xo(2)) N {w}) € T(o - w). (10.17)
It follows that for every t € X \ {y, z}, we have
Xo(t) = 2. (10.18)

Indeed, let t € X \ {y,z}. It follows from (10.12) that {t} u X,(¢) is a module
of o —v. Moreover, {t} U X,(¢) is a module of ¢ — w by (10.16). Therefore,
{t} u X,(t) is a module of 0. Since o is prime, we have X,(¢) = @. Hence,
(10.18) holds. It follows from (10.12) and (10.13) that

T(o-v) ={({y} v Xo(y)) ~ {v}, {z} U Xo(2))} v {{u} s ue X \{y,2}}.
Similarly, we have

T(o-w)={y}vXo(y)), {2} v Xo(2)) N {w}}u{{u} :ue X~ {y,2}}
It follows from (10.11) that

Po,x) = {Xa(y)7XU(Z)}'
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Suppose for a contradiction that y = z. Since {y} U X, (y) is a module of o - w
by (10.16) and {z} U X, (2) is a module of o —v by (10.12), {y} U X, (y) U X,(2)
is a module of ¢, which contradicts the fact that ¢ is prime. It follows that

T

Since {y} u X, (y) is a module of o — w, we obtain {u,u'} ¢ E(I'(, x)) (see
Definition 9.3) for any u € X, (y) and u’ € X,(2) ~ {w}. Similarly, since {z} U
X5(z) is a module of 0 —v, we obtain {u,u'} ¢ E(T'(, x)) for any u € X, (y)~{v}
and u' € X5 (2). By Theorem 3.19, I'(,, x) is nonempty. Therefore, we have

E(T,x)) = {{v,w}}. O

Lemma 10.22. Let o be an infinite critical 2-structure. Consider distinct v, w €
W(c). If v~ w and v e Ws(c), then w e Ws(o) and A(v) = A(w).

Proof. Suppose that v ~, w and v € Ws(o). Since v € Ws(o), there exist a
nontrivial modular cut C, of o—v and e, f € E (o) such that [C,, V (c-v)\C, ], =
(e, f), where A(v) = {e, f}. For instance, assume that w € C,. Since v ¢ & (o),
we have |Cy| > 2 and |V (o —v) N Cy| 2 2.

First, we prove that w € Ws(o). Since (Wy(o) uWs(0)) nWr(o) = & (see
Observation 10.12), it follows from Lemma 10.20 that w ¢ W (o). Suppose that
w € Wy(o). We must show that w € Wy(o). Since w € Wy(o), 0 — w admits a
proper module M, such that v € M,,, M,,nC, # @, and M,n(V(c-v)~C,) # @.
For a contradiction, suppose that (V (o-v)\C,)\M,, + @. Since M,,nC,, + &, we
obtain [ My, (V(o-v)\NCy)\ My ]s = (e, f). Since [Cy, V(o -v)NCylo = (e, f),
we obtain [My, U Cy, (V(e —v) N Cy) N My o = (e, f). Since v,w € My, U Cy,
M, uC, is a nontrivial module of o, which contradicts the fact that o is prime.
Consequently, we have (V (o —v)~ C,) € M. Since M, is a proper module
of o —w, we have (C, ~ {w}) ~ M, # @. Since (V(c -v)~C,) € M, and
[Cy, V(o -v)NCyls = (e, f), we obtain [(Cy ~ {w}) N My, My]s = (e, f). Tt
follows that w € Ws(o).

Second, suppose for a contradiction that A(v) # A(w). There exist a non-
trivial modular cut C, of o —w and €', f' € E(o) such that [Cy, V(o - w)
Cwle = (€, f"), where AM(w) = {e, f'}. Since w ¢ &(0), we have |Cy| > 2
and [V (o - w) N Cy| > 2. For instance, assume that C, N C,, + @. Let u €
CynCy. Since [u, V(o —w)\ Cyls = (€, ), [u, V(e -v)NCyls = (e, f), and
{e,f} = {e, f'}, we obtain (V(o —w) \ Cy)n (V(c-v)~C,) =@ There-
fore, we have (V (o) ~ (Cy U {w})) ¢ (C, u{v}). Since w € C,, we obtain
(V(o) ~Cy) € (Cy, u{v}). Hence, we have also (V(o -v)~C,) € Cy. Let
u' e (V(o—v)NCy). Since [u',Cyls = (f,e) and [u, V(o —w) N Cylo = (¢/, f1),
we obtain C, N (V(o—w)\Cy) = 3. We obtain C, ¢ (Cy, U{w}). It follows that
V(o -v) ¢ (Cypu{w}). Thus, we have (V (o -w)\Cy) € {v}, which contradicts
the fact that w ¢ &(o). It follows that A(v) = M(w). O

Lemma 10.23. Given an infinite critical 2-structure o, we have |Wg(o) N
Ws(o)| < 1. Moreover, if [Wy(o)\Ws(o)| =1, then |Wy(o)| =1 and Ws(c) = @.
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Proof. To begin, suppose that there exist distinct v,w € Wy(o) ~ Ws(o). Let
x eV (o)~ {v,w}. Since T(o-v) = @, there exists a proper module M,, of o —v
such that x,w € M,. Similarly, there exists a proper module M,, of ¢ — w such
that x,v € M,,. It is easy to verify that M, u M,, is a module of o. Since o is
prime, we obtain

M, UM, = V(o). (10.19)

We show that M, is a nontrivial modular cut of o —v. Recall that M, is a
proper module of o —v. By (10.19),

V(e -v)\M, =My~ {v})\ M,. (10.20)

By Assertion (M2) of Proposition 2.5, M, \ {v} and M, \ {w} are modules of
o—{v,w}. Since w ¢ &(0), it follows from (10.19) that |M, \ M,,| > 2. Hence, we
have (M, ~{w})\ M,,, which is (M, ~{w}) (M, ~{v}), is nonempty. It follows
from Assertion (M6) of Proposition 2.5 that (M, \ {v}) ~ (M, ~ {w}), which
is (M, ~ {v}) \ M,, is a module of o — {v,w}. To prove that (M, \ {v}) \ M,
is a module of o — v, it remains to verify that w «—, ((My ~ {v}) N M,) (see
Notation 2.1). Let y,z € ((My ~ {v}) \ M,). Since M, is a module of o - v
and y # v, we have [w,y]s = [%,y],. Similarly, we have [w, z], = [z, 2],. Since
(My \ {v}) N\ M, is a module of o - {v,w}, we have [z,y], = [z, 2],. It follows
that [w,y]s = [w,2]s. Thus, (M, ~ {v}) \ M, is a module of o —v. It follows
from (10.20) that M, is a modular cut of o —v. Since M, is a proper module of
o —v containing x and w, M, is a nontrivial modular cut of ¢ —v. Therefore,
veWs(o). It follows that

(W(o) ~ Wi(o)| < 1.

Now, suppose that there exists v € Wy (o) N\ W;s(o). Suppose for a contradic-
tion that Ws(o) # @, and consider w € Ws(o). It follows from Corollary 10.18
that v ~, w, which contradicts Lemma 10.22. Consequently, we have

Ws(o) =@,

and hence
Wy(o) ={v}. O

10.4 Proof of Theorem 10.1

The next result follows from Corollary 10.10 and Fact 10.13.

Proposition 10.24. Given an infinite critical 2-structure o, consider distinct
v,weW(o). If (w,v), (v,w) ¢ A(C(0)), then (RT) holds (see Theorem 10.1).

Proof. Suppose that (w,v), (v,w) ¢ A(C(0)). It follows from Corollary 10.10
that {w} € T(o —v) and (0 —v)/Y (o —v) is prime. Using the axiom of choice,
consider X ¢ V(o) ~ {v} such that | X n M| =1 for each M € T(o -v). We have
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o[X] =~ (c-v)/YT(c-v). Hence, o[ X] is prime. Consequently, (RT) holds when
X is equipotent to V(o).
Now, suppose that X is strictly subpotent to V(o). We have

[V (c)| =sup{IM|: M e YT(c-v)}. (10.21)

We show that
[T (0 -w)|>|M| (10.22)

for every M € Y(o —wv)}. This is obvious when |M| = 1. Hence, consider
M e T(o -v)} such that |[M| > 2. Since (v,w) ¢ A(C(0)), it follows from
Corollary 10.10 that {v} € T(o - w) and (¢ — w)/Y (o — w) is prime. Let N ¢
Y (o -w) such that MnN # @. Since {v} € Y(o-w) and v ¢ M, we have v ¢ .
It follows from Fact 10.13 that |M nN| = 1. Therefore, we obtain

(o —w)|>|M],

so (10.22) holds. It follows from (10.21) that |Y(¢ — w)| > |V (¢)|. Using the
axiom of choice, consider Y ¢ V(o) {w} such that [Y nO| =1 for each O € T(o-
w). We obtain that |Y| = |T(c-w)| and o[Y] is prime. Since |Y(oc-w)| > [V (o),
we have |Y| = |V (0)|. Consequently, (RT) holds. O

The next result follows from Corollary 10.16. We use the following notation.

Notation }9.25. Recall that Ly denotes the usual linear oﬁer on N. We
denote by Ly the linear order defined on Nu {oo} such that Ly[N] = Ly and
(n,00) € A(Ly) for every n e N.

Lemma 10.26. Given an infinite critical 2-structure o, C(o) — &(0) embeds
neither Ly nor its dual (Ly)*.

Proof. First, suppose for a contradiction that there exist a sequence (vy, )ns0 of
elements of V(o) \ &(c) and ve, € V(c) \ &(o) such that the bijection

Nu{oo} — {vp:n20}U{ve}
n>0 —  Up,

) > Voo

is an isomorphism from Ly onto C(o)[{v, : 7 > 0} U {ve}]. Let n > 2. We
have (Vp,Veo ), (Vo,vr) € A(C(0)) and (veo,vr) ¢ A(C(0)). By Corollary 10.16,
-, admits a nontrivial module M,, containing vy and v,,—1. Note that ve, ¢ M,
because (Voo,vy) ¢ A(C(0)). Set

M=\J M,.
n>2
Since
Vg € m Mn
n=2

and {v, :n >2} ¢ M, it is not difficult to verify that M is a module of o. Since
Voo # M, for every n > 2, we have M # V(o). Moreover, since My € M, we have
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M| > 2. Tt follows that M is a nontrivial module of o, which contradicts the
fact that o is prime. Consequently, C(c) — & (o) does not embed Ly.

Second, suppose for a contradiction that there exist a sequence (v, )nso of
elements of V(o) \ &(0) and ve € V(o) \ &(0) such that the bijection

Nu{e} — {v,:n>0}u{ve}
n>0 —  Up,

o > Voo

is an isomorphism from (Ly)* onto C(o)[{v, : n > 0}U{ve}]. Since o is critical,
0 — Voo admits a nontrivial module M. Let w € Mo. We have (w,vs) €
A(C(a)). Moreover, for each n > 0, we have (vVeo, vy ) € A(C(0)) and (vp,ve0) ¢
A(C(0)). By Corollary 10.16, o —v,, admits a nontrivial module M,, containing
Voo and w. Set
M= M,.
n>2

It is not difficult to verify that M is a module of o. Since vy ¢ My, we have
vo ¢ M, so M # V(o). Moreover, since w,vs € M, we have |[M| > 2. Tt follows
that M is a nontrivial module of o, which contradicts the fact that ¢ is prime.
Consequently, C(c) - &(co) does not embed (Ly)*. O

Remark 10.27. Let L be an infinite linear order. Suppose that L embeds
neither Ly nor its dual (Ly)*. We show that L is isomorphic to Ly, (Ly)*, or
Lz. Indeed, using the axiom of countable choice, we obtain a countable subset
W of V(L). It follows from infinite Ramsey’s theorem that L{W] embeds Ly
or (Ly)*. By exchanging L and L* if necessary, we can assume that L embeds
Ly. Hence, there exists a sequence (v, )ns0 of vertices of L

N — {v,:n>0}

n20 — v,
is an isomorphism from Ly onto L[{v, :n >0}]. Set
Vi={veV(o)\{vy,:n20}:v<vymod L}
and for each n > 0, set
Vo={veV(o)~{vn:n>0}:v, <v<vy4 mod L}.

Let v e V(o) {v, : n > 0}. Since L does not embed Ly, there exists n > 0 such
that v < v,mod L. Therefore, we have

(V@) N {vn:in20}) =V u (Vo).

n=0

For a contradiction, suppose that there exists n > 0 such that V,, is infinite.
As previously, L[V,,] embeds Ly or (Ly)*, which contradicts the fact that L
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embeds neither Ly nor its dual (f&;)*. Therefore, V,, is finite for every n > 0.
Set

V* = {vn 020U (U Vo).

n>0

It follows that
LV*] ~ Ly. (10.23)

Moreover, we have
V(L)=V-uV™. (10.24)

If V™ is finite, then L ~ Ly too. Hence, suppose that V'~ is infinite. As previ-
ously, L[V~] embeds Ly or (Ly)*. Since L does not embed Ly, L[V~] embeds
(Ly)*. Therefore, there exists a sequence (wy, )nxo of element of V'~

N — {v,:n20}

n>0 — w,
is an isomorphism from (Ly)* onto L[{w, :n >0}]. Set
Wo={veV :wy<vmod L}
and for each n > 1, set
Wy ={veV 1w, <v<w,_1 mod L}.
Since L does not embed neither Ly nor its dual (Ly)*, we have

Vo= W,

n=0

and W, is finite for each n > 0. Consequently, L[V~] ~ (Ly)*. It follows from
(10.23) and (10.24) that L =~ L.

The next result follows from Corollary 10.21.

Proposition 10.28. Let o be an infinite critical 2-structure. Given distinct
v,weWr(o), if v~y w, then (RT) holds (see Theorem 10.1).

Proof. Tt follows from Corollary 10.21 that there exists X ¢ V(o) \ {v,w} sat-
isfying

e o[X] is prime;

e there exist distinct y, z € X such that v e X,(y) and w € X, (2);
T(o-v) ={({y} v Xo (1))~ {v} {z} U Xo(2))} v {{u} rue X~ {y, 2} )5
T(o-w)={{y} vXs(y)), {2} v Xo(2)) N {w}}u{{u}:ue X~ {y,2}};
P(o,x) = {Xo(y), Xo(2)} and E(T(4,x)) = {{v,w}}.
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We verify that

{y} uXs(y)) <=6 ({2} U Xy(2)) N {w}) (see Notation 2.1)
and (10.25)

(({y} v Xo(m)) N {v}) =0 ({2} U Xo(2)).

Indeed, consider u € X,(y) and v’ € X,(z). Suppose that u # v or v’ # w.
Since E(I'(4,x)) = {{v,w}}, we have {u,u’} ¢ E(I'(5 x)). It follows from Asser-
tion (P3) of Lemma 3.17 that {y,u} and {z,u'} are modules of o[ X U {u,u'}].
Therefore, we obtain [u,u'], = [y, 2],. Moreover, since u € X,(y), we have
[u,2]s = [y,2]o. Similarly, we have [y,u'], = [y,2]s because v’ € X,(z).
It follows that (10.25) holds. Moreover, consider W ¢ ({y} u X,(y)) and
W' c ({z} u X,(2)) such that v € W and w € W'. If [W| > 2 or [W'| > 2,
then

W fory W, (10.26)

Indeed, it follows from (10.25) that (W ~{v}) «—, W and W «—, (W'~ {w}).
Precisely, since W ¢ ({y} u X,(y)) and W' ¢ ({z} u X,(2)), we have [W \
{’U}),W’]o’ = [y7Z]U and [W’ W’ {w}]U = [yvz]d' Since {v,w} € E(F(U,X))7
it follows from Assertion (P3) of Lemma 3.17 that {y,v} is not a module of
o[X u{v,w}] or {z,w} is not a module of o[ X U {v,w}]. Furthermore, {y,v}
is a module of o[ X u{v,w}] if and only if {z,w} is a module of o[ X U {v,w}].
For instance, assume that {y,v} is not a module of o[X U {v,w}]. We obtain
[y,w]s # [v,w]s. Since w € X,(z), we have [y,w], = [y, 2],. Therefore, we
obtain [v,w], # [y, 2]s. It follows that (10.26) holds.

Clearly, if X is equipotent to V (o), then (RT) holds. Hence, suppose that
X is strictly subpotent to V(o). Consequently, {y}u X, (y) or {z} uX,(z) are
equipotent to V(o). For instance, assume that {y} u X,(y) is equipotent to
V(o).

We prove that

1X,(2)] > 2. (10.27)

Otherwise, suppose that X,(z) = {w}. We verify that z ¢ £(0). Set
Y = (X~ {z})u{w}.

Since w € X,(z), o[Y] is isomorphic to o[X], so o[Y] is prime. Let u' ¢
(X, ()~ {0}). Since B(Tpxy) = {{v,w}}, we have {w,u'} ¢ B(Tpxy). Tt
follows from Assertion (P3) of Lemma 3.17 that {y,u'} is a module of o[ X u
{u',w}]. By Assertion (M2) of Proposition 2.5, {y,u'} is a module of o[ Y Uu{u'}].
Therefore, u’ € Y, (y). It follows that

(Xo(y) ~ {v}) €Yo (y).

Since {v,w} € E(I'(, x)), we obtain [v,w], # [y,w],. Thus, v ¢ Y5(y). It
follows that

Yo (y) = Xo(y) ~ {v}

and (10.28)

Po-zy) = {Xo(y) N {v}, {v}}.
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Given a nontrivial module M, of o — z, we verify that

M. < (({y} v Xo(y)) N {v})
or (10.29)
there exists t € (Y ~ {y,w}) such that M, = {¢,v}.

Let M, be a nontrivial module of ¢ — z. As seen in Remark 3.16, we have
IM,nY|<1orY c M,. Suppose that |M, nY| < 1. It follows from (10.28) that
M, c (({y} u Xs(y)) ~ {v}) or there exists ¢t € (Y \ {y}) such that M, = {¢,v}.
If t = w, then {y,w} is a module of ¢[Y], which contradicts the fact that o[Y]
is prime. Thus, ¢t € (Y ~ {y,w}). Consequently, (10.29) holds when |[M,nY| < 1.
In the other case, we have a nontrivial module M, of o — z such that Y ¢ M,.
By Fact 10.6, we have Y, (y) € M., and hence

v <o (V(o)~{z,w}).
In particular, we have

v <=5 (({y} v Xo(y)) ~ {0}).

Clearly, we have

t—o ({y} v Xo(y)) ~{v})
for every t € X \ {y, z}. Moreover, by (10.25), we have

w5 (({y} v Xo(y)) ~ {v}).

It follows that ({y} U X,(y)) ~ {v} is a module of o, which contradicts the fact
that o is prime. Therefore, (10.29) holds. It follows that ¢ — z is uncuttable. In
particular, we have z ¢ &(0).

To obtain a contradiction when X,(z) = {w}, we distinguish the following
two cases.

1. Suppose that (v,2) ¢ A(C(c)). Consider a nontrivial module M, of o - z.
Since (v, z) ¢ A(C(0)), it follows from (10.29) that M, < ({y} u (X,(y) ~
{v})). Since M, < ({y} v X»(vy)), we have z «<—, M,. It follows that M,
is a nontrivial module of o, which contradicts the fact that o is prime.

2. Suppose that (v,z) € A(C(c)). Since (z,v) € A(C(c)), we have v ~, z.
By Lemma 10.20, z € W;(c). Furthermore, by Corollary 10.21, there
exists Z ¢ (V (o) \ {v, z}) satisfying

o[Z] is prime;
o there exist distinct y', 2’ € Z such that v e Z,(y’) and z € Z,(2);
T(o-v) = {({y"}uZs(y) v} {z' 2o () Juf{u} s ue 23 {y', 2"} )5

T(o-2)={{y'}vZ:(y)),({FtuvZ; ()~ {z}} v {{u} ruwe Z~
W', 2"}
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® P(0,2) ={Z:(y'), Z5(2")} and E(T' (5 2y) = {{v, 2} }.
Recall that

T(o-v) ={({y} v X () N {v}, {z} v Xs(2))} U {{u} :ue X ~{y, 2}}.

Since X,(z) = {w}, we have {z,w} € T(o - v). Since {y} U X,(y) is
equipotent to V (o), ({y} uX,(y))~ {v} is an infinite element of T (o -v).
It follows that

{Z'YuZ,(2) = {z,w}.
Moreover, since ({y} U X,(y)) ~ {v} is an infinite element of Y(o - v) \
{{Z"}uZ,(2") ={z,w}}, we have

(v} v Xo()) Ao} = (' v Zo(y)) N {v}

Therefore, we obtain

Y e ({yt v Xo(y)) N {v}),
veZy(y'),

and

w ez,

which contradicts (10.26) with W = {¢/,v} and W' = {w}.

Consequently, (10.27) holds. Consider u’ € X,(z) N {w}. We show that
u’ € Wr (o) and
{{u}rue{y} uX,(y)} € T(o-u'), (10.30)

which allows us to conclude because {y}u X, (y) is equipotent to V(¢). Let M,
be a nontrivial module of o —u’. For a contradiction, suppose that X ¢ M.
Since M, is a nontrivial module of o — ', there exists u e (V (o)~ {u'}) N M.
Since p(,,x) = {Xo(y), Xs(2)}, we get u € X, (t), where t =y or z. Set

Y= (X~ {t)) U {u).

Since {t,u} is a module of o[ X U {u}], o[Y] is isomorphic to o[ X]. It follows
that o[Y] is prime. By Assertion (M2) of Proposition (2.5), M, nY is a module
of o[Y]. We have (X \{t}) c (M, nY), so |M,nY| > 2. Furthermore, we have
ue (YN (MynY)). Therefore, M, nY is a nontrivial module of o[Y'], which
contradicts the fact that o[Y'] is prime. It follows that X ~ M, # @. It follows
from Remark 3.16 that we obtain |[M,» n X| < 1. Since p(, x) = {X5(y), Xo(2)},
we obtain
M € ({5} U X0 () or My € ({2} 0 X,(2)).

It follows that u’ ¢ &£(0) and o — «' is uncuttable. By Proposition 2.12, o — v’
is connected. Moreover, for t € X \ {y, 2z}, we obtain {t} € T(o - u’). It follows
from Proposition 10.5 that v’ € W, (o). Finally, we establish (10.30). For
a contradiction, suppose that there exists M, € T(o —u') such that M, ¢
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({y} v X,(y)) and |M,/| > 2. Since w ¢ My, we have w <, M,. Since
| M| > 2, it follows from (10.26) that v ¢ M,,. Therefore, we obtain u’ «—, M,
by (10.25). Hence, M, is a module of o, which contradicts the fact that o is
prime. It follows that (10.30) holds. Since {y} u X,(y) is equipotent to V (o),
T (o -u') is equipotent to V(o) as well. Since v’ € Wy (o), (o —u')/YT(c-u") is
prime. Consequently, (RT) holds. O

The next result follows from Corollary 10.16, Remark 10.27, and Proposi-
tion 10.28.

Proposition 10.29. Let o be an infinite critical 2-structure. If Wr (o) + @,
then (RT) holds.

Proof. Suppose that Wr(0) # @. To begin, we show that (RT) holds when
W (o) is finite. Indeed, suppose that W (o) is finite. By Proposition 10.9,
W (o) is equipotent to V(o). Thus, W (o) \ W, (o) is equipotent to V(o). Let
v e Wy(o). Since (o0 —v)/T (o —v) is prime, it suffices to verify that Y (o —v) is
equipotent to W (o)~ Wy (o). Consider w € W(o)\W,(c). By Corollary 10.18,
we have (v,w) € A(C(c)). It follows from Lemma 10.20 that (w,v) ¢ A(C(0)).
Hence, {w} € T(o —v). Therefore, we have

{w}:weW(o)\ Wr(o)} c Y(o-v).

It follows that Y (o —v) is equipotent to W (o) \Wr (o), so T(o—-v) is equipotent
to V(o). Consequently, (RT) holds.

In the sequel, we suppose that W, (o) is infinite. By Corollary 10.17 and
Propositions 10.24 and 10.28, we can assume that C(c)[W,(0)] is a linear order.
Furthermore, by Lemma 10.26, C(0')[W,(c')] embeds neither Ly nor its dual
(Iyn)*. It follows from Remark 10.27 that C(o)[Wy(o)] is isomorphic to Ly,
(LN)*7 or Lz.

First, suppose that C(o)[Wx(c)] is isomorphic to Ly or Lz. In particular,
observe that W (o) is countable. There exists a sequence (v, )ns0 Of elements
of Wy (o) such that the function

N — {v,:n20}
nx0 — o,

is an isomorphism from Ly onto C(o)[{v, : n > 0}]. For a contradiction,
suppose that Wy(o) u Ws(o) + @. Consider w € Wy(o) uWs(o). Let n > 0.
By Corollary 10.18, we have (v,,w) € A(C(c)). It follows from Lemma 10.20
that (w,v,) ¢ A(C(0)). Consequently, we obtain C(o)[{v, :n > 0}u{w}] =~ Iy,
which contradicts Lemma 10.26. It follows that

Wy (o) uWs(o) = 2,

W(o)=W(0).
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It follows from Proposition 10.9 that V(o) is countable. Since vy € Wi (o),
Y(o — vg) is a modular partition of o — vy and (o — vp)/Y (o — vg) is prime.
Let n > 1. Since (vn,v0) ¢ A(C(0)), we have {v,} € T(o —vg). Consider
X ¢ V(o -vg) such that |[X n M| =1 for every M € T(o —vp). We obtain that
X is a countable proper subset of V(o) such that ¢[X] is prime. Thus, (RT)
holds.

Second, suppose that C(o)[W,(o)] is isomorphic to (Ly)*. There exists a
sequence (v, )nxo of elements of W (o) such that

We(o) ={vn:n 20}

and the function
N — {v,:n>0}
n>0 — v,

is an isomorphism from (Ly)* onto C(o)[Wx(o)].

Let w € Wy(o)uWs(o). As seen previously, we obtain that {w} € T (o —vp).
Thus, Wy(o) uW;s(o) is subpotent to YT (o —vg). Suppose that Wy (o) u Ws (o)
is infinite. Since W, (o) is countable, we obtain that W (o) is equipotent to
Wy(o) u Ws(o). Tt follows from Proposition 10.9 that V(o) is equipotent to
Wa(o)uWs(o). Since Wy(o) uWs(o) is subpotent to Y (o —vyp), it follows from
Bernstein-Schroder theorem that Y(o — wvg) is equipotent to V(o). Consider
X ¢ V(o -vg) such that |[X n M| = 1 for every M € T(o —vg). We obtain
that X is proper subset of V(o) such that X is equipotent to V(o) and o[ X]
is prime. Therefore, (RT) holds. In the sequel of the proof, we suppose that
Wy(o) uWs(o) is finite. Since W (o) is countable, W (o) is countable as well.
It follows from Proposition 10.9 that V(o) is countable.

To continue, we show that for each p > 0,

{vm : m > p} is a module of o[Wr(0)] - v,. (10.31)

Indeed, consider p > 0. Let ¢ > p+2. We have (vp+1,vp), (vq,vp) € A(C(0)) and
(vp,vp+1) ¢ A(C(0)). By Corollary 10.16, o —v, admits a nontrivial module M}
containing v,41 and vg. Since v, € Wir(o), YT(o —v,) is a modular partition of
o -v, and (0 —v,)/Y (0 —vp) is prime. Denote by M, the unique element of
Y (0 -wvp) containing vp,1. It follows from the maximality of M), that M} ¢ M,
By Assertion (M2) of Proposition 2.5, M, n ({v, :n >0} \ {v,}) is a module of
o[{vn :n 20}] —v,. We obtain

{Um :m >p}c (Mp N({vp 20}~ {Up}))~

Let m < p. Since (vi,,vp) ¢ A(C(0)), we have {v,,} € T(o —vp), SO vy, ¢ M.
Hence, when p > 1, we have

{’Uo,...,vp,l}ﬂMng. (1032)

It follows that
(Mpn (Wr(o) N{vp})) ={vm : m > p}. (10.33)
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Hence, (10.31) holds. Consider X? ¢ V(o —v,) such that [X? nN,| = 1 for every
N, € Y(o —vp). We have o[ X?] is prime. Since M, € T(o - v,), denote by y,
the unique element of X? n M,,. We obtain

(Mp~A{yp}) € (XP)o(yp) (see Notation 3.12). (10.34)
Since {vy, } € T (o —v,) for each m < p, we obtain
{vm :m < p} c XP. (10.35)
As previously seen, it follows from Lemma 10.20 that
(Wy(o) UWs(o)) € XP. (10.36)

Let w € V(0 —vp,)\ XP. There exists N, € T(o0-v,) such that w € N,. We obtain
w € (XP),(z), where z denotes the unique element of X? n N,,. It follows from
Lemma 3.13 that V(o -v,)n(X?), = @. For a contradiction, suppose that there
exists Np € (Y (o —vp) \ {M,}) such that [Np| > 2. Let w e N, \ XP. It follows
from (10.33), (10.35), and (10.36) that w ¢ W(o), that is, w € &(o). Hence,
V(o) {w, Fg(oy(w)} is a module of o —w (see Notation 10.8). We have [ X?|> 3
because o[ X?] is prime. Thus, [(V (o) \ {w, Fg(o)(w)}) n XP| > 2. Since o[ X7?]
is prime, we obtain X? ¢ (V(0) \ {w, Fg(r)(w)}). It follows from Fact 10.6
that (V (o) N {vp,w}) € (V(0) N {w, Feoy(w)}). We obtain v, = Fe(,y(w). In
particular, we obtain v, «—, M, (see Notation 2.1). Hence, M, is a nontrivial
module of o, which contradicts the fact that o is prime. Consequently, we have

(V(g-vp) N Mp) c XP, (10.37)
Finally, we show that for each p > 1,
Vp <o {Vp+1,Vp+2} (see Notation 2.1). (10.38)

Otherwise, there exists p > 1 such that v, «—, {vps1,vp+2}. Recall that M,
denotes the unique element of Y (o - v,) containing v,.1. By (10.31), {vy, :m >
p+ 1} is a module of o[Wr(0)] - vpr1. We obtain v, «—4, {vm, : m > p+ 1},
Since v, <4 {VUp+1,Vps2}, we have v, «—, {vy, : m > p}. It follows from
(10.33) that v, «—o (M, n (Wr(co) ~ {v,})). Since o is prime, M, is not a
module of o. Therefore, v, </, M,. Thus, there exists w € M, such that
Up o {Vps1,w}. Since v, <=4 {vy : m > p}, we have w ¢ {v,, : m > p}. It
follows from (10.35) that w ¢ {v,, : m < p}. We obtain w ¢ W, (o). Furthermore,
it follows from (10.36) that w ¢ Wy(o) u Ws(o). We obtain w € &(o). Hence,
V(o) N {w, Fg(oy(w)} is a module of o —w (see Notation 10.8). As previously,
it follows from Fact 10.6 that (V (o) \ {vp,w}) € (V(0) N {w, Fg(s)(w)}) and
we obtain v, = Fg(s)(w). By (10.33), we have v,,vp41 € Mp. Recall that X0
is a subset of V(o — wvg) such that | X% n Ng| = 1 for every Ny € Y(o - vp).
Furthermore, yo denotes the unique element of X 9N My. Hence, we can assume
that yo = vp41 so that yo # v, and yo # w. It follows from (10.34) that v, €
(X5 (vps1)- Since (vp,v0), (w,v,) € A(C(0)) and (vo,v,) ¢ A(C(0)), it follows
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from Corollary 10.16 that o — vg admits a nontrivial module Ny containing v,
and w. It follows from the maximality of My that Ny € My. In particular, we
have w € My. Since V(o) \ {w,v,} is a module of o — w, we obtain v, € (X°),.
Therefore, we have v, € (X%)5(vpe1) N (X°)s, which contradicts Lemma 3.13.
Consequently, (10.38) holds.

To conclude, we verify that o[W; (o) \ {vo}] is prime. Let M be a module
of o[Wr(o) ~ {vo}] such that [M| > 2. We have to show that M = {v,, :n > 1}.
Given m < n, we prove that

if vy, v, € M and vy,41 ¢ M, then v,,0 € M. (10.39)

Suppose that vy, v, € M and v,41 ¢ M. It follows from (10.31) and (10.38) that
Um <=0 {Un+1,Uns2} and vy, <o {Uns1,Vns2}. Since vy, v, € M and vy ¢ M,
we obtain v,42 € M. Hence, (10.39) holds. Given m < n, we verify that

if Uy, v, € M, then v,,1 € M. (10.40)

Suppose that v,,,v, € M. For a contradiction, suppose that v,,; ¢ M. By
(10.39), vy42 € M. Let r > n+3. By (10.38), vp41 <o {Vni2,Vns3} By
(10.31), {vsy : m > n+ 2} is a module of o[Wr(0)] - vps2. Thus, we have
Un+1 <o {Uns+3,0r}. It follows that vn41 <o {Uni2,v.}. Therefore, v, ¢ M
for every r > n + 3, which contradicts (10.39). It follows that v,.+1 € M. Hence,
(10.40) holds.
Consider
p=min({n>1:v, € M}),

and
g=min({n>1:v, ¢ (M v,}}).

For a contradiction, suppose that p > 2. It follows from (10.31) and (10.38) that
Up-1 <> {Vp,vq}. Thus, we have p = 1. Proceeding by induction, it follows
from (10.40) that v, € M for every r > ¢+ 1. By (10.38), vg_1 <o {vg,Vgs1}-
Since vq, vg+1 € M, we have v,_; € M. It follows from the minimality of ¢ that
g-1=1. Therefore, we obtain M = {v,, : n > 1}. It follows that o[W; (o)~ {vo}]
is prime. Since V(o) is countable, (RT) holds. O

We use the following definition and remark in the proof of the next propo-
sition.

Definition 10.30. A 2-structure o is a directed path on Z if V(o) = Z and there
exist distinct e, f € E(o) satisfying

forany ne€Z and p > 2, [n,n+p], = (e, f)
and (10.41)
for every n € Z, [n,n+ 1], # (e, f).

Remark 10.31. Let o be a directed path on Z. There exist distinct e, f € E(o)
satisfying (10.41). Let M be a module of Lz such that [M|>5. We verify that
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o[M] is prime. Indeed, let N be a module of o[M] such that |[N| > 2. We
must show that N = M. Consider m,n € N such that m <n and Nn{peZ:
m <p<n}={m,n}. Suppose that m—-1¢e M. Since [m—-1,m], # (e, f) and
[m-1,n], = (e, f), we obtain m—1 € N. By proceeding by induction, we obtain

(Mn{...,m-1,m})c N.

Similarly, we obtain
(Mn{n,n+1,...}) S N.

Since Nn{peZ:m<p<n}={m,n}, we have
N=Mn{....m-1,m}u{n,n+1,...}).

For a contradiction, suppose that n > m + 1. Since [m,m + 1], # (e, f) and
[m-1,m+1], = (e, f), we obtain m — 1 ¢ M. Similarly, we have n+1 ¢ M. Tt
follows that M ={peZ:m <p<n} and N = {m,n}. Since |M| > 5, we have
n>m+4. Since [m,m+ 2], = (e, f), [n,m+2], = (f,e), and e # f, we obtain
[m,m+2], # [n,m+2],, which contradicts the fact that N is a module of o[ M].
Consequently, we have n =m+1. Since N = Mn({...,m-1,m}u{n,n+1,...}),
we have N = M.

Proposition 10.32. Let o be an infinite critical 2-structure. If there exists
v eWs(o) such that |A\(v)| =2 (see Notation 10.11), then (RT) holds.

Proof. Suppose that there exists u € Ws(o) such that |A(u)| = 2. Hence, there
exist distinet e, f € E(o) such that A(u) = {e, f}. By Corollary 10.18 and
Lemma 10.22, we have

W(a) =Ws(o)
and (10.42)
for every v e Ws(o), A(v) ={e, f}.

Let v € Ws(o). There exist ey, f, € E(o —v) such that o — v is not {e,, f,}-
connected. Moreover, we have

ey=en(V(ec-v)xV(c-v))
and

fo=fn(V(e-v)xV(o-v)).

We show that
Cles (o —v)=2. (10.43)

Otherwise, suppose that |Cic, 7,1(c—v)| 23 (see Definition 2.2). It follows from
Proposition 2.8 there exist a modular partition {X,,,Y,, Z,} of o — v such that
(X, Yo uZ,], = (e,f) and [Y,,Zy]o = (e, f). Since o is prime, o is {e, f}-
connected. Thus, there exists x, € X, and z, € Z, such that [z,,v], # (e, f)
and [v, 2], # (e, f). Therefore, for every w € Y, o —w is {e, f}-connected. It
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follows from (10.42) that Y, ¢ &(0). Consider w € Y,. Since w € &(0), there
exists Fig(o)(w) € V(o) N {w} (see Notation 10.8) such that

Feoy(w) <=4 V(o) N {w, Fe(sy(w)} (see Notation 2.1).

Suppose that |Y,| > 2. Let w € Y,. Since [X,,Y, ~ {w}]s = (e, f) and [V, ~
{w}, Zy]s = (e, f), we have Fg(,y(w) ¢ Y,. For a contradiction, suppose that
Fe(oy(w) € Z,. Since [Xy, Zy]o = (e, f) and [w, Z,], = (e, f), we obtain that
V(o) ~N{Fg(o)(w)} is a module of o, which contradicts the fact that o is prime.
It follows that Fe(,)(w) ¢ Z,. Similarly, we have Fg,)(w) ¢ X,. Therefore,
we obtain Fg(,)(w) = v. Since Fg(,y is injective (see Notation 10.8), we have
|Yy] = 1. Denote by w the unique element of Y,. We have Fg(,)(w) = v.
Since [v,zy]0 # (f,€) and [v, 2], # (e, f), there exist €/, f' € E(o) such that
[v, V(o) ~{v,w}]s = (€, f") and {€', f'} # {e, f}. It follows that o —u is {e, f}-
connected for every u € X, u Z,. By (10.42), u ¢ W(o) for every u € X, U Z,.
Since Y, € &(o), we obtain W (o) = {v}, which contradicts Proposition 10.9.
Consequently, (10.43) holds for each v € Ws(0o).

Let v e Ws(o). By (10.43), there exists a unique nontrivial modular cut C,
of o — v such that

[Cy, V(o -v)\Cylo = (e, f).

We define a digraph Ls(o) on V(Ls(0)) = Ws(o) as follows. Given distinct
v,w e Ws(o),
(v,w) € A(Ls(0)) if (C, u{v}) € C,.

We verify that Ls(c) is a linear order. Clearly, Ls(o) is a partial order. Consider
distinct v, w € Ws(o). We prove that

w € Cy if and only if (w,v) € A(Ls(0))
and (10.44)
ve(V(oc—w)\Cy) if and only if (w,v) € A(Ls(0)).

Clearly, if (w,v) € A(Ls(0)), then (Cy u{w}) ¢ Cy, so w € C,. Conversely,
suppose that w € C,,. Since o is prime, o is {e, f}-connected. Thus, there exists
x, € Cy and y, € V(0 —v) N C, such that [x,,v]s # (e, f) and [v,y,]o # (e, f).
We distinguish the following two cases.

e Suppose that there exists t, € C,, ~ {w} such that [t,,v]s # (e, f). We
obtain that (V (o —v)~ Cy) u{v,t,} is {e, f}-connected. Therefore, we
have (V (o —v) N\ Cy)) u{v,t,} € Dy, where Dy, = Cy, or V(o —w) \ Cy.
Let u € (V(o —w) \ Dy). Since [u, V(o -v)\ Cyls = (e, f), we obtain
D, =V(oc-w)\Cy, and hence (V(c)\Cy) € (V(c—w)\Cy). It follows
that (w,v) € A(Ls(o)).

e Suppose that w = z, and [C, ~ {w},v]s = (e, f). Since w ¢ (o), there
exists z, € (V(o) N Cy) such that [z,,v]s # (e, f). Since [v,y,]0 # (e, f),
we obtain that (V(oc-v)\C,)u{v}, which is V/(0)\C,, is {e, f }-connected.
Therefore, we have (V (o) N Cy) € Dy, where D,, = Cy, or V(o —w) \ Cy.
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Let w € V(6 —w) ~ Dy,. Since [u,V(c —v) N\ Cyls = (e, f), we obtain
D, =V(o-w)\C,,. Thus, we have (C,u{w}) € Cy, so (w,v) € A(Ls(0)).

It follows that w € C,, if and only if (w,v) € A(Ls(c)). We show similarly that
ve(V(e-w)\Cy) if and only if (w,v) € A(Ls(o)). Hence, (10.44) holds. Tt
follows that (w,v) € A(Ls(0)) or (v,w) € A(Ls(c)). Consequently, Ls(o) is a
linear order.

Now, we prove that Ls(c) does not embed Ly. Otherwise, there exist a
sequence (vy, )nso of elements of W (o) and ve, € W (o) such that the bijection

Nu{ew} — {v,:n>20}u{ve}
n>0 —  Up,

00 > Voo

is an isomorphism from Ly onto Ls(o)[{vy : n 2 0} U{ve}]. For each n >0, we
have

(Co, u{vn}) € Co,y

and (10.45)

(Ovnﬂ U {vn+1}) c CUOO.

Set
Cc=UC¢,,.
n>0
It follows from (10.45) that C is a nontrivial module of o, which contradicts the
fact that o is prime. Consequently, Ls(o) does not embed Ly.

To pursue, we prove that Ls(c) does not embed (Ly)*. Otherwise, there
exist a sequence (vp)pso of elements of W (o) and ve, € W (o) such that the
bijection

Nu{ew} — {v,:n>20}u{ve}
nx0 > wy,

00 > Voo

is an isomorphism from (Iy)* onto Ls(o)[{vn : 1 2 0} U {vee}]. For each n >0,
we have

(Copiy W{vns1}) € Cy,

and (10.46)

(Cp. U{ve0}) € Cy,, .

Set
C=Cu,.

n>0
It follows from (10.46) that C is a nontrivial module of o, which contradicts the
fact that o is prime. Consequently, Ls(c) does not embed (Ly)*.
It follows that Ls(o) embeds neither Ly nor its dual (Iy)*. By (10.42), we
have W (o) = Ws(o). It follows from Proposition 10.9 that Ls(o) is an infinite
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linear order. By Remark 10.27, Ls(o) is isomorphic to Ly, (Ly)*, or Lz. Given
v, w € Ws(o) such that v <, (,)w, we prove that

[v,w]s = (e, f) if and only if there exists u € Ws(c) such that
UV <Ls(o) U <Ls(c)W- (10.47)

Consider v, w € W5 (o) such that v <z, (,)w. To begin, suppose that there exists
u € Ws(o) such that v <p (o) u <p;) w. By (10.44), we have v € C, and
w e (V(e—u)\Cy). Hence, we have [v,w], = (e, f). Conversely, suppose
that [v,w]s = (e, f). By (10.44), we have w € (V (o —v) \ C,). Hence, we
have [w,Cy], = (f,€). Since [w,v]s = (f,€), we obtain [w,C, U {v}], = (f,e).
Since (v,w) € A(Ls(c)), we have C, u {v} ¢ Cy. Since w ¢ &(c), Cy is a
nontrivial module of o —w. Since C, is not a nontrivial module of o, there exists
ue (Cy N (Cyu{v})) such that [w,u], # (f,e). Since u e (Cy \ (C, U {v})), it
follows from (10.44) that v <p,(;)u <r () W-

For a contradiction, suppose that &(c) # @. As seen at the end of the
proof of Proposition 10.9, {£%(c),&(0),&%(0)} is a partition of &(o) and
|62(0)] < |1 (0)| < |6%(0)|. It follows that &9(c) # @. Hence, there exists
u € &(0) such that Fe,y(u) ¢ &(0), so Fery(u) € W(o). Since Ls(o) is
isomorphic to Ly, (Ly)*, or Lz, there exist v,w € W (o) such that

W <Ly(0) ¥V <Ls(0) P (o) (1)

and

{teW(0):v<r5(0)t <Ly(o) Fe(o) (W)} = 2.
or

Fg(0)(u) <p5(0)V <Lg(o) W

and

{te W(o): Fg(g)(u) <Ls(o) t <Ls(0) v} =@.
In the first instance, it follows from (10.47) that [w, Fg(s)(u)]o = (e, f) and
[v, Fg(o)(u)]o # (e, ), which contradicts Fg(,)(u) <=5 V(o) N\ {u, Feoy(u)}
(see Notation 10.8). Similarly, the second instance leads to a contradiction. Tt

follows that
&(0) =2,
so we have
V(o) =W;s(0o).

Lastly, suppose for a contradiction that Ls(c) is isomorphic to Ly. There
exists a sequence (v, )ns0 of elements of V(o) such that

N — {v,:n20}

n o — v,

is an isomorphism from Ly onto Ls(o). Let n > 0. It follows from (10.47) that
[VUn, Un+1]o # (€, f) and [Vn, Vn4plo = (e, f) for every p > 2. Consequently, there
exists a directed path 7 on Z (see Definition 10.30) such that o is isomorphic
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to 7[N]. By Remark 10.31, o — v is prime, which contradicts the fact that o
is critical. Similarly, if Ls(c) is isomorphic to (Ly)*, then o is not critical. It
follows that Ls(o) is isomorphic to Lz. Hence, there exists a sequence (v )nez
of elements of V(o) such that

p: Z — {v,:n>0}

n o — v,

is an isomorphism from Lz onto Ls(c). It follows from (10.47) that ¢ is an
isomorphism from o onto a directed path on Z. By Remark 10.31, o[{v, : n > 0}]
is prime, so (RT) holds. O

Proposition 10.33. Let o be an infinite critical 2-structure. If there exists
v e Ws(o) such that |A\(v)| =1 (see Notation 10.11), then (RT) holds.

Proof. Suppose that there exists u € Ws(o) such that |A\(u)| = 1. Hence, there
exists e € F(co) such that A(u) = {e}. By Lemma 10.22, we have

W (o) =Ws(o)
and (10.48)
for every v e Ws(o), A(v) = {e}.

Let v € Ws(o). There exists e, € E(o—v) such that o —v is not {e, }-connected.
Moreover, we have e, =en (V (o -v) x V(o -v)). For each w e V(o) \ {v}, we
denote by C}’ the unique element of Cy. 1(0 —v) containing w.

We prove that &(0) = @. Otherwise, as observed in the proof of Proposi-
tion 10.32, there exists u € (o) such that Fg(,y(u) € W(0o). For convenience,
set

v = F(g’(g) (u)

Let Dy € (Cie,y(0 —v) N {C}'}). Since o is {e}-connected, there exists w € D,
such that <v,w>,# {e}. Since v «—, V(o) \ {u,v} (see Notation 10.8), we
obtain <v,t>,# {e} for each t € V(o) ~ {u,v}. Hence, for each t € V(o -v)\ C¥,
o -t is {e;}-connected, where e; = en (V(o —t) x V(o -t)). It follows from
(10.48) that t € &(0). Thus, we have W(o) ¢ (C¥ u {v}). It follows from
Proposition 10.9 that W (o) \ {v} is infinite. Let w e (W (o)~ {v}). Recall that
<v,t>,# {e} for each t € V(o) \ {u,v}. Hence, 0 —{u,w} is {efy, .} }-connected,
where eg, 3 = en (V(o - {u,w}) x V(o - {u,w})). Since ¢ —w is not {ey }-
connected, we obtain [u, V(o—{u,w})], = (e, e), which contradicts the fact that
w ¢ &(0). Consequently, we have &(0) = @, so

V(o) =W(o). (10.49)
Consider distinct v, w € V(o). We show that

Cr U = V(o). (10.50)
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Let D, € (Cie,y (0 —v) N {C}'}). Since o is {e}-connected, there exists u € D,
such that <u,v>,# {e}. It follows that

V(o) ~ Cy is {e}-connected. (10.51)

Since v € (V(0) N\ C¥), we obtain (V(o) ~x C¥) c Cy. It follows that (10.50)
holds.

We conclude as follows. Consider distinct v,w € V(o). By (10.50), we have
C¥YuC?Y = V(c). By exchanging v and w if necessary, we can assume that
C¥ is equipotent to V(o). We verify that o[C'] is prime. For a contradiction,
suppose that M is a nontrivial module of o[C}']. Clearly, M is a module of o—v.
Since o is prime, there exists t € M such that <t,v>,# {e}. Let s € M~{t}. Since
CY is {e}-connected and M is a module of o[CY], o[C¥] - s is {e}-connected
as well. Since <t,v>,% {e} and t € (C¥ ~ {s}), we obtain that (C* ~ {s}) u {v}
is {e}-connected. Moreover, by (10.51), V(o) \ C¥ is {e}-connected. Since
ve(V(0)~ C¥)n ((C2 < {s}) U {o}),

V(o) C7)u ((C)~ {sh) u{v}),

which is V(o) \ {s}, is {e}-connected, which contradicts (10.48) and (10.49).
Consequently, o[C}’] is prime. It follows that (RT) holds. O

Theorem 10.1 follows easily:

Proof of Theorem 10.1. Let o be an infinite prime 2-structures. Clearly, if o is
not critical, then (RT) holds. Hence, suppose that o is critical. By Proposi-
tion 10.9, V(o) and W (o) are equipotent.

By Proposition 10.29, if W, (¢) # @, then (RT) holds. Thus, suppose that

We(o) = 2.
By Observation 10.12, we have
W(o) =Wgy(o)uWs(o).
Since Wg(o) uWs(0o) is infinite, it follows from Lemma 10.23 that Wy (o) €

Ws(o), so
Wi(o) =W;s(o).

Finally, it follows from Propositions 10.32 and 10.33 that (RT) holds. O



Appendix A

Proof of Theorem 5.21

We need the next two results to prove Theorem 5.21. The next lemma has to
be compared with Corollary 5.14.

Lemma A.l. Let o be a 2-structure such that v(o) > 7. If o is prime, and
neither critical nor almost critical, then there exists v e V(o) such that o —v is
prime and noncritical (that is, v e (o) N\ Se(0)).

Proof. Since o is not critical, we have . (¢) # @. If |.#(0)| > 2, then it suffices
to apply Theorem 5.10. Now, suppose that .#(o) admits a unique element
denoted by z. Since o is not almost critical, we have .%.(c) = @. It follows that
o —x is prime and noncritical. O

Proposition A.2. Let o be a 2-structure such that v(o) > 7. If o is prime, and
neither critical nor almost critical, then there exists v e V(o) such that o —v is
prime, and neither critical nor almost critical, as well.

The proof of Proposition A.2 is long and technical. We decompose it into
several claims.

The beginning of the proof of Proposition A.2. By Lemma A.1,
L(o)\ S(o) + @.

If there exists v € #(0) \ Z(0) such that | (o - v)| > 2, then it follows from
Theorem 5.10 applied to o —v that o —v is prime, and neither critical nor almost
critical.

To continue, suppose that

|-Z (0 -v)| <1 for every ve. (o) \ (o). (A1)

Given v € (o) \ S(0), we have /(0 - v) # & because v ¢ .#.(0). Thus,
for every v € (o) \ S(0), (0 —v) admits a unique element. Consider the
function [ : .#(c)\ F(0) — V (o), which maps each v € .7(c) \ .7.(0) to the
unique element of . (o - v).

199
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Given v € L (o) (o), if f(v) ¢ S(c-v), then o—wv is prime, and neither
critical nor almost critical. Lastly, suppose that

F(o-v)=S(o-v)={f(v)} for every v e .S (o) \ S(0). (A.2)
Let ve . (o) \ (o). It follows from Theorem 5.13 applied to o — v that
v(o) = 2n + 2, where n > 3, (A.3)

and there exists an isomorphism ¢, from (o —v) - f(v) onto an element 7, of
Ry satisfying (5.7).

Observation A.3. Recall that if (A.1) or (A.2) does not hold, then we can
conclude as above. In the sequel, we suppose that (A.1) and (A.2) hold. We
establish the new claims below in order to finally obtain a contradiction.

Claim A.4. We have f: .7 (0)\ Se(0) — V(o) N (0).

Proof. Otherwise, there exists v € .7 (o) \ Z.(c) such that f(v) €. (o). Since
o—{v, f(v)} is prime, we have f(v) € #(o)\7.(o). It follows that (fof)(v) = v.

As seen in the proof of Theorem 5.13, ¢, and ¢y(,) are isomorphisms from
P(o - {v, f(v)}) onto Ps,. We obtain that ¢, o (p,)"" is an automorphism
of Py,. We have

Aut(Pon) = {Idyo,... 2n-1},T2n} (see Notation 4.21). (A.4)

It follows that
Pfv) = Pov OF T2p O Py.

Recall that (5.7) holds for ¢, and @y (,y. Therefore, if 0 () = @u, then {v, f(v)}
is a module of o, which contradicts the fact that o is prime. Suppose that
©f(v) = Tan © @y Since (5.7) holds for ¢¢(,), we have

[Uv (‘Pf(v))_l({Qi HAC {Ov sy 1}})]0 = [(‘pf(v))_l(o)’ (@f(v))_l(Q)]a-

Since @ ¢(y) = Tan © Py, We obtain

[0, (o) ({20 +1:0€{0,...,n = 1}})]o = [(00) T (20 - 1), (90) (20 = 3)]

Since T, is critical, with P(7,) = Pay,, it follows from Proposition 4.15 that

[(‘pv)_l(Qn -1), (@v)_l(Qn =-3)]o = [(@v)_1(2)7 (Sov)_l(o)]cr

Therefore, we obtain

[0, (0) ({20 + 1€ {0,....n =13 1)]o = [(00) 7 (2), (90) 7' (0)]o-
Since (5.7) holds for ¢,, we have

[f(0). (o) ({20 + 10 € {0,...on=131)]o = [(00) 7 (2), (90) 7' (0)]o-
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It follows that

[F(v), (po) ' ({20 +1:0€{0,...,n-1}})],
=[v, (o) ({2 +1:i€{0,...,n-1}})]s.

Similarly, we have

[f(v). (o) ({2020 €{0,....n=13D)]o = [0, (00) " ({2020 € {0,...,n =1} }) o

Consequently, {v, f(v)} is a module of o, which contradicts the fact that o is
prime. O

Claim A.5. The function f is injective.

Proof. Otherwise, there exist distinct v,w € /(o) \ Z.(o) such that f(v) =
f(w). By Claim A.4, f(v) e V(o). (0). Since 0 —{v, f(v)} and o —{w, f(v)}
are prime, it follows from Lemma 4.4 that {v,w} is a module of o - f(v).
Therefore, the bijection

v V)N {w, f(0)} — V(o) {v, f(v)}

— W

zeV(ie)NA{v,w, f(v)} — =z,

is an isomorphism from (o —w) — f(v) onto (¢ —v) — f(v). Thus, we can choose
py 01 for . As shown in the proof of Theorem 5.13, ¢, and ¢, o 1 satisfy
(5.7). Since w € S (o) and f(v) € V(o) #(0), there exists pe {0,...,2n -1}
such that ¢, (w) = p. Observe that ma, o ¢, (see (A.4)) is also an isomorphism
from (o -v) - f(v) onto (7,)*, with (7,)* € Ray, satisfying (5.7). Therefore, we
can assume that

w = (‘Pv)_l(Qt)a

where t € {0,...,n—1}. Since @, satisfies (5.7), we obtain

[f(v),w]s = [(20) 71 (0), (90) " (2)]o-

Since n > 3 by (A.3), there exist k,1€{0,...,n -1} such that k < and p e {2i:
i€{0,...,n—1}} ~ {2k, 2l}. Since ¢, satisfies (5.8), we obtain

[f(?)),w]g = [(Sov)il(Qk)’ (¢v)71(2l)]0'

Since ¢, that is, ¢, o1 satisfies (5.7), we obtain [f(v), (¢, o) ({20 : i €
{0,....,n=1})]s = [(wo 0 ¥)71(0), (¢ 0 1) "1(2)],. Furthermore, since ¢, o 1
satisfies (5.8), we obtain [(y, 01/)7(0), (py 01) 1 (2)]o = [(p0 0 %)™ (2K), (00
)" 1(20)],. Since pe {2i:ie{0,...,n-1}}\ {2k, 2}, we obtain

(0) 7 (2K), (9) 71 (20) € V(0) ~ {o, f(v), w}.

Thus, ¢~ ((¢0) 7 (2k)) = (pu) ™ (2k) and ¥ ((p0) 7} (20)) = ()" (21). Tt fol-
lows that [f(v), (¢uor) " ({2i 0 € {0,...,n=1}})]s = [(00) " (2k), (¢0) ™ (20)]o
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Since ()1 (2p) = w and ¥~ (w) = v, we have v € (¢, 01p) 1 ({2i:i€{0,...,n—
1}}). Consequently, we obtain

[f(v). 0] = [(20) ™ (2K), (90) ™" (2]

Hence [f(v),v]s = [f(v),w]s. Since {v,w} is a module of o — f(v), {v,w}
is a module of ¢, which contradicts the fact o is prime. It follows that f is
injective. O

Claim A.6. For every ve.? (o) N (o), Npoy(f(v)) = {v}.

Proof. Otherwise, consider v € .#(0) \ #.(c) such that Np(,)(f(v)) # {v}. By
Claim A 4, f(v) e V(0)\.7(0). It follows from Lemma 4.4 that dp(,(f(v)) < 2.
Since o - {v, f(v)} is prime, we have v € Np(,)(f(v)), and hence

dpoy (f(v)) = 2.
Since v € Np(,)(f(v)), there exists w e V(o) \ {v, f(v)} such that

Np(o) (f(v)) = {v,w}.

For a contradiction, suppose that w € ¥ (o). Since o - {f(v),w} is prime, we
obtain w € (o) \ S(c), and f(w) = f(v), which contradicts Claim A.5. Tt
follows that

w¢ .7 (0).

Observe that my, o ¢, (see (A.4)) is also an isomorphism from (o - v) - f(v)
onto (7,)*, with (7,)* € Ray, satisfying (5.7). Therefore, we can assume that

w = ()" (2p),

where p € {0,...,n—1}. Since w ¢ . (0), we have dp(,)(w) < 2 by Lemma 4.4.
Since o - {f(v),w} is prime, we obtain

dp(sy(w) =1 or 2.
We distinguish the following two cases. Each of them leads to a contradiction.
1. Suppose that dp(,)(w) = 1. Since o - {f(v),w} is prime, we have
Neoy(w) = {f(v)}.
It follows from Lemma 4.4 that
F@) =o {(0) (@) i e {0, 20 =1}~ {(p0) ' (20)},  (A5)

which contradicts the fact that ¢, is an isomorphism satisfying (5.7).
Indeed, since n > 3 by (A.3), there exists ¢ € {0,...,n -1} ~ {p}. Since
(5.7) is satisfied by ¢,, we have

[f(’l)), (‘pv)_l(QQ)]U = [(9011)_1(0)7 (@v)_l(z)]aa
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and
[f(v), (20) " (2g+ Do = [(20)1(2), () (0)]5

Since 7, € Rap, we have (0,2),, # (2,0),, by Remark 5.12. Hence, we
have [0,2],, # [2,0],,. Since ¢, is an isomorphism from (o - v) - f(v)
onto T,, we obtain

[(20)71(0), (20) ™ ()]s # [(20) 7 (2), (20) 7 (0)]or- (A.6)

It follows that

[f(v), (00) 7' (20)]6 # [f(v), (90) " (20 + 1) o,
which contradicts (A.5).

. Suppose that dp(,)(w) = 2. Since f(v) € Np(»)(w), there exists u € V(o) \
{f(v),w} such that
Np(o)(w) = {u, f(v)}.

Since . (0 -v) = {f(v)} and o - {u,w} is prime, we obtain u # v. There-
fore, we have
u= (o) (9),

where i € {0,...,2n - 1} \ {2p}. By Lemma 4.4, {f(v),(¢,) 7 (i)} is a
module of o — w, that is,

{f(0), (#,)71 (i)} is a module of o - (,) ™" (2p). (A7)
Since (5.7) is satisfied by @y, we have
<f(0), (pu) (1) o =< ()T (0), (pu) " (2) >5
for every j € {0,...,2n - 1}. It follows that
<(20) (@), (00) T () >0 =<(20) TH(0), (00) 1 (2) >6

for every j € {0,...,2n -1} ~ {2p,i}. Since @, is an isomorphism from
(o -v)-f(v) onto 7, we have <i,j>, =<0,2>, for every j€{0,...,2n—
1}~ {2p,i}. Since 7, € Ray, it follows from (4.4) that <4, 2p>, =<0,1>, .
We obtain p =0 and ¢ = 1. Tt follows from (A.7) that

{f(v), (@v)_l(l)} is a module of o — (goy)_l(O). (A.8)

Since 7, € Rop, Ty is critical and P(7,) = P»,. It follows from Propo-
sition 4.15 that [1,3],, = [0,2],,. Since ¢, is an isomorphism from
(o —v) - f(v) onto 7,, we obtain

[(0) (1), (00) 7 (3)]o = [(20)TH(0), (00) T (2)]os

Since (5.7) is satisfied by ¢,,, we have

[f(’U), (9011)_1(3)]0 = [(@v)_1(2)7 (@v)_l(o)](r
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Bhy (A.6), [(20)7H(0), (00) " (2)]o # [(00)7H(2), (0) 71 (0)]5 Tt follows
that
[(0)7 (1), (00) ' 3)]o % [f(0), (00) 7 (3)]ors
which contradicts (A.8). O
Claim A.7. We have |.¥(0) \ (o) = 1.

Proof. Otherwise, consider distinct v, w € (o) .Z.(0). Since f is injective, we
have f(v) # f(w). Furthermore, it follows from Claim A.6 that Np,(f(v)) =
{v} and Np(s)(f(w)) = {w}. As previously noted, by considering ¢, o ma, (see
(A.4)) instead of ¢,, we can assume that

w = (p0) " (2p),

where p € {0,...,n —1}. Since Np,)(f(w)) = {w}, it follows from Lemma 4.4
that

w0 ((90) ({0, 20 = 11) ~ {w, f(w)}) u{v, f(v)}.

Since w = (¢,) 71 (2p), we obtain p =n -1 and o, (f(w)) = 2n - 1. Therefore, we
have

[w, () ({0, .., 2n-1})w, f(w) HU{v, f(0)} o = [(90) 7 (2), (90) 7 (0)]o-

As observed in Remark 5.16, Np(,—y)(f(v)) = @, and P(0 —v) - f(v) = P(0 -
{v, f(v)}). Since ¢, is an isomorphism from P(o - {v, f(v)}) onto Pa,, we
obtain

Ne(o-0) ((90) " (2n-2)) = {(00) 7 (20 = 3), (00) (20 - 1)}

It follows from Lemma 4.4 that {(¢,) " (2n - 3),(p,)"*(2n - 1)} is a module
of (0 —v) = ((¢y) ™' (2n - 2)), that is, (¢ —v) —w. Since Np)(f(v)) = {v}, it
follows from Lemma 4.4 that

v V(o) {v, f(v)}-

Consequently, {(¢,)™1(2n - 3),(p,) }(2n - 1)} is a module of ¢ — w, which
contradicts the fact that w e .7 (o). O

The end of the proof of Proposition A.2. We conclude as follows. By Claim A.7,
S (0)\S(0) admits a unique element denoted by v. By Claim A.6, Np(»)(f(v))
{v}. Thus, o - {v, f(v)} is prime. Set

X = V(o) {u, f(v)}.

Moreover, we have f(v) ¢ /(o) by Claim A.4. Since Np,)(f(v)) = {v} by
Claim A.6, it follows from Lemma 4.4 that

V<o V(U) N {U?f(v)}7 (AQ)
that is, v € (X),.
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We prove that

[(00) (1), V() N {(00) 7 (0)s(00) (D)} o =
[(2)71(0), (9) ™ (2)]o- (A.10)

Since (5.7) is satisfied by ¢,, we have

[f(v), (po) ({200 €{0,....n=1}D]o = [¢71(0), 07" (2)]o,

and

[f(0), (o) ({2i+1:0€{0,....n-1}}D)]o = [¢71(2), ¢7H(0)]o-

Since [(0)71(0), (v0) 1 (2)]o # [(90)71(2), (90) 1 (0)]5 by (A.6), we obtain
f(v) ¢ (X),. Since o is prime, it follows from (A.9) that

[0, V() ~{v, f(0)}o # [v, f(0) ] (A.11)

Since ¢, is an isomorphism from P(o — {v, f(v)}) onto P,,, we obtain that
o[X]={(0)71(0), (ps) (1)} is prime. Set

Y = X~ {(p0)(0), (w0) (D)}

Since v € (X),, we have v € (Y),. As previously, since (5.7) is satisfied
by ¢y, it follows from (A.6) that f(v) ¢ (Y),. Since (A.11) holds, it fol-
lows from Statements (P1) and (P2) of Lemma 3.17 that o[Y u {v, f(v)}] =

7 ={(¢s)71(0), (¢v) (1)} is prime. Hence,
(90) 71 (1) € Nigo)((00) 7 (0)).

For a contradiction, suppose that (¢,)"'(0) € (o). Since o - {(v,)7*(0),
(¢0) 71 (1)} is prime, we obtain (¢,)7'(0) € # (o) ~ Z.(c), which contradicts
Claim A.7. It follows that

(90)7'(0) ¢ 7 (o).
Since (¢,) (1) € Np(o)((¢)7(0)), it follows from Lemma 4.4 that

dp(oy((pu) 71 (0)) =1 or 2.

For a contradiction, suppose that dp(,)((¢n)™'(0)) = 2. There exists w €
V(0) ~ {(00) 1 (0), (p) (1)} such that Nogoy((90)"(0)) = {(00) (1), ).
Since Np(s)(f(v)) = {v} by Claim A.6, we have (¢,)~*(0) ¢ Np(o)(f(v)). Thus
w # f(v). Furthermore, since .7 (o —-v) = {f(v)}, we have (¢,)71(0) ¢ .7 (0 -v),
and hence (¢,)7'(0) ¢ Np(,)(v). Therefore, w # v. It follows that w € Y.
Since {(p,)7*(1),w} is a module of o - (¢,)"}(0) by Lemma 4.4, we obtain
()7 H(1) € Y, (w). But, since ¢, is an isomorphism from P(o - {v, f(v)})
onto Psy,, we have Np(y—(y ()1 ((¢0) 1 (0)) = {(¢s) ' (1)}. Since o - {v, f(v)}
is critical, it follows from Lemma 4.4 applied to o — {v, f(v)} that (V (o) ~
{v,f(0)}) N {(0)71(0), (9) 7' (1)} is a module of (¢ —{v, f(v)}) - () "*(0).
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We obtain ¢~ 1(1) € (Y),. Consequently, o !(1) € Y,(w) n(Y),, which contra-
dicts Lemma 3.13. It follows that

Ne(oy ((9)7(0)) = {(20) " (1)}
Since (¢,)71(0) ¢ Z(0), it follows from Lemma 4.4 that

V(o) {(0)1(0), (00) " (1)}

is a module of o - (¢,)7*(0). Since ¢, is an isomorphism from o - {v, f(v)}
onto an element of Ro,, we have

[(00) (1), (00) ' (3)]o = [(2)TH(0), (00) ' (2)]6-

It follows that (A.10) holds. In particular, we have
[(20) (1), )0 = [(20)7'(0), (20) ' (2) o (A.12)
Similarly, we have

[(p0) (20 -2),V(0) ~ {(p0) ' (2n = 1),(00) ' (2n - 2)}]5 =
[(901))71(2)7 (9011)71(0)]a~

In particular, we obtain
[(p0) (20 =2),0]5 = [(20) 7' (2), (0) 1 (0)]-

By (A.6), we have [(0)"'(0), (¢0) " (2)]o # [(¢0)7(2), (¢0) 71 (0)]5. There-
fore, it follows from (A.12) that

v (_/_)U {(901))_1(1)7 (‘pv)_l(Qn - 2)}a
which contradicts (A.9). O

Proof of Theorem 5.21. We proceed by induction on v(o)—v(7) > 1. The result
is obvious when v(o) —v(7) = 1. Hence, suppose that v(o) —v(7) > 2. Since
v(7) 2 5, we have v(o) > 7.

For convenience, we denote by .4 (o) the set of v € V(o) such that o — v is
prime, and neither critical nor almost critical. By Proposition A.2,

N (o) +@.
To begin!, we prove that there exists X ¢ V(o) such that

o[ X]~T1
and (A.13)
(V(e)~X)nS (o) + 2.

IFrom here until () (see page 207), the proof is similar to that of Theorem 5.19.
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Counsider Y € V(o) such that o[Y] ~ 7, and suppose that o —u is decomposable
for every u € V(o) \Y. It follows from Corollary 3.21 that there exist distinct
v,w e V(o) \Y such that o — {v,w} is prime. Thus, 7 embeds into ¢ — {v,w}.
Denote by C the component of P(o) containing v and w. For a contradiction,
suppose that V(C) ¢ V(o) \ .#(0). By Proposition 4.5, [V (o) ~ V(C)| < 1,
so |#(o)| < 1. Since o is not critical, we have |.#(o)| = 1. By Theorem 5.13,
C' is the unique component of P(c) such that v(C) > 2. If V(C)n (o) = &,
then it follows from Theorem 5.13 that o is almost critical. Consequently, we
have V(C) n.#(0) # @. Therefore, there exist distinct vertices co, ..., ¢, of C
satisfying

o {co,c1} ={v,w};

e p>2 {cp,....cp-1} SV (o) NS (0), and ¢, € L (0);

o forie{0,...,p-1}, {ci,cir1} € E(P(0)).
Let i€ {1,...,p—1}. We have ¢;_1,¢;+1 € Np(o)(c;). Since ¢; ¢ .7 (o), it follows
from Lemma 4.4 that Np,y(ci) = {ci-1,¢iv1}, and {c¢;_1,¢i11} is a module of
o—¢;. Thus, 0—{c;-1,¢} ~ 0—{ci, civ1 }. It follows that o—{co,c1} =~ 0—{cp-1,¢p},
that is, 0 —{v,w} ~ 0 - {cp-1, ¢p}. Since 7 embeds into o - {v,w}, 7 embeds into

o - {cp-1,¢p} as well. Since ¢, € (), (A.13) holds.
Now, we consider X ¢ V(o) such that (A.13) holds. There exists

ve(V(o)\X)nS (o).

If there exists w € (V ()N X)nA (o) #+ &, then it suffices to apply the induction
hypothesis to ¢ —w. Hence, suppose that

V()N X)n A (o) =2.
Thus, v ¢ A (o). Since A (o) + @, consider
zeXn AN (o). ()

Since o — v is prime, o — v is critical or almost critical. We distinguish the
following two cases.

1. Suppose that o —wv is critical. Since v(c)-v(7) > 2, we have X ¢ V(0 -v).

Since o—v is critical, it follows from Corollary 3.21 that there exist distinct
w,w" € V(o-v)\ X such that {w,w'} € E(P(c—v)). Thus, 7 embeds into
(o -v)—{w,w'}.
First, suppose that there exists y € (V (o) —v) ~ {x} such that {z,y} €
E(P(o —v)). Since {z,y},{w,w'} € E(P(c - v)), it follows from Corol-
lary 4.8 that (6 -v) - {z,y} ~ (6 —v) — {w,w'}. Therefore, 7 embeds into
(o —=v) = {z,y} as well. To conclude, it suffices to apply the induction
hypothesis to o — z.

Second, suppose that z is an isolated vertex of P(¢ —v). It follows from
Corollary 4.6 that there exists n > 3 such that P(o —v) = Py, @ K{2,,y. In
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particular, we obtain that v(o) is even. In another vein, it follows from
Corollary 5.5 (and Remark 5.6) that there exists e € E(P(c-v))nE(P(0)).
Since e, {w,w'} € E(P(0-v)), it follows from Corollary 4.8 that (c—v)—e ~
(6 —=v) = {w,w'}. Therefore, 7 embeds into (¢ —v) — e, and hence T
embeds into o —e. Since e € E(P(0)), o — e is prime. Furthermore, since
e € E(P(o -v)), (0 —¢e)—wv is prime. Thus, o — e is not critical. Lastly,
since v(o —e) is even, it follows from Theorem 5.13 that o —e is not almost
critical. To conclude, it suffices to apply the induction hypothesis to o —e.

Suppose that o — v is almost critical. There exists w € V(o —v) such that
S (0 -v) =0 -v) = {w}.

It follows from Theorem 5.13 that v(c) = 2n + 2, where n > 3, and there
exists an isomorphism ¢ from (o—v)—w onto an element p of R, satisfying
(5.7).

We can conclude when w ¢ X. Indeed, suppose that X € V (o)~ {v,w}. Tt
follows from the first statement of Fact 5.18 that w € Ext,(X). In what

follows, we suppose that
w e X.

First, suppose that
T #w.

Since P(p) = Py, @ is an isomorphism from P((o—v)-w) onto Pa,. Since
x #+ w, there exists y € V(o—v)~{z,w} such that {z,y} € E(P((c-v)-w)).
As observed in Remark 5.16, we have P((c —v) —w) =P(o - v) —w. Thus

{z,y} e E(P(o -v)),

so (o0—v)—{z,y} is prime. Furthermore, since X ¢ V(o-v), it follows from
Corollary 3.21 that there exist u,u’ € V(o—v)~X such that (c-v)—{u,u’}
is prime. Since . (¢ —v) = {w} and w € X, we obtain u # u’. Hence

{u,u'} € E(P(0 —v)).

It follows from the second statement of Fact 5.18 that (o —v) — {z,y} ~
(o-v)—{u,u'}. Tt follows that 7 embeds into (c—v)-{x,y}. Therefore, T
embeds into o—z. To conclude, it suffices to apply the induction hypothesis
to o —.

Second, suppose that

Set
Y =V(o) {v,w}.
Since Z.(0 -v) = {w}, o[Y] is critical. Furthermore, o[Y U {v}] is prime
because o[Y u{v}] =0 —z. It follows that v € Z.(c[Y u{v}]). By Corol-
lary 5.5 (and Remark 5.6), there exists e € E(P(c[Yu{v}]))nE(P(c[Y])).
Set
Z=Y ~e.
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We have o[Z] is prime. Since e € E(P(c[Y U {v}]), we obtain o[Y U
{v}])—e=(oc-¢€)—x is prime. Since (0 —e) -z =0c[Z U {v}], we have
v € Ext,(Z). Furthermore, it follows from the first statement of Fact 5.18
that z € Ext,(Z). Since (c-¢)-z =o[Zu{v}] and (c-¢e)-v =o[Zu{x}],
we obtain that

(0 —¢)—-v and (o -¢e) —x are prime. (A.14)

Since (c—v)—e is prime, we have e € E(P(0-v)). In another vein, it follows
from Corollary 3.21 applied to o — v that there exist u,u’ € V(o —v) X
such that (c—v)—{u,u'} is prime. Since .#(c-v) = {w}, we obtain u # u'.
Hence, {u,u'} € E(P(0-v)). Therefore, we obtain e, {u,u’'} € E(P(c-v)).
By the second statement of Fact 5.18, (o —v) —e ~ (0 —v) - {u,u’}. Since
7 embeds into (o —v) - {u,u'},

7 embeds into (o —v) —e. (A.15)

Finally, we distinguish the following two subcases.

2.1. Suppose that o — e is decomposable. Since o —e = o[Z U {v,x}], it
follows from Statement (P5) of Lemma 3.17 that {v,z} is a module of
o—e. It follows that (c—e)—z ~ (0 —e)—v. By (A.15), 7 embeds into
(0 —e) —v. Consequently, 7 embeds into (o —e) —z. To conclude, it
suffices to apply the induction hypothesis to o —x because x € A (o).

2.2. Suppose that o — e is prime. It follows from (A.14) that
v,z € S (o-e).

Consequently, o —e is neither critical nor almost critical. Moreover, it
follows from (A.15) that 7 embeds into o —e. To conclude, it suffices
to apply the induction hypothesis to o — e. O
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Appendix B

Proofs of Propositions 5.27,
5.28, and 5.29

Proof of Proposition 5.27. Consider s € 7.(7) such that P(7—s) = Pa, ® K2y
Therefore, v(o) = 2n + 2. Since v(c) > 7, we obtain

n>3.
Up to isomorphism, we can assume that

V(r)=A{0,...,2n+1},
s=2n+1,

and

P(7 - (2n+1)) = Pap, ® K23

For a contradiction, suppose that

and consider t € .7.(7)\{2n+1}. By Corollary 5.25, Np(r_(2n+1))(t) = Np(r—t) (2n+
1), and Np(r—(2n+1))(t) # @. Since Np(-—(2n+1))(t) # &, t # 2n. Moreover, since
v(7) > 8, it follows from Corollary 5.25 that 7 -t ~ 7 — (2n + 1). Therefore,
P(7-t) ~ Py, ®K{s,y. Consider an isomorphism ¢ from P(7—t) onto Py, ® K (2,3
Since Np(r—)(2n+1) # @, ©s(2n +1) # 2n.

Since 7 (2n+1) is critical and P(7—(2n+1)) = P2, ® K{2y3, it follows from
Theorem 4.24 that

T—= (271 + 1) = U(T2n+1),

where n > 3. Furthermore, since 72, € Aut(o(T2,+1)) by Remark 4.26, we can
assume that n < < 2n - 1. Similarly, there exists an isomorphism ¢ from 7 —¢
onto o(Tsp1) such that n < (2n +1) < 2n - 1. Since Np(r_(2n+1))(t) # @, it
follows from Lemma 4.4 that dp(;_(25+1))(t) = 1 or 2.

211
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The following observation is useful in what follows. Let z,y € {0,...,2n}
such that x <y < 2n.

If {cpfl(z), ¢7l(y)} N{2n,2n + 1} = @, then gpfl(o:) < ngl(y). (B.2)

Indeed, we have

(T, 9) o (L) = (27 (2), 071 (Y))r s
because ¢ is an isomorphism from 7 —t onto o(Ton+1)
= (@7 (@), (1)) r-(2ns1)  because 2n+1¢ {7 (z),¢7" ()}
= (07 2), 07 (W) o () because 7— (2n+1) = 0(Tane1)
= (@7 (@), 97 (U)o (Tansr)-(2n)  because 2n ¢ {7 (z), 07" (1)}

Since z < y < 2n, we obtain

(mvy)a(T2n+1)f(2n) = (w_l(x%W_l(y))U(T2n+1)f(2n)-

Since Thyi1 — (2n) = Lo, and @ <y, we have ¢ 1 (2) < ¢ (y).

First, suppose that dp(;_(2,+1))(t) = 1, and denote by u the unique element
of Np(r—(2n+1))(t). Since n <t < 2n-1, we obtain t = 2n-1, and hence u = 2n-2.
Since Np(r—(2n+1))(t) = Np(r—t)(2n + 1), we have Np(,_¢)(2n +1) = {u}, that is,
Np(-—1y(2n+1) = {2n - 2}. Since n < ¢(2n +1) < 2n -1, we obtain

e(2n+1)=2n-1and p(2n-2) =2n-2.

Furthermore, since {t,u} € E(P(7—(2n+1))), it follows from Lemma 4.40 that
(- (2n+1)) - {t,u} is critical, and

EP((r-(2n+1))-{t,u}))=E@P(r-(2n+1))) N {{2n-3,u}, {t,u}}.
Similarly, (7 —t) - {2n + 1,u} is critical, and
EP((r-t)-{2n+1,u})) = E(P(T -t)) ~ {{<p_1(2n -3),ul, {2n+ 1,u}}.

Thus, 2n is the unique isolated vertex of P((7 — (2n + 1)) — {¢t,u}), that is,
P(7-{t,u,2n+1}). Analogously, ¢~ *(2n) is the unique isolated vertex of P(7 -
{t,u,2n +1}). Therefore,

©(2n) = 2n.

Recall that 7 - (2n+ 1) = 0(T2n+1), and ¢ is an isomorphism from 7 — ¢ onto
0(T2n+1). Consequently, ¢y, .. 2n-3} is an automorphism of o (T2,41) - {2n -
2,2n-1,2n}, that is, 0(Top+1—{2n-2,2n-1,2n}). Since To,+1—-{2n-2,2n-1,2n}
is linear, o(Ton41 — {2n —2,2n - 1,2n}) is rigid. Hence,

®10,...2n-3) = Id{o,... 2n-3}-
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Since p(2n —2) = 2n -2 and ¢(2n) = 2n, we obtain that {2n - 1,2n + 1}, that
is, {s,t} is a module of 7, which contradicts the fact that 7 is prime. It follows
that d]p(,,-,s) (t) #1.

Second, suppose that dp(,_s)(t) = 2. Since dp(,_s)(t) # 1, t # 2n — 1. Hence,
n <t <2n-2. Similarly, by setting j = p(2n+ 1), we have n < j < 2n — 2. Recall
that Np(r—(2n+1))(t) = Npr—1)(2n + 1) by Corollary 5.25. It follows that

{7 G-, G+ D} ={t-Lt+1}
It follows from (B.2) that
e tGi-1)=t-land o '(j+1)=t+1.

Since {t - 2,t - 1},{t - 1,t},{t,t + 1} ¢ E(P(r - (2n + 1))), it follows from
Lemma 4.39 that (7 - (2n+1)) - {¢,t + 1} is critical, and

EP((r-(2n+1))-{t-1,t}))
=(E(P(r-Cn+ D)) N{{k,k+1}:ke{t-2,t-1,t}})
u{{t-2,t+1}}
={{k,k+1}:ke{0,...,t -3}u{t+1,...,2n-2}} (B.3)
u{{t-2,t+1}}.

Similarly, we obtain (7 —t) = {2n+ 1,7 1(j - 1)} is critical, and
E(P((r-t) - {2n+1,¢7'(j - 1)}))
={{o7" k), (k+1)}:ke{0,...,j-3}u{j+1,....2n-2}}  (B.4)
u{{e'(G-2),07 G+ D}
Since ¢ *(j - 1) =t -1, we have
(r-@n+1)-{t-1Lt}=(r-t)-2n+ 1, ' (- D}

Set
w=71—-{t,t+1,2n+1}.

It follows from (B.3) that

{t-2)ift=2n-2
N, t+1)= B.5
P (P +1) {{t—2,t+2}ift<2n—2. (B5)
Similarly, it follows from (B.4) that
L (G-} it j=2n-2
Negoy (e (G+1))= 1.7 ey Iy (B.6)
w {e7(1-2),97 (G +2)}if j<2n-2.

Since p(j+1) =t + 1, we obtain ¢ = 2n — 2 if and only if j = 2n - 2.
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To begin, suppose that ¢t = 2n -2 and j = 2n - 2. By (B.5) and (B.6), we
have ¢~ 1(2n - 4) = 2n — 4. By proceeding by induction, it follows from (B.3)
and (B.4) that

e () =1

for every 1 € {0,...,2n—4}. Since o }(j-1)=t-1and p 1(j+1)=t+1, we
obtain

e (1) =1

for every 1 € {0,...,2n-3}u{2n—-1}. Recall that 7 - (2n+1) = 0(T2p+1), and ¢
is an isomorphism from 7 -t onto o(Tsp+1). Since ¢(2n+1) = 2n -2, we obtain
¢~ 1(2n) = 2n. Tt follows that {2n—2,2n+1} is a module of 7, which contradicts
the fact that 7 is prime.

Now, suppose that ¢ < 2n —2 and j < 2n - 2. By (B.5) and (B.6), we have
{o(j-2),¢71(j+2)} = {t - 2,t+2}. Tt follows from (B.2) that

e Mj-2)=t-2and o ' (j+2)=t+2.
It follows from (B.3) that
Npy(t-2) ={t-3,t+1}.
Similarly, it follows from (B.4) that
Neguy (¢ (1-2)) = {¢™ (1 =3),07 (G + D)}

Since ¢ 1(j+1)=t+1and ¢ 1(j—-2) =t-2, we obtain ¢~1(j-3) =t-3. By
proceeding by induction, we obtain

(k) =t-k
for every k € {2,...,min(¢,5)}. For instance, suppose that ¢ < j. We obtain

©'(j—t) = 0. Since dp(,,)(0) = 1, we have dp(,,)(¢ ™' (j—t)) = 1. Hence, j—t =0
or 2n — 1. Since j < 2n — 2, we obtain j = ¢. Thus, we have

() =1

for every € {0,...,t —2}. Similarly, we obtain
() =1

for every l e {t+1,...,2n—1}. Since ¢ }(j-1) =t -1 and j = t, we obtain
e (1) =1

for every 1 € {0,...,2n -1} \ {¢}. Recall that 7 - (2n+1) = 6(T2p+1), and @ is
an isomorphism from 7 -t onto o(Ts,.1). We obtain ¢~!(2n) = 2n. It follows
that {¢,2n + 1} is a module of 7, which contradicts the fact that 7 is prime. O



215

Proof of Proposition 5.28. Consider s € #.(c) such that P(c — 5) ~ Payy1.
Therefore, v(o) = 2n + 2. Since v(c) > 7, we obtain

n>3.
Up to isomorphism, we can assume that

V(o) =A0,...,2n+1},
s=2n+1,

and

P(o-(2n+1)) = Pypyq.

Since o — (2n + 1) is critical and P(o — (2n + 1)) = Pap41, it follows from
Proposition 4.27 that

(071)0'#: (1’0)0')
and, (B.7)
[0,1]5 # [0,2],.

Furthermore, for any p,q € {0,...,2n} such that p < ¢, we have

(B.8)

p.ql = [0,2], if p and q are even,
Prtle = [0,1], otherwise.

Suppose that |#.(c)| > 2. Consider any element t of ..(c) \ {s}. Since
Ton+1 € Aut(Pan41) (see Notation 4.21), we can assume that

n<t<2n.

It follows from Corollary 5.25 that

NP(U—(QrHl))(t) = N]P’(U—t)(Qn + 1)
and (B.9)
]P(U —t) il P2n+1.

As above, since P(o —t) ~ Py,,41, there exists an isomorphism ¢ from o —t onto
7, where 7 is a critical 2-structure such that P(7) = Ps,41. By Proposition 4.27,

(¢=1(0), 7 (1))o = (¢71 (1), ¢71(0))o
and (B.10)

[071(0), 7 (V)]0 # [¢71(0),¢7(2)]o-

Furthermore, for any p,q € {0,...,2n} such that p < ¢, we have

[¢71(0),¢71(2)], if p and q are even,

[¢71(0),7(1)], otherwise. (B.11)

™" (p), ¢ ()]0 = {
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Similarly, we can assume that n < p(2n +1) < 2n.
For a contradiction, suppose that

dP(a—(2n+l))(t) =1 (B12)

Since n <t < 2n, we have t = 2n. Hence

NP(U—(2n+1))(2n) = {27’L - 1}
It follows from (B.9) that ¢©(2n + 1) = 2n, Np(,—(20))(2n +1) = {¢'(2n - 1)},
and
p(2n-1)=2n-1.
It follows from Lemma 4.40 that (o - (2n+1)) - {2n - 1,2n} is critical and
E(P((c-(2n+1))-{2n-1,2n}))
=EP(c-2n+ 1)) {{k,k+1}:ke{2n-2,2n-1}}
={{k,k+1}:ke{0,...,2n-3}}
= E(P2n71)~
Thus, we obtain
P(o-{2n-1,2n,2n+1}) = Pa,_1.
Similarly, 7 — {2n — 1,2n} is critical and
P(r-{2n-1,2n})) = Pay_1.

Observe that (¢71) 10,...,2n—2} 18 an isomorphism from P(7—{2n-1,2n})), which
is Py, 1, onto P(o—{2n,2n+1,0"1(2n-1)}). Since p(2n-1) = 2n -1, we have
o-{2n-1,2n2n+1} =0 - {2n,2n+ 1,0 *(2n-1)}.

It follows that
©10,....2n-2} € Aut(Pay,_1).
Therefore, we obtain
®10,....2n-2) = Idgo, .. 2n-2} O T2n-1.

We distinguish the following two cases. In each of them, we obtain a contradic-
tion.

1. Suppose that ¢y, 2n-2) = Idjo,... 2n-2}- Since (2n -1) = 2n -1, we

obtain

o(k) =k (B.13)
for each k € {0,...,2n —1}. We verify that {2n,2n + 1} is a module of o.
Let pe{0,...,2n - 1}. For instance, assume that p is even. We obtain

[p.2n+1], = [¢ " (p),¢ " (2n)], by (B.13)

=[¢7'(0),¢7'(2)], by (B.11)
=[0,2], by (B.13)
=[p,2n], by (B.8).
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Similarly, we have [p,2n + 1], = [p,2n], when p is odd. It follows that
{2n,2n + 1} is a module of o, which contradicts the fact that o is prime.

2. Suppose that @y, . 2n-2} = T2n-1. We obtain

o(k)=2n-2-k (B.14)
for each k € {0,...,2n - 2}. Therefore, we have

(0,1)0 = (¢ (2n-2),¢"'(2n-3)), by (B.14)
= (¢ (1),97(0))s by (B.11)
(¢ @n-1),¢7 (20-2)), by (B.11)
- (201,47 (2n-2)),

because ¢ ' (2n-1) =2n -1
=(2n-1,0), by (B.14)
=(1,0), by (B.8).
It follows that (0,1), = (1,0),, which contradicts (B.7).

Consequently, (B.12) does not hold. Therefore, dp(s—(2n+1))(t) = 2. Since
n<t<2n, we have n <t <2n-1. Set
j=e(2n+1).

By (B.9), Np(s—(2n+1))(t) = Np(o—t)(2n + 1). Hence, n < j <2n -1 and

{7 G-, G+ D)} = {t- 1t 41},
It follows that
e tG-1)=t-land o '(j+1)=t+1 (B.15)
or
e tj-1)=t+land o '(j+1)=t-1. (B.16)
Suppose that (B.15) holds. We prove that
t=7,
t=n,
n is odd, (B.17)

and
for each 1€ {0,...,n -2} u{n+2,...,2n}, (1) =2n-1.

Recall that P(o - (2n+ 1)) = Poys1. By Lemma 4.39,

EP((oc-(2n+1))-{t-1,t}))
=(E(P(c-Cn+)~{{kk+1}:ke{t-2,t-1,t}})u{{t-2,t+1}}.
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It follows that

EP(oc-{t-1,t,2n+1}))
={{kk+1}:ke{0,...;t-3}u{t+1,...,2n-1}} (B.18)
u{{t-2,t+1}}.

(Note that if ¢ = 2n - 1, then

E(P(o - {t-1,t,2n+1}))
= ({kk+1) ke {0,... . t-3) u{{t-2,t+1}}.)

Similarly, we have

E(P(oc-{¢-1(j-1),t,2n+1}))
={{o ' (k), o (k+1)}:ke{0,...,5-3}u{j+1,....,2n-1}} (B.19)
ui{e ' (G-2),¢7 G+ 1)}

(Note that if j =2n -1, then

E(P(o - {p-1(j -1),t,2n + 1}))
={{o k), o (k+1)}:ke{0,...,7-3}} (B.20)
u{{e (-2, G+ DI
Since (B.15) holds, we have
EMP(o-{t-1,t,2n+1})) = E(P(c - {p ' (j - 1),t,2n + 1}). (B.21)

We show that ¢ 1(j - 2) # t — 2. Otherwise, we have o~ '(j -2) =t-2. By
proceeding by induction, it follows from (B.18), (B.19), and (B.21) that ¢! (j -
k) =t—k for ke {1,...,min(¢,5)}. It follows that ¢ = j. Hence, ¢(I) = for
1€{0,...,t —1}. Analogously, by proceeding by induction, we obtain ¢(I) =1
forle{t+1,...,2n}. Thus, {¢,2n+ 1} is a module of o, which contradicts the
fact that o is prime. It follows that

e Mj-2)#t-2.
Since p~1(j+1) =t +1 by (B.15), it follows from (B.18) and (B.19) that
t<2n-2,
J<2n -2,
el +2)=t-2,
and
ol -2)=t+2.

By proceeding by induction, it follows from (B.18), (B.19), and (B.21) that
o (j+k)=t—kfor ke{2,... min(¢,2n-j)}. Since t,j € {n,...,2n -2}, we
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have min(t,2n - j) = 2n - j. For k = 2n — j, we obtain ¢~ 1(2n) = t - 2n + j.
Therefore, t —2n+j =0 or 2n. Since t <2n -2 and j < 2n -2, we have t +j = 2n.
Since t > n and j > n, we obtain

t=7and t=n.
It follows that for k€ {2,...,n}, we have
ol (n+k)=n-k

and (similarly) (B.22)
et (n-k)=n+k.
For a contradiction with (B.17), suppose that n is even. We obtain
(Oa 1)0 = (3071(2n)7 9071(2n - 1))0 by (B22)
= (¢ (n+1),97 (n-1))s by (B.11)

=(n+1,n-1), by (B.15) (because t = j and ¢t = n)
=(1,0), by (B.8),

which contradicts (B.7). It follows that n is odd. It follows from (B.22) that
p(l)=2n-1foreach 1 €{0,...,n-2}u{n+2,...,2n}. Hence, (B.17) holds. Set

P = Mapi1 © Q.

Clearly, 1 is another isomorphism from P(c —¢) onto Py,41. As previously for
, we obtain that for any p,q € {0,...,2n} such that p < g,

[¢71(0),97"(2)], if p and ¢
[ (0), 0™ (@)]o = are even, (B.23)
[¢v71(0),%71(1)], otherwise.

Since (B.17) holds, we obtain
W(1) =1 for each 1€ {0,...,n -2} u{n+2,...,2n}. (B.24)
Since n > 3, we have [0,1], = [¢"*(0),97'(1)],. Furthermore, we have
[0,2], = [0,2n], by (B.8)

=[v71(0),v7'(2n)], by (B.24)

=[v7'(0),97(2)]s by (B.23).
It follows from (B.8) and (B.23) that

[p.d)o = [ (). 07 ()]0

for any p,q € {0,...,2n} such that p < g. Therefore, 1! is an isomorphism from
o-(2n+1) onto o —t. Finally, since ¢ = j and ¢ = n, it follows from (B.15) that

Y(n-1)=n+1land Yp(n+1)=n-1. (B.25)
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It follows from (B.24) and (B.25) that ¢! satisfies (5.24).
Lastly, suppose that (B.16) holds. Since (B.16) holds, we have o — {¢,t +
L,2n+1} =0 - {t, o 1(j-1),2n +1}. Thus, we have

EP((oc-2n+1))-{t,t+1}) = E@P((c -t) - {o ' (j - 1),2n+1}). (B.26)

Set
w=o-{t,t+1,2n+1}.

To conclude, we distinguish the following two cases.

e Suppose that ¢ = 2n - 1. It follows from Lemma 4.40 applied to (o - (2n +
1)) -{2n-1,2n} that

E(B(p) = {{k,k+1}: ke {0,...,2n-3}). (B.27)

Thus,
NP(#)(2n—2) ={2n-3}. (B.28)

If j < 2n -1, then it follows from (B.19) that
Neuy (07 G+ 1)) = {¢7' (1 -2),¢7 (1 +2)},

which contradicts (B.28) because ¢~ !(j+1) = 2n—2 by (B.16). Therefore,
j=2n-1. It follows from (B.20) that

Neguy (971 (2n)) = {¢7' (20 - 3)}.
Since (B.16) holds, we have ¢™*(2n) = 2n — 2. It follows that
0 '(2n-3)=2n-3.

By proceeding by induction, it follows from (B.26), (B.27), and (B.28)
that
o l2n-k)=2n-k

for each k € {3,...,2n}. We obtain that for each k € {0,...,2n - 3},
p(k) =k. (B.29)
Since n > 3, we obtain

[0,1]5 = [¢7'(0), 71 (D)5
and

[0.2]0 = [¢71(0), 7' (2)]6-
It follows from (B.8) and (B.11) that

P, ale = (' (P). ¢ ()]s

for any p,q € {0,...,2n} such that p < ¢. Therefore, ™! is an isomorphism
from o —(2n+1) onto o—t. Since t = 2n—1, we have Np(,_(2n41))(t) = {2n—
2,2n}. It follows from (B.16) that ¢™1(2n) = 2n -2 and ¢~ (2n-2) = 2n.
Consequently, ¢! satisfies (5.24).
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e Suppose that t < 2n — 1. Recall that P(o — (2n+ 1)) = Paps1. It follows
from Lemma 4.39 applied to (o - (2n+1)) - {¢,t+ 1} that

E(P(u)) ={{k,k+1}:ke{0,...,t-2}u{t+2,...,2n-1}}  (B.30)
u{{t-1,t+2}}.
We obtain
N]p(u)(t - 1) = {t—2,t + 2}
Since (B.16) holds, we have

e tG+1)=t-1.
If j = 2n -1, then it follows from (B.20) that

Negoy (o' (G +1) ={¢ " (1 -2)}.

Therefore, we have
j<2n-1.

It follows from (B.19) that
Negoy (' G +1)) = {7 (G -2),¢ ' (i +2)}-
Therefore, we have
go_l(j—2):t—2 and go_l(j+2):t+2 (B.31)

or
e l(j-2)=t+2and ot (j+2)=t-2. (B.32)

For a contradiction, suppose that (B.32) holds. By proceeding by induc-
tion, it follows from (B.30), (B.19), and (B.26) that

e k) =tk

for each k € {1,...,min(¢,2n — j)}. Since ¢,5 € {n,...,2n}, we have
min(t,2n-5) = 2n—j. Thus, for k = 2n—j, we obtain ¢~ 1(2n) = t+j-2n. It
follows that t+j = 2n or 4n. Since n <t <2n -1 and n < j < 2n, we obtain
t+j =2n, and hence, t = n and j = n. Therefore, for each [ € {0,...,n-1},
we have ¢~ 1(2n - 1) = I. Symmetrically, we obtain ¢ *(I) = 2n - [ for
1€{0,...,n-1}. It follows that for each p € {0,...,n-1}u{n+1,...,2n},
we have

¢ (2n-p) =p. (B.33)
Set

Y = Tan+1 © .

Clearly, 1 is another isomorphism from P(o —t) onto Ps,.1. By Proposi-
tion 4.27, for any p,q € {0, ...,2n} such that p < ¢, we have

[v71(0),v71(2)], if p and g are even,

[¢71(0),%7"(1)]5 otherwise. (B.34)

[ (p). v (0)]o = {
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It follows from (B.33) that for each p€ {0,...,n—-1}u{n+1,...,2n}, we
have

v (p) = p. (B.35)
Since n > 3, we have [0,1], = [¢71(0),%"*(1)], and [0,2], = [¢1(0),
¥ 1(2)],. Tt follows from (B.8) and (B.34) that for each p € {0,...,n -
1}u{n+1,...,2n}, we have

[pat]a = [¢_1(p)72” + 1]0-

We obtain that {t,2n + 1} is a module of o, which contradicts the fact
that o is prime. Consequently, (B.32) does not hold. Hence, (B.31) holds.
By proceeding by induction, it follows from (B.30), (B.19), and (B.26)
that ¢~ '(j - k) =t — k for each k € {2,...,min(¢,j)}. Therefore, t = j.
Symmetrically, we obtain o (¢t +k) =t +k for each k€ {2,...,2n—t}. It
follows that for [ € {0,...,t -2} u{t+2,...,2n}, we have

o ) =1. (B.36)

For a contradiction, suppose that ¢ is even. Since n > 3 and ¢ > n, we have
t>3. By (B.36), we have

¢~ 1(0)=0
and (B.37)
e (1) =1
We obtain
(0,1)0 :(t_17t+1)0 by (BS)

= (¢ Y (t+1),o7(t-1))s by (B.16) (because t = j)

= (¢71(1),¢7(0))s by (B.11)

=(1,0), by (B.37),

which contradicts (B.7). It follows that ¢ is odd. By (B.36),
[0,1]6 = [¢7"(0),¢7 ()]
Furthermore, we have
[0,2], = [0,2n], by (B.8)
[¢7(0), 97 (20)], by (B.36)
[¢7(0).¢7'(2)], by (B.1).
It follows from (B.8) and (B.11) that

[p.alo = [¢7'(P), 0™ (@)]o
for any p,q € {0, ...,2n} such that p < ¢. Therefore, ¢! is an isomorphism
from o —s onto o —t. By (B.16), we have ¢ 1(t+1) =t-1and p 1 (t-1) =
t+1. Tt follows from (B.36) that ¢! satisfies (5.24).
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To conclude, we verify that .(c) = {t,2n +1}. As shown above, (5.24) holds.
For a contradiction, suppose that there exists t' € Z.(0) \ {t,2n + 1}. By what
precedes, (5.24) holds also when ¢t is replaced by t'. It follows that {¢,¢'} is a
module of o — (2n + 1), which contradicts the fact that o — (2n+1) is prime. O

Remark B.1. Let o be a prime 2-structure with v(c) > 7. Suppose that
there exist distinct s,t € .#.(0). Suppose also that P(c — s) ~ Payi1. By

Proposition 5.28,
Fe(o) = {s,1}.

Moreover, consider an isomorphism ¢4 from P(o—s) onto Ps,1. It follows from
Proposition 5.28 that

ws(t) is odd
and

((Ps(o)v @5(2))0’ = (@8(2)’ (ps(o))o-

Proof of Proposition 5.29. Consider s € .%,(o) such that P(c —s) ~ P,,. There-
fore, v(o) =2n + 1. Since v(c) > 7, we obtain

n > 3.

Suppose that there exists t € .Z.(0) \ {s}. We verify that we can assume that
(5.25) holds. Let s be an isomorphism from P(c — s) onto P,,. Since mo, €
Aut(Ps,) (see Notation 4.21), we can assume that

n<ps(t) <2n-1.

Denote by 7, the unique 2-structure defined on {0,...,2n — 1} such that ¢y is
an isomorphism from o — s onto 7. Since ¢, is an isomorphism from P(o - s)
onto Py, T is critical and P(7s) = Ps,. Here, we can assume that V(o) =
{0,...,2n}, s =2n, and p, =Idyg, . 25-1y. Thus, we have t € {n,...,2n -1} and
P(o - (2n)) = Pan, so (5.25) holds. Furthermore, note that 75 = o — (2n).

It follows from Proposition 4.15 that

<0,1>,#<0,2>, (see Notation 1.1). (B.38)

Moreover, for any p,q € {0,...,2n — 1} such that p < ¢, we have

(B.39)

(p.ql, - [0,1], if p is even and ¢ is odd,
Pritle = [0,2], otherwise.

It follows from Corollary 5.25 that

Np(o-(2n)) (t) = Np(o-1)(2n). (B.40)

Since v(o - (2n)) = 2n, it follows from Corollary 4.6 that P(o —t) ~ Py,. As
above, there exists an isomorphism ¢ from ¢ —¢ onto 7, where 7 is a critical
2-structure such that P(7) = Py,,. It follows from Proposition 4.15 that

<071(0), 07 (1) = #<0 7 (0), 071 (2) >0 - (B.41)
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Furthermore, for any p,q € {0,...,2n -1} such that p < g, we have

[071(0),¢71(1)]s if p is even and ¢ is odd,

[¢71(0),¢71(2)], otherwise. (B.42)

™" (p), ¢ (@)]o = {

Similarly, we can assume that n < ¢(2n) <2n - 1.
To begin with situation 1, suppose that
dp(o-(2n)) (1) = 1.

Since n <t <2n -1, we have
t=2n-1.

By (B.40), dp(,—4)(2n) = 1. Similarly, we have
p(2n) =2n-1.
Moreover, it follows from (B.40) that
0t (2n-2)=2n-2. (B.43)
It follows from Lemma 4.40 that (o - (2n)) - {2n - 2,2n - 1} is critical and
E(P((c-(2n))-{2n-2,2n-1}))

=E(P(c-s)){{k,k+1}:ke{2n-3,2n-2}}

={{k,k+1}:ke{0,...,2n-4}}.
Observe that P(o - {2n—2,2n - 1,2n}) = Py,_o. Clearly, (Qﬁ_l)r{o’m,zn_?)} is an
isomorphism from Py,_5 onto P(o - {¢ ™' (2n - 2),2n - 1,2n}). By (B.43), we

have
o-{o ' (2n-2),2n-1,2n} =0 - {2n-2,2n-1,2n}.
It follows that
(0. 2n-3) € Aut(Pon—2).
Therefore, we obtain

©1o,...,2n-3} = Id{o,... 2n-3} OF Tan_o (see Notation 4.21). (B.44)
For a contradiction, suppose that
#o,...,2n-3} = Id{o,“.,zn—3}~ (B.45)
By (B.43), we have
w(k) =k (B.46)
for each k € {0,...,2n - 2}. We verify that {2n —1,2n} is a module of o. Let
v e{0,...,2n —2}. For instance, assume that v is even. We obtain
[v,2n - 1], =[0,1], by (B.39)
=[¢7(0), 7 (D)]s by (B.46)
=le7H (), (2n-1)], by (B.42)
=[v,2n], ©(v) =v by (B.46), and ¢(2n) =2n - 1.
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Similarly, we have [v,2n-1], = [v, 2n], when v is odd. It follows that {2n-1,2n}
is a module of o, which contradicts the fact that o is prime. Consequently,
(B.45) does not hold. By (B.44), we have

(¢ Ho,....2n-3}) = T2n—2-

‘We obtain
o '(k)=2n-3-k. (B.47)

for each k € {0,...,2n — 3}. Therefore, we have

(0,2)5 = (7' (2n=3),¢" ' (2n-5)), by (B.4T7)
= (¢ '(2n-2),¢7'(2n-5)), by (B.42)
=(2n-2,2), by (B.43) and (B.47)
= (2,0), by (B.39).

Moreover, set

Y =Tap 0 p.
Clearly, ¢ is another isomorphism from P(o - t) onto P,,. As previously for ¢,
we obtain that for any p,q € {0,...,2n} such that p < ¢,

[v71(0),471(1)], if p is even and ¢ is odd,

[¢v71(0),%7(2)], otherwise. (B.48)

[ (), v " (0)]s = {

Since p~1(2n-1) = 2n, it follows from (B.43) and (B.47) that ¢! is defined by

{0,....2n-1} — {0,...,2n-2}u{2n}
0 —  2n,
1 — 2n-2,
2<k<2n-1 +— k-2.

(B.49)

We obtain
[71(0), 47 (1)], = [2n,2n - 2], by (B.49)

=1
[¢7'(2n-1),¢7' (2n-2)],
[¢
[0,

2n-3),0 ' (2n-4)], by (B.42)
1o by (B.47).

Similarly, we have

[v7'(0),%71(2)],

[2n,0], by (B.49)
[o'(2n-1),07'(2n-3)], by (B.47)
[o'(2n-3), 0 (2n-5)], by (B.42)
[0,2], by (B.47).
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It follows from (B.48) and (B.39) that

W (), v (@)]s = [P, als

for any p,q € {0,...,2n—1} such that p < q. Consequently, 1)~! is an isomorphism
from o - (2n) onto o — (2n - 1). Hence, (5.26) holds.
To continue with situation 2, suppose that
dp(o—(2n)) () = 2.

Since n <t <2n -1, we have n <t <2n - 2. Thus, Npy_(2n))(t) = {t - 1,t +1}.
Set

J =¢(2n).
Recall that n < j < 2n-1. By (B.40), Np,—)(2n) = {t = 1,t + 1}. Hence,
n<j<2n-2and
{7 G- G+ D} ={t-1,t+1}

It follows that
e tG-1)=t-land ¢ '(j+1)=t+1 (B.50)

or
e lj-1)=t+land o' (j+1)=t-1. (B.51)
For a contradiction, suppose that (B.50) holds. Recall that

E(P(oc-(2n))) ={{k,k+1}:k€{0,...,2n-2}}.

By Lemma 4.39,
E(P((o-(2n)) -{t-1,t}))
= {{kk+1}:kef0,....t-3}u{t+1,...,2n-2}} (B.52)
u{{t-2,t+1}}.

Similarly, we have

E(P(o - {t,¢™(j-1),2n}))
= {o k), M (k+1)}:ke{0,...,5-3}u{j+1,....,2n-2}}  (B.53)
U{{ei' (-2, 7 G+ D}
Since (B.50) holds, we have
E(P(c-{t-1,t,2n})) = E(P(c - {t,¢o ' (j - 1),2n}). (B.54)
We distinguish the following two cases. Both lead us to a contradiction.

1. Suppose that ¢~ 1(j - 2) =t - 2. By proceeding by induction, we obtain
0 Y(j-k)=t—kfor ke{2,...,min(j,t)}. It follows that j = ¢. Similarly,
we obtain that o 1(I) =1 for ke {t+2,...,2n-1}. Since (B.50) holds, we
obtain (¢;) ' (1) =1 for L€ {0,...,2n -1} \ {t}. It follows from (B.39) and
(B.42) that {¢,2n} is a module of o, which contradicts the fact that o is
prime.
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2. Suppose that ¢™1(j —2) #t-2. Since o 1(j+1) =t+1, it follows from
(B.52), (B.53), and (B.54) that t < 2n -3, j <2n -3, and
o l(j-2)=t+2and o 1 (j+2)=t-2.

By proceeding by induction, we obtain ¢ *(j - k) =t +k for ke {2,...,
min(j,2n—t-1)}. Since ¢,j € {n,...,2n — 3}, we have

min(j,2n—-t-1)=2n—-t-1.

For k=2n-t-1, we obtain j+t—-2n+1 =0 or 2n — 1, which is impossible
because j,t € {n,...,2n - 3}.

Consequently, (B.50) does not hold. Therefore, (B.51) holds. Recall that
E(P(U - {t7 9071(]. - 1)7 2TL}))

= {o k), o (k+1)}:ke{0,...,j-3}u{j+1,....2n-2}}  (B.55)
u{{e (G -2),¢7 G+ D)}

Furthermore, by Lemma 4.39, we have

E(P((o - (2n)) - {t,t+1}))
={{kk+1}:ke{0,...;,t -2} u{t+2,...,2n-2}} (B.56)
u{{t-1,t+2}}.

Since (B.51) holds, we obtain
E(P(o-{t,t+1,2n})) = E(P(c - {t,¢ ' (j - 1),2n}). (B.57)

Set
pw=0c—-{t,t+1,2n}.

Since (5 +1) =t -1, we obtain
Ny (t=1) = Nequy (97 (7 + 1)) (B.58)
For a contradiction, suppose that
e ti-2)=t+2.

Since dP(N)(ga’l(j -2)) =2, we have dp(,,)(t+2) = 2, so t < 2n-4. By proceeding
by induction, we obtain ¢ ™1 (j—k) = t+k for k € {2,...,min(j,2n-t-1)}. Since
j>nand ¢t >n, we have min(j,2n -t -1)=2n-t—-1. For k=2n-t-1, we
obtain ¢ 1(j+t+1-2n)=2n~-1. Thus, j+t+1-2n =0 or 2n - 1, which is
impossible because j,t € {n,...,2n - 2}. Consequently, we have

e (i-2)=t-2. (B.59)
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By proceeding by induction, we obtain ™! (j-k) = t—k for k € {2,...,min(j,#)}.
It follows that j =¢. We obtain
e ') =1for1€{0,...,t-2}. (B.60)
Since t > n and n > 3, we obtain
[¢7(0), 7" (D] = [0,1],.

Similarly, if ¢ > 4, then [¢™1(0),97'(2)]s = [0,2],. Hence, suppose that ¢ = 3.
We obtain t < 2n — 3 because n > 3. It follows from (B.58) that

{t-2t+2) = {7 (j-2).¢7 ' ( + 2)}- (B.61)

Since ¢ 1(j - 2) =t -2 by (B.59), we have ¢ 1(j +2) =t +2. Recall that j = t.
By proceeding by induction, we obtain

et =1forle{t+2,...,2n-1}. (B.62)
We have
[¢7(0), 07 (D)o =[¢7 (1), 07 (2n - 1], by (B42)
=[1,2n-1], by (B.60) and (B.62)
=[0,2]s by (B.39).

Therefore, we have
[¢71(0), 07" (D]o = [0,1]5 and [¢7'(0), 0™ (2)]5 = [0, 2],
It follows from (B.39) and (B.42) that

[ (), ¢ (D)]o = [P, &

for any p,q € {0,...,2n—1} such that p < ¢. Consequently, ¢! is an isomorphism
from o - (2n) onto o —t. Moreover, ¢! is defined by

{0,...,2n -1} — {0,....2n}\ {t}
t —  2n because ¢ = j and ¢(2n) = j,
t-1 — t+1 by (B.51),
t+l — t-1 by (B.51),
veV(o)N{t-1,t,t+1,2n} — v by (B.60) and (B.62).

Consequently, (5.27) holds.
We conclude as follows. For a contradiction, suppose that there exists u €
(o) N A{t,2n}. We distinguish the following two cases.

1. Suppose that dp(s—(2n))(t) = dp(o—(2n)) (). First, suppose that dp(s_(2n))(t) =
1. Thus, (5.26) holds. In particular, we have t = 2n — 1. It follows that
u=0. Since {0,1} € E(P(c - (2n))), (o - (2n)) - {0,1} is prime. Set

X =V(o)~{0,1,2n}.
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It follows from (5.26) that 2n € Ext,(X). Hence o —{0,1} is prime, which
contradicts 0 € .7.(o).

Second, suppose that dp(s—(2n))(t) = 2. We have t,u € {1,...,2n - 2}. For
instance, assume that ¢ < u. We obtain that (5.27) holds, but also (5.27)
holds after replacing ¢ by u. Precisely, the function

0y : {0,...,2n-1} — {0,...,2n} ~ {t}
t —  2n,
t-1 — t+1,
t+1 — 1,

veV(o)~{t-1,t,t+1,2n} +— v,

is an isomorphism from o - (2n) onto o —t. Similarly, the function

O : {0,...,2n -1} — {0,...,2n} ~ {u}
u —  2n,
u—1 —  u+1,
u+1 — u-1,

veV(o)N{u-1Lu,u+1,2n} — v,

is an isomorphism from o - (2n) onto o —u. We distinguish the following
cases.

e Suppose that ¢ <u—3. Since Np(,—(20)y(u) = {u—1,u+1}, it follows
from Lemma 4.4 that {v—1,u+1} is a module of (¢ - (2n)) —u. In
particular, we have

[t,u-1], = [t,u+1],.

Moreover, we have

[t7 o 1](7 [2717 o 1](7 by applying 6t

=[w,u+1], by applying (6,) ",
and

[t,u+1], =[2n,u+1], by applying 6,
=[u,u-1], by applying (8,)7".
It follows that
[u,u—1]y = [u,u+1],.
Since {u - 1,u+ 1} is a module of (0 - (2n)) —u, {u-1L,u+1} is a
module of o - (2n), which contradicts 2n € . (o).

e Suppose that t = u — 2. Since Np(,_(20))(t +1) = {t,2 + 2}, it follows
from Lemma 4.4 that {¢,¢ + 2} is a module of (o - (2n)) - (¢ + 1).
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Furthermore, we have

[t+1,t+2],=[t-1,t+2], by applying (6;)™*

=[t-1,2n], by applying 6,
=[t+1,t] by applying (6;)”"
=[t+3,t], by applying 6,
=[t+1,t], by (B.39).

Therefore, {t,t + 2} is a module of (¢ — (2n)), which contradicts

2n e .S (o).

e Suppose that ¢t =u — 1. First, suppose that ¢ is even. We obtain
[0,1]5 = [t,t+1]s by (B.39)

[,
[2n,t-1], by applying 6,
[

t+1,t-1], by applying (6,)"
[2,0], by (B.39),

which contradicts (B.38). Second, suppose that ¢ is odd. We have
1<t<2n-3. If t<2n -5, then t+4 < 2n -1 and we obtain

[0,1]o=[t+1,t+4], by (B.39)
=[2n,t +4], by applying 6,
=[t,t+4] by applying (6;)"
=[0,2], by (B.39),

which contradicts (B.38). If t > 2n—4, then t = 2n-3, u = 2n -2, and
we obtain

[0,1], =[0,¢], by (B.39)

[0,2n], by applying 6;
[0,¢+1], by applying (6.,)"
[0,

2], by (B.39),

which contradicts (B.38).

2. Suppose that dp(,_(2n))(t) # dp(s—(2n))(u). For instance, assume that

dp(o—-(2n)) (1) = 1 and dp(y_(2n))(u) = 2.

We have t =2n -1 and 1 < u < 2n — 2. We obtain that (5.26) holds, and
(5.27) holds after replacing ¢t by u. Precisely, the function

0,: {0,....2n-1} — {0,...,2n-2}u{2n}
0 —  2n,
1 s -2,
2<k<2n-1 > k-2,
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is an isomorphism from o - (2n) onto ¢ —¢. Furthermore, the function

O : {0,...,2n -1} — {0,...,2n} ~ {u}
u —  2n,
u—1 —  u+1,
u+1 —  u-1,

veV(o)N{u-1Lu,u+1,2n} — v,

is an isomorphism from o — (2n) onto o —u. We distinguish the following
cases.

e Suppose that u < 2n—-4. Since Np(s—(21))(u) = {u—1,u+1}, it follows
from Lemma 4.4 that {u - 1,u + 1} is a module of (¢ - (2n)) — u.
Furthermore, we have

[2n,u-1], = [0,u+1], by applying (6;)™*
[0,u+3], by (B.39)
[2n,u+1], by applying 6;.

Therefore, {u — 1,u + 1} is a module of o — u, which contradicts u €
(o).
e Suppose that u =2n — 3. We obtain

[0,u], by (B.39)
[0,2n], by applying @,
[2,0], by applying (6;)7",

[0, 1]0’

which contradicts (B.38).

e Suppose that u =2n -2. We obtain
[0,1], =[0,3], by (B.39)

[
[2n,1], by applying 6,
[
[

2n-2,1], by applying (6,)""
2,0]s by (B.39),

which contradicts (B.38).

Both cases above lead us to a contradiction. Consequently, .%.(c) = {t,2n}. O
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