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Abstract. We report on how we combine tests and formal proofs while
developing extensions to the CompCert formally verified compiler.
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1 Introduction

CompCert is a formally verified compiler, which compiles a large fragment of the
C programming language to assembly code. “Formally verified” means that there
is a machine-checked proof (here with the Coq proof assistant) that if compilation
succeeds, the possible executions of this assembly code match those of the C
source [11]. Hence, CompCert’s formal proof aims at forbidding miscompilation,
i.e., compiled programs with unexpected behaviors.

Miscompilations being potentially very unsafe for final users, eradicating them
is highly desirable. However, according to [27], in mainline compilers—without
formal proof—such as GCC and LLVM, more than half of the bugs in optimization
passes are miscompilations. This indicates that eradicating them is nonetheless
very difficult with standard software engineering methods.

While developing new features for CompCert, we realized that formal proofs
were not enough, and that testing was required. We thus greatly extended
the testing system present in the GitHub repository of CompCert. This paper
describes the challenges that we experienced and the solutions we found.1

Here are some incorrect behaviors not prevented by CompCert’s formal proof
and that we experienced. (1) Unexpected compilation failure (compiler
internal error): the formal proof assumes that compilation succeeds; always
failing would trivially satisfy this criterion. Failing when incorrect behavior
occurs protects against miscompilation, as detailed in §2. (2) Compilation
timeout: compilation may loop forever or take prohibitively long. (3) Error
during assembling or linking: reasons for this range from details in the syntax
comment of certain assemblers to the use of short branch instructions.2

The above behaviors are not miscompilations, but compile-time errors. In
contrast, the following may lead to miscompilation, revealing issues in the Trusted

⋆ Work partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01).
1 Get our code on https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert.
2 A short branch and its target must be close, which may be false on large functions.
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Computing Base (TCB) which the formal proof relies on. (4) Source semantics
mismatch: the C language is surprisingly complicated, and its semantics as
formally defined in CompCert may diverge from the informal one defined in the
standard, or in CompCert’s manual. (5) Assembly semantics mismatch: the
semantics of assembly language, plus platform-dependent peculiarities (e.g., how
to access global symbols), may contain unexpected pitfalls (such as out-of-range
operands resulting in a wrap-around behavior). Furthermore, some instructions
present in CompCert’s “assembly” languages are actually macros expanded by
trusted (unverified) OCaml code. Some of these macros were inexactly specified,
for instance by forgetting a clobbered register—this went unnoticed as long as the
compiler did not take advantage of the value in that register being preserved [13].
(6) Assembly language mis-expansion or misprinting: we also found rare
miscompilations in the expansion or printing of macros-instructions. For instance,
a rarely selected instruction was misprinted; our macro-instruction for stack
frame allocation did something incorrect but that almost always worked.

Some of these issues had not been detected for months, which indicated that
testing was insufficient. We thus gradually developed a testing and continuous
integration framework, which we ported to the other targets supported by Comp-
Cert, leading to new discoveries [13].

Here is an outline of the paper. Section 2 explains how we deliberately rely on
compiler failures—issue (1) above—in order to simplify our formal proofs. Indeed,
compiler failures seem a lesser evil than other issues, and testing is anyway
necessary for these other issues. The remainder of the paper examines methods
for identifying all these issues. Section 3 introduces an extended suite of tests.
When a new bug is triggered, we describe in Section 4 how to produce a minimal
example. CompCert’s TCB is intended to be as small as possible, but it is almost
inevitable to rely on trusted parts for both ends of the pipeline: the C and assembly
semantics, as well as the expansion of assembly macro-instructions. Details about
these sensitive parts and possible solutions are provided in Section 5. Another
important aspect of testing is the benchmarking: measuring the performance of the
generated code faithfully is not trivial, and require a rigorous strategy. Section 6
covers this topic, and presents our evaluation toolkit to compile, execute, and
analyze representative benchmarks with multiple compilers, including CompCert.
Finally, Section 7 concludes. Some complements are given in Appendix A.

2 Formally Verified Defensive Tests

CompCert’s formal proof assumes compilation success, and states nothing in case
of failure. This allows for Formally Verified Defensive Programming (FVDP) [1]:
complex computations are delegated to efficient functions, called oracles, whose
implementations are both untrusted and hidden from formal proofs; only a
defensive test of their result is formally verified.

For example, we introduced a hash-consing factory, formally verified using
only defensive pointer equality tests [1, §3.3.2][23, §4.4]. We use translation
validation [16,19,25], in particular by symbolic execution, an approach for compiler



testing [6,21]: the same formally verified translation validator is used to check
many untrusted transforms [24]. We validate fixpoints, computed using imperative
data structures that cannot be easily modeled in Coq, by a verified checker [14].

Such a design induces simpler formal proofs, high modularity, while allowing
for arbitrarily complex oracles.

In short, FDVP is a systematic approach for turning miscompilations into
compiler failures (behavior (1) of §1). It helps us formally prove the absence of
miscompilation (w.r.t. the TCB). Furthermore, such a compiler failure helps in
debugging; the uncaught exception raised by the compiler directly points to the
issue: either an incorrect oracle or a too coarse defensive test. For this, we still
need testing for compiler failures extensively.

3 Test Suite for Compiler Correctness

AbsInt markets a version of CompCert suitable for qualification for safety-critical
applications, e.g. nuclear power plants and avionics [9]. To our knowledge, this
involves a large test suite, including the standard compliance suite SuperTest.3

This test suite not being publically available, we extended the regression tests
of CompCert’s GitHub repository4 with tests produced by off-the-shelf random
generators, a form of compiler fuzzing [12], as well as the gcc “torture test”
suite. The purpose of adding new tests here is to avoid both compile-time errors
(especially failures and timeouts in our translation validators) and any form
of miscompilation. Testing can help identify the six bad behaviors mentioned
in §1. For each program generator i (items (a) and (b) below), Ni programs
are generated by varying the random seed of the generator from 0 to Ni − 1,
ensuring reproducibility. (a) Csmith 2.3.0 & YarpGen 1.1:5 The produced
code—which is supposed to be compilable and devoid of undefined behaviors—is
compiled with both CompCert and gcc and run on the target processor or an
instruction set simulator (e.g. qemu). The results are then compared (differential
testing). Yet this code may fail to terminate, thus a timeout is used; the test
is considered valid if both programs yield the same value, or fail to terminate
within the timeout. The timeout value is large enough to avoid cases where only
one program, better optimized, terminates while the other does not, but would
with more time. (b) CCG:6 Its programs are not expected to run correctly, so
we thus just test that they compile correctly. (c) gcc 12.2.0 tests: Finally, we
added gcc’s C torture tests, both for compilation only and for compilation +
execution, except those that relied on gcc-specific extensions (such as SIMD

3 See https://www.absint.com/ and https://solidsands.com/products/supertest.
4 See directory “test” of https://github.com/AbsInt/CompCert/.
5

https://github.com/csmith-project/csmith [26] with packed structures (gcc extension) disabled.
https://github.com/intel/yarpgen (One random seed value is excluded because on ARM it
leads to register allocation causing out of memory. Large auto-generated programs
causing resource exhaustion in the compiler is not considered a bug [10].)

6
https://github.com/Mrktn/ccg. We disabled the generation of ternary conditional operators
with omitted middle operand, a gcc extension not supported by CompCert.

https://www.absint.com/
https://solidsands.com/products/supertest
https://github.com/AbsInt/CompCert/
https://github.com/csmith-project/csmith
https://github.com/intel/yarpgen
https://github.com/Mrktn/ccg


vectors), gcc-specific behaviors on undefined or unspecified cases, and those that
tested the limits of the compiler (i.e. very large number of declarations).

Each newly added generator or suite triggered new bugs (in our own extensions,
or in upstream recent extensions not yet covered by AbsInt’s tests). The full test
suite, including the three items above, is triggered from continuous integration
for a variety of targets.7 Generally, test cases that triggered bugs had to be
reduced (§4) before the bug could be investigated. In addition to making us
more confident about the reliability of our validators by detecting compilation
failures (§2), the tests helped to discover miscompilations (§5) and intolerable
compilation running-times. We have also another framework for evaluating the
performances of the generated code, briefly described in §6 (the test suite of this
section is not designed to measure performance).

4 Reducing Test Cases

Random and application test cases are often too large for the compiler developer
to identify bugs. Finding a reduced test case that exhibits the same bug is the
first step for understanding what went wrong [4]. Reducing cases by hand is
tedious and error-prone; we thus automated this task using C-Reduce.8

C-Reduce takes as input a C program (possibly several source or header
files) and a predicate (typically a shell script), which must be satisfied by this
original program, and gradually reduces the program by removing or simplifying
declarations and statements, as long as the predicate is satisfied, until a minimal
test case is produced. A timeout may be specified for evaluating the predicate,
as well as other parameters (e.g. the number of cores for parallel execution).

On a compiler failure, the predicate is easy to write: simply execute the
compiler and check that it crashes with the same error. For a timeout error, run
the compiler with a timeout and check that it really reaches the timeout. For
assembling (resp. linking) errors, check that the compiler runs successfully, but
that assembling (resp. linking) fails with the same error.

When the error is miscompilation, the predicate is much harder to write. The
main test is then to compile the program with CompCert and another compiler
(gcc or clang), run both versions (on either the target processor or an instruction
set simulator), and compare execution results: miscompilation is detected if their
results diverge (either they print different values, or the version produced by
CompCert crashes while the other does not). However, this criterion works only if
the program does not have undefined behavior. Indeed, if a program has undefined
behavior, such as reading from an uninitialized variable, it is normal that it gives
one result with one compiler, another with another compiler. Unfortunately, if
given the opportunity by a lax predicate, C-Reduce will write programs that
have undefined behavior: this is what usually happens if one removes statements

7 x86, x86-64, AArch64, ARMv7 with software and hardware floating-point, 32-bit
PowerPC, 64-bit RISC-V, KVX. This even led us to find bugs in qemu for PowerPC.

8
https://embed.cs.utah.edu/creduce/ [20].

https://embed.cs.utah.edu/creduce/


haphazardly from a program, such as statements that initialize variables. The
predicate should thus refuse programs that have undefined behavior.

An obvious method is to compile the program using gcc and/or clang and run
the resulting program under Valgrind,9 which checks for undefined behaviors at
the object code level, such as accessing data outside currently allocated blocks,
or branching (or conditionally moving data) according to a test on uninitialized
values. In addition, if both gcc and clang are used, the program should give
exactly the same output. Another approach is to compile the program using gcc
and/or clang using the “sanitizers”, which insert code that detects at runtime
that certain undefined behaviors have happened. The categories of bugs that
Valgrind and the “sanitizers” can detect overlap, but are not identical.

However, running the program under an instruction set simulator or under
Valgrind is costly. It is thus very beneficial to exclude programs that evidently
are likely to exhibit undefined behavior prior to running them. We ask gcc and
clang to print error (as opposed to warning) messages when they discover certain
undefined behaviors such as the use of an uninitialized variable.

Finally, some sanity checks on programs results are performed: for reducing a
miscompilation bug that results in the gcc and CompCert versions printing out
different checksums (e.g. for programs generated by Csmith), we check that the
output indeed includes a line printing out a checksum. See Figure 1 in Appendix.

5 Checking the Trusted Computing Base

Formal C semantics [issue (4) of §1] Two mismatches between the C formal
semantics of CompCert and that of the standard were identified: (a) memory
allocation is supposed to always return a valid pointer (e.g. not NULL), unlike the
standard’s malloc function; (b) storing a bitfield in an otherwise uninitialized
structure, then reading from it, yields an undefined (uninitialized) value whereas
it should yield the value stored (truncated to the appropriate size); this is because
initialized-ness is defined at word level, not bit level.

The second one was identified when using CompCert’s reference C interpreter
on reduced test cases. Neither can currently cause miscompilation, because
CompCert’s optimizations do not exploit these shortcuts of the formal semantics.

Unit testing of the assembly (macro-)instructions [issues (5) and (6) of §1] The
formally verified part of CompCert ends with an abstraction of assembly code:
(a) machine instructions are seen as operating over values, with the value datatype
defined as a disjoint union of 32- and 64-bit integers, 32- and 64-bit floating-point
values, and pointers, whereas in reality they are all bitstrings; pointers are pairs
of a block identifier and an offset within this block, whereas in reality they
are (in a flat memory model) just integers; (b) memory copy, used either as an
intrinsic or for implementing C structure assignment, is a macro whose expansion
depends on the block size; (c) memory is seen as independent blocks, and it is

9
https://valgrind.org/ [17,18,22]

https://valgrind.org/


impossible to move from one to another by pointer arithmetic; each stack frame
is an independent block; macros implement the creation and destruction of stack
frames by expanding into a sequence that saves the previous frame’s address and
adjusts the stack pointer; (d) certain basic operations may be macro-instructions:
taking the address of a global symbol may entail splitting it between high- and
low-order bits or more complicated schemes;10 on a 32-bit platform, adding two
64-bit numbers split in 32-bit registers involves propagating carry bits, which
may not be reflected in the assembly semantics; etc.

The expansion of macro-instructions—miscompilation (6) of §1—has been
identified as the main source of miscompilation bugs in CompCert (which, however,
remain rare) [13], especially if they involve case analyses over arguments (register
aliasing, constants): rarely exercised cases could be incorrect. Also, in some cases,
wrong but syntactically correct instructions were printed.

Possibly, the definition of the formal semantics of the regular assembly
instructions—mismatch (5) of §1—could also feature incorrect corner cases.
However, our testing approach currently lacks a complete unit testing system
that would match the semantics of abstract (pseudo-)instructions in their formal
specification to that on the target processor. Such testing would not only need
to check that the result values of the instruction fit the specification, whether
these values are in processor registers or in memory, but also that values that
the specification lists as unmodified were unaffected. Based on our coverage
measurements, our tests do not validate the entire OCaml code of the TCB.

6 Testing the Performance of Generated Code

Developing a new pass require ensuring that its results are not only beneficial on
every target, but also that it does not interfere with existing optimizations [2].
Since most instruction set simulators are not capable of counting cycles, we
measure and compare the code performance of various CompCert configurations
directly on the target core. Firstly, such measures are often subject to many subtle
biases [15], among which are the runtime environment, the size of the benchmarks,
as well as decisions by the operating system kernel: frequency scaling, migration
between cores, etc. We address this by running multiple execution of each test,
and by forcing the process to remain on the same core (e.g. with taskset), under
the same shell environment. Then, we average out the different executions to filter
them when the relative standard deviation exceeds a certain threshold (noise
elimination), so that too small or unreliable tests are removed.

Secondly, for the comparison to GCC or Clang to be fair, we have to compare
compilers on a common basis of applicable transformations. Notably, we disable
options that would not be correct in the CompCert semantics—e.g. “fast-math”,

10 E.g., we implemented using symbols in thread-local storage (TLS) because some
platforms put some C library globals in TLS even if the program is not multithreaded.



or replacing ab+ c by a fused multiply-add,11 and instruction set extensions that
CompCert cannot use—e.g., vector (SIMD) instructions.

For the measure to be representative and to avoid concluding on an overfitted
subset of benchmarks, we combine several test suites: (a) an extended version of
LLVMtest12 (various concrete applications); (b) the computational oriented Poly-
Bench;13 the embedded oriented suites (c) MiBench [5] and (d) TACLeBench [3];
(e) and our own test suite with multiple types of tests (from small sorting
algorithms to OCaml or GCC whole applications). See details in Appendix A.2.

We developed a performance measuring toolkit,14 based on a JSON config-
uration that details, for each compiler to measure, sets of options to compare.
Shell scripts then automatically (a) build; (b) copy to the target machine (e.g.
via rsync); (c) run N times on a fixed core; and (d) gather tests results as CSV
files. Finally, a Python/Pandas script filters and analyses CSVs to yield (in text
or as a plot) the observed gains w.r.t. a reference compiler with options set pair.

7 Conclusion on Testing Formally Verified Software

Extensive testing on formally verified software is necessary for at least two reasons.
First, the formal specification may not guarantee all the properties expected
by users, but only critical ones (e.g. no miscompilation for CompCert). Second,
critical bugs may still remain, because the formal specification might not exactly
fit reality. However, in this case, critical bugs are in the—much smaller and
simpler—TCB. For example, in our experience, bugs in CompCert’s TCB are
fixed a few days after their discovery. This seems to contrast with critical bugs in
usual optimizing compilers which remain, on average, more than one year before
being fixed [27].

Moreover, formally verified defensive testing—as introduced in §2—may
drastically reduce the overall proof effort. It is also much more powerful for
finding bugs of untrusted optimizations than usual testing: it detects all their
miscompilation bugs for a given input file, without even running the code they
generate. In contrast, in a usual compiler devoid of independent verification of
the optimization passes, some of the bugs that we detected because compilation
aborted would have resulted in miscompilation, which may have been unnoticed
by usual testing.

Acknowledgement. We thank Xavier Leroy for his useful feedbacks on a
preliminary version of this paper.

11 An “fma” rounds differently from a × followed by a +. Replacing the latter by the
former thus is a semantic change, which runs afoul of CompCert’s soundness criteria.

12
https://github.com/lac-dcc/Benchmarks

13
http://web.cs.ucla.edu/∼pouchet/software/polybench/

14 Our benchmarks and toolkit: https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/chamois-benchs.
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24. Six, C., Gourdin, L., Boulmé, S., Monniaux, D., Fasse, J., Nardino, N.: Formally
Verified Superblock Scheduling. In: Certified Programs and Proofs (CPP ’22).
Philadelphia, United States (Jan 2022). https://doi.org/10.1145/3497775.3503679,
https://hal.archives-ouvertes.fr/hal-03200774

25. Tristan, J.B., Leroy, X.: Formal verification of translation validators: A case study on
instruction scheduling optimizations. In: Proceedings of the 35th ACM Symposium
on Principles of Programming Languages (POPL’08). pp. 17–27. ACM Press (Jan
2008), http://xavierleroy.org/publi/validation-scheduling.pdf

26. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Programming Language Design and Implementation (PLDI). pp.
283–294. Association for Computing Machinery (2011). https://doi.org/10.1145/
1993498.1993532

https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1145/349299.349314
https://doi.org/10.1145/349299.349314
http://doi.acm.org/10.1145/349299.349314
http://doi.acm.org/10.1145/349299.349314
https://doi.org/10.1145/1254810.1254820
https://doi.org/10.1145/1254810.1254820
https://doi.org/10.1145/1254810.1254820
https://doi.org/10.1145/1254810.1254820
https://doi.org/10.1145/1254810.1254820
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/800191.805648
https://doi.org/10.1145/800191.805648
https://doi.org/10.1145/800191.805648
https://doi.org/10.1145/800191.805648
http://www.usenix.org/events/usenix05/tech/general/seward.html
http://www.usenix.org/events/usenix05/tech/general/seward.html
https://doi.org/10.1145/3428197
https://doi.org/10.1145/3428197
https://hal.archives-ouvertes.fr/hal-02185883
https://hal.archives-ouvertes.fr/hal-02185883
https://doi.org/10.1145/3497775.3503679
https://doi.org/10.1145/3497775.3503679
https://hal.archives-ouvertes.fr/hal-03200774
http://xavierleroy.org/publi/validation-scheduling.pdf
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532


27. Zhou, Z., Ren, Z., Gao, G., Jiang, H.: An empirical study of optimization bugs in gcc
and llvm. Journal of Systems and Software 174, 110884 (2021). https://doi.org/https:
//doi.org/10.1016/j.jss.2020.110884, https://www.sciencedirect.com/science/article/
pii/S0164121220302740

https://doi.org/https://doi.org/10.1016/j.jss.2020.110884
https://doi.org/https://doi.org/10.1016/j.jss.2020.110884
https://doi.org/https://doi.org/10.1016/j.jss.2020.110884
https://doi.org/https://doi.org/10.1016/j.jss.2020.110884
https://www.sciencedirect.com/science/article/pii/S0164121220302740
https://www.sciencedirect.com/science/article/pii/S0164121220302740


A Appendix

A.1 An example of reduction predicate

if ! aarch64 -linux -gnu -gcc -fno -sanitize -recover -fsanitize=

address -fsanitize=undefined -Wall -Werror=format -Werror

=implicit -Werror=uninitialized -Werror=return -type -

Werror=main -Werror=missing -prototypes -Werror=int -

conversion -I . source.c -o source.gcc -sanitized.aarch64

2> source.gcc -sanitized.err ;

then exit 1; fi

if ! ASAN_OPTIONS=’detect_leaks =0’ qemu -aarch64 -L /usr/

aarch64 -linux -gnu ./ source.gcc -sanitized.aarch64 2>&1 >

source.gcc -sanitized.out ;

then exit 2 ; fi

if ! grep -q checksum source.gcc -sanitized.out ;

then exit 3 ; fi

if ! gcc source.c -o source.gcc.amd64 ;

then exit 5; fi

if ! valgrind --error -exitcode =42 ./ source.gcc.amd64 ;

then exit 6 ; fi

if ! ccomp -fstruct -passing -fbitfields -fno -cse2 -fno -cse -

fno -cse3 -I . source.c -o source.ccomp.aarch64 ;

then exit 4 ; fi

qemu -aarch64 -L /usr/aarch64 -linux -gnu ./ source.ccomp.aarch64

2>&1 > source.ccomp.out

! cmp source.gcc -sanitized.out source.ccomp.out

Fig. 1. Example of a predicate for reducing test cases produced by Csmith

A.2 Experimental evaluation of our CompCert version

We compared performance of generated code with GCC -01 (11.3.0) and our
CompCert version versus the mainline CompCert (3.12). Our version includes
several additional optimizations not present in the mainline CompCert: superblock
prepass scheduling [24], CSE3 (Common Subexpression Elimination) [14], a
variant of LCM (Lazy Code Motion) & LSR (Lazy Strength-Reduction) [7,8],
and loop-unrollings (here, we only activated the first loop iteration unrolling).

The execution time gain is computed using the formula gain(C) = ((R −
C)/C)×100 where C is the new compiler (e.g. GCC or ours) and R the reference
one (e.g. mainline CompCert); a higher result indicates a better performance. To
obtain representative and not biased measurements, we filtered results whose
relative standard derivation was exceeding 2% over five runs on the target machine
(as explained in §6). All our benchmarks were run on a SiFive U740 core (HiFive



Table 1. GCC and our fork versus mainline CompCert on RISC-V — Higher is better

Setup gcc-O1 Our CompCert fork

LLVMtest/fpconvert +24.22% +17.15%
LLVMtest/matmul +15.9% +144.11%
LLVMtest/nbench bf +74.58% +24.51%
MiBench/jpeg +27.75% +24.75%
MiBench/sha +92.43% +51.73%
MiBench/stringsearch +133.34% -10.15%
PolyBench/* +64.05% +46.23%
TACLeBench/bsort +49.04% +33.16%
TACLeBench/deg2rad +56.75% +50.28%
TACLeBench/md5 +42.18% +47.93%

Unmatched), a dual-issue, in-order RISC-V processor, using the toolkit and test
suites described in §6.

Globally, our version is 20.7% faster than the mainline CompCert on the
LLVM test suite; 14.7% on MiBench; 22.83% on TACLeBench; and 42% on our
own suite (the fifth one of §6); results for the full PolyBench suite are at line
“PolyBench/*” in Table 1. A sample of results is provided in Table 1, illustrating
the performance variability depending on the input: GCC is far more performant
on some benchmarks, but way slower on some others, and the same applies to
CompCert. For instance, the poor result on MiBench/Stringsearch comes from
the loop-unrolling, which lengthens the code and makes other optimizations
dramatically increasing register pressure. On this benchmark, if we disable the
first loop iteration unrolling, our CompCert version yields a gain of 39.4% w.r.t.
mainline CompCert. Nonetheless, except on rare tests like this one, unrolling
is usually very beneficial in terms of performance. Overall, we improved the
performance of about 30% in average on RISC-V comparing to the mainline
version, which is a great step towards closing the gap with GCC.
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