
Testing a Formally Verified Compiler

David Monniaux

VERIMAG

July 15, 2023

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 1 / 26



CompCert

Formally verified C compiler, effort led by Xavier Leroy

“If compilation succeeds, then the assembly program matches the C
program.”

Formally verified: compiler written in Coq
+ correctness theorem proved in Coq, a proof assistant
(mathematical proof, machine-checked)

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 2 / 26



Rationale for CompCert

Certain industries (avionics, nuclear…) must demonstrate that the
object code is equivalent to the source.

Conventional approach
Disable optimizations
“Human” comparisons
“This compiler worked in other safety-critical projects”

CompCert
Use the mathematical proof

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 3 / 26



Versions under discussion

“Official” releases
https://github.com/AbsInt/CompCert

“Chamois” branch
https://gricad-gitlab.univ-grenoble-alpes.fr/
certicompil/Chamois-CompCert

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 4 / 26

https://github.com/AbsInt/CompCert
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert


Correctness theorem

execution = trace of “externally visible events” (calls to external
functions, volatile variables accesses)

The trace at assembly matches the C trace.

Obtained by “forward simulation” (assembly simulates C) through
“match” relations

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 5 / 26



Forward simulations

Lockstep “One step of the program before transformation maps to
one step after transformation.”
σ1 →e σ2 and m(σ1, σ

′
1) then there exists σ′

2 such that
σ′
1 →e σ

′
2 and m(σ3, σ

′
2)

e = “observable events”
e.g. “replace x × y by a move from a register already
containing that expression”

Plus “One step maps to several steps.”
e.g. function call from one instruction to many (move
operands to registers / stack etc.)

Star “Several steps map to several steps.”

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 6 / 26



Formally Verified Defensive Programming

(see Sylvain Boulmé’s habilitation for many relevant examples)

Total correctness
“This Coq procedure always terminates and produces a result
according to specification

Partial correctness
“This procedure, if it terminates in an OK condition (not Error),
produces a result according to specification”

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 7 / 26

https://theses.hal.science/tel-03356701v1


Why partial correctness

Not proving termination
Termination often annoying to prove in Coq.
Just put a maximum number of iterations and answer Error if
reached.

Untrusted oracle
Call an oracle (often written in OCaml)
(The oracle possibly logs information such as invariants)
Verify the oracle’s result using formally verified code (OK or Error)

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 8 / 26



Trusted Computing Base

(See Monniaux & Boulmé, The Trusted Computing Base of the
CompCert Verified Compiler, ESOP 2022)

▶ logical axioms, Coq, Coq to OCaml extractor, OCaml runtime
(not a serious issue)

▶ C semantics (possible discrepancies with standard /
programmers’ expectations)

▶ assembly semantics, including macro instructions (there have
been some bugs here)

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 9 / 26

https://hal.science/hal-03541595/
https://hal.science/hal-03541595/


Example of a C semantic discrepancy

#include <stdio.h>

struct stuff { int xx : 3; };

int main() {
struct stuff v = { 1 };
printf("%d\n", v.xx);

}

Stuck state: in function main, expression <loc v> = 1
Stuck subexpression: <loc v> = 1
ERROR: Undefined behavior

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 10 / 26



What happened

Initialization / non-initialized (undefined value) appreciated at word
level.

Field initialization initializes one field, so word still uninitialized as a
whole.

Reading field from uninitialized word yields undefined.

Printing an uninitialized value has undefined behavior.

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 11 / 26



What could have happened worse

Code with local bitfields still compiles ok

But aggressive optimizations could replace undefined behavior by
other defined behavior.
e.g. replace this function by e.g.

printf("%d\n", 2);

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 12 / 26



General comment

Deliberately, some static analyses and optimizations in CompCert
▶ are not as precise as they could
▶ do not take advantage of undefined behavior

C compilers taking advantage aggressively of undefined behavior =
source of trouble

and a lot of C programs (dragged over decades) rely on some specific
behaviors

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 13 / 26



Abstract assembly

CompCert’s Asm.v defines a somewhat abstract view of assembly.
▶ values are in a “sum type” integers + longs + floats + doubles

+ “undefined” (in reality: bitstrings)
▶ addresses are (b, o), b is a block identifier, o an offset
▶ macro instructions (memory copy, stackframe allocation,

stackframe destruction, access to global symbols…) expanded by
trusted OCaml code

A few bugs found in trusted macro expansion.

(Would need unit testing)

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 14 / 26



ABI

The definition of ABI in CompCert is not concentrated in a single
place.

Need to test compatibility
▶ with various linker/OS features (e.g. thread-local storage)
▶ with other compilers

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 15 / 26



Example of (macro) assembly problems

In some rare cases of registers, the code for built-in memory copy was
incorrect.

(My mistake) on Kalray KVX, some instruction was printed with the
mnemonic of another.

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 16 / 26



What the correctness theorem says and does not
say
If compilation succeeds, the formal assembly semantics match those
of the source code.

Does not say
▶ that compilation succeeds (no “internal error”)
▶ …within acceptable time
▶ that the formal C semantics matches true C semantics
▶ that the formal assembly semantics matches true semantics
▶ that optimizations are not missed
▶ that generated code has good performance

Needs testing!

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 17 / 26



Our test suite (for continuous integration)

▶ test suite from Absint’s Github CompCert repository
▶ “compiles without failing”
▶ compiles + runs and results matches reference result

▶ gcc 12.2.0 torture tests (compile + execute)
▶ Paranoia test suite (compile + execute)
▶ random generation by Csmith (compile + differential execute w/

timeout)
▶ random generation by YarpGen (compile + differential execute)
▶ random generation by CCG (compile)

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 18 / 26



Compilation success and timeout

Check if programs compile within acceptable time / memory.

(Disabled some gcc/LLVM tests that “tested” some ranges with
unnatural programs)

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 19 / 26



What if we find an internal error

CompCert crashes with internal error message / OCaml uncaught
exception (the exception generally points to the faulty pass,
sometimes points to a later pass finding wrong input)

Reduce the test case using Creduce
Creduce = removes code / simplifies code as long as predicate is
satisfied

Predicate = “CompCert crashes with the same error”

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 20 / 26



Differential testing

▶ compile with CompCert and gcc
▶ run both (possibly in QEMU)
▶ results must be equal
▶ (if necessary) run with carefully chosen timeout (both must

return the same result, or both must timeout)

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 21 / 26



What if we find a discrepancy in differential testing
Outcomes with gcc and CompCert are different
Reduce the test case using Creduce
Problem: Creduce tends to produce code with undefined behavior

Predicate:
▶ compiles with gcc / CompCert / clang without warnings such as

“undeclared function”, implicit int types etc
▶ compiled with gcc runs in valgrind or with address sanitizer

(ASan) / undefined behavior sanitizer (UBsan) without error
▶ still gives different outcome with CompCert

If bug in CompCert, then in its TCB (non-proved parts)

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 22 / 26



Performance evaluation

Test suite:
▶ LLVMtest
▶ Polybench
▶ MiBench (representative of embedded algorithms?)
▶ Tacle-Bench (benchmarks for WCET analysis)
▶ others (matrix computations, sorting algorithms, SAT solvers,

OCaml interpreter, compressors, first-order solver)

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 23 / 26



Caveats for performance evaluation
Measure signal, not noise
▶ must run on target CPU or cycle-accurate simulator, not QEMU
▶ disable frequency scaling and migration between cores
▶ multiple runs, discard outliers, average

Code issues
Keep things comparable
▶ disable gcc-only in-code optimizations (e.g.

#ifdef __GNUC__ do something clever with gcc-specific
code)

▶ disable floating-point contraction in gcc
(-ffp-contract=off), which replaces a*b+c by
fma(a, b, c)
(semantic difference: r(r(ab) + c) vs r(ab + c))

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 24 / 26



Sample RISC-V experimental results

(compared to official releases; higher is better)
Setup gcc -O1 Chamois
LLVMtest/fpconvert +24.22% +17.15%
LLVMtest/matmul +15.9% +144.11%
LLVMtest/nbench_bf +74.58% +24.51%
MiBench/jpeg +27.75% +24.75%
MiBench/sha +92.43% +51.73%
MiBench/stringsearch +133.34% -10.15%
PolyBench/* +64.05% +46.23%
TACLeBench/bsort +49.04% +33.16%
TACLeBench/deg2rad +56.75% +50.28%
TACLeBench/md5 +42.18% +47.93%

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 25 / 26



Conclusion

▶ Formal proof protects you only in the formally verified part.
▶ Need to test hypotheses.
▶ (Possibly unit-test them, especially the formal semantics of

instructions and pseudo-instructions.)

David Monniaux (VERIMAG) Testing a Formally Verified Compiler July 15, 2023 26 / 26


