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We discuss a construction of a microcanonical projection WOW of a quan-
tum operator O induced by an energy window filter W, its spectrum, and the
retrieval of canonical many-time correlations from it.
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1 Introduction
Quantum thermalization and dynamics at equilibrium are nowadays well understood in
terms of the matrix elements of physical operators in the energy eigenbasis, i.e. Oij =
⟨Ei|O|Ej⟩ [1–3]. These behave as random matrices with correlated elements, whose smooth
statistical properties encode all the physical features [4]. Understanding the nature of the
randomness in Oij and how to extract from them or their spectrum meaningful information
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Figure 1: Pictorial representation of the observable O and of the microcanonical projected WOW. (a)
The matrix elements in the energy eigenbasis Oij = ⟨Ei|O|Ej⟩ look like structured random matrices
characterized by an intrinsic, observable dependent, energy scale ωmax after which they decay to zero.
(b-c) Observable W 1/2OW 1/2 projected in an energy window around E0 with width ∆. (b) Box filter W :
the microcanonical operator is given only matrix elements with energies inside the box |Ei,j−E0| < ∆/2.
(c) Gaussian filter W : the observable is multiplied by a Gaussian function in both directions i, j.

is still an open, largely debated issue [5–15]. The purpose of this paper is to discuss the
construction of a microcanonical projection of an operator O, in the thermodynamic limit:

Õ ≡ W 1/2O W 1/2 , (1)

referred to as WOW, where W is some ‘window’ operator which is centred around an
energy E0, as illustrated in Fig.1.

The rules we set for this exercise are that (i) the projected operator Õ is such that its
dynamical correlators among n-times allow one to retrieve the corresponding canonical n-
time correlators of O, and that (ii) the spectrum of Õ provides a meaningful large-deviation
function. For example, defining the commutator operator

C ≡ [Õ(t), Õ]−

the spectrum of the operator C contains all the ‘multifractality’ properties of the quantum
generalized Lyapunov exponent, through its moments Tr

{
C2n

}
, for n > 0 [16].

It turns out that for this to work, as is to be expected, the width of the energy window
is not arbitrary, but, somewhat surprisingly, also its smoothness properties have important
consequences. We exemplify numerically our findings on the Ising model with transverse
and longitudinal fields.

2 Why WOW: a summary of the results
We set ourselves to construct an operator which is a microcanonical restriction of O around
some energy E0. This operator shall not only give the microcanonical expectation value,
i.e. ⟨E0|O|E0⟩, but should also reproduce all correlations on the energy shell of E0.
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2.1 Correlations on the energy shell
A way to introduce correlations on an energy shell is to look at the following canonical
regularized correlator

Mn(⃗t) = Tr
(
ρ

1
n O(t1)ρ

1
n O(t2) . . . ρ

1
n O(tn)

)
, (2)

where ρ = e−βH/Z and Z = Tr(e−βH) with β the inverse temperature, and O(t) =
e−iHtOe−iHt for any (eventually complex) t⃗ = (t1, t2, . . . tn) times 1, where we set ℏ = 1.
While familiar in high energy physics [17], these regulated correlation functions may seem
odd for a statistical physicist. To mitigate the understandable prejudice, let us note that
this correlator is related to the more usual thermal average

Sn(⃗t) = Tr (ρO(t1)O(t2) . . . O(tn−1)O(tn)) , (3)

by a simple shift in imaginary time: Defining ℓ⃗n = (n−1
n , n−2

n , . . . , 1
n , 0), one has

Sn(⃗t) = Mn(⃗t + iβℓ⃗n) , (4)

which in frequency ω⃗ = (ω1, . . . , ωn) reads

Sn(ω⃗) = Mn(ω⃗)e−βℓ⃗n·ω⃗ , (5)

thus making explicit the fluctuation-dissipation theorem [18] 2. At small frequencies, the
two correlators coincide. Thus, the regulated correlation function Mn(⃗t) may be expected
to share the same dynamics of the canonical one Sn(⃗t) at large times, exceptions may be
related to quantum bounds on time scales [17, 19, 20].

The thermal projection
ρ

1
2n O(t) ρ

1
2n (6)

plays the role of constraining the support of each observable O(t) on the thermal energy
shell: the correlator in Eq.(2) is evaluated on the shell identified by the thermal energy
Eβ = Tr(He−βH)/Z. Reproducing this feature with a fixed, n-independent window is the
focus of this article.

Another way to discuss on-shell corrections is via the quantum microcanonical ensemble,
nowadays well understood via the Eigenstate-Thermalization-Hypothesis (ETH) [1–4]. The
general form of ETH states that observables in the energy eigenbasis are pseudorandom
matrices, whose statistical properties are smooth functions. Specifically, products of n
matrix elements with different indices read [4]

Oi1i2Oi2i3 . . . Oini1 = e−(n−1)S(E+)F
(n)
e+ (ω⃗) , (7)

while products with repeated indices factorize in the large N limit, in a manner described
by free probability [21]. Here, E+ = (Ei1 + · · · + Ein)/n is the average energy, ω⃗ =
(ωi1i2 , . . . , ωin−1in) with ωij = Ei −Ej are n−1 energy differences. The F

(n)
e+ (ω⃗) are smooth

functions of the energy density e+ = E+/N and ω⃗ and correspond to the microcanonical
(on-shell) correlations of order n at energy e+.

1We have absorbed here ℏ into the t⃗, so that time has units of inverse energy.
2With this shift, one rephrases the usual Kubo-Martin Schwinger (KMS) relation as a a time-reversal

condition for Eq.(2): Mn(t1, ..., tn) = {Mn(tn, ..., t1)}∗.
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The relation between the microcanonical definition via Eq.(7) and the canonical one in
Eq.(2) is known. As reviewed below, the ETH smooth functions in Eq.(7) can be expressed
as the Fourier transform of the following correlator

kn(⃗t) ≡ Tr′
(
ρ

1
n O(t1)ρ

1
n O(t2) . . . ρ

1
n O(tn)

)
=

∫
dt⃗ei⃗t·ω⃗ F

(n)
β (ω⃗) (8)

where the notation Tr′ indicates the trace constrained to matrix elements with different
indices, e.g. Tr′(ABC) =

∑
i ̸=j ̸=k AijBjkCki. These correlations are related to the thermal

free cumulants [21] (a type of connected correlation function defined in Free Probability
[22]) and constitute the building block of multi-time correlation functions. In Eq.(8) and in
what follows, we use β intended as an implicit function of the energy density eβ = Eβ/N ,
e.g. F

(n)
β (ω⃗) = F

(n)
eβ (ω⃗).

The behaviour of all the F
(n)
β (ω⃗) as functions of frequencies encode all the physical

properties, including some that are neglected if elements are taken as independent [4, 21].
In Hamiltonian systems, F (n)(ω⃗) decays rapidly at large frequencies, reflecting the property
that correlations between matrix elements with very different energies shall be small. The
case n = 2 has been related to the “operator growth hypothesis” which conjectures a
universal exponential decay for F

(2)
E (ω) in the case of chaotic systems [23, 24], see also [25].

This structure has been discussed also for higher n [26]: at large frequencies, all F (n)(ω⃗)
should fall at least as

F (n)(ω⃗) ∼ e−|ωi|/ωmax in all directions ωi ,

where [26]

ωmax ≤ 1
βℏ

. (9)

2.2 The problem
The issue with the definition in Eq.(2) is that the thermal projection (6) depends on n:
each n-th correlation function needs a different projection.
This poses the question: can we replace instead, for the purposes of computing all n on-shell
correlation functions, the operator O by a single projected version?

In this work, we consider an energy ‘window’ operator

W = W∆(H − E0) (10)

centered around energy E0 with width ∆, such that [W, H] = 0. The window is a filter in
energy around E0 and on the basis of the Hamiltonian reads

W =
∑

i

pi|Ei⟩⟨Ei| , pi = p(Ei) ≥ 0 , (11)

with a distribution pi, which we leave unnormalized. Standard choices include “box
projectors” (pi = 1 for |Ei − E0| ≤ ∆ and vanishing otherwise), Gaussian ones (pi =
e−(Ei−E0)2/2∆2), or more refined cosine filters [27, 28]. These choices have an important
impact on the results, as we shall see. The window W allows us to introduce the micro-
canonical projection

Õ = W
1
2 OW

1
2 (12)

whose eigenvalues and eigenvectors have information that apply to all n, unlike those of
ρ1/2nOρ1/2n. We will study dynamic correlations

MW
n (⃗t) = 1

TrW Tr
(
Õ(t1)Õ(t2) . . . Õ(tn)

)
. (13)
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2.3 Results
We show that the microcanonical operator Õ can indeed be used to compute on-shell
correlations functions, namely

1
TrW Tr

(
Õ(t1)Õ(t2) . . . Õ(tn)

)
↔ Tr

(
ρ

1
n O(t1)ρ

1
n O(t2) . . . ρ

1
n O(tn)

)
(14)

i.e. MW
n (⃗t) ↔ Mn(⃗t), provided that the window W at energy E0 = Eβ is chosen appropri-

ately. Our main findings below are summarized as follows:

1. The smoothness properties of window filter W are important. We discuss how the
box projector lead to dynamical effects introduced by the window itself, a familiar
fact in signal theory.

2. The width ∆ of the window should be small enough to be a good projector, but larger
than the characteristic energy scale ωmax so as not to affect the physical correlations.
One has

βωmax ≪ β∆ ≪
√

N , (15)

(N is the number of degrees of freedom) a parametrically large choice of ∆ where
the window is well defined.

3. When the conditions 1. and 2. are met, the relation in Eq.(14) is given by

MW
n (⃗t) = Tr(W n)

Tr(W ) Mn(⃗t) , (16)

where Tr(W n)
Tr(W ) = e−β2∆2(1−1/n)/

√
n in the case of a Gaussian window.

4. Having a microcanonical operator Õ leads us to consider the associated microcanon-
ical operator spectral density defined as

ρ(α) ≡ 1
TrW

∑
i

δ(α − ai) , (17)

where ai are the eigenvalues of Õ. Actually, we will focus on αρ(α) which has a good
limit for α → 0 and ∆ as in Eq.(15). We further discuss the generating functions of
equal-time moments.

5. On-shell correlations such as (13) are related to the usual microcanonical average,
e.g.

SW
2 (t1 − t2) = 1

TrW Tr
(
W 2O(t1)O(t2)

)
(18)

in the frequency domain by

SW
2 (ω) = eS(E0−ω)

eS(E0−ω/2) MW
2 (ω) , (19)

which plays the role of a microcanonical fluctuation-dissipation theorem [3, 29].

We begin our paper by considering the more familiar case of two-time correlation func-
tions (Section 3). We then introduce free cumulants and discuss results for n > 2 (Section
4) and we study the spectral properties (Section 5).
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Our results are tested numerically on a paradigmatic model of many-body quantum
chaos: the Ising spin chain with longitudinal and transverse field, described by the Hamil-
tonian

H =
L∑

i=1
wσx

i +
L∑

i=1
hσz

i +
L∑

i=1
Jσz

i σz
i+1 , (20)

where σα
i are Pauli matrices on site i in the direction α = x, y, z. We measure the energies

in units of J and set w =
√

5/2, h = (
√

5 + 5)/8. With periodic boundary conditions,
this system is characterized by translational and inversion symmetry. We consider the
subsector at fixed k = 0 momentum and the even inversion subsector.

3 The example of two-point functions
Most recent studies of quantum ensembles at equilibrium have focused on one-time expec-
tation values, both in the canonical M1 = Tr(ρ)) = S1 and in the microcanonical ensemble
MW

1 = Tr(WO)/TrW [3]. For example, the issue of how to implement a smooth micro-
canonical filter W to compute efficiently MW

1 has been posed lately in Refs.[27, 28]. In this
section, we ask this question for two-time correlation functions. These have been studied
numerically using for instance microcanonical Lancsos methods Refs.[30–32].

We start with the regularized and standard thermal canonical two-times functions
respectively:

M2(t1 − t2) = Tr
(
ρ1/2O(t1)ρ1/2O(t2)

)
, (21)

S2(t1 − t2) = Tr (ρ O(t1)O(t2)) . (22)

Since these depend only on the time differences t = t1 − t2, we may write everything in
terms of independent time differences t, or set t2 = 0, without loss of generality. The
same is true for the n-th correlation function in Eqs.(2)-(3) and in what follows we will
put tn = 0. The on-shell function M2(t) is related to the canonical thermal average S2(t)
by a shift in imaginary time S2(t) = M2(t + iβ/2), namely

Tr (ρO(t)O(0)) = Tr
(
ρ1/2O(t + iβ/2)ρ1/2A

)
.

The two point functions can be expressed using ETH (7) for two matrix elements [2]

|Oii|2 ≃ Oii
2 ; (23)

|Oij |2 = e−S(E+
ij) F

(2)
e+

ij

(ωij) i ̸= j , (24)

where we recall that ωij = Ei − Ej and e+
ij = Ei+Ej

2N the energy density and F
(2)
e (ω) =

|fO(e, ω)|2 with the standard notations [3]. By simple manipulations, one finds

S2(t) = [S1]2 + k2(t) , (25)

where S1 = O(eβ) is the one-point function and k2(t) is the connected part is the
second (free) cumulant, which encodes all the information at the second order 3. Thanks

3We recall that free cumulants coincide with classical cumulants up to n = 3 [22], so, in this case, the
name is redundant, but useful for later understanding.
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to the smoothness properties of ETH (23), it can be written as the constrained trace over
different indices

k2(t) = Tr′ (ρO(t)O(0)) ≡
∑
i ̸=j

e−βEi

Z
Oij(t)Oij , (26)

where we recall that Tr′(•) denotes the trace of the arguments with all different indices.
Its Fourier transform reads

k2(ω) = F
(2)
β (ω)e−βω/2 . (27)

To isolate the on-shell correlation F (2)(ω), one should look at the following reduced trace
of the thermally projected operator

k2(t) ≡ Tr′
(
ρ1/2O(t)ρ1/2O(0)

)
≡

∑
i ̸=j

e−β(Ei+Ej)/2

Z
Oij(t)Oij (28)

→ k2(ω) = F
(2)
β (ω) , (29)

which thus identifies the building block of two-point dynamical functions. This expres-
sion shows that regularization of the correlation functions in M2(t) (symmetrization in β)
has the effect of removing the exponential factor e−βω/2 in the Fourier transform of the
connected trace k2(ω). This is why we referred to it as correlation on the energy shell.

Summarizing, the dynamic features of two-point functions are encoded in the second
cumulants. Their structure is given by the trace Tr′ of the regularized correlator, re-
duced to different indices, whose Fourier transform yields ETH on-shell correlations F

(2)
β (ω)

[cf.Eq.(28)].
As mentioned above, ETH correlation functions are expected to decay fast at large

frequencies ω ≫ 1. Based on the growth of operators for chaotic systems, a universal
exponential decay has been conjectured [24] 4:

F
(2)
β (ω) ∼ e−|ω|/ω

(2)
max . (30)

Using that k2(0) is finite, in Ref.[26] it was shown that

ω(2)
max ≤ 2

βℏ
. (31)

Therefore, throughout this paper, we shall assume that the frequency ω ≪ ω
(2)
max encompass

all the interesting physical properties of a system.

In summary, ETH tells us that the physical operators have, on the basis of the Hamil-
tonian, a ‘band’ structure: the width of the band being O(1) in energy, while the variations
parallel to the diagonal are much smoother, depending continuously on energy density.

3.1 Window on operator
We consider the following microcanonical projection

Õ = W
1
2 OW

1
2 (32)

4In the case of interacting integrable systems, there is evidence that F (2)(ω) has instead a Gaussian
decay [24].
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where W = W∆(H−E0) is the generic window filter defined in Eq.(10), well-peaked around
energy E0 and with a small width ∆/E0 ≪ 1. The wish that filtered two-point correlator

MW
2 (t) = 1

TrW Tr (WO(t)WO) , (33)

reproduces the thermal regularized one [cf. (21)] and in particular the connected part:
k2(t) ≡ Tr′

(
ρ1/2O(t)ρ1/2O(0)

)
. Hence, we look at

k
W
2 (t) ≡ 1

TrW Tr′ (WO(t)WO) , (34)

where the trace is constrained to different indices. The size ∆ of the window should obey

∆ ≫ ω(2)
max , (35)

in order not to interfere with the band structure of the operator.
Using standard ETH manipulations [33] (substituting sums with integrals and expand-

ing S(E + ω/2) + S(E − ω/2) − S(E) = S(E) − ω2

4 S′′(E) + . . . ), one may thus re-write
Eq.(34) to leading order in N :

k
W
2 (t) = 1

TrW
∑
i ̸=j

pipje−S(E+
ij)F

(2)
e+

ij

(ωij)eiωijt (36)

≃ 1
TrW

∫
dEeS(E) p(E + ω/2)p(E − ω/2)

∫
dω eiωtF

(2)
E (ω) . (37)

where pi = p(Ei) is the window function [cf. Eq.(11)].
The integral over E in Eq.(37) is solved by a saddle point, explicit examples will be

discussed below. Since F
(2)
E (ω) is of order one, one can evaluate in on the maximum,

leading to
k

W
2 (ω) = F

(2)
E (ω)

∣∣∣
max

P∆(ω) (38)

with
P∆(ω) = 1

TrW

∫
dEeS(E) p(E + ω/2)p(E − ω/2) . (39)

Eqs.(38)-(39) represent the link between thermal on-shell correlations F
(2)
E (ω) and the

ones obtained from the window and are the main result of this section.
To summarize, we have shown that the microcanonical projected observable WOW

yields the same ETH 2-point on-shell correlations but multiplied by a function P∆(ω) [cf.
Eq.(38)], which depends on the different energy windows. We now discuss if and how one
can retrieve dynamical correlations.

3.2 Not all windows are equal
3.2.1 Box window

A natural choice for the window is to consider flat “box projectors”, namely

p(E) = θ

(∆
2 − |E − E0|

)
, (40)

where θ(x) is a step function. Flat windows have the following property

Tr [W n] = Tr [W ] =
∫

dE eS(E)p(E)

= eS(E0) 2
β

sinh(β∆/2) , (41)
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where integral is solved by saddle point by expanding the entropic factor as eS(E) =
eS(E0)+βx around E0 with β = S′(E0) and integrating by x.

To see if we can retrieve information about two-point dynamical correlators, we need
to compute P∆(ω) in Eq.(39). A short calculation shows that the box projector constraints
both the average energy and frequency inside a box, namely

p(E + ω/2) p(E − ω/2) = θ(∆ − |ω|) θ

(∆ − |ω|
2 − |E − E0|

)
. (42)

Hence, we perform the integral over energy E in Eq.(39) solving again by a saddle
point. By expanding the entropic factor as eS(E) = eS(E0)+βx and integrating by x, we get

P∆(ω) = eS(E0)

TrW

∫ ∆−|ω|
2

− ∆−|ω|
2

eβxdx θ(∆ − |ω|) = sinh(β(∆ − |ω|)/2)
sinh(β∆/2) θ(∆ − |ω|) . (43)

The effect of the window does not become negligible for any ∆. This is most striking in
the time domain, where Eq.(38) becomes a convolution between the two-point correlation
and a Lorentzian. In fact, the Fourier transform of Eq.(43) reads

P∆(t) = 4β

sinh(β∆/2)
cosh(β∆/2) − cos(∆t)

β2 + 4t2 . (44)

Therefore, the box projector has the effect of inducing by itself a slow (Planckian)
decay in the dynamical correlator at a time-scale 1/β, see e.g. [34]. This can be traced
back to the non-analytic factor θ(∆ − |ω|) in Eq.(42) 5. Such behaviour could overcome
the intrinsic decay of the correlation functions, which is typically exponentially decaying in
time. On the other hand, the box projector can still be used for studying the dynamics of
correlators with slower decay at long times, such as the long hydrodynamic tails of diffusive
observables [35].

These predictions are consistent with the numerical evaluation for the Ising model, de-
scribed by the Hamiltonian (20). We focus here on the collective observable O =

∑
σz

i /
√

L.
In Fig.2 (left panel), we compare the thermally regulated dynamical correlator (red line)
at temperature T = 5, with the result obtained by WOW obtained with a box window
(33). There is no value of ∆ for which one can reproduce the thermal result. We also
contrast the results with the behavior obtained for infinite temperature, which should be
retrieved for very large ∆ independently of where the window is centered. Even for very
large ∆, one is not able to recover the infinite temperature dynamics (dashed black), which
is obtained in the absence of a window filter. See for comparison Fig.3 below for a smooth
window. This result is induced by the non-analiticities of the window. On the right panel
of Fig.2, we plot the ratio between the Fourier transform of the box energy window and
the thermally regulated one for different ∆. The result matches the exact prediction in
Eq.(43) with no fitting parameter.

3.2.2 Smooth and Gaussian window

The long-time tail induced by the box window can be avoided by using a smooth one. As
an illustrative example, we consider here Gaussian energy filters:

W = e− (Ĥ−E0)2

2∆2 , i.e. p(E) = e− (E−E0)2

2∆2 . (45)

5We note that this problem is well-recognized in signal processing, where it is known that nonanalytic
windows turn out to have a slowly decaying and oscillating Fourier transform.
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Figure 2: Numerical evaluation of the connected on-shell correlation functions in Eq.(21),(33) with
the box projector (40) for O = 1√

L

∑
i σz

i with L = 14. (Left) The thermally regulated result (red
line) is contrasted with one obtained with window projections with different ∆ = 0.5, 4, 10 (blue lines).
When the width is too large ∆ = 2L (blue dashed line) one still can not retrieve the result at infinite
temperature which, for very large ∆, should hold independently of where the window is centered (black
line). (Right) The ratio between the thermal correlation and the regulated thermal ones (dots) compared
with Eq.(43) without fitting parameters (dashed line).

Let us recall, that we want that the entropic term eS(E) to be overridden by e−(E−E0)2/∆2

so that the Gaussian dominates in the location of the window. At the same time, the
width has to be large enough so as not to spoil the physical correlations of the two-point
functions (30). Hence we need

βω(2)
max ≪ β∆ ≪

√
N (46)

which implies Eq.(15).
To see how to retrieve on-shell correlations from the Gaussian window, one needs to

evaluate Eq.(39). First of all, one has

p(E + ω/2)p(E − ω/2) = p2(E) e− ω2
2·2∆2 , (47)

that back in Eq.(39) leads to

P∆(ω) = e− ω2
2·2∆2

Tr[W 2]
TrW . (48)

To simplify this equation, let us compute more generally Tr[W n]. By saddle point we have

Tr[W n] =
∫

dEeS(E)e−n
(E−E0)2

2∆2 = eS(E0)
∫

dxe
− x2

2(∆/
√

n)2 +βx = eS(E0) ∆
√

2π√
n

eβ2∆2/n (49)

where from the left to the right of the first line we have expanded the entropic contribution
eS(E) = eS(E0)+βx and then solved the resulting Gaussian integral in x.

All in all, we have shown that, whenever ∆ is large enough [cf. (15)], the frequency
dependence behaviour of P∆(ω) can be neglected. We conclude that

Tr(ρ1/2O(t)ρ1/2O) ↔ Tr(WO(t)WO) (50)

where the proportionality constant is Tr[W 2]
Tr[W ] ≃ e−β2∆2/2

√
2 , which is finite, since β∆ is of

order one, even if large.
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Figure 3: Numerical evaluation of the connected on-shell correlation functions in Eq.(21)-(33) with the
gaussian Window (45) for A = 1

N

∑
i σz

i and L = 16. (Left) The thermally regulated result (red line) is
contrasted with one obtained with window projections with different ∆ = 0.5, 1, 3.5 (blue lines). When
the width is too large ∆ = 2 L (dark blue) one can retrieve the result at infinite temperature (black
dashed line). (Right) The ratio between the thermal correlation and the regulated thermal ones (dots)
compared with Eq.(48) without fitting parameters.

4 Higher order correlations

We wish now to access higher order on-shell correlation functions F
(n)
e (ω⃗) defined via

Eq.(7). In Ref.[4], it was shown that F
(n)
β (ω⃗) are given by the Fourier Transform of the

following constrained trace

kn(⃗t) = Tr′
(
ρ

1
n O(t1)ρ

1
n O(t2) . . . ρ

1
n O(0)

)
= 1

Z

∑
i1 ̸=. ..in

e
− β

q
(Ei1 +...Ein )[O(t1)]i1i2 . ..[O(0)]ini1 =

∫
dω⃗eiω⃗·⃗tF

(n)
β (ω⃗) ,

(51)

which corresponds to the connected part of the regularized thermal function in Eq.(2), i.e.
Tr

(
ρ

1
n O(t1)ρ

1
n O(t2) . . . ρ

1
n O(tn)

)
.

These correlations are in fact related to the thermal free cumulants [36], a specific form
of connected correlation functions defined from the thermal moments as [21]

Sn(⃗t) = Tr(ρO(t1) . . . O(tn)) =
∑

π∈NC(n)
kπ(O(t1) . . . O(tn)) , (52)

where NC(n) is the set of the non-crossing partitions of {1, 2, . . . , n} and kπ is product of
cumulants, one for each block of π. This decomposition generalizes the implicit definition
of connected cumulant S2(t) = [k1]2 + k2(t) [cf. Eq.(25)] to higher-order 6. See also
Refs.[37, 38] for other appearances of free cumulants in many-body quantum systems. The
smoothness of the ETH ansatz (7) implies that the thermal free cumulants acquire a simple
form, given only by the constrained trace over different indices

6For instance

k1 ≡ S1

k2(t) ≡ S2(t) − (S1)2

k3(t1, t2) ≡ S3(t1, t2) − S1S2(t1 − t2) − S1S2(t1) − S1S2(−t2) + 2(S1)3

k4(t1, t2, t3) ≡ S4(t1, t2, t3) − S2(t1 − t2)S2(t3) − S2(t2 − t3)S2(t1) for S1 = 0 .

Accepted in Quantum 2024-02-01, click title to verify. Published under CC-BY 4.0. 11



kn(⃗t) = Tr′(ρO(t1) . . . O(tn)) =
∫

dω⃗eiω⃗·⃗tF
(n)
β (ω⃗)e−βω⃗·ℓ⃗n , (53)

where the right-hand side is the Fourier transform obtained using the smoothness of
ETH ansatz. The factor e−βω⃗·ℓ⃗n is the thermal shift implementing KMS. This expression
thus generalizes the n = 2 case of Eqs.(26)-(27). To isolate F

(n)
β (ω⃗), this result naturally

leads us to study the symmetrized correlator kn(⃗t) in Eq.(51), which thus identifies the
building block of multi-time functions at all orders n.

We demand now that WOW contains all such correlations. We compute the corre-
sponding object using the window filter:

k
W
n (⃗t) ≡ 1

TrW
∑

i1 ̸=. .. ̸=in

Wi1,i1 . . . Win,in [O(t1)]i1i2 . ..[O(0)]in−1in (54)

= 1
TrW

∫
dEeS(E)dω⃗ p(E1) . . . p(En) F

(n)
e+ (ω⃗)eiω⃗·⃗t . (55)

The same factorization of the probability discussed for n = 2 [cf. Eq.(47)] applies for
generic n, namely

Wi1,i1 . . . Win,in = p(E1) . . . p(En) = e−n(E−E0)2/2∆2
g∆(ω⃗) , (56)

where

g∆(ω⃗) = e
− 1

2∆2
∑n

i−1

(∑n−1
j=1 cj,iωj

)2

,

with cj<i = j
n and cj≥i = j−n

n depends only on energy differences, as before. If we now
take into account that β∆ ≪

√
N , the first factor in (56) dominates over S(E), and the

saddle is E0.
In order to choose the window appropriately, we recall that, just as the two-point

functions [cf.(30)], also n-point on-shell correlators are supposed to decay fast at large
frequencies, at least as fast as

F (n)(ω⃗) = e−|ωi|/ω
(n)
max (57)

in each direction ωi with ω
(n)
max ≤ n−1

n
1

βℏ [21, 26]. From this, we conclude that the largest
energy scale characterizing the correlations of the operator O obey

ωmax = max
n

ω(n)
max ≤ 1

βℏ
. (58)

In the time domain, we thus have

k
W
n (⃗t) = 1

TrW

∫
dEeS(E)pn(E)

∫
dω⃗ g∆(ω⃗) F

(n)
E (ω⃗)eiω⃗·⃗t (59)

= Tr[W n]
Tr[W ]

∫
dω⃗ g∆(ω⃗) F

(n)
E (ω⃗)eiω⃗·⃗t , (60)

where the proportionality constant in the case of the Gaussian can be computed using
Eq.(49), leading to

Tr[W n]
Tr[W ] = e−β2∆2 n−1

n

n1/2 . (61)
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Thus, by choosing βωmax ≪ ∆β ≪
√

N [cf. Eq.(15)], we may neglect the contribution
of the filter and set g∆(ω⃗) ∼ 1. All in all, we have obtained a relation between the
time-dependent on-shell correlators and the ones obtained by WOW, i.e.

k
W
n (⃗t) = Tr[W n]

Tr[W ] kn(⃗t) . (62)

Thus, to compute dynamical correlation functions, all the on-shell correlations are
encoded in the filtered observable WOW. As a result, the canonical multi-point correlations
can be computed directly by looking at their correlations as

Tr(ρ1/nO(t1)ρ1/n . . . O(tn−1)ρ1/nO(0)ρ1/n) ↔ 1
TrW Tr(WO(t1) . . . WO(tn−1)WO(0))

(63)

where the proportionality constant is given by Eq.(61).

5 The WOW spectrum and generating functions
In the previous sections, we have shown that all dynamical on-shell correlations can be
retrieved by looking at the structured microcanonical operator WOW. We now explore
its spectrum. The spectrum of the microcanonically truncated operator was introduced
and studied by Richter et al. in Ref.[13], to determine the emergence of random matrix
description for small windows, i.e. when ∆ is small with the system size L. Our approach
has a different goal because it aims to access the physical properties of the finite-frequency
operator, exactly those that go beyond random matrix theory.
The WOW spectral density is defined as

ρ(α) ≡ 1
trW

∑
i

δ(ai − α) , (64)

where ai are the eigenvalues of Õ. Note that with this definitions ρ(α) is not normalized,
i.e.

∫
dα ρ(α) = tr1

trW = eS(0)−S(e0). In fact, depending on the different choices of the filter
W, the distribution ρ(α) could develop a divergent behavior at α → 0. Imagine we consider
a Gaussian filter as in Eq.(45): its effect is to project almost all matrix elements to zero,
besides the ones in the energy shall of E0 with variance ∆. Correspondingly, also many
eigenvalues will become zero, with the effect of an accumulation in ρ(α → 0). On the other
hand, this effect is not present by choosing a box filter function as in Eq.(40). In this case,
one can restrain the analysis to the submatrix of O with finite matrix elements, and all
the zeros are automatically avoided. Near zero eigenvalues are in any case irrelevant as
far as the integer, positive moments of Õ are concerned.
In Fig.(4), we compare the numerical histogram of the eigenvalues of Õ, obtained with
a Gaussian filter (left) and the boxed one (right). We consider a single site observable
O = σz

L/2, which is characterized by +1, −1 eigenvalues in the absence of the microcanonical
projection. As is evident from the plot for the Gaussian filter (Fig.(4)a), a diverging peak
develops in the limit α → 0. This is absent in the case of the box projector (Fig.(4)c),
which displays a regular distribution ρ(α).

To avoid the pitfalls of the energy filtering for α → 0, we look at

αρ(α) (65)

which will appear in the generating function of the finite moments, discussed below. This
function of the eigenvalues is a well-defined object, which shall yield a universal result
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Figure 4: Numerical evaluation of the spectrum of WOW with Gaussian (left) and boxed (right)
window filter for different sizes L = 12, 14, 16, 18. In the bottom panels we plot αρ(α).

independently of the choice of the window Function W . This is shown in Fig.(4)bd, where
we plot αρ(α) for the Gaussian and the filter functions respectively, which shows a good
agreement between the two functions.

5.1 Generating functions for WOW
The spectral properties of WOW lead us to the definition of some generating functions
to directly access equal-time moments and free cumulants, generalizing known concepts in
random matrix theory [39]. The equal-time moments are defined as

mn = 1
Tr[W n]Tr[Õn] ≃ Tr

(
ρ1/nO . . . ρ1/nO

)
, (66)

where on the right-hand side we have used the Eq.(63) derived in the previous section
valid for ωmaxβ ≪ ∆β ≪

√
N , cf.(15). Thus, the information of the equal-times moments

implies knowledge of the following function

Ḡ(z) =
∞∑

n=0

m̄n

zn+1 =
∞∑

n=0

1
Tr[W n]

Tr[Õn]
zn+1 , (67)

related to the moment generating function. This expression can always be re-written in
terms of the spectral density discussed above, namely

Ḡ(z) ≡ 1
z

+ 1
z

∫
dα αρ(α)

∞∑
n=1

1
Tr[W n]

αn−1

zn
, (68)

from which is clear that ρ only appears through αρ(α) in the expression for the moment
m̄n generating functions.
In the case of a box window as in Eq.(40), then one has Tr[W n] = Tr[W ] and the generating
function Ḡ(z) corresponds to the Stieljes (Cauchy) transform [39] of the operator WOW:

Ḡ(z) = G(z) ≡ 1
trW

tr
( 1

z − W 1/2OW 1/2

)
=

∫
dα

ρ(α)
z − α

. (69)
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Here we use G(z) to denote the standard definition of the Stieljes transform [39], as opposed
to Ḡ(z) defined in Eq.(68). The two correspond only in the case of a box filter, where one
can consider a matrix of reduced shape. In this case, all the known properties of G(z) can
be used. For instance, the spectral density ρ(α) can be retrieve from it by 7

ρ(α) = 1
π

lim
ϵ→0+

Im[G(α − iϵ)] . (70)

5.2 Other generating functions
Before concluding, let us add a brief discussion of an alternative generating function defined
from the thermal moments of the observable O. Standard moments at equal times are
defined with respect to the average over the density matrix:

Sβ
n(0) = Tr( ρβ On) . (71)

One can use a standard thermal density matrix ρβ = 1
Z e−βH or a projector over an

eigenstate ρβ = |Eβ⟩⟨Eβ|, the two are equivalent in describing Sβ
n according to ETH.

Associated with this one can define a Stieltjes transform (resolvent):

GS
β (z) = Tr

(
ρβ

1
z − O

)
. (72)

Via the Stieltjes one can define an effective probability or density of eigenvalues:

ρS(x) = 1
π

lim
ϵ→0+

Im[GS
β (x − iϵ)]

= 1
π

lim
ϵ→0

∑
α

⟨α|ρβ|α⟩ ϵ

(x − Oα)2 + ϵ2 , (73)

where |α⟩ are the eigenvectors of O and Oα its eigenvalues. One then recovers that in the
infinite temperature limit ρ ∝ I this density is simply the density of eigenvalues of O, while
at finite temperature it gets reweighed with the probability ⟨α|ρβ|α⟩. The eigenvalues of
an operator can be highly degenerate and in this case, this probability is enhanced by
summing over all degenerate eigenvectors.

6 Discussion
In this paper, we proposed the construction of a microcanonical observable, which encodes
the dynamical correlation functions, and allows us to explore its spectral properties.

In order to fix ideas, in this paper we have assumed that the Hamiltonian is suffi-
ciently chaotic, so that the matrix elements of a local operator satisfy the randomicity
properties encompassed in the Eigenstate Thermalization Hypothesis. It is however very
likely that this hypothesis may be relaxed and that one can generalize this construction to
generic microcanonical ensembles which include integrable systems, where one only fixes
the energy.

It would also be interesting to understand how to generalize to Floquet systems. On
one side, one can certainly make a smooth window periodic in the 2π period Floquet
spectrum. On the other hand, Floquet systems differ from Hamiltonian ones in that their
correlations do not decay exponentially [40, 41], making the ωmax ill-defined and the filter
function definition ambiguous.

7Here one uses limϵ→0+ 1/(x ± iϵ) = p.p. 1
x

+ ∓iπδ(x), where p.p stands for the Cauchy principal value.
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