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Critical 3-hypergraphs

Abderrahim Boussäıri∗§ Brahim Chergui ∗‡ Pierre Ille†¶

Mohamed Zaidi∗‖

October 10, 2022

Abstract

Given a 3-hypergraph H, a subset M of V (H) is a module of H if for
each e ∈ E(H) such that e∩M ≠ ∅ and e∖M ≠ ∅, there exists m ∈M such
that e ∩M = {m} and for every n ∈ M , we have (e ∖ {m}) ∪ {n} ∈ E(H).
For example, ∅, V (H) and {v}, where v ∈ V (H), are modules of H, called
trivial modules. A 3-hypergraph with at least three vertices is prime if all
its modules are trivial. Furthermore, a prime 3-hypergraph is critical if
all its induced subhypergraphs, obtained by removing one vertex, are not
prime. We characterize the critical 3-hypergraphs.

Mathematics Subject Classifications (2010): 05C65, 05C75, 05C76.

Key words: 3-hypergraph, module, prime, critical.

1 Introduction

Let H be a 3-hypergraph. A tournament T , with the same vertex set as H,
is a realization of H if the edges of H are exactly the 3-element subsets of the
vertex set of T that induce 3-cycles. In [3], we characterized the 3-hypergraphs
that admit realizations (see [5, Problem 1]). To obtain our characterization, we
introduced a new notion of a module for hypergraphs. By using the modular de-
composition tree, we demonstrated that a 3-hypergraph is realizable if and only
if all its prime (in terms of modular decomposition) induced subhypergraphs
are realizable (see [3, Theorem 13]). Moreover, given a realizable 3-hypergraph
H, we proved that H is prime if and only if all its realizations are prime (see [3,
Theorem 12]). These results led us to study the prime and induced subhyper-
graphs of a prime 3-hypergraph. Precisely, consider a prime 3-hypergraph H.
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In [4, Corollary 18], we proved that H admits a prime induced subhypergraph
obtained by removing 1 or 2 vertices. Similar results were obtained for prime di-
graphs [10], for prime binary relational structures [11], or for prime 2-structures
[7]. Our purpose is to characterize the critical 3-hypergraphs, that is, the prime
3-hypergraphs all the subhypergraphs of which, obtained by removing one ver-
tex, are not prime. In particular, our characterization yields a simple manner
to construct critical 3-hypergraphs that are not realizable.

At present, we formalize our presentation. We consider only finite structures.
A hypergraph H is defined by a vertex set V (H) and an edge set E(H), where
E(H) ⊆ 2V (H) ∖ {∅}. Given a hypergraph H, v(H) denotes the cardinality of
V (H). Given k ≥ 2, a hypergraph H is a k-hypergraph if

E(H) ⊆ (
V (H)

k
).

Furthermore, a hypergraph H is a {k, k + 1}-hypergraph if

E(H) ⊆ (
V (H)

k
) ∪ (

V (H)

k + 1
).

Let H be a hypergraph. With each W ⊆ V (H), we associate the subhypergraph
H[W ] of H induced by W , which is defined on V (H[W ]) =W by E(H[W ]) =

{e ∈ E(H) ∶ e ⊆W}. Given W ⊆ V (H), H[V (H)∖W ] is also denoted by H−W ,
and by H −w when W = {w}.

Definition 1. Let H be a hypergraph. A subset M of V (H) is a module of H
if for each e ∈ E(H) such that e ∩M ≠ ∅ and e ∖M ≠ ∅, there exists m ∈ M
such that e ∩M = {m}, and for every n ∈M , we have

(e ∖ {m}) ∪ {n} ∈ E(H).

Given distinct v,w ∈ V (H), we say that v and w are twins [2, 6] of H if {v,w}

is a module of H.

Definition 2. Let H be a hypergraph. Clearly, ∅, V (H) and {v}, where
v ∈ V (H), are modules of H, called trivial modules. A hypergraph H is indecom-
posable if all its modules are trivial, otherwise it is decomposable. A hypergraph
H is prime if it is indecomposable, with v(H) ≥ 3.

Remark 3. Recall that a hypergraph H is connected if for distinct v,w ∈ V (H),
there exists a sequence (e0, . . . , en) of edges of H, where n ≥ 0, satisfying v ∈ e0,
w ∈ en, and (when n ≥ 1) ei∩ei+1 ≠ ∅ for every 0 ≤ i ≤ n−1. Given a hypergraph
H, a maximal connected subhypergraph of H is called a component of H.

LetH be a hypergraph. For each component C ofH, V (C) and V (H)∖V (C)

are clearly modules of H. Therefore, a disconnected hypergraph with at least
three vertices is decomposable.

In [4], we proved the following result (see [4, Theorem 17]). We need the
following notation (see [4, Notation 13]).
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Notation 4. Let H be a 3-hypergraph. Given X ⊊ V (H) such that H[X] is
prime, we consider the following subsets of V (H) ∖X.

• We denote by Ext(H,X) the set of v ∈ V (H) ∖X such that H[X ∪ {v}] is
prime. (Hence, given v ∈ V (H)∖X, v ∈ Ext(H,X) if and only if H[X∪{v}]
is a prime extension of H[X].)

• We denote by Dis(H,X) the set of v ∈ V (H) ∖X such that X is a module
of H[X ∪{v}]. (Let v ∈ Dis(H,X). Since X is a module of H[X ∪{v}], we
obtain v /∈ e for every e ∈ E(H[X∪{v}]). Thus, H[X∪{v}] is disconnected
(see Remark 3).)

• Let y ∈ X. We denote by Twi(H,X)(y) the set of v ∈ V (H) ∖X such that
{y, v} is a module of H[X ∪ {v}]. (Let y ∈ X. Given v ∈ V (H) ∖ X,
v ∈ Twi(H,X)(y) if and only if v and y are twins of H[X ∪ {v}].)

The set {Ext(H,X),Dis(H,X)} ∪ {Twi(H,X)(y) ∶ y ∈X} is denoted by p(H,X).

Theorem 5. Let H be a 3-hypergraph. Consider X ⊊ V (H) such that H[X] is
prime. Set

X = {y ∈X ∶ Twi(H,X)(y) ≠ ∅}.

If H is prime, then there exist v,w ∈ (V (H) ∖X) ∪X such that H − {v,w} is
prime.

The next result follows from Theorem 5 (see [4, Corollary 18])

Corollary 6. Let H be a prime 3-hypergraph. If v(H) ≥ 4, then there exist
v,w ∈ V (H) such that H − {v,w} is prime.

Definition 7. A prime hypergraph H is critical if H − v is not prime for each
v ∈ V (H).

Our purpose is to characterize the critical 3-hypergraphs. An analogue of
Corollary 6 for binary relations led Ille [9] to introduce the following auxiliary
graph.

Definition 8. Let H be a prime 3-hypergraph with v(H) ≥ 5. The primality
graph P(H) associated with H is the graph defined on V (H) as follows. Given
distinct v,w ∈ V (H), vw ∈ E(P(H)) if H −{v,w} is prime. When H is critical,
it follows from Corollary 6 that P(H) is nonempty.

1.1 Critical and realizable 3-hypergraphs

Let T be a tournament. A subset M of V (T ) is a module [12] of T provided
that for any x, y ∈ M and v ∈ V (T ), if xv, vy ∈ A(T ), then v ∈ M . Note that
the notions of a module and of a convex subset [8] coincide for tournaments.
Moreover, note that the notions of a module and of an interval coincide for
linear orders. Given a tournament T , ∅, V (T ) and {v}, where v ∈ V (T ), are
modules of T , called trivial modules. A tournament is indecomposable if all its
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modules are trivial, otherwise it is decomposable. A tournament T is prime if
it is indecomposable, with v(T ) ≥ 3. Lastly, a prime tournament T is critical if
T −v is not prime for each v ∈ V (T ). Schmerl and Trotter [11] characterized the
critical tournaments. They obtained the tournaments T2n+1, U2n+1, and W2n+1

defined on {0, . . . ,2n}, where n ≥ 1, as follows. We denote by L2n+1 the usual
linear order on {0, . . . ,2n}.

• The tournament T2n+1 is obtained from L2n+1 by reversing all the arcs
between even and odd vertices.

• The tournament U2n+1 is obtained from L2n+1 by reversing all the arcs
between even vertices.

• The tournament W2n+1 is obtained from L2n+1 by reversing all the arcs
between 2n and the even elements of {0, . . . ,2n − 1}.

Theorem 9 (Schmerl and Trotter [11]). Given a tournament τ , with v(τ) ≥ 5,
τ is critical if and only if v(τ) is odd and τ is isomorphic to Tv(τ), Uv(τ), or
Wv(τ).

A realization of a 3-hypergraph is defined as follows (see [3, Definition 10]).
To begin, we associate with each tournament a 3-hypergraph in the following
way (see [3, Definition 9]).

Definition 10. The 3-cycle is the tournament C3 = ({0,1,2},{01,12,20}).
Given a tournament T , the C3-structure of T is the 3-hypergraph C3(T ) de-
fined on V (C3(T )) = V (T ) by

E(C3(T )) = {X ⊆ V (T ) ∶ T [X] is isomorphic to C3}.

Definition 11. Given a 3-hypergraph H, a tournament T , with V (T ) = V (H),
realizes H if H = C3(T ). We say also that T is a realization of H.

In [3], we proved the following result (see [3, Theorem 12])

Theorem 12. Consider a realizable 3-hypergraph H. For a realization T of H,
H is prime if and only if T is prime.

The next result follows from Theorems 9 and 12 (see [3, Theorem 49]).

Corollary 13. Given a realizable 3-hypergraph H, with v(H) ≥ 5, H is critical
if and only if v(H) is odd and H is isomorphic to C3(Tv(H)), C3(Uv(H)), or
C3(Wv(H)).

Definition 14. Given a 3-hypergraph H, we say that H is circular if v(H) is
odd and H is isomorphic to C3(Tv(H)).
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1.2 A construction of non circular and critical
3-hypergraphs

The construction is provided from the set of the components of a graph. We
use the following notation.

Notation 15. Consider a graph Γ. The set of the components of Γ is denoted
by C(Γ). Furthermore, set Ceven(Γ) = {C ∈ C(Γ) ∶ v(C) ≡ 0 (mod 2)} and
Codd(Γ) = {C ∈ C(Γ) ∶ v(C) ≡ 1 (mod 2)}. Lastly, set C1(Γ) = {C ∈ C(Γ) ∶

v(C) = 1} and V1(Γ) = {v ∈ V (Γ) ∶ {v} ∈ C1(Γ)}. For each C ∈ C(Γ), set

w(C) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v(C)

2
if C ∈ Ceven(Γ)

v(C) − 1

2
if C ∈ Codd(Γ).

We consider a graph Γ,

all the components of which are paths. (1)

For each n ≥ 1, recall that the path Pn is defined on V (Pn) = {0, . . . , n − 1} by

E(Pn) =

⎧⎪⎪
⎨
⎪⎪⎩

∅ if n = 1

{k(k + 1) ∶ 0 ≤ k ≤ n − 2} if n ≥ 2.

We suppose that

★ C(Γ) ∖ C1(Γ) ≠ ∅,

★ for each C ∈ Codd(Γ), if V (H) ∖ V (C) ≠ ∅, then

(C(Γ) ∖ C1(Γ)) ∖ {C} ≠ ∅, (2)

★ for each C ∈ Ceven(Γ), if ∣V (H) ∖ V (C)∣ ≥ 2, then

(C(Γ) ∖ C1(Γ)) ∖ {C} ≠ ∅.

Consider also a {2,3}-hypergraph H defined on C(Γ) and satisfying

◾ for each ε ∈ E(H), if ∣ε∣ = 2, then ε ∩ Ceven(Γ) ≠ ∅ and ε ∩ Codd(Γ) ≠ ∅, (3)

◾ for each ε ∈ E(H), if ∣ε∣ = 3, then ε ⊆ Codd(Γ).

With Γ and H, we associate the 3-hypergraph Γ ● H defined on V (Γ) in the
following manner. For each C ∈ C(Γ), we consider an isomorphism ϕC from the
path Pv(C) onto C. With each C ∈ Codd(Γ) ∖ C1(Γ), we associate the set

EC = ϕC(E(C3(Uv(C)))).

Moreover, consider ε ∈ E(H) such that ∣ε∣ = 2. There exist C ∈ Ceven(Γ) and
D ∈ Codd(Γ) such that ε = CD. Associate with ε the set

Eε = {ϕC(2i)ϕC(2j + 1)ϕD(2k) ∶ 0 ≤ i ≤ j ≤ w(C) − 1, 0 ≤ k ≤ w(D)}.
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Lastly, consider ε ∈ E(H) such that ∣ε∣ = 3. There exist I, J,K ∈ Codd(Γ) such
that ε = IJK. Associate with ε the set

Eε = {ϕI(2i)ϕJ(2j)ϕK(2k) ∶ 0 ≤ i ≤ w(I), 0 ≤ j ≤ w(J), 0 ≤ k ≤ w(K)}.

The 3-hypergraph Γ ●H is defined on V (Γ) by

E(Γ ●H) = ( ⋃
C∈Codd(Γ)∖C1(Γ)

EC) ∪ ( ⋃
ε∈E(H)

Eε). (4)

1.3 The main results

To begin, we prove the following theorem.

Theorem 16. Let H be a critical 3-hypergraph such that v(H) ≥ 5. If H is not
circular, then P(H) (see Definition 8) satisfies (1) and (2), and there exists a
{2,3}-hypergraph H̃ defined on C(P(H)) satisfying (3) such that

H = P(H) ● H̃.

To state the second main theorem, we consider a graph Γ satisfying (1) and
(2). We consider also a {2,3}-hypergraph H defined on C(Γ) satisfying (3).

Theorem 17. Suppose that v(Γ ●H) ≥ 5. The 3-hypergraph Γ ●H is critical if
and only if the following three assertions hold

(C1) H is connected (see Remark 3);

(C2) for every nontrivial module M of H, we have M ∖ C1(Γ) ≠ ∅;

(C3) for each v ∈ V1(Γ), if H−{v} is connected, then H−{v} admits a nontrivial
module M{v} such that M{v} ⊆ C1(Γ) ∖ {{v}}.

Before proving Theorem 17, we establish the next proposition.

Proposition 18. Suppose that v(Γ ●H) ≥ 3. The 3-hypergraph Γ ●H is prime
if and only if the following two assertions hold

(C1) H is connected;

(C2) for every nontrivial module M of H, we have M ∖ C1(Γ) ≠ ∅.

The next result yields an easy manner to construct critical 3-hypergraphs.
It is a simple consequence of Corollary 13 and Theorem 17.

Corollary 19. Suppose that v(Γ ●H) ≥ 5. Suppose also that C1(Γ) = ∅. If H
is connected, then Γ ●H is critical. Moreover, if H is connected and ∣C(Γ)∣ ≥ 2,
then Γ ●H is critical and non realizable.
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2 The critical tournaments

The primality graph associated with a prime tournament is defined in the same
manner as that associated with a prime 3-hypergraph (see Definition 8).

Definition 20. Let T be a prime tournament. The primality graph P(T ) of
T is defined on V (T ) as follows. Given distinct v,w ∈ V (T ), vw ∈ E(P(T )) if
T − {v,w} is prime.

The basic properties of the primality graph follow. The next lemma is stated
in [9] without a proof. For a proof, see [1, Lemma 10].

Lemma 21 (Ille [9]). Let T be a prime tournament with v(T ) ≥ 5. Consider
v ∈ V (T ) such that T − v is decomposable. We have dP(T )(v) ≤ 2. Moreover,
the next two assertions hold.

1. If dP(T )(v) = 1, then V (T ) ∖ ({v} ∪NP(T )(v)) is a module of T − v.

2. If dP(T )(v) = 2, then NP(T )(v) is a module of T − v.

For each n ≥ 3, recall that the cycle Cn is defined on V (Cn) = {0, . . . , n−1} by
E(Cn) = E(Pn)∪{0(n− 1)}. The length of Cn is n. Given a critical tournament
T , it follows from Lemma 21 that the connected components of P(T ) are paths
or cycles. Boudabbous and Ille [1] characterized the critical tournaments from
their primality graphs. To begin, they examined the connected components of
the primality graph associated with a critical tournament.

Lemma 22 (Corollary 17 [1]). If T is a critical tournament, with v(T ) ≥ 5,
then P(T ) satisfies one of the following

1. P(T ) is a cycle of odd length;

2. P(T ) is a path;

3. v(T ) is odd and there is v ∈ V (T ) such that P(T ) − v is a path and
NP(T )(v) = ∅.

For each of the three shapes described in Lemma 22, Boudabbous and Ille
[1] characterized the corresponding critical tournaments.

Proposition 23 (Proposition 18 [1]). Given a tournament such that v(T ) ≥ 5,
T is critical and P(T ) = Cv(T ) if and only if v(T ) is odd and T = Tv(T ) or
(Tv(T ))

⋆.

Proposition 24 (Proposition 19 [1]). Given a tournament such that v(T ) ≥ 5,
T is critical and P(T ) = Pv(T ) if and only if v(T ) is odd and T = Uv(T ) or
(Uv(T ))

⋆.

Proposition 25 (Proposition 21 [1]). Given a tournament defined on {0, . . . ,2n}
with n ≥ 2, T is critical, P(T ) − 2n = P2n−1, and NP(T )(2n) = ∅ if and only if
T =W2n+1 or (W2n+1)

⋆.
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3 Proof of Theorem 16

The purpose of this section is to characterize the non circular and critical 3-
hypergraphs. We use the following notation.

Notation 26. Let H be a 3-hypergraph.

For e, f ∈ (
V (H)

3
), e ≡H f means

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

e, f ∈ E(H)

or

e, f /∈ E(H).

An analogue of Lemma 21 for prime 3-hypergraphs follows. For a proof, see
[1, Lemma 10].

Lemma 27. Let H be a prime 3-hypergraph with v(H) ≥ 5. Consider v ∈ V (H)

such that H − v is decomposable. We have dP(H)(v) ≤ 2. Moreover, the next
two assertions hold.

1. If dP(H)(v) = 1, then V (H) ∖ ({v} ∪NP(H)(v)) is a module of H − v.

2. If dP(H)(v) = 2, then NP(H)(v) is a module of H − v.

The next result is an immediate consequence of Lemma 27.

Corollary 28. Given a critical 3-hypergraph H such that v(H) ≥ 5, all the
components of P(H) are cycles or paths.

Proposition 29. Let H be a prime 3-hypergraph defined on {0, . . . , p−1}, where
p ≥ 5. Suppose that there exists k ∈ {3, . . . , p} such that

P(H)[{0, . . . , k − 1}] = Ck.

If H − i is decomposable for each i ∈ {0, . . . , k − 1}, then k is odd, k = p, and
H = C3(Tp).

Proof. Suppose that there exists k ∈ {3, . . . , p} such that P(H)[{0, . . . , k−1}] =
Ck. Furthermore, suppose that H − i is decomposable for each i ∈ {0, . . . , k − 1}.
First, we show that

k is odd. (5)

Otherwise, there exists l ≥ 2 such that P(H)[{0, . . . ,2l − 1}] = C2l. We verify
that {0,2} is a module of H. Consider e ∈ E(H) such that e ∩ {0,2} ≠ ∅

and e ∖ {0,2} ≠ ∅. Suppose for a contradiction that 0,2 ∈ e. There exists
i ∈ {1} ∪ {3, . . . ,2l − 1} such that e = 02i. Since NP(H)(1) = {0,2}, it follows
from Lemma 27 that {0,2} is a module of H − 1. It follows that i = 1, that is,
e = 012. It follows from Lemma 27 that 01(2l − 2) ∈ E(H), which contradicts
the fact that {0,2l−2} is a module of H −(2l−1). Consequently, ∣e∩{0,2}∣ = 1.
For a contradiction, suppose that 1 ∈ e. Since ∣e ∩ {0,2}∣ = 1, there exists
j ∈ {3, . . . ,2l − 1} such that e = 01j or 12j. Denote by j′ the unique element
of {2l − 2,2l − 1} such that j′ ≡ j (mod 2). It follows from Lemma 27 that
(e∖{j})∪{j′} ∈ E(H). Similarly, by denoting by j′′ the unique element of {3,4}
such that j′′ ≡ j (mod 2), we obtain (e ∖ {j}) ∪ {j′′} ∈ E(H). We distinguish
the following two cases.
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1. Suppose that e = 01j. If j is even, then 01(2l − 2) ∈ E(H), which contra-
dicts the fact that {0,2l − 2} is a module of H − (2l − 1). If j is odd, then
013 ∈ E(H), which contradicts the fact that {1,3} is a module of H − 2.

2. Suppose that e = 12j. If j is even, then 124 ∈ E(H), which contradicts the
fact that {2,4} is a module of H − 3. If j is odd, then 12(2l − 1) ∈ E(H),
which contradicts the fact that {1,2l − 1} is a module of H − 0.

It follows that 1 /∈ e. So, e ∈ E(H − 1). Since NP(H)(1) = {0,2}, it follows from
Lemma 27 that {0,2} is a module of H − 1. Thus, there exists i ∈ {0,2} such
that e∩{0,2} = {i}, and (e∖{i})∪{i′} ∈ E(H) for each i′ ∈ {0,2}. Consequently,
{0,2} is a module of H, which contradicts the fact that H is prime. It follows
that (5) holds. Set k = 2n + 1, where n ≥ 1.

Second, we prove that {0, . . . ,2n} is a module of H. Consider e ∈ E(H) such
that e ∩ {0, . . . ,2n} ≠ ∅ and e ∖ {0, . . . ,2n} ≠ ∅. We prove that

∣e ∩ {0, . . . ,2n}∣ = 1. (6)

Otherwise, we have ∣e ∩ {0, . . . ,2n}∣ = 2. There exist i, j ∈ {0, . . . ,2n}, with
i < j, such that e ∩ {0, . . . ,2n} = {i, j}. Denote by i′ the unique element of
{0,1} such that i′ ≡ i (mod 2). As previously, we obtain (e ∖ {i}) ∪ {i′} ∈

E(H). Denote by j′ the unique element of {2,3} such that j′ ≡ j (mod 2).
We obtain (e ∖ {i, j}) ∪ {i′, j′} ∈ E(H). Set e′ = (e ∖ {i, j}) ∪ {i′, j′}. Observe
that e′ ∖ {0, . . . ,2n} = e ∖ {0, . . . ,2n}, and denote by v the unique element of
e′ ∖{0, . . . ,2n}. If i′ = 0 and j′ = 2, then 02v ∈ E(H), which contradicts the fact
that {0,2} is a module of H − 1. If i′ = 1 and j′ = 3, then 13v ∈ E(H), which
contradicts the fact that {1,3} is a module of H − 2. Suppose that i′ = 0 and
j′ = 3. We get 03v ∈ E(H), and hence 0(2n−1)v ∈ E(H), which contradicts the
fact that {0,2n − 1} is a module of H − (2n). Lastly, if i′ = 1 and j′ = 4, then
1(2n)v ∈ E(H), which contradicts the fact that {1,2n} is a module of H − 0. It
follows that (6) holds. Denote by i the unique element of e ∩ {0, . . . ,2n}. For
every l ∈ {1, . . . , n}, we obtain

(e ∖ {i}) ∪ {i + 2l} ∈ E(H), (7)

where i+2l is considered modulo 2n+1. In particular, (e∖{i})∪{i+2n}, which
is (e ∖ {i}) ∪ {i − 1}, belongs to E(H). Since {i − 1, i + 1} is a module of H − i,
we get (e ∖ {i}) ∪ {i + 1} ∈ E(H). For each m ∈ {0, . . . , n − 1}, we obtain

(e ∖ {i}) ∪ {i + 2m + 1} ∈ E(H). (8)

It follows from (7) and (8) that (e∖{i})∪{i′} ∈ E(H) for every i′ ∈ {0, . . . ,2n}.
Consequently, {0, . . . ,2n} is a module of H. Since H is prime, we obtain V (H) =

{0, . . . ,2n}.
Third, we prove that H = C3(T2n+1). We have

E(C3(T2n+1)) ={(2i)(2l + 1)(2j) ∶ 0 ≤ i ≤ l < j ≤ n}

∪ {(2i + 1)(2l)(2j + 1) ∶ 0 ≤ i < l ≤ j ≤ n − 1}. (9)
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For a contradiction, suppose that there are x, y, z ∈ {0, . . . ,2n} such that x < y <
z, x ≡ y (mod 2), and xyz ∈ E(H). It follows from Lemma 27 that (y − 2)yz ∈
E(H), which contradicts the fact that {y − 2, y} is a module of H − (y − 1).
Hence, xyz /∈ E(H) for x, y, z ∈ {0, . . . ,2n} such that x < y < z and x ≡ y
(mod 2). Similarly, xyz /∈ E(H) for x, y, z ∈ {0, . . . ,2n} such that x < y < z and
y ≡ z (mod 2). It follows that

E(H) ⊆ E(C3(T )). (10)

Now, consider x, y, z ∈ {0, . . . ,2n} such that x < y < z, x /≡ y (mod 2), and y /≡ z
(mod 2). It follows from Lemma 27 that

xyz ≡H x(x + 1)(x + 2) (see Notation 26). (11)

Now, we prove that the permutation

θ ∶ {0, . . . ,2n} Ð→ {0, . . . ,2n}
x z→ x + 1 (mod 2n + 1)

of {0, . . . ,2n} is an automorphism of H. Given x, y, z ∈ {0, . . . ,2n} such that
x < y < z, we have to verify that xyz ≡H (x + 1)(y + 1)(z + 1). We have

xyz ≡H xy(z + 2) ≡H x(y + 2)(z + 2) ≡H (x + 2)(y + 2)(z + 2).

Thus, xyz ≡H (x + 2n + 2)(y + 2n + 2)(z + 2n + 2), that is

xyz ≡H (x + 1)(y + 1)(z + 1).

Consequently, θ is an automorphism of H. Since H is prime, there exist u, v,w ∈

{0, . . . ,2n} such that u < v < w and uvw ∈ E(H). By (10), uvw ∈ E(C3(T )).
It follows from (9) that u /≡ v (mod 2) and v /≡ w (mod 2). It follows from (11)
that u(u + 1)(u + 2) ∈ E(H). Since θ is an automorphism of H, we obtain

012 ∈ E(H). (12)

Finally, consider x, y, z ∈ {0, . . . ,2n} such that x < y < z and xyz ∈ E(C3(T )).
By (9), x /≡ y (mod 2) and y /≡ z (mod 2). It follows from (11) that xyz ≡H
x(x+ 1)(x+ 2). Since θ is an automorphism of H, we obtain x(x+ 1)(x+ 2) ≡H
012. Therefore, xyz ≡H 012. By (12), xyz ∈ E(H). Consequently, we obtain
E(C3(T )) ⊆ E(H). It follows from (10) that H = C3(T ).

The next corollary is an easy consequence of Corollary 28 and Proposition 29.

Corollary 30. Given a critical 3-hypergraph H, with v(H) ≥ 5, H is not cir-
cular if and only if all the components of P(H) are paths.

Proof. Suppose that H is circular. By Definition 14, v(H) is odd and

H ≃ C3(Tv(H)).
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Hence, we obtain P(H) ≃ P(C3(Tv(H))). It follows from Theorem 12 that

P(C3(Tv(H))) = P(Tv(H)).

By Proposition 23, P(Tv(H)) = Cv(H). It follows that P(H) contains a cycle
among its components.

Conversely, suppose that P(H) admits a component C which is not a
path. By Corollary 28, C is a cycle. Up to isomorphy, we can assume that
V (H) = {0, . . . , p − 1}, where p ≥ 5, and there exists k ∈ {3, . . . , p} satisfying
P(H)[{0, . . . , k −1}] = Ck. By Proposition 29, k is odd, k = p, and H = C3(Tp).
Therefore, H is circular.

Notation 31. Let H be a non circular and critical 3-hypergraph. For each
C ∈ C(P(H)), C is a path. Thus, there exists an isomorphism denoted by ϕC
from Pv(C) onto C.

Lemma 32. Let H be a critical 3-hypergraph with v(H) ≥ 5. Suppose that H
is not circular.

1. Let C ∈ Codd(P(H)). For every e ∈ E(H), if e ∩ V (C) ≠ ∅ and e ∖
V (C) ≠ ∅, then there exists i ∈ {0, . . . ,w(C)} (see Notation 15) such that
e ∩ V (C) = {ϕC(2i)}.

2. Let C ∈ Ceven(P(H)). For every e ∈ E(H), if e ∩ V (C) ≠ ∅ and e ∖
V (C) ≠ ∅, then there exist i, j ∈ {0, . . . ,w(C) − 1} such that i ≤ j and
e ∩ V (C) = {ϕC(2i), ϕC(2j + 1)}.

Proof. For the first assertion, consider C ∈ Codd(P(H)). Let e ∈ E(H) such
that e ∩ V (C) ≠ ∅ and e ∖ V (C) ≠ ∅. We prove that

e ∩ {ϕC(2i + 1) ∶ i ∈ {0, . . . ,w(C) − 1}} = ∅. (13)

Otherwise, there exists i ∈ {0, . . . ,w(C) − 1} such that ϕC(2i + 1) ∈ e. We
distinguish the following two cases.

• Suppose that there exists j ∈ {0, . . . , i} such that ϕC(2j) ∈ e. Since e ∖
V (C) ≠ ∅, e∩V (C) = {ϕC(2j), ϕC(2i+ 1)}. By denoting by v the unique
element of e ∖ V (C), we obtain e = ϕC(2j)ϕC(2i + 1)v. It follows from
Lemma 27 that ϕC(2j)ϕC(2w(C)−1)v ∈ E(H), which contradicts the fact
that V (H)∖{ϕC(2w(C)−1), ϕC(2w(C))} is a module of H−ϕC(2w(C)).

• Suppose that e ∩ {ϕC(2j) ∶ j ∈ {0, . . . , i}} = ∅. It follows from Lemma 27
that there exists f ∈ E(H) such that ϕC(1) ∈ f and ϕC(0) /∈ f , which
contradicts the fact that V (H)∖{ϕC(0), ϕC(1)} is a module of H−ϕC(0).

Consequently, (13) holds.
Now, we prove that there exists i ∈ {0, . . . ,w(C)} such that

e ∩ V (C) = {ϕC(2i)}. (14)
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Otherwise, it follows from (13) that there exist distinct i, j ∈ {0, . . . ,w(C)} such
that 0 ≤ i < j ≤ w(C) such that e ∩ V (C) = {ϕC(2i), ϕC(2j)}. It follows from
Lemma 27 that there exists f ∈ E(H) such that f ∩V (C) = {ϕC(2i), ϕC(2i+2)}
and f ∖ V (C) ≠ ∅, which contradicts the fact that {ϕC(2i), ϕC(2i + 2)} is a
module of H − ϕC(2i + 1). Consequently, (14) holds.

For the second assertion, consider C ∈ Ceven(P(H)). Let e ∈ E(H) such
that e ∩ V (C) ≠ ∅ and e ∖ V (C) ≠ ∅. Set

p = min({i ∈ {0, . . . ,2w(C) − 1} ∶ ϕC(i) ∈ e}).

For a contradiction, suppose that p is odd. It follows from Lemma 27 that
(e ∖ {ϕC(p)}) ∪ {ϕC(1)} ∈ E(H), which contradicts the fact that V (C) ∖

{ϕC(0), ϕC(1)} is a module of H − ϕC(0). It follows that p is even. Thus,
there exists i ∈ {0, . . . ,w(C) − 1} such that p = ϕC(2i). Similarly, max({i ∈
{0, . . . ,2w(C) − 1} ∶ ϕC(i) ∈ e}) is odd. Thus there exists j ∈ {0, . . . ,w(C) − 1}
such that max({i ∈ {0, . . . ,2w(C) − 1} ∶ ϕC(i) ∈ e}) = ϕC(2j + 1). We obtain
that i ≤ j and e ∩ V (C) = {ϕC(2i), ϕC(2j + 1)}.

Proposition 33. Let H be a critical 3-hypergraph with v(H) ≥ 5. Suppose that
H is not circular. Consider C ∈ Codd(P(H)) ∖ C1(P(H)).

1. Suppose that V (C) ⊊ V (H). There exists e ∈ E(H), such that e∩V (C) ≠ ∅

and e ∖ V (C) ≠ ∅. Moreover, one of the following two assertions holds

• there exist distinct D,D′ ∈ Codd(P(H)) ∖ {C} such that e ⊆ V (C) ∪

V (D) ∪ V (D′), e ∩ V (D) ≠ ∅, and e ∩ V (D′) ≠ ∅;

• there exists D ∈ Ceven(P(H)) such that e ⊆ V (C) ∪ V (D) and e ∩
V (D) ≠ ∅.

Furthermore, there exists i ∈ {0, . . . ,w(C)} such that e∩V (C) = {ϕC(2i)}.
Lastly, for each j ∈ {0, . . . ,w(C)}, (e ∖ {ϕC(2i)}) ∪ {ϕC(2j)} ∈ E(H).

2. The function ϕC is an isomorphism from C3(Uv(C)) onto H[V (C)].

3. If V (C) ⊊ V (H), then there exists C ′ ∈ C(P(H)) ∖ C1(P(H)) such that
C ′ ≠ C.

Proof. For the first assertion, suppose that V (C) ⊊ V (H). Since V (C) is not a
module of H, there exists e ∈ E(H) such that e∩V (C) ≠ ∅ and e∖V (C) ≠ ∅. It
follows from Lemma 32 that there exists i ∈ {0, . . . ,w(C)} such that e∩V (C) =

{ϕC(2i)}. It follows from Lemma 27 that (e ∖ {ϕC(2i)}) ∪ {ϕC(2j)} ∈ E(H)

for each j ∈ {0, . . . ,w(C)}. Moreover, since ∣e ∩ V (C)∣ = 1, there exists D ∈

C(P(H)) ∖ {C} such that e ∩ V (D) ≠ ∅. We distinguish the following two
cases.

• Suppose that D ∈ Ceven(P(H)). By Lemma 32, ∣e ∩ V (D)∣ = 2. Thus,
e ⊆ V (C) ∪ V (D).
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• Suppose that D ∈ Codd(P(H)). By Lemma 32, ∣e∩V (D)∣ = 1. Therefore,
there exists D′ ∈ C(P(H)) ∖ {C,D} such that e ∩ V (D′) ≠ ∅. Thus, e ⊆
V (C)∪V (D)∪V (D′). It follows from Lemma 32 that D′ ∈ Codd(P(H)).

For the second assertion, suppose for a contradiction that for every e ∈ E(H)

such that e ∩ V (C) ≠ ∅, we have e ∖ V (C) ≠ ∅. We verify that {ϕC(2i) ∶ i ∈
{0, . . . ,w(C)}} is a module of H. Let e ∈ E(H) such that e ∩ {ϕC(2i) ∶ i ∈
{0, . . . ,w(C)}} ≠ ∅ and e∖ {ϕC(2i) ∶ i ∈ {0, . . . ,w(C)}} ≠ ∅. Since e∩ {ϕC(2i) ∶
i ∈ {0, . . . ,w(C)}} ≠ ∅, we have e ∩ V (C) ≠ ∅, and hence e ∖ V (C) ≠ ∅. By
Lemma 32, there exists i ∈ {0, . . . ,w(C)} such that e∩V (C) = {ϕC(2i)}. Given
j ∈ {0, . . . ,w(C)}, it follows from Lemma 27 that (e ∖ {ϕC(2i)}) ∪ {ϕC(2j)} ∈

E(H). Therefore, {ϕC(2i) ∶ i ∈ {0, . . . ,w(C)}} is a module of H, which contra-
dicts the fact that H is prime. Consequently, there exists e ∈ V (H) such that
e ⊆ V (C). Set

p = min({i ∈ {0, . . . ,2w(C)} ∶ ϕC(i) ∈ e}).

For a contradiction, suppose that p is odd. It follows from Lemma 27 that
(e ∖ {ϕC(p)}) ∪ {ϕC(1)} ∈ E(H), which contradicts the fact that V (C) ∖

{ϕC(0), ϕC(1)} is a module of H − ϕC(0). Thus, there exists i ∈ {0, . . . ,w(C)}

such that p = ϕC(2i). Similarly, there exists k ∈ {0, . . . ,w(C)} such that
max({i ∈ {0, . . . ,2w(C)} ∶ ϕC(i) ∈ e}) = ϕC(2k). Since e ⊆ V (C), we have i < k.
Consider q ∈ {2i+1, . . . ,2k−1} such that e = ϕC(2i)ϕC(q)ϕC(2k). For a contra-
diction, suppose that q is even. It follows from Lemma 27 that ϕC(2i)ϕC(2i +
2)ϕC(2k) ∈ E(H), which contradicts the fact that {ϕC(2i), ϕC(2i+2)} is a mod-
ule of H−ϕC(2i+1). It follows that p is odd. Hence, there exists j ∈ {i, . . . , k−1}
such that q = ϕC(2j + 1). We obtain

e = ϕC(2i)ϕC(2j + 1)ϕC(2k). (15)

It follows that

E(H[V (C)]) ⊆ {ϕC(2i′)ϕC(2j′ + 1)ϕC(2k′) ∶ 0 ≤ i′ ≤ j′ < k′ ≤ w(C)}. (16)

It follows from Lemma 27 that

ϕC(2i′)ϕC(2j′ + 1)ϕC(2k′) ≡H ϕC(0)ϕC(1)ϕC(2) (17)

for 0 ≤ i′ ≤ j′ < k′ ≤ w(C). Since ϕC(2i)ϕC(2j + 1)ϕC(2k) ∈ E(H[V (C)]) by
(15), we obtain ϕC(0)ϕC(1)ϕC(2) ∈ E(H[V (C)]). It follows from (16) and
(17) that

E(H[V (C)]) = {ϕC(2i′)ϕC(2j′ + 1)ϕC(2k′) ∶ 0 ≤ i′ ≤ j′ < k′ ≤ w(C)}.

In other words, ϕC is an isomorphism from C3(Uv(C)) onto H[V (C)].
For the third assertion, suppose that V (C) ⊊ V (H). Set

Y = V (C).

By Theorem 9, Uv(C) is prime. Hence, C3(Uv(C)) is prime by Theorem 12. It
follows from the second assertion above that H[Y ] is prime. By Theorem 5,
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there exist v,w ∈ (V (H) ∖ Y ) ∪ Y such that H − {v,w} is prime. Since H is
critical, we have v ≠ w. Therefore, there exists C ′ ∈ C(P(H))∖C1(P(H)) such
that v,w ∈ C ′. Lastly, suppose for a contradiction that Y ≠ ∅. Therefore, there
exist y ∈ Y and u ∈ V (H)∖Y such that {y, u} is a module of H[Y ∪{u}]. Since
H[Y ] is isomorphic to C3(Uv(C)) by the second assertion above, there exists
e ∈ E(H[Y ]) such that y ∈ e. Since {y, u} is a module of H[Y ∪ {u}], we get
(e ∖ {y}) ∪ {u} ∈ E(H), which contradicts Lemma 32. It follows that Y = ∅.
Thus, we obtain v,w /∈ Y , that is, v,w /∈ V (C). Hence, we have C ′ ≠ C.

Proposition 34. Let H be a critical 3-hypergraph such that v(H) ≥ 5. Suppose
that H is not circular. Consider C ∈ Ceven(P(H)).

1. There exists D ∈ Codd(P(H)) such that ϕC(2i)ϕC(2j+1)ϕD(2k) ∈ E(H),
where i, j ∈ {0, . . . ,w(C) − 1}, with i ≤ j, and k ∈ {0, . . . ,w(D)};

2. For each k ∈ {0, . . . ,w(D)}, the extension ψ2k
C ∶ {0, . . . , v(C)} Ð→ V (C) ∪

{ϕD(2k)} of ϕC defined by

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(ψ2k
C )↾{0,...,v(C)−1} = ϕC

and

ψ2k
C (v(C)) = ϕD(2k),

is an isomorphism from C3(Wv(C)+1) onto H[V (C) ∪ {ϕD(2k)}].

3. If ∣V (H) ∖ V (C)∣ ≥ 2, then there exists C ′ ∈ C(P(H)) ∖ C1(P(H)) such
that C ′ ≠ C.

Proof. To begin, we verify that

e ∖ V (C) ≠ ∅ (18)

for every e ∈ E(H). Otherwise, there exists e ∈ E(H) such that e ⊆ V (C). Set

p = min({i ∈ {0, . . . ,2w(C) − 1} ∶ ϕC(i) ∈ e}).

For a contradiction, suppose that p is odd. It follows from Lemma 27 that
(e ∖ {ϕC(p)}) ∪ {ϕC(1)} ∈ E(H), which contradicts the fact that V (C) ∖

{ϕC(0), ϕC(1)} is a module of H−ϕC(0). Thus, there exists i ∈ {0, . . . ,w(C)−1}
such that p = ϕC(2i). Similarly, there exists k ∈ {i, . . . ,w(C) − 1} such that
max({i ∈ {0, . . . ,2w(C)} ∶ ϕC(i) ∈ e}) = ϕC(2k + 1). Since e ⊆ V (C), we have
i < k. Consider q ∈ {2i + 1, . . . ,2k} such that e = ϕC(2i)ϕC(q)ϕC(2k + 1). We
distinguish the following two cases. In each of them, we obtain a contradiction.

• Suppose that q is even. It follows from Lemma 27 that ϕC(2i)ϕC(2i +
2)ϕC(2k+1) ∈ E(H), which contradicts the fact that {ϕC(2i), ϕC(2i+2)}
is a module of H − ϕC(2i + 1).

• Suppose that q is odd. It follows from Lemma 27 that ϕC(2i)ϕC(2k −
1)ϕC(2k+1) ∈ E(H), which contradicts the fact that {ϕC(2k−1), ϕC(2k+
1)} is a module of H − ϕC(2k).
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It follows that (18) holds. Since H is prime, we have E(H) ≠ ∅. It follows from
(18) that

V (C) ⊊ V (H).

For the first assertion, since V (C) ⊊ V (H), V (C) is not a module of H.
Therefore, there exists e ∈ E(H) such that e ∩ V (C) ≠ ∅ and e ∖ V (C) ≠ ∅. By
Lemma 32, there exist i, j ∈ {0, . . . ,w(C) − 1} such that i ≤ j and e ∩ V (C) =

{ϕC(2i), ϕC(2j + 1)}. Since ∣e ∩ V (C)∣ = 2, there exists D ∈ C(P(H)) ∖ {C}

such that e ∩ V (D) ≠ ∅. It follows from Lemma 32 that D ∈ Codd(P(H)) and
e ∩ V (D) = {ϕD(2k)}, where k ∈ {0, . . . ,w(D)}.

For the second assertion, it follows from the first assertion above that there
exists D ∈ Codd(P(H)) such that

ϕC(2i0)ϕC(2j0 + 1)ϕD(2k0) ∈ E(H), (19)

where i0, j0 ∈ {0, . . . ,w(C) − 1}, with i0 ≤ j0, and k0 ∈ {0, . . . ,w(D)}. It follows
from Lemma 27 that

ϕC(2i0)ϕC(2j0 + 1)ϕD(2k) ∈ E(H) (20)

for each k ∈ {0, . . . ,w(D)}. Let k ∈ {0, . . . ,w(D)}. Consider i, j ∈ {0, . . . ,w(C)−

1} such that i ≤ j. It follows from Lemma 27 that

ϕC(2i)ϕC(2j + 1)ϕD(2k) ≡H ϕC(0)ϕC(1)ϕD(2k). (21)

By (20) and (21), we have

ϕC(0)ϕC(1)ϕD(2k) ∈ E(H). (22)

We prove that

E(H[V (C) ∪ {ϕD(2k)}]) = {ϕC(2i)ϕC(2j + 1)ϕD(2k) ∶ (23)

0 ≤ i ≤ j ≤ w(C) − 1}.

Consider i, j ∈ {0, . . . ,w(C) − 1} such that i ≤ j. By (21) and (22), we have
ϕC(2i)ϕC(2j + 1)ϕD(2k) ∈ E(H). Therefore, we obtain

E(H[V (C) ∪ {ϕD(2k)}]) ⊇ {ϕC(2i)ϕC(2j + 1)ϕD(2k) ∶ (24)

0 ≤ i ≤ j ≤ w(C) − 1}.

Conversely, consider e ∈ E(H[V (C)∪{ϕD(2k)}]). By (18), we have ϕD(2k) ∈ e.
It follows from Lemma 32 that there exist i, j ∈ {0, . . . ,w(C)−1} such that i ≤ j
and e ∩ V (C) = {ϕC(2i), ϕC(2j + 1)}. Thus,

E(H[V (C) ∪ {ϕD(2k)}]) ⊆ {ϕC(2i)ϕC(2j + 1)ϕD(2k) ∶ (25)

0 ≤ i ≤ j ≤ w(C) − 1}.

It follows from (24) and (25) that (23) holds. Therefore, the extension ψ2k
C of

ϕC is an isomorphism from C3(Wv(C)+1) onto H[V (C) ∪ {ϕD(2k)}].
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For the third assertion, suppose that ∣V (H)∖V (C)∣ ≥ 2. Let k ∈ {0, . . . ,w(D)}.
Set

Y = V (C) ∪ {ϕD(2k)}.

We have Y ⊊ V (H). By Theorem 9, Wv(C)+1 is prime. Hence, C3(Wv(C)+1) is
prime by Theorem 12. It follows from the second assertion above that H[Y ] is
prime. By Theorem 5, there exist v,w ∈ (V (H) ∖ Y ) ∪ Y such that H − {v,w}

is prime. Since H is critical, we have v ≠ w. Therefore, there exists C ′ ∈

C(P(H)) ∖ C1(P(H)) such that v,w ∈ C ′. Lastly, suppose for a contradiction
that V (C)∩Y ≠ ∅. There exist c ∈ V (C) and u ∈ V (H)∖Y such that {c, u} is a
module of H[Y ∪{u}]. By the second assertion above, there exists d ∈ V (C)∖{c}
such that cdϕD(2k) ∈ E(H[Y ]). Since {c, u} is a module of H[Y ∪{u}], we get
udϕD(2k) ∈ E(H[Y ]), which contradicts Lemma 32. Consequently, we have
V (C) ∩ Y = ∅. It follows that v,w /∈ V (C), so C ′ ≠ C.

Proof of Theorem 16. Let H be a critical 3-hypergraph such that v(H) ≥ 5.
Suppose that H is not circular. By Corollary 30, all the components of P(H)

are paths. Hence, P(H) satisfies (1).
Now, we verify that P(H) satisfies (2). By Corollary 6, there exist v,w ∈

V (H) such that H − {v,w} is prime. Since H is critical, we have v ≠ w. Thus,
vw ∈ E(P(H)). Denote by C the component of P(H) containing v and w. We
obtain C ∈ (C(P(H))∖C1(P(H))). Therefore, it follows from Propositions 33
and 34 that P(H) satisfies (2).

Lastly, we associate with H the hypergraph H̃ defined on C(P(H)) as
follows

1. given distinct C,D ∈ C(P(H)), CD ∈ E(H̃) if C ∈ Ceven(P(H)), D ∈

Codd(P(H)), and there exists e ∈ E(H) such that ∣e ∩ V (C)∣ = 2 and
∣e ∩ V (D)∣ = 1;

2. given distinct I, J,K ∈ C(P(H)), IJK ∈ E(H̃) if I, J,K ∈ Codd(P(H))

and there exists e ∈ E(H) such that ∣e∩V (I)∣ = ∣e∩V (J)∣ = ∣e∩V (K)∣ = 1.

Clearly, H̃ satisfies (3). Using Lemma 27, Lemma 32, Proposition 33, and
Proposition 34, it is not difficult to verify that H = P(H) ● H̃.

4 Proof of Proposition 18

We use the following preliminary result (see [4, Fact 29]).

Lemma 35. Let H be a 3-hypergraph. Consider X ⊊ V (H) such that H[X] is
prime. Let M be a module of H. We have M ∩X = ∅, M ⊇X, or M ∩X = {y},
where y ∈X. Moreover, the following assertions hold (see Notation 4).

1. If M ∩ X = ∅, then all the elements of M belong to the same block of
p(H,X).

2. If M ⊇X, then all the elements of V (H) ∖M belong to Dis(H,X).
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3. If M ∩X = {y}, where y ∈ X, then all the elements of M ∖ {y} belong to
Twi(H,X)(y).

In this section and the next one, we consider a graph Γ satisfying (1) and
(2). We consider also a {2,3}-hypergraph H defined on C(Γ) satisfying (3). We
use the following notation.

Notation 36. For W ⊆ V (H), set

W = ⋃
C∈W

V (C).

Conversely, for W ⊆ V (Γ ●H), set

W /C(Γ) = {C ∈ C(Γ) ∶ V (C) ∩W ≠ ∅}.

We utilize the next two remarks.

Remark 37. Let C ∈ Codd(Γ)∖C1(Γ). First, suppose that w(C) ≥ 2. It follows
from the definition of Γ ● H that ϕC is an isomorphism from C3(Uv(C)) onto
(Γ ● H)[V (C)]. By Theorem 9, Uv(C) is critical. By Theorem 12, C3(Uv(C))
is critical and P(C3(Uv(C))) = P(Uv(C)). Furthermore, we have P(Uv(C)) =
Pv(C) by Proposition 24. Since ϕC is an isomorphism from C3(Uv(C)) onto
(Γ ●H)[V (C)], (Γ ●H)[V (C)] is critical and

P((Γ ●H)[V (C)]) = (V (C),{ϕC(m)ϕC(m + 1) ∶ 0 ≤m < 2w(C)}).

It follows from Lemma 27 that for each 1 ≤m ≤ 2w(C) − 1,

{ϕC(m − 1), ϕC(m + 1)} is a module of ((Γ ●H)[V (C)]) − ϕC(m). (26)

Second, suppose that w(C) = 1. It follows from the definition of Γ ●H that
E((Γ ● H)[V (C)]) = {V (C)}. Therefore, (Γ ● H)[V (C)] is prime. Moreover,
since v(C) = 3, observe that (26) holds.

Remark 38. Let C ∈ Ceven(Γ). We have w(C) ≥ 1. Suppose that there exists
ε ∈ E(H) such that C ∈ ε. We have ε = CD, where D ∈ Codd(Γ). Let k ∈

{0, . . . ,w(D)}. We verify that (Γ ●H)[V (C) ∪ {ϕD(2k)}] is prime
First, suppose that w(C) = 1. It follows from the definition of Γ ● H that

E((Γ●H)[V (C)∪{ϕD(2k)}]) = {V (C)∪{ϕD(2k)}}. Therefore, (Γ●H)[V (C)∪

{ϕD(2k)}] is prime.
Second, suppose that w(C) ≥ 2. Let ψ2k

C ∶ {0, . . . , v(C)} Ð→ V (C)∪{ϕD(2k)}
satisfying (ψ2k

C )↾{0,...,v(C)−1} = ϕC and ψ2k
C (v(C)) = ϕD(2k). By (4), ψ2k

C is an
isomorphism from C3(Wv(C)+1) onto (Γ●H)[V (C)∪{ϕD(2k)}]. By Theorem 9,
Wv(C)+1 is critical, so Wv(C)+1 is prime. By Theorem 12, C3(Wv(C)+1) is prime

as well. Since ψ2k
C is an isomorphism from C3(Wv(C)+1) onto (Γ ●H)[V (C) ∪

{ϕD(2k)}], (Γ ●H)[V (C) ∪ {ϕD(2k)}] is prime too.

If H is disconnected, then Γ ● H is decomposable, whence the necessity of
Assertion (C1) in Proposition 18. Indeed, we have
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Lemma 39. If C is a component of H, then V (C) and V (Γ ●H) ∖ V (C) are
modules of Γ ●H.

Proof. For a contradiction, suppose that there exists e ∈ E(Γ ● H) such that

e∩V (C) ≠ ∅ and e∩(V (Γ●H)∖V (C)) ≠ ∅. There exist C ∈ V (C) and D /∈ V (C)

such that e∩V (C) ≠ ∅ and e∩V (D) ≠ ∅. It follows from the definition of Γ●H
that there exists ε ∈ E(H) such that C,D ∈ ε, which contradicts the fact that C
is a component of H. Consequently, for each e ∈ E(Γ ●H), we have e ⊆ V (C) or

e ⊆ (V (Γ ●H) ∖ V (C)). It follows that V (C) and V (Γ ●H) ∖ V (C) are modules
of Γ ●H.

Each edge of H induces a prime subhypergraph of Γ ●H. Precisely, we have

Lemma 40. For every ε ∈ E(H), (Γ ●H)[ε] is prime.

Proof. Let ε ∈ E(H). First, suppose that ∣ε∣ = 2. There exist C ∈ Ceven(Γ) and
D ∈ Codd(Γ) such that ε = CD. Hence, we have to show that (Γ ●H)[V (C) ∪

V (D)] is prime. If w(D) = 0, then (Γ●H)[V (C)∪V (D)] is prime by Remark 38.
Suppose that w(D) ≥ 1. Set

X = V (D).

By Remark 37, (Γ ● H)[X] is prime. We have V (C) ⊆ Dis(Γ●H,X) (see Nota-
tion 4). Let M be a module of (Γ ● H)[X ∪ V (C)] such that ∣M ∣ ≥ 2. We
have to show that M = X ∪ V (C). By Lemma 35, we have M ∩ X = ∅,
M ⊇ X, or M ∩ X = {y}, where y ∈ X. It follows from the third assertion
of Lemma 35 that ∣M ∩X ∣ ≠ 1. Now, suppose that M ∩X = ∅. Hence, we have
M ⊆ V (C). By Remark 38, (Γ ●H)[V (C) ∪ {ϕD(0)}] is prime. Since ∣M ∣ ≥ 2
and M ⊆ V (C), we obtain M = V (C) ∪ {ϕD(0)}, which contradicts M ∩X = ∅.
Therefore, we have M ⊇ X. Let i, j ∈ {0, . . . ,w(C) − 1} with i ≤ j. We have
ϕC(2i)ϕC(2j+1)ϕD(0) ∈ E(H). Since M is a module of (Γ●H)[X∪V (C)] and
ϕC(2i)ϕC(2j + 1)ϕD(1) /∈ E(H), we obtain ϕC(2i), ϕC(2j + 1) ∈M . It follows
that M =X ∪ V (C).

Second, suppose that ∣ε∣ = 3. There exist I, J,K ∈ Codd(Γ) such that ε =

IJK. Hence, we have to show that (Γ ●H)[V (I) ∪ V (J) ∪ V (K)] is prime. If
w(I) = w(J) = w(K) = 0, then ∣V (I) ∪ V (J) ∪ V (K)∣ = 3, and hence E((Γ ●

H)[V (I)∪V (J)∪V (K)]) = {ϕI(0)ϕJ(0)ϕK(0)}. It follows that (Γ●H)[V (I)∪
V (J) ∪ V (K)] is prime. Now, suppose that w(I) > 0, w(J) > 0, or w(K) > 0.
For instance, assume that w(I) > 0. By Remark 37, (Γ●H)[V (I)] is prime. Set

X = V (I).

We have V (J) ∪V (K) ⊆ Dis(Γ●H,X). Let M be a module of (Γ ●H)[X ∪V (J) ∪
V (K)] such that ∣M ∣ ≥ 2. We have to show that M = X ∪ V (J) ∪ V (K). It
follows from the third assertion of Lemma 35 that M ∩X = ∅ or X ⊆M .

For a contradiction, suppose that M ∩X = ∅. For 0 ≤ j ≤ w(J) and 0 ≤ k ≤
w(K), we have ϕI(0)ϕJ(2j)ϕK(2k) ∈ E(Γ ●H). It follows that M ∩ {ϕJ(2j) ∶
0 ≤ j ≤ w(J)} = ∅ or M ∩ {ϕK(2k) ∶ 0 ≤ k ≤ w(K)} = ∅. For instance, assume
that

M ∩ {ϕJ(2j) ∶ 0 ≤ j ≤ w(J)} = ∅. (27)
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We distinguish the following two cases.

1. Suppose that M ∩ {ϕJ(2j + 1) ∶ 0 ≤ j ≤ w(J) − 1} ≠ ∅. Hence, there exists
j ∈ {0, . . . ,w(J) − 1} such that ϕJ(2j + 1) ∈ M . We have ϕJ(2j)ϕJ(2j +
1)ϕJ(2j + 2) ∈ E(Γ ●H). By (27), ϕJ(2j), ϕJ(2j + 2) /∈M . Since M is a
module of (Γ●H)[X∪V (J)∪V (K)], we obtain ϕJ(2j)xϕJ(2j+2) ∈ E(Γ●
H) for every x ∈M . But, for each v ∈ V (K), we have ϕJ(2j)vϕJ(2j +2) /∈

E(Γ●H). It follows that M ∩V (K) = ∅. Therefore, M ⊆ V (J), and hence
M is a module of (Γ ●H)[X ∪ V (J)]. Since ∣M ∣ ≥ 2, we have w(J) ≥ 1.
By Remark 37, (Γ ● H)[V (J)] is prime. Therefore, M = V (J), which
contradicts (27).

2. Suppose that M ∩ {ϕJ(2j + 1) ∶ 0 ≤ j ≤ w(J) − 1} = ∅. By (27), we have
M ∩ V (J) = ∅, and hence M ⊆ V (K). As previously for J , we obtain
w(k) ≥ 1 and M = V (K), which is impossible because ϕI(0)ϕJ(0)ϕK(0) ∈
E(Γ ●H) and ϕI(0)ϕJ(0)ϕK(1) /∈ E(Γ ●H).

It follows that X ⊆ M . Recall that ϕI(0)ϕJ(2j)ϕK(2k) ∈ E(Γ ● H) for
0 ≤ j ≤ w(J) and 0 ≤ k ≤ w(K). Let j ∈ {0, . . . ,w(J)} and k ∈ {0, . . . ,w(J)}.
We have ϕI(0) ∈M because X ⊆M . Since ϕI(1)ϕJ(2j)ϕK(2k) /∈ E(Γ ●H) and
M is a module of (Γ ●H)[X ∪ V (J) ∪ V (K)], we obtain ϕJ(2j), ϕK(2k) ∈ M .
It follows that X ∪ {ϕJ(2j) ∶ 0 ≤ j ≤ w(J)} ∪ {ϕK(2k) ∶ 0 ≤ k ≤ w(K)} ⊆ M .
Clearly, V (J) ⊆ M when w(J) = 0. Suppose that w(J) ≥ 1. By Remark 37,
(Γ ● H)[V (J)] is prime. Since M ∩ V (J) is a module of (Γ ● H)[V (J)] such
that {ϕJ(2j) ∶ 0 ≤ j ≤ w(J)} ⊆ (M ∩ V (J)), we obtain V (J) ⊆ M . Similarly,
V (K) ⊆M . Consequently, M =X ∪ V (J) ∪ V (K).

In the next four results, we compare the modules of H with those of Γ ●H.

Lemma 41. Suppose that H is connected. For each nontrivial module M of
Γ ●H, we have M =M/C(Γ), ∣M/C(Γ)∣ ≥ 2, and M/C(Γ) is a module of H.

Proof. Let M be a nontrivial module of Γ●H. First, to prove that M =M/C(Γ),
it suffices to show that V (C) ⊆ M for every C ∈ M/C(Γ). To begin, consider
C ∈ Codd(Γ) ∩ (M/C(Γ)). If w(C) = 0, then we clearly have V (C) ⊆M . Hence,
suppose that w(C) ≥ 1. By Remark 37, (Γ●H)[V (C)] is prime. For a contradic-
tion, suppose that ∣V (C)∩M ∣ = 1. Denote by c the unique element of V (C)∩M .
Since (Γ ●H)[V (C)] is prime, there exist distinct d, d′ ∈ V (C) ∖M such that
cdd′ ∈ E(Γ ●H). Since ∣M ∣ ≥ 2, there exists v ∈M ∖V (C). Since M is a module
of Γ ●H, we obtain vdd′ ∈ E(Γ ●H), which contradicts the definition of Γ ●H. It
follows that ∣V (C)∩M ∣ ≥ 2. Since (Γ●H)[V (C)] is prime, V (C) ⊆M . Now, con-
sider C ∈ Ceven(Γ) ∩ (M/C(Γ)). Since H is connected, there exists D ∈ Codd(Γ)

such that CD ∈ E(H). For a contradiction, suppose that ∣V (C) ∩M ∣ = 1. De-
note by c the unique element of V (C) ∩M . There exists c′ ∈ V (C) ∖M such
that cc′ϕD(0) ∈ E(Γ ●H). By Remark 38, (Γ ●H)[V (C) ∪ {ϕD(0)}] is prime.
Hence, if ∣(V (C) ∪ {ϕD(0)}) ∩M ∣ ≥ 2, then V (C) ∪ {ϕD(0)} ⊆ M , which con-
tradicts ∣V (C) ∩M ∣ = 1. Therefore, we have ∣(V (C) ∪ {ϕD(0)}) ∩M ∣ = 1. Since
∣M ∣ ≥ 2, there exists v ∈M ∖ (V (C) ∪ {ϕD(0)}). Since M is a module of Γ ●H,
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we obtain vc′ϕD(0) ∈ E(Γ ● H), which contradicts the definition of Γ ● H. It
follows that ∣V (C)∩M ∣ ≥ 2. Since (Γ●H)[V (C)∪{ϕD(0)}] is prime, we obtain

V (C) ∪ {ϕD(0)} ⊆M . Consequently, we have M =M/C(Γ).
Second, we prove that ∣M/C(Γ)∣ ≥ 2. If v(C) = 1 for each C ∈M/C(Γ), then

∣M/C(Γ)∣ ≥ 2 because ∣M ∣ ≥ 2. Hence, consider C ∈M/C(Γ) such that v(C) ≥ 2.
Since H is connected, there exists ε ∈ E(H) such that C ∈ ε. By Lemma 40,

(Γ ●H)[ε] is prime. We have V (C) ⊆M because M =M/C(Γ). Since v(C) ≥ 2,
we get ε ⊆M . Thus, we have ε ⊆ (M/C(Γ)), so ∣M/C(Γ)∣ ≥ 2.

Third, we prove that M/C(Γ) is a module of H. Let ε ∈ E(H) such that
ε∩(M/C(Γ)) ≠ ∅ and ε∖(M/C(Γ)) ≠ ∅. We distinguish the following two cases.

• Suppose that ∣ε∣ = 2. There exist C ∈ Ceven(Γ) and D ∈ Codd(Γ) such
that ε = CD. Thus, there exist distinct c, c′ ∈ V (C) and d ∈ V (D) such
that cc′d ∈ E(Γ ● H). For a contradiction, suppose that C ∈ M/C(Γ).

Since ε ∖ (M/C(Γ)) ≠ ∅, we have D /∈ M/C(Γ). Since M = M/C(Γ), we
have V (C) ⊆ M and V (D) ∩M = ∅. We obtain cc′d ∈ E(Γ ● H), with
c, c′ ∈ V (C) ∩M and d ∈ V (D) ∖M , which contradicts the fact that M
is a module of Γ ● H. It follows that D ∈ M/C(Γ) and C /∈ M/C(Γ).

Since M = M/C(Γ), we have V (D) ⊆ M and V (C) ∩M = ∅. We obtain
cc′d ∈ E(Γ ●H), with c, c′ ∈ V (C) ∖M and d ∈ V (D) ∩M . Since M is a
module of Γ ●H, we obtain

cc′x ∈ E(Γ ●H) for every x ∈M . (28)

Consider D′ ∈ M/C(Γ). Since M = M/C(Γ), we have V (D′) ⊆ M . Let
d′ ∈ V (D′). By (28), cc′d′ ∈ E(Γ ● H). It follows from the definition of
Γ ●H that CD′ ∈ E(H).

• Suppose that ∣ε∣ = 3. There exist distinct I, J,K ∈ Codd(Γ) such that
ε = IJK. Moreover, we can assume that I ∈ M/C(Γ) and K /∈ M/C(Γ).

Since M = M/C(Γ), we have V (I) ⊆ M and V (K) ∩M = ∅. By the
definition of Γ ●H, we obtain ϕI(0)ϕJ(0)ϕK(0) ∈ E(Γ ●H). Since M is

a module of Γ ● H, we have ϕJ(0) /∈ M . Since M = M/C(Γ), we obtain
V (J) ∩M = ∅. Thus, ϕI(0)ϕJ(0)ϕK(0) ∈ E(Γ ●H), with ϕI(0) ∈M and
ϕJ(0), ϕK(0) /∈M . Since M is a module of Γ ●H, we obtain

xϕJ(0)ϕK(0) ∈ E(Γ ●H) for every x ∈M . (29)

Consider any L ∈M/C(Γ). Since M =M/C(Γ), we have V (L) ⊆M . Let
d ∈ V (L). By (29), dϕJ(0)ϕK(0) ∈ E(Γ ●H). Since J,K,L are distinct
element of C(Γ), it follows from the definition of Γ ●H that JKL ∈ E(H).

Consequently, M/C(Γ) is a module of H.

Lemma 42. Suppose that H is connected. For a nontrivial module M of H, we
have M ⊆ Ceven(Γ) or M ⊆ Codd(Γ).

20



Proof. Let M be a nontrivial module of H. Suppose that M ∖ Codd(Γ) ≠ ∅.
We have to show that M ⊆ Ceven(Γ). Since M ∖ Codd(Γ) ≠ ∅, there exists
C ∈ M ∩ Ceven(Γ). Since H is connected and M ⊊ V (H), there exists ε ∈ E(H)

such that ε ∩M ≠ ∅ and ε ∖M ≠ ∅. Furthermore, since M is a module of H, we
have ∣ε ∩M∣ = 1. It follows that (ε ∖M) ∪ {C} ∈ E(H). Since C ∈M ∩ Ceven(Γ),
we obtain ∣ε ∖M∣ = 1 and (ε ∖M) ⊆ Codd(Γ). Lastly, consider D ∈ M. Since
M is a module of H, we have (ε ∖M) ∪ {D} ∈ E(H). Since ∣(ε ∖M) ∪ {D}∣ = 2
and (ε ∖M) ⊆ Codd(Γ), we obtain D ∈ (M ∩ Ceven(Γ)). Consequently, we have
M ⊆ Ceven(Γ).

The next result follows from Lemmas 41 and 42.

Corollary 43. Suppose that H is connected. For each nontrivial module M of
Γ ●H, we have M ⊆ V1(Γ).

Proof. Let M be a nontrivial module of Γ ●H. It follows from Lemma 41 that
M/C(Γ) is a nontrivial module of H. By Lemma 42, M/C(Γ) ⊆ Ceven(Γ) or
M/C(Γ) ⊆ Codd(Γ).

For a contradiction, suppose that M/C(Γ) ⊆ Ceven(Γ). Since H is connected,
there exists ε ∈ E(H) such that ε ∩ (M/C(Γ)) ≠ ∅ and ε ∖ (M/C(Γ)) ≠ ∅.
Since M/C(Γ) ⊆ Ceven(Γ), there exist C ∈ M/C(Γ) and D ∈ Codd(Γ) such

that ε = CD. By Lemma 41, we have M = M/C(Γ). Therefore, we obtain
V (C) ⊆M and V (D) ∩M = ∅. It follows that V (C) is a nontrivial module of
(Γ ● H)[V (C) ∪ V (D)], which contradicts Lemma 40. Consequently, we have
M/C(Γ) ⊆ Codd(Γ).

For a contradiction, suppose that M ∖ V1(Γ) ≠ ∅. Hence, there exists D ∈

(M/C(Γ))∩(Codd(Γ)∖C1(Γ)). Since H is connected, there exists ε ∈ E(H) such
that ε∩ (M/C(Γ)) ≠ ∅ and ε∖ (M/C(Γ)) ≠ ∅. Since M/C(Γ) is a module of H,
there exists C ∈M/C(Γ) such that ε ∩ (M/C(Γ)) = {C} and (ε ∖ {C}) ∪ {D} ∈

E(H). By Lemma 41, we have V (D) ⊆M . We obtain that V (D) is a nontrivial

module of (Γ●H)[(ε ∖ {C}) ∪ {D}], which contradicts Lemma 40. Consequently,
M ⊆ V1(Γ).

Lemma 44. Given a module M of H, if M ⊆ C1(Γ), then M is a module of
Γ ●H.

Proof. Let M be a module of H. Suppose that M ⊆ C1(Γ). Let e ∈ E(Γ ● H)

such that e ∩M ≠ ∅ and e ∖M ≠ ∅. There exist c ∈ e ∩M and x ∈ e ∖M. We
have {c} ∈ C(Γ). Consider Cx ∈ C(Γ) such that x ∈ Cx. For a contradiction,
suppose that e = cdx, where d ∈ M ∖ {c}. We have {d} ∈ C1(Γ) ∖ {{c}}. Since
cdx ∈ E(Γ ●H), we obtain {c}{d}Cx ∈ E(H), which contradicts the fact that M
is a module of H. It follows that e = cxy, where y ∈ V (Γ ● H) ∖M. Consider
Cy ∈ C(Γ) such that y ∈ Cy. Given d ∈M, we have to verify that dxy ∈ E(Γ●H).
We have {d} ∈ C(Γ). Note that we can have Cx = Cy. We distinguish the
following two cases.

• Suppose that Cx = Cy. Since cxy ∈ E(Γ ● H), we obtain Cx ∈ Ceven(Γ),
{x, y} = {ϕCx(2i), ϕCx(2j + 1)}, where 0 ≤ i ≤ j ≤ w(Cx) − 1, and {c}Cx ∈
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E(H). Since M is a module of H, {d}Cx ∈ E(H). Since Cx ∈ Ceven(Γ) and
{x, y} = {ϕCx(2i), ϕCx(2j + 1)}, where 0 ≤ i ≤ j ≤ w(Cx) − 1, we obtain
dxy ∈ E(Γ ●H).

• Suppose that Cx ≠ Cy. Since cxy ∈ E(Γ ●H), we obtain Cx,Cy ∈ Codd(Γ),
{x, y} = {ϕCx(2i), ϕCy(2j)}, where 0 ≤ i ≤ w(Cx) and 0 ≤ j ≤ w(Cy), and
{c}CxCy ∈ E(H). Since M is a module of H, {d}CxCy ∈ E(H). Since
Cx,Cy ∈ Codd(Γ) and {x, y} = {ϕCx(2i), ϕCy(2j)}, where 0 ≤ i ≤ w(Cx)
and 0 ≤ j ≤ w(Cy), we obtain dxy ∈ E(Γ ●H).

Proof of Proposition 18. To begin, suppose that Γ ● H is decomposable. If H
is disconnected, then Assertion (C1) does not hold. Hence, suppose that H is
connected. Consider a nontrivial module M of Γ●H. It follows from Lemma 41
that M/C(Γ) is a nontrivial module of H. Furthermore, we have M ⊆ V1(Γ) by
Corollary 43. Thus, we have M/C(Γ) ⊆ C1(Γ). Consequently, Assertion (C2)
does not hold.

Conversely, if H is disconnected, then it follows from Lemma 39 that Γ ●H
is decomposable. Hence, suppose that H is connected. Moreover, suppose that
there exists a nontrivial module M of H such that M ⊆ C1(Γ). It follows from
Lemma 44 that M is a nontrivial module of Γ●H. Hence, Γ●H is decomposable.

5 Proof of Theorem 17

In the next remark, we describe a simple way to obtain automorphisms of Γ●H.

Remark 45. For every C ∈ C(Γ) ∖ C1(Γ), consider the function

FC ∶ V (Γ ●H) Ð→ V (Γ ●H)

ϕC(m) (0 ≤m ≤ v(C) − 1) z→ ϕC(v(C) − 1 −m)

v /∈ V (C) z→ v.

Clearly, FC is an automorphism of Γ. It is easy to verify that FC is an auto-
morphism of Γ ●H. Moreover, consider a permutation F of V (Γ ●H) such that
F (v) = v for each v ∈ V1(Γ). If for every C ∈ C(Γ) ∖ C1(Γ), F↾V (C) = (FC)↾V (C)
or IdV (C), then F is an automorphism of Γ ●H.

The next two results are useful to study the criticality of Γ ●H. They allow
us to prove Theorem 17.

Lemma 46. Given C ∈ Codd(Γ) ∖ C1(Γ), the following assertions hold

1. V (Γ ●H) ∖ {ϕC(0), ϕC(1)} is a module of (Γ ●H) − ϕC(0);

2. V (Γ●H)∖{ϕC(2w(C)−1), ϕC(2w(C))} is a module of (Γ●H)−ϕC(2w(C));

3. if w(C) ≥ 1, then for m ∈ {1, . . . ,2w(C) − 1}, {ϕC(m − 1), ϕC(m + 1)} is
a module of (Γ ●H) − ϕC(m).
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Proof. We begin with the first assertion. For every e ∈ E(Γ ●H), if ϕC(1) ∈ e,
then e ⊆ V (C) and ϕC(0) ∈ e. Consequently, there does not exist e ∈ E((Γ ●

H) − ϕC(0)) such that ϕC(1) ∈ e. Therefore, V (Γ ● H) ∖ {ϕC(0), ϕC(1)} is a
module of (Γ ●H) − ϕC(0).

For the second assertion, recall that the function FC is an automorphism of
Γ ●H (see Remark 45). It follows from the first assertion above that FC(V (Γ ●

H) ∖ {ϕC(0), ϕC(1)}) is a module of (Γ ● H) − FC(ϕC(0)), that is, V (C) ∖

{ϕC(2w(C) − 1), ϕC(2w(C))} is a module of (Γ ●H) − ϕC(2w(C)).
For the third assertion, suppose that w(C) ≥ 1. Let i ∈ {0, . . . ,w(C) − 1}.

By (26), {ϕC(2i), ϕC(2i+ 2)} is a module of ((Γ ●H)[V (C)])−ϕC(2i+ 1). Let
e ∈ E(Γ ●H) such that e ∩ {ϕC(2i), ϕC(2i + 2)} ≠ ∅ and e ∖ V (C) ≠ ∅. By the
definition of Γ●H, ∣e∩{ϕC(2i), ϕC(2i+2)}∣ = 1, ∣e∖V (C)∣ = 2, and (e∖V (C))∪

{ϕC(2i)}, (e ∖ V (C)) ∪ {ϕC(2i + 2)} ∈ E(Γ ●H). Thus, {ϕC(2i), ϕC(2i + 2)} is
a module of (Γ ●H) − ϕC(2i + 1). Lastly, suppose that w(C) ≥ 2, and consider
i ∈ {1, . . . ,w(C) − 1}. By (26), {ϕC(2i − 1), ϕC(2i + 1)} is a module of ((Γ ●

H)[V (C)])−ϕC(2i). For every e ∈ E(Γ ●H), if e∩{ϕC(2i− 1), ϕC(2i+ 1)} ≠ ∅,
then e ⊆ V (C). Therefore, {ϕC(2i − 1), ϕC(2i + 1)} is a module of (Γ ● H) −

ϕC(2i).

Lemma 47. Given C ∈ Ceven(Γ), the following assertions hold

1. V (Γ ●H) ∖ {ϕC(0), ϕC(1)} is a module of (Γ ●H) − ϕC(0);

2. V (Γ ● H) ∖ {ϕC(2w(C) − 2), ϕC(2w(C) − 1)} is a module of (Γ ● H) −

ϕC(2w(C) − 1);

3. if w(C) ≥ 2, then for m ∈ {1, . . . ,2w(C) − 2}, {ϕC(m − 1), ϕC(m + 1)} is
a module of (Γ ●H) − ϕC(m).

Proof. For the first assertion, consider e ∈ E(Γ ● H) such that ϕC(1) ∈ e. By
definition of Γ ●H, there exists D ∈ Codd(Γ) such that e = ϕC(0)ϕC(1)ϕD(2k),
where 0 ≤ k ≤ w(D). Consequently, there does not exist e ∈ E((Γ ●H) −ϕC(0))
such that ϕC(1) ∈ e. It follows that V (Γ ●H) ∖ {ϕC(0), ϕC(1)} is a module of
(Γ ●H) − ϕC(0).

As in the proof of the second assertion of Lemma 46, the second assertion is
deduced from the first one by using Remark 45.

For the third assertion, suppose that w(C) ≥ 2. Consider i ∈ {1, . . . ,w(C) −

1}. We prove that {ϕC(2i − 1), ϕC(2i + 1)} is a module of (Γ ● H) − ϕC(2i).
Let e ∈ E((Γ ● H) − ϕC(2i)) such that e ∩ {ϕC(2i − 1), ϕC(2i + 1)} ≠ ∅ and
e ∖ {ϕC(2i − 1), ϕC(2i + 1)} ≠ ∅. By definition of Γ ●H, there exist D ∈ Codd(Γ)

and k ∈ {0, . . . ,w(D)} such that

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

e = ϕC(2j)ϕC(2i − 1)ϕD(2k), where j ∈ {0, . . . , i − 1}

or

e = ϕC(2j)ϕC(2i + 1)ϕD(2k), where j ∈ {0, . . . , i}.

In the second instance, we have j ∈ {0, . . . , i − 1} because ϕC(2i) /∈ e. By the
definition of Γ●H, we have ϕC(2j)ϕC(2i−1)ϕD(2k), ϕC(2j)ϕC(2i+1)ϕD(2k) ∈
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E((Γ●H)−ϕC(2i)). Thus, {ϕC(2i−1), ϕC(2i+1)} is a module of (Γ●H)−ϕC(2i).
Lastly, consider i ∈ {0, . . . ,w(C) − 2}. We prove that {ϕC(2i), ϕC(2i + 2)} is
a module of (Γ ● H) − ϕC(2i + 1). Let e ∈ E((Γ ● H) − ϕC(2i + 1)) such that
e∩{ϕC(2i), ϕC(2i+ 2)} ≠ ∅ and e∖{ϕC(2i), ϕC(2i+ 2)} ≠ ∅. By the definition
of Γ ●H, there exist D ∈ Codd(Γ) and k ∈ {0, . . . ,w(D)} such that

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

e = ϕC(2i)ϕC(2j + 1)ϕD(2k), where j ∈ {i, . . . ,w(C) − 1}

or

e = ϕC(2i + 2)ϕC(2j + 1)ϕD(2k), where j ∈ {i + 1, . . . ,w(C) − 1}.

In the first instance, we have j ∈ {i + 1, . . . ,w(C) − 1} because ϕC(2i + 1) /∈ e.
By the definition of Γ●H, we have ϕC(2i)ϕC(2j +1)ϕD(2k), ϕC(2i+2)ϕC(2j +
1)ϕD(2k) ∈ E((Γ ●H) −ϕC(2i + 1)). Thus, {ϕC(2i), ϕC(2i + 2)} is a module of
(Γ ●H) − ϕC(2i + 1).

Proof of Theorem 17. To begin, suppose that Γ●H is critical. In particular, Γ●H
is prime. By Proposition 18, Assertions (C1) and (C2) hold. For Assertion (C3),
consider v ∈ V1(Γ). We have {v} ∈ C1(Γ). Suppose that H − {v} is connected.
Since Γ ●H is critical, (Γ ●H) − v is decomposable. We have

(Γ ●H) − v = (Γ − v) ● (H − {v}).

Since H−{v} is connected, it follows from Proposition 18 applied to (Γ ●H) − v
that there exists a nontrivial module M{v} of H−{v} such that M{v} ⊆ C1(Γ−v).
Since C1(Γ − v) = C1(Γ) ∖ {{v}}, we have M{v} ⊆ C1(Γ) ∖ {{v}}.

Conversely, suppose that Assertions (C1), (C2), and (C3) hold. Since As-
sertions (C1) and (C2) hold, it follows from Proposition 18 that Γ ●H is prime.
Furthermore, it follows from Assertion (C3) and Proposition 18 that (Γ ●H)−v
is decomposable for each v ∈ V1(Γ). Lastly, consider v ∈ V (Γ) ∖ V1(Γ). There
exists C ∈ C(Γ) ∖ C1(Γ) such that v ∈ V (C). It follows from Lemmas 46 and 47
that (Γ ●H) − v is decomposable. Consequently, Γ ●H is critical.
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