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CLT for β ensembles at high-temperature, and for integrable

systems: a transfer operator approach.
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Abstract

In this paper, we prove a polynomial Central Limit Theorem for several integrable mod-

els, and for the β ensembles at high-temperatures with polynomial potential. Furthermore,

we are able to relate the mean values, the variances and the correlations of the moments

of these integrable systems with the one of the β ensembles. Moreover, we show that for

several integrable models, the local functions’ space-correlations decay exponentially fast.
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1 Introduction

In this paper, we study eigenvalue fluctuations for several random matrix models related to
some integrable dynamical systems and to the classical β ensembles in the high-temperature
regime. Specifically, we consider random band matrices with fixed bandwidth and, under some
mild assumptions, we prove a central limit theorem (CLT) for polynomial test functions for the
empirical measure of the eigenvalues. In particular, we consider the following kind of matrices
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• Type 1-i) Periodic Jacobi matrices, which are periodic tridiagonal matrix of the form
¨
˚̊
˚̊
˚̊
˚̋

a1 b1 0 . . . bN

b1 a2 b2
. . .

...

0 b2 a3
. . . 0

...
. . . . . . . . . bN´1

bN . . . 0 bN´1 aN

˛
‹‹‹‹‹‹‹‚
,

for a “ pa1, . . . , aN q P R
N , b “ pb1, . . . , bN q P R

N
` .

• Type 1-ii) Antisymmetric Bidiagonal Periodic matrices:

¨
˚̊
˚̊
˚̊
˚̋

0 a1 0 . . . ´aN
´a1 0 a2

. . .
...

0 ´a2 0
. . . 0

...
. . . . . . . . . aN´1

aN . . . 0 ´aN´1 0

˛
‹‹‹‹‹‹‹‚
,

for a “ pa1, . . . , aN q P R
N
` .

• Type 1-iii) Periodic CMV (after Cantero, Moral and Velazquez) matrices, which
are 2N ˆ 2N unitary matrices given by

E “ LM ,

where we define L and M in the following way. Let a “ pa1, . . . a2N q be complex numbers
of the unit disk D. Define the 2 ˆ 2 unitary matrix Ξj

Ξj “
ˆ
aj ρj
ρj ´aj

˙
, j “ 1, . . . , 2N , ρj “

b
1 ´ |aj |2 . (1.1)

Then, L and M are the 2N ˆ 2N matrices

L “

¨
˚̊
˚̋

Ξ1

Ξ3

. . .
Ξ2N´1

˛
‹‹‹‚ , M “

¨
˚̊
˚̊
˚̋

´a2N ρ2N
Ξ2

. . .
Ξ2N´2

ρ2N a2N

˛
‹‹‹‹‹‚
.

The matrix E is a pentadiagonal periodic matrix and is unitary.

• Type 1-iv) Two diagonals periodic matrices given by

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

0 a1 0 ¨ ¨ ¨ bN´r`1 0 0 0

0 0 a2 ¨ ¨ ¨ 0 bN´r`2 0 0
...

. . . . . . . . . . . . . . . . . .
0 0 0 ¨ ¨ ¨ ar´1 0 0 bN
b1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ar 0 0

0 b2 0 ¨ ¨ ¨ . . . . . . . . .
...

. . . . . . . . . . . . 0 0 aN´1

aN 0 ¨ ¨ ¨ bN´r ¨ ¨ ¨ 0 0 0

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‚

r ` 1 row

N ´ r column
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Where a,b P R
N
` . In applications, we consider either a1 “ a2 “ . . . “ aN “ 1 or

b1 “ b2 “ . . . “ bN “ 1.

We also consider the non-periodic counterparts of the previous matrices. More specifically:

• Type 2-i) Jacobi matrices, which are symmetric tridiagonal matrices
¨
˚̊
˚̊
˚̊
˝

a1 b1
b1 a2 b2

b2
. . . . . .
. . . . . . bN´1

bN´1 aN

˛
‹‹‹‹‹‹‚
,

where a P R
N and b P R

N´1

` .

• Type 2-ii) Bidiagonal Antisymmetric matrices:

¨
˚̊
˚̊
˚̊
˚̋

0 a1 0

´a1 0 a2
. . .

0 ´a2 0
. . . 0

. . . . . . . . . aN´1

0 ´aN´1 0

˛
‹‹‹‹‹‹‹‚
,

for a P R
N´1

` .

• Type 2-iii) CMV matrices, 2N ˆ 2N unitary matrices of the form

E “ LM ,

where

L “ diag pΞ0,Ξ2,Ξ4, . . . ,Ξ2N q and M “ diag pΞ1,Ξ3,Ξ5 . . . ,Ξ2N´1q ,

and the blocks Ξj , j “ 1, . . . , 2N ´ 1 are defined in (1.1), while Ξ0 “ p1q and Ξ2N “ pa2N q
are 1 ˆ 1 matrices.

The periodic matrices that we consider are the Lax matrices of some integrable models.
These are particular dynamical systems that are Liouville integrable, and their integrability is
proved obtaining a Lax pair pL,Aq [48] representation of the model, meaning that the equations
of motions for each of these systems are equivalent to the following linear system for some
matrices L,A

9L ” dL

dt
“ rL;As “ LA´AL .

This formulation is useful since it implies that tTr
`
Lk

˘
uNk“1

are a system of independent

constants of motion
ˆ

d

dt
Tr

`
Lk

˘
“ 0q

˙
for the system at hand, so the system is integrable in

classical sense. We call these quantities conserved fields.
Specifically, the Toda lattice [70] and the Exponential Toda lattice [32] have as Lax matrix a

periodic Jacobi matrix, the Volterra lattice [32] has an antisymmetric periodic one, the Ablowitz-
Ladik lattice [2] and the Schur flow [30] have a periodic CMV one, and the family of Itoh–Narita–
Bogoyavleskii [9] lattices have a bidiagonal periodic one.
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We endow the periodic matrices L of type 1 with the so-called Generalized Gibbs Ensemble of
the corresponding dynamical system. The main property of these measures is that they are in-
variant with respect to the dynamics of the corresponding integrable system. These Generalized
Gibbs Ensembles have the form

µ
p1q
N “ 1

Z
p1q
N pα,Gq

˜
Nź

j“1

F pxj , αq
¸
e´TrpGpLqqdx , (1.2)

where x “ pa,bq for Jacobi matrices, x “ a for antisymmetric matrix, x “ a for periodic CMV
matrices, x “ a (resp. x “ b) for bidiagonal periodic matrices if b1 “ . . . “ bN “ 1 (resp. if
a1 “ . . . “ aN “ 1) and G is a real-valued continuous function.

The non-periodic matrices of type 2 are related to the classical β ensembles, indeed both the
real β ensemble and the Laguerre β ensemble [19] can be represented through a Jacobi matrix,
the circular and the Jacobi ensemble have a representation in terms of CMV matrices [45], and
the Antisymmetric β ensemble has a representation in terms of an antisymmetric matrix [20].
Specifically, we consider these ensembles in the high-temperature regime, meaning that the
parameter β is not fixed, but scales with the matrix size N as β “ 2α

N
, α P R`. The joint density

for the entries of the matrix representation reads

µ
p2q
N “ 1

Z
p2q
N pα,Gq

˜
N´1ź

j“1

F

ˆ
xj, α

ˆ
1 ´ j

N

˙˙¸
RpxN qe´TrpGpLqqdx , (1.3)

where x “ pa,bq for tridiagonal matrices, x “ a for the antisymmetric one and x “ a for CMV
one.

As we already mentioned, we focus on the fluctuations (or linear statistics) around the
equilibrium measure of these general models, where we choose the functions F and G so that
the partition functions

Z
p1q
N pα,Gq “

ż

XN

˜
Nź

j“1

F pxj , αq
¸
e´TrpGpLqqdx

Z
p2q
N pα,Gq “

ż

XN

˜
N´1ź

j“1

F

ˆ
xj, α

ˆ
1 ´ j

N

˙˙¸
RpxN qe´TrpGpLqqdx

are finite for all N . Here X is a subset of Rd (C being identified with R
2).

Specifically, we study the fluctuations of polynomial test functions Qpzq, i.e.
ż

C

QdνN ´
ż

γ

Qdν , (1.4)

where νN is the empirical measure of eigenvalues of L given by

νN “ 1

N

Nÿ

j“1

δλjpLq . (1.5)

Here the λjpLq are the eigenvalues of L and δx is the Dirac delta function centred at x, ν is the
equilibrium measure (or density of states) of the system and γ is the support of the measure
ν. In this paper, we are able to analyse the random variable (1.4) for polynomial potentials G,
using a transfer operator technique.

The study of spectral properties of Lax matrices of integrable models was initiated by Spohn
in [66], see also [51]. In this paper, the author investigated time correlation functions for the
Toda lattice. Applying the theory of Generalized Hydrodynamic [17], Spohn argued that they
have a ballistic behaviour, meaning that they have symmetrically located peaks, which travel
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in opposite directions at constant speed and decay as t´1 when t Ñ 8. To obtain this result,
Spohn had to compute the density of states of the Toda Lax matrix; he did it by connecting the
Generalized Gibbs Ensemble of the Toda lattice to the real β ensemble in the high-temperature
regime [4]. After that, the Generalized Gibbs ensemble for the Ablowitz-Ladik lattice and the
Schur flow were connected to the Circular β ensemble and the Jacobi β ensemble in the high-
temperature regime [27, 37] respectively by one of the present authors and T. Grava [34] and,
independently, by H. Spohn [67]. For all these models, a large deviation principle for their
mean density of states were developed in [35,53]. Furthermore, in [32] the authors were able to
connect the classical Gibbs ensemble for the Exponential Toda lattice and the Volterra one to
the Laguerre [19] and to the Antisymmetric β ensemble [20] respectively.

As we mentioned, our study does not only involve integrable systems, but also the classical β
ensembles. Specifically, we study the random variable (1.4) for these ensembles in the so-called
high-temperature regime. The study of these quantities was initiated by Johansson in [41], where
the author obtained a CLT for the Gaussian Unitary Ensemble with polynomial potential, then
generalized for other models and other values of β in [11, 21, 63], and, more recently, in [12],
where the authors obtained also a rigidity result for the eigenvalues of the β ensembles. We
mention also the work [57], where the author obtained a CLT for the Gaussian β ensemble in
the high-temperature regime for a quadratic potential, the work [37] where the authors obtained
a CLT for the Circular β ensemble at high-temperature using a normal approximation method,
and the recent paper [22] where the authors obtained a CLT for the real β ensemble in the high-
temperature regime for general confining potentials. Another relevant paper that it is worth
mentioning is [7], where the authors studied Coulomb gases in dimension d ě 2 and studied the
local laws for any temperature regime. Finally, we recall also the recent work [14,15] where the
authors obtained a super-exponential bound for the convergence for the moments of the CUE,
COE and CSE to a Gaussian vector.

Statement of the results. We come to precise statements of the main results of the present
paper. We consider the previously mentioned family of random matrices and make the following
assumptions.

Hypotheses 1.1. The following hypotheses are valid throughout the paper:

HP 1. X Ď R
d;

HP 2. F px, ηq is such that for any η ą 0 F p¨, ηq P C1pXq, and for any x P X,F px, ¨q P
C8pp0,`8qq ;

HP 3. F px, ηq ą 0 almost surely for x P X, η P p0,8q;

HP 4. F p¨, ηq P L1pX,Bq X L2pX,Bq for all η P p0,8q, and BηF p¨, ηq P L1pX,Bq X L2pX,Bq;
moreover there exist a c P N and a compact set O Ď X such that

• ||F px, ηq||2 “ Opη´cq
• There exists d ą 0 such that for all η ą 0,

ş
O
F px, ηqdx ě dη´c

HP 5. The function Tr pGpLqq, where L is one of the matrices of type 1 or 2, is circular, meaning
that there exists some k P Ně1 and two functions W : Xk ˆ Xk Ñ C, W1 : Xℓ ˆ Xk Ñ
C, ĂW1 : Xk Ñ C, ĂW2 : Xℓ Ñ C, such that writing N “ kM ` ℓ with M ě 0 and
0 ď ℓ ď k ´ 1, we have
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Tr pGpLqq “

$
’’’’&
’’’’%

řM´1

j“1
W pxj,xj`1q `W1pxM , xkM`1, . . . , xkM`ℓ,x1q for type 1

M´1ÿ

j“1

W pxj,xj`1q ` ĂW1px1q `W pxM , xkM`1, . . . , xkM`ℓ, 0, . . . , 0q

` ĂW2pxkM`1, . . . , xkM`ℓqq
for type 2

,

here xj “ pxpj´1qk`1, . . . , xjkq. In this case, we say that W is the seed of G, and

W1,ĂW1,ĂW2 are the weeds.

HP 6. The real parts of W,W1,ĂW1,ĂW2 are lower bounded. Furthermore, exp p´W q P L2pXk ˆ
Xkq, exp p´W1q P L2pXk ˆXℓ ˆXkq, exp

´
´ĂW1

¯
P L2pXkq, and exp

´
´ĂW2

¯
P L2pXℓq

HP 7. Both integrals
ż

Xk

˜
Bη

kź

q“1

F pxq, ηq
¸2

e´2W px,yqdxdy ,

ż

Xk

˜
Bη

kź

q“1

F

ˆ
xq, η

ˆ
1 ´ pj ´ 1qk ` q

N

˙˙¸2

e´2W px,yqdxdy

are finite.

HP 8. Rpxq P L2pXq X C8pXq, and Rpxq ą 0 for all x P X, or Rpxq “ δypxq for some y P X.

Here LppX,Bq is the usual Lp space.

Remark 1.1. The definition of circular function and seeds was introduced in this context in [29].

Under these assumptions, we are able to prove our main theorem:

Theorem 1.2. Under hypotheses 1.1. Consider µ
p1q
N , µ

p2q
N (1.2)-(1.3), and let pSN qNě1 be a

sequence of real random variables such that there exists a function H : C Ñ R such that
Tr pHpLqq is circular, it satisfies HP 6., and

E1

“
e´itSN

‰
“ Z

p1q
N pα,G ` itHq
Z

p1q
N pα,Gq

, E2

“
e´itSN

‰
“ Z

p2q
N pα,G ` itHq
Z

p2q
N pα,Gq

,

are finite, here E1 r¨s , E2 r¨s are the mean values taken with respect to µ
p1q
N , µ

p2q
N respectively.

Furthermore, let W,h be the seeds of Tr pGpLqq and Tr pHpLqq respectively, and assume thatş
X2k |hpx,yq|ne´2W px,yqdxdy for n “ 2, 4, 6 are finite. Then, there exist two continuous func-

tions

Apxq : R` ÝÑ R ,

σ2pxq : R` ÝÑ R` ,

such that under µ
p1q
N (1.2)

pSN ´NApαqq {
?
N

converges to a Gaussian distribution N p0, σ2pαqq as N tends to infinity, and under µ
p2q
N (1.3),

ˆ
SN ´N

ż
1

0

Apαxqdx
˙

{
?
N
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converges to a Gaussian distribution N p0,
ş
1

0
σ2pαxqdxq as N tends to infinity. Furthermore,

defining the free energies F
p1q
N pα,Gq,F p2q

N pα,Gq as

F
p1q
N pα,Gq “ ´ lim

NÑ8
1

N
ln

´
Z

p1q
N pα,Gq

¯
, (1.6)

F
p2q
N pα,Gq “ ´ lim

NÑ8
1

N
ln

´
Z

p2q
N pα,Gq

¯
,

then

i. F p1qpα,Gq “ Bα
`
αF p2qpα,Gq

˘

ii. Apαq “ iBtF p1qpα,G ` itHq|t“0

iii.
ş
1

0
Apαxq “ iBtF p2qpα,G ` itHq|t“0

iv. σ2pαq “ B2tF p1qpα,G ` itHq|t“0

v.
ş
1

0
σ2pαxqdx “ B2tF p2qpα,G ` itHq|t“0

Remark 1.3. In the central part of the proof we introduce a family of operators acting on L2pXkq
by

Lt,αfpyq “
ż

Xk

fpxq
kź

j“1

F pxjqe´pW`ithqpx,yqdxdy .

Because of our assumptions, each Lt,α is Hilbert-Schmidt, meaning that the kernel

px,yq ÞÑ
kź

j“1

F pxjqe´pW`ithqpx,yq

is in L2pXk ˆXkq, thus Lt,α is compact, and, as we show in the proof of Theorem 2.1, L0,α has
a simple dominating eigenvalue. Hypothesis HP 7. and the assumption that the integrals

ż

X2k

|hpx,yq|ne´2W px,yqdxdy n “ 2, 4, 6

are finite is merely to ensure that pα, tq ÞÑ Lt,α is regular. In particular, it is differentiable with
respect to α, and three times differentiable with respect to t as an operator valued function, which
in turn ensures that for t small enough, the operator Lt,α has a simple, dominating eigenvalue
λpt, αq and that t ÞÑ λpt, αq is three times differentiable. Note that we only use the existence of
a second derivative with respect to t in the proof of the main theorem, but use the existence of a
third derivative in the proof of the Berry-Esseen bound, Theorem 4.5. We use the differentiability
with respect to α in the proof of Theorem 2.2.

In the central part of our paper, we show how to use the previous result to obtain a polynomial
CLT for the integrable models that we mentioned, and for the classical β ensemble in the high-
temperature regime. Specifically, we use the previous theorem with G and H polynomials and

SN “ 1

N
Tr pHpLqq (1.5)“

ż

C

HpxqdνN pxq .

The expectations we want to compute then reduce to

Ej

“
e´itSN

‰
“ Z

pjq
N pα,G ` itHq
Z

pjq
N pα,Gq

, j “ 1, 2 .

Furthermore, as a by-product, we are also able to compute the so-called susceptibility matrix
C for integrable models. This is the matrix of the space-correlation functions of the conserved
fields, i.e.
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Cm,n “ lim
NÑ8

1

N
pE1 rTr pLmqTr pLnqs ´ E1 rTr pLmqsE1 rTr pLnqsq ,

where L is the Lax matrix of the integrable system at hand and the mean values are taken with
respect to the corresponding Generalized Gibbs ensemble. The computation of such quantities
is relevant to obtain the decay of the correlation functions for these integrable systems, as it is
shown by Spohn in [65]. In particular, we can prove the following:

Theorem 1.4. Under the same hypotheses as Theorem 1.2. Consider µ
p1q
N (1.2) and define the

free energy F p1qpα,Gq as in (1.6), then

Cm,n “ Bt1Bt2
´
F p1qpα,G ` it1x

m ` it2x
nq

¯
|t1“t2“0

. (1.7)

Remark 1.5. In view of Theorem 1.2, we can rewrite (1.7) as

Cm,n “ BαBt1Bt2
´
α

´
F p2qpα,G ` it1x

m ` it2x
nq

¯¯
|t1“t2“0

.

In our context, the previous equality implies that we can compute the susceptibility matrix of the
integrable systems that we are considering in terms of just the free energy of the corresponding
classical β ensemble in the high-temperature regime.

Finally, considering the type 1 measures (1.2), we investigate the space-correlations for local
functions, meaning that they depend only on a finite number (independent of N) of consecutive
variables, proving the following

Theorem 1.6 (Decay of correlations). Let W be the seed of Tr pGpLqq and I, J : Xk Ñ R two

local functions such that
ş
XkˆXk

ˇ̌
ˇIpxq śk

i“1
F pxi, αqe´W px,yq

ˇ̌
ˇ
2

dxdy ă 8, and analogously for

Jpxq. Write N “ kM ` ℓ, and let j P t1, . . . ,Mu. Then there exists some 0 ă µ ă 1 such that

E1 rIpx1qJpxjqs ´ E1 rIpx1qsE1 rJpxjqs “ OpµM´j ` µjq .

In particular, this result implies that the space-correlations between two local functions
acting on two different parts of the chain decay exponentially fast according to the distance
between the set of particles they are acting on. In section 3.1, we use the previous result to
rigorously justify the assumption of H. Spohn on the decay of space-correlations between the
local conserved fields and their currents [68]; we mention also that one can follow exactly the
same reasoning for all the other integrable systems that we consider.

The paper is organized as follows, in section 2 we state the theoretical results that lead to
the proofs of Theorems 1.2 and 1.4. In section 3 we show how to apply our results to obtain a
central limit theorem for several integrable systems and for the corresponding β ensembles in the
high-temperature regime. A summary of these models can be found in Table 1. Specifically, we
obtain a CLT for the Toda lattice and the real β ensemble, for the Exponential Toda lattice and
the Laguerre β ensemble, the defocusing Ablowitz–Laddik lattice and the Circular β ensemble,
the defocusing Schur flow and the Jacobi β ensemble, the Volterra lattice and the antisymmetric
β ensemble, and for the families of Itoh–Narita–Bogoyavleskii (INB) multiplicative, and additive
lattices. Furthermore, we apply Theorem 1.6 to the Toda lattice to derive the limiting currents
of the conserved fields. In section 4, we prove the technical results we used in section 2, we prove
Theorem 1.6 and deduce a Berry-Esseen type bound for all the previously considered integrable
models. Finally, in section 5 we give some conclusions and outlooks for future developments on
this topic.
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Integrable System (Type 1) β-ensemble at high-temperature (Type 2)
Toda lattice Real

Defocusing Ablowitz-Ladik lattice Circular
Exponential Toda lattice Laguerre
Defocusing Schur flow Jacobi

Volterra lattice Antisymmetric

Table 1: Integrable systems and random matrix ensembles

2 Nagaev–Guivarc’h theory: a transfer operator approach

In this section, we prove Theorem 1.2-1.4, to do that we need to develop the fluctuations’ theory
of Nagaev–Guivarc’h [31,36,38,55] through transfer operator methods, see for example [44,46,62].

The proof of these theorems is divided into 3 main parts. In the first one, we compute
E1

“
e´itTrpHq‰ ,E2

“
e´itTrpHq‰ through transfer operator techniques. Since the proof of these

results is technical, we postpone it to section 4. Our proof follows the same line as the corre-
sponding one in [34]. In the second part, we prove a slight generalization of Nagaev–Guivarc’h
theorems [31]. In the last part, we combine the previous two results to complete the proof of
Theorem 1.2-1.4.

In view of the hypotheses 1.1, we consider the following decomposition of N “ kM ` ℓ, in
this notation, we can rewrite our measures as

µ
p1q
kM`ℓ “ 1

Z
p1q
kM`ℓpα,W q

kM`ℓź

j“1

F pxj , αq
M´1ź

j“1

exp p´W pxj,xj`1qq (2.1)

ˆ exp p´W1pxM , xkM`1, . . . , xkM`ℓ,x1qq
kM`ℓź

j“1

dxj

µ
p2q
kM`ℓ “ 1

Z
p2q
kM`ℓpα,W q

kM`ℓ´1ź

j“1

F

ˆ
xj , α

ˆ
1 ´ j

kM ` ℓ

˙˙ M´1ź

j“1

exp p´W pxj,xj`1qq (2.2)

ˆ exp
´

´ĂW1px1q ´W pxM , xkM`1, . . . , xkM`ℓ, 0, . . . , 0q
¯

ˆ exp
´

´ĂW2pxkM`1, . . . , xkM`ℓq
¯
RpxN q

kM`ℓź

j“1

dxj ,

Where xj “ pxkpj´1q`1, . . . , xkjq and the partition functions become:

Z
p1q
kM`ℓpα,W q “

ż

XkM`ℓ

kM`ℓź

j“1

F pxj , αq
M´1ź

j“1

exp p´W pxj,xj`1qq (2.3)

ˆ exp p´W1pxM , xkM`1, . . . , xkM`ℓ,x1qq
kM`ℓź

j“1

dxj

Z
p2q
kM`ℓpα,W q “

ż

XkM`ℓ

kM`ℓ´1ź

j“1

F

ˆ
xj , α

ˆ
1 ´ j

kM ` ℓ

˙˙ M´1ź

j“1

exp p´W pxj,xj`1qq (2.4)

ˆ exp
´

´W pxM , xkM`1, . . . , xkM`ℓ, 0, . . . , 0q ´ ĂW2pxkM`1, . . . , xkM`ℓq
¯

ˆ exp
´

´ĂW1px1q
¯
RpxN q

kM`ℓź

j“1

dxj ,
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we set Zpsq
N pα,W q ” Z

psq
N pα,Gq, s “ 1, 2.

On the space L2pXk,Bkq we introduce the standard scalar product for f, g P L2pXk,Bkq as

xf ; gy “
ż

Xk

fpxqgpxqdx .

Furthermore, for I, J Ă R, and E a normed space, denote by Cs,dpI ˆ J,Eq the functions
f : I ˆ J Ñ X that are Cs (respectively Cd) with respect to the first (respectively the second)
variable. If s “ d, then we set CdpI ˆ J,Eq ” Cd,dpI ˆ J,Eq, and if the normed space E “ C

we just omit it.

Transfer operator for partitions functions. As we already stated, in the first part of the
section, we apply the transfer operator method in order to compute E1

“
e´itH

‰
,E2

“
e´itH

‰
. In

particular, we prove the following theorems

Theorem 2.1. Under Assumptions 1.1. Consider a real function H : C Ñ R such that
Tr pHpLqq is circular, and let W be the seed of Tr pGpLq ` itHpLqq, thus W px,yq “ V px,yq `
itUpx,yq for V,U : Xk ˆ Xk Ñ R seeds of Tr pGpLqq ,Tr pHpLqq. Furthermore, assume that
U P LdpX2k, expp´2V qq, with N Q d ě 6. Then, there exists an ε ą 0, and two complex valued
functions λ py, tq P C1,dpR` ˆ r´ε, εsq and ck,ℓpy, tq P C1,dpR ˆ r´ε, εsq such that for all q P N :

E1

”
e´itTrpHq

ı
“
Z

p1q
kM`ℓpα, tq

Z
p1q
kM`ℓpα, 0q

“ ck,ℓpα, tqλpα, tqM´2
`
1 ` opM´qq

˘
, as M Ñ 8 ,

for |t| ă ε, here Z
p1q
kM`ℓpα, tq ” Z

p1q
kM`ℓpα, V ` itUq. Furthermore,

λpx, 0q “ 1 ,

ck,ℓpx, 0q “ 1 .

Moreover, there exist two functions rck,ℓpα, tq P C1,dpRˆ r´ε, εsq and rλpα, tq P C1,dpR` ˆ r´ε, εsq
such that there exist two constants C1, C2 ą 0 such that for all q P N:

C1 ă rck,ℓpα, tq ă C2 ,

λpα, tq “
rλpα, tq
rλpα, 0q

,

Z
p1q
kM`ℓpα, tq “ rck,ℓpα, tqrλpα, tqM´2

`
1 ` opM´qq

˘
.

(2.5)

In the next theorem, we prove an analogue decomposition of the partition function for the
second type of measure. This decomposition involves the same function λpy, tq as in Theorem
2.1.

Theorem 2.2. Under Assumptions 1.1. Consider a real function H : C Ñ R such that
Tr pHpLqq is circular (HP 5.), and let W be the seed of Tr pGpLq ` itHpLqq, thus W px,yq “
V px,yq ` itUpx,yq for V,U : Xk ˆ Xk Ñ R seeds of Tr pGpLqq ,Tr pHpLqq. Furthermore,
assume that U P LdpX2k, expp´2V qq, with N Q d ě 6.

Then, there exists an ε ą 0 and ck,ℓ,Mpy, tq P C1,dpR ˆ r´ε, εsq, such that, with λ given by
Theorem 2.1,

E2

”
e´itTrpHq

ı
“
Z

p2q
kM`ℓpα, tq

Z
p2q
kM`ℓpα, 0q

“ ck,ℓ,Mpα, tq
M´2ź

j“1

λ

ˆ
α
j

M
, t

˙
p1 ` oM p1qq
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for |t| ă ε. Furthermore,

λpx, 0q “ 1

lim
tÑ0

ck,ℓ,Mpα, tq “ 1 uniformly in M

the remainder oM p1q is independent of t P r´ε, εs.

Moreover, there exist two functions rck,ℓ,Mpα, tq P C1,dpR` ˆ r´ε, εsq, rλpα, tq P C1,dpR` ˆ
r´ε, εsq, and three constants C1, C2 ą 0 and p P N such that

C1N
p ă rck,ℓ,Mpα, tq ă C2N

p ,

λpα, tq “
rλpα, tq
rλpα, 0q

,

Z
p2q
kM`ℓpα, tq “ rck,ℓ,Mpα, tq

M´2ź

j“1

rλ
ˆ
α
j

M
, t

˙
p1 ` oM p1qq .

Since the proof of these results is technical, we postpone it to Section 4.

Generalization of Nagaev–Guivarc’h method. In this second part, we need to generalize
some standard results from the fluctuation theory of Nagaev–Guivarc’h [31] to our situation.
Specifically, we prove the following:

Theorem 2.3. Let pXnqně1 be a sequence of real random variables with partial sums pSnqně1 P
R. Assume that there exists ε ą 0, two functions λptq P C1pr0, εqq, cptq P C0pr0, εqq and
hnptq P C0pr0, εqq, such that for all t P r´ε, εs, and all n ě 1 we have

E
“
e´itSn

‰
“ cptqλptqm p1 ` hnptqq , (2.6)

Where limnÑ8 n{m “ k P N.
Furthermore, assume that:

a. there exists A, σ2 P C such that λptq “ exp
`
´iAt ´ σ2t2{2 ` opt3q

˘
as t Ñ 0;

b. hn
nÑ8ÝÝÝÑ 0 uniformly in r´ε, εs, and hnp0q “ 0;

c. cp0q “ 1.

Then A P R, σ2 ě 0, and pSn ´ nA{kq {?
n converges to a Gaussian distribution N p0, σ2{kq

as n tends to infinity.

Proof. First, evaluating (2.6) at t “ 0, we deduce that λp0q “ 1. Then, we use the asymptotic
expansion of λptq, and properties b.-c. to prove that

E

„
exp

ˆ
´itSn ´mA

n

˙
ÝÝÝÑ
nÑ8

1 .

Thus, by Lévy theorem [73], we deduce that Sn{n´A{k converges in distribution to 0. So, since
Sn is real, then A P R. Exploiting again the asymptotic expansion of λptq and properties b.-c., we

show that E

”
exp

´
´itSn´mA?

n

¯ı
converges to the function exp

´
´σ2t2

2k

¯
. By Lévy theorem [73],

this must be the characteristic function of a real random variable, proving that σ2 ě 0, and that
pSn ´ nA{kq{?

n converges to a Gaussian distribution N p0, σ2{kq.

Further, we prove the following:
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Theorem 2.4. Let pXnqně1 be a sequence of random variables with partial sums pSnqně1 P R.
Assume that there exists ε ą 0 and functions λpx, tq P C1,0pr0, 1q ˆRq, cnptq P C0pRq, and hnptq
continuous in 0, such that for all t P r´ε, εs, and all n ě 1 we have

E
“
e´itSn

‰
“ cnptq

˜
mź

j“1

λ pj{m, tq
¸

p1 ` hnptqq ,

where limnÑ8 n{m “ k.
Furthermore, assume that:

a. there exists two continuous functions Apxq, σ2pxq : r0, 1s Ñ C such that

λpx, tq “ exp
`
´iApxqt ´ σ2pxqt2{2 ` opt2q

˘
as t Ñ 0;

b. ||hn||8 nÑ8ÝÝÝÑ 0 uniformly in r´ε, εs, and hnp0q “ 0;

c. cnp0q “ 1 and limnÑ8 cnpt{?
nq “ limnÑ8 cnpt{nq “ 1.

Then
ş
1

0
Apxqdx P R,

ş
1

0
σ2pxqdx P R`, and

?
n

ˆ
Sn

n
´

ş
1

0
Apxqdx
k

˙
converges to a Gaussian

distribution N

ˆ
0,

ş
1

0
σ2pxqdx

k

˙
as n tends to infinity.

Proof. First, let t “ rt{n, then by hypothesis c.

lim
nÑ8

E

”
e´irtpSn{n´ 1

n

řm
ℓ“1

Apℓ{mqq
ı

“ lim
nÑ8

E

«
e

´irt
ˆ
Sn{n´

ş
1
0
Apxqdx
k

˙ff
“ 1 .

Thus, by Levy theorem, Sn{n Ñ
ş
1

0
Apxqdx
k

almost surely, thus, since Sn P R, this implies thatş
1

0
Apxqdx P R. Consider now t “ rt{?

n, following the same reasoning one conclude that

lim
nÑ8

E

”
e´irt?npSn{n´ 1

n

řn
ℓ“1

Apℓ{mqq
ı

“ lim
nÑ8

E

«
e

´irt?n

ˆ
Sn{n´

ş
1
0
Apxqdx
k

˙ff

“ lim
nÑ8

e´ rt2
2n

řm
ℓ“1

σ2pℓ{mq “ e´ rt2
2k

ş
1

0
σ2pxqdx ,

thus, by Lévy theorem [73], e´ rt2
2k

ş
1

0
σ2pxqdx must be the characteristic function of a real random

variable, proving that
ş
1

0
σ2pxq P R`.

Proof of Theorem 1.2-1.4. We are now ready to prove Theorem 1.2-1.4, for convenience,
we split the proof into two Lemmas, which combined give the full proof of our results.

Lemma 2.5. Under hypotheses 1.1. Consider µ
p1q
kM`ℓ, µ

p2q
kM`ℓ (2.1)-(2.2), and let H : C Ñ R

such that Tr pHpLqq is circular (HP.5) with seed U , so that W`itU is the seed of Tr pGpLq ` itHpLqq.
Let SkM`ℓ “ Tr pHpLqq. Then

E1

“
e´itSkM`ℓ

‰
“
Z

p1q
kM`ℓpα, tq

Z
p1q
kM`ℓpα, 0q

, E2

“
e´itSkM`ℓ

‰
“
Z

p2q
kM`ℓpα, tq

Z
p2q
kM`ℓpα, 0q

,

where E1 r¨s , E2 r¨s are the mean values taken with respect to µ
p1q
kM`ℓ, µ

p2q
kM`ℓ respectively. Further-

more, assume that U P LdpX2k, expp´2W qq, with N Q d ě 3. Then, there exist four continuous
functions



2 NAGAEV–GUIVARC’H THEORY: A TRANSFER OPERATOR APPROACH 13

Apxq : R` ÝÑ R , rApxq : R` ÝÑ R ,

σpxq : R` ÝÑ R` , rσpxq : R` ÝÑ R` ,

such that under µ
p1q
kM`ℓ,

pSkM`ℓ ´ pkM ` ℓqApαq{kq {
?
kM ` ℓ

converges to a Gaussian distribution N p0, σ2pαq{kq as M tends to infinity, and under µ
p2q
kM`ℓ,

´
SkM`ℓ ´ pkM ` ℓq rApαq{k

¯
{
?
kM ` ℓ

converges to a Gaussian distribution N p0, rσ2pαq{kq as M tends to infinity.

The proof of the previous result is a trivial application of Theorem 2.1-2.2-2.3-2.4. Further-
more, we can interpret the previous relations through the free energies of µp1q

kM`ℓ, µ
p2q
kM`ℓ (2.1)

-(2.2):

Lemma 2.6. Under the same hypotheses and notation of Lemma 2.5. Consider the two measures

µ
p1q
kM`ℓ, µ

p2q
kM`ℓ (2.1)-(2.2), and define the free energies as

F p1qpα,W q “ ´ lim
MÑ8

lnpZp1q
kM`ℓpα,W qq
kM ` ℓ

, F p2qpα,W q “ ´ lim
MÑ8

lnpZp2q
kM`ℓpα,W qq
kM ` ℓ

,

then, using the same notation as in Lemma 2.5, the following holds:

i. F p1qpα,W q “ Bα
`
αF p2qpα,W q

˘

ii. Apαq “ ikBtF p1qpα,W ` itUq|t“0

iii. rApαq “ ikBtF p2qpα,W ` itUq|t“0

iv. σpαq “ kB2tF p1qpα,W ` itUq|t“0

v. rσpαq “ kB2tF p2qpα,W ` itUq|t“0

Remark 2.7. The previous theorem implies that

Apαq “ Bαpα rApαqq , σ2pαq “ Bαpαrσ2pαqq .

Proof. To prove i., we can just compute the free energy of µp1q
kM`ℓ, µ

p2q
kM`ℓ using Theorem 2.1-2.2.

For F p1qpα,W q we deduce immediately that

F p1qpα,W q “ ´ lim
MÑ8

1

kM ` ℓ
lnpZp1q

kM`ℓq
(2.5)“ ´ lim

MÑ8
M

kM ` ℓ
lnprλpα, 0qq

“ ´1

k
lnprλpα, 0qq .

(2.7)

The proof for F p2qpα,W q follows in the same way. We now prove ii. ´ iv. First, we notice that
following the notation of Theorem 2.3 - 2.1 :

cptq “ ck,ℓpα, tq , hn “ 1 ` opM´qq , λptq “ λpα, tq ,
thus to compute explicitly Apα,W q, σpα,W q we have just to expand λpα, tq around t “ 0

λpα, tq “ 1 ` tBtλpα, 0q ` t2

2
B2t λpα, 0q ` opt3q ,
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which implies that

λpα, tq “ exp

ˆ
tBt lnpλpα, tqq|t“0

` t2

2
B2t lnpλpα, tqq|t“0

` opt3q
˙
. (2.8)

This implies that Apαq “ ´iBt lnpλpα, tqq|t“0
, σ2pαq “ ´B2t lnpλpα, tqq|t“0

. From (2.5), we deduce
that Bt lnpλpα, tqq|t“0

“ Bt lnprλpα, tqq|t“0
, thus from the previous expressions and the explicit form

of the free energy (2.7) we conclude.
To prove iii. ´ v. we proceed in the same way, thus following the notation of Theorem 2.4 -

2.2:

cnptq “ ck,ℓ,Mpα, tq , hn “ 1 ` op1q , λ pj{M, tq “ λ

ˆ
α
j

M
, t

˙
.

Thus, as in (2.8) except that α Ñ α j
M

, we expand λ
´
α j

M
, t

¯
around t “ 0, leading to

rApαq “ Bt
ˆż

1

0

lnpλpαx, tqqdx
˙

|t“0

,

rσ2pαq “ B2t
ˆż

1

0

lnpλpαx, tqqdx
˙

|t“0

which concludes the proof.

Remark 2.8. We notice that the Lemma 2.6, and Lemma 2.5 imply that we can compute the

expected values, and the variances of SkM`ℓ according to µ
p1q
kM`ℓ, µ

p2q
kM`ℓ just computing deriva-

tives of the corresponding free energy. This property is broadly used in the physics literature,
but we lacked of a precise statement, and of a proof for the general result. Furthermore, we can

compute the expected value, and the variance of SkM`ℓ according to µ
p1q
kM`ℓ starting from the

corresponding values for µ
p2q
kM`ℓ. Thus, we have reduced all this problem to the computation of

the free energy of µ
p2q
kM`ℓ.

The proof of both Theorem 1.2 and Theorem 1.4 follows from the four previous lemmas.
Thus, we have completed the proof of our main theorems, and now we show how to apply them
to some integrable models, and the β ensembles in the high-temperature regime.

3 Application

In this section, we show how to apply Theorem 1.2 to obtain a CLT for some integrable systems
and for the classical β ensembles in the high-temperature regime. Namely, we prove a CLT for
the systems of table 1.

Specifically, we are able to prove that all the integrable systems in table 1 in the periodic
case have a Generalized Gibbs ensemble of the form µ

p1q
kM`ℓ (2.1), that is the reason of the label

“type 1”. Meanwhile, the β ensembles at high-temperatures are characterized by a probability
distribution of the form µ

p2q
kM`ℓ (2.2), that is the reason for the label “type 2”. In this way, we

proved a further connection between the theory of integrable systems and Random Matrix The-
ory. Indeed, in view of Theorem 1.2 and Theorem 1.4, for any integrable system in the previous
table, we can relate its free energy, moments, variances and covariances with the corresponding
quantities of the random matrix model on the same line. Moreover, in the final part of this sec-
tion, we consider the family of INB lattices that do not have a known β ensemble counterpart.
Despite that, we are still able to derive the existence of a polynomial central limit theorem. Fi-
nally, applying Theorem 1.6, we are able to show that for the Toda lattice the space-correlations
between the local conserved fields and the currents decay exponentially.
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3.1 The Toda lattice, and the real β ensemble at high-temperature

In this subsection, we focus on the Toda lattice, which is an integrable model, and its relation
with the real β ensemble in the high-temperature regime. The connection between these two
systems was first realized by Spohn in [66], see also [51, 65]. In this seminal paper, the author
was able to compute the density of states for the Toda lattice when the initial data is sampled
according to a Generalized Gibbs ensemble in terms of one of the Gaussian β ensemble in the
high-temperature regime. This was further developed in [35] where the authors obtained a Large
Deviations Principle for the Toda lattice, and they connect it to the one for the real β ensemble
in the high-temperature regime. In this paper, we further develop this analysis, obtaining a
CLT theorem for these two systems, and connecting them. This result is particularly relevant
in the context of the so-called Generalized Hydrodynamics, a recent physical theory that allows
computing the correlation functions for classical integrable models, for an introduction to the
subject see [17, 68]. According to this theory, one of the main ingredients to compute the
correlation functions for the integrable model at hand is to be able to calculate the correlation
functions for the conserved fields at time 0. Thanks to our result, we are able to access these
quantities. We show how to do it at the end of this subsection. We mention also the recent work
[52], where the authors made molecular dynamics simulations of the correlation functions of the
Toda lattice, and they compared them with the predictions of linear Generalized Hydrodynamics,
showing an astonishing agreement.

The Toda lattice. The classical Toda chain [70] is the dynamical system described by the
following Hamiltonian:

HT pp,qq :“ 1

2

Nÿ

j“1

p2j `
Nÿ

j“1

VT pqj`1 ´ qjq , VT pxq “ e´x ` x´ 1 ,

with periodic boundary conditions qj`N “ qj ` Ω @ j P Z, Ω ą 0. Its equations of motion
take the form

9qj “ BHT

Bpj
“ pj , 9pj “ ´BHT

Bqj
“ V 1

T pqj`1 ´ qjq ´ V 1
T pqj ´ qj´1q, j “ 1, . . . , N . (3.1)

It is well known that the Toda chain is an integrable system [39,70], one way to prove it is to
put the Toda equations in Lax pair form. This was obtained by Flaschka [25], and Manakov [50]
through the following non-canonical change of coordinates:

aj :“ ´pj , bj :“ e
1

2
pqj´qj`1q ” e´ 1

2
rj , 1 ď j ď N ,

where rj “ qj`1 ´ qj is the relative distance.
Defining the Lax operator L as the periodic Jacobi matrix [72]

L :“

¨
˚̊
˚̊
˚̊
˚̋

a1 b1 0 . . . bN

b1 a2 b2
. . .

...

0 b2 a3
. . . 0

...
. . . . . . . . . bN´1

bN . . . 0 bN´1 aN

˛
‹‹‹‹‹‹‹‚
, (3.2)
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and the antisymmetric matrix B

B :“

¨
˚̊
˚̊
˚̊
˚̋

0 b1 0 . . . ´bN
´b1 0 b2

. . .
...

0 ´b2 0
. . . 0

...
. . . . . . . . . bN´1

bN . . . 0 ´bN´1 0

˛
‹‹‹‹‹‹‹‚
,

a straightforward calculation shows that the equations of motions (3.1) are equivalent to

9L “ rB;Ls ,

where rB;Ls “ BL ´ LB is the commutator of two matrices. This form implies that Tr
`
Lk

˘
,

k “ 1, . . . , N are constants of motions for the Toda lattice, so the system is integrable. We call
these quantities conserved fields.

On the phase space R
N ˆ R

N
` , we introduce the Generalized Gibbs Ensemble

dµT :“ 1

ZT
N pα,P q

Nź

j“1

b2α´1

j 1bją0e
´TrpP pLqqda db , (3.3)

where P pxq is a polynomial of even degree with positive leading coefficients, and α ą 0 is a
pressure parameter.

Our aim is to obtain a central limit theorem for the conserved fields when the initial data is
sampled according to (3.3). So, we want to apply Theorem 1.2 to this model. To do that, we
need some preparation. First, we recall the following result about the structure of the trace of
periodic Jacobi matrices which was proved in [33]:

Theorem 3.1 (cf. Theorem 3.1 [33]). For any 1 ď m ď N ´ 1, consider the matrix L given by
(3.2). One has

Tr pLmq “
Nÿ

j“1

h
pmq
j ,

where h
pmq
j :“ rLmsjj is given explicitly by

h
pmq
j pp, rq “

ÿ

pn,qqPApmq

ρpmqpn,qq
rm´1ź

i“´ rm
a
qi
j`1

rm´1ź

i“´ rm`1

b2ni

j`i ,

where it is understood aj ” ajmodN`1, bj ” bjmodN`1 and Apmq is the set

Apmq :“
!

pn,qq P N
Z
0 ˆ N

Z
0 :

rm´1ÿ

i“´ rm
p2ni ` qiq “ m,

@i ě 0, ni “ 0 ñ ni`1 “ qi`1 “ 0,

@i ă 0, ni`1 “ 0 ñ ni “ qi “ 0
)
.

The quantity rm :“ tm{2u, N0 “ N Y t0u and ρpmqpn,qq P N is given by

ρpmqpn,qq :“
ˆ
n´1 ` n0 ` q0

q0

˙ˆ
n´1 ` n0

n0

˙ rm´1ź

i“´Ăm
i‰´1

ˆ
ni ` ni`1 ` qi`1 ´ 1

qi`1

˙ˆ
ni ` ni`1 ´ 1

ni`1

˙
.
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This Theorem immediately leads to the following Corollary

Corollary 3.2. Fix m P N, and consider the matrix L (3.2). Then for N big enough, there exists
some k “ kpmq P N, and two polynomial functions V : R2k ˆR

2k
` Ñ R, V1 : R2k`ℓ ˆR

2k`ℓ
` Ñ R

such that

Tr pLmq “
M´1ÿ

j“1

V paj,bj ,aj`1,bj`1q`V1paM , akM`1, . . . , akM`ℓ,a1,bM , bkM`1, . . . , bkM`ℓ,b1q ,

where N “ kM ` ℓ, aj “ papj´1qk`1, apj´1qk`2, . . . ajkq, and similarly for bj .

Remark 3.3. In other words, the function Tr pLmq is circular in the sense of Hypotheses 1.1,
HP. 5. Furthermore, we notice that the local potential V px1,y1,x2,y2q is bounded from below,
this can be proved using the explicit formula in Theorem 3.1 or applying the properties of super-
Motzkin paths used for the proof of the theorem in [33].

We apply the previous Corollary to the Gibbs measure of the Toda lattice (3.3), so it can be
written as

dµT “ 1

ZT
N pβ, P q

Nź

j“1

b2α´1

j 1bją0 exp
´

´
Mÿ

j“1

V paj ,bj ,aj`1,bj`1q

´ V1paM , akM`1, . . . , akM`ℓ,a1,bM , bkM`1, . . . , bkM`ℓ,b1q
¯
da db .

We would like to apply Theorem 1.2 to the previous density with F pbq “ b2α´1, and W “ V ,
but in this case F R L2pR`q, so we have to take care of this issue. To do it, we fix ε ą 0, and
consider the following measure

dµT “ 1

ZT
N pβ, P q

Nź

j“1

b2α´1

j e´εpa2j`b2j q
1ają0 exp

´
´

Mÿ

j“1

V paj,bj ,aj`1,bj`1q

´ V1paM , akM`1, . . . , akM`ℓ,a1,bM , bkM`1, . . . , bkM`ℓ,b1q

` ε

Nÿ

j“1

a2j ` b2j

¯
da db ,

this is exactly the same measure as before, but, following the notation of Theorem 1.2, we can
now set

F pa, b, αq “ b2α´1e´εpa2`b2q ,

W paj,bj ,aj`1,bj`1q “ V paj ,bj ,aj`1,bj`1q ´ ε

2

2kÿ

n“1

a2pj´1qk`n ` b2pj´1qk`n .

These functions satisfy the hypotheses of Theorem 1.2, so we can apply it and deduce the
following

Corollary 3.4 (CLT for the Toda lattice). Consider the Lax matrix L (3.2) of the Toda lat-
tice distributed according to the Generalized Gibbs Ensemble (3.3), and assume that P pxq is a
polynomial of even degree with positive leading order coefficient. Then, defining the Free energy
FT pα,P q as
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FT pα,P q “ ´ lim
NÑ8

1

N
lnpZT

N pα,P qq ,

for all j P N fixed, we have the following weak limit

lim
NÑ8

Tr
`
Lj

˘
´ E

“
Tr

`
Lj

˘‰
?
N

á N p0, σ2q .

Where

E
“
Tr

`
Lj

˘‰
“ iNBtFT pα,P ` itxjq|t“0

, σ2 “ |B2tFT pα,P ` itxjq|t“0
| .

Moreover, we can also apply Theorem 1.4 to compute the correlation between the conserved
fields at time zero, indeed the theorem immediately implies that

lim
NÑ8

E
“
Tr

`
Lj

˘
Tr pLnq

‰
´ E

“
Tr

`
Lj

˘‰
E rTr pLnqs

N
“ Bt1Bt2FT pα,P ` it1x

j ` it2x
nq|t1,t2“0

,

(3.4)
where the mean value is taken with respect to the Gibbs measure of the Toda lattice (3.3). We
notice that this implies that we can compute the susceptibility matrix of the Toda lattice (1.7)
in terms of the derivative of the Free energy.

3.1.1 The Toda chain’s currents

Since the conserved fields are local quantities, they must satisfy a local conservation law. Fol-
lowing the notation of [69], we define

Q
rns,N
j “ Ln

j,j ,

where L P MatpN,Rq is (3.2). We can easily compute the evolution equation for such quantities
as

d

dt
Q

rns,N
j “ pBLn ´ LnBq “ bj´1L

n
j,j´1 ´ bjL

n
j`1,j .

Defining J rns,N
j “ bj´1L

n
j,j´1

, we have

d

dt
Q

rns,N
j “ J

rns,N
j ´ J

rns,N
j`1

and we say that J rns,N
j is the current of the local conserved field Qrns,N

j . In particular, defining
the matrix LÓ as

L
Ó
i,j “

#
Li,j if j ă i or i “ 1, j “ N

0 otherwise

we can recast the previous definition as

J
rns,N
j “ pLnLÓqj,j .

We notice that both Qrns,N
j and J rns,N

j depend on time, and we adopt the convention that if not
explicitly written the evaluation is at time 0. Furthermore, we define

Qrns,N “
Nÿ

j“1

Q
rns,N
j , J rns,N “

Nÿ

j“1

J
rns,N
j , (3.5)
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and we refer to Qrns,N as the nth-conserved field, and to J rns,N as the nth-total current.
The evaluation of the expected values of both the currents J rns,N

j and the total current J rns,N

according to the Generalized Gibbs ensemble (3.3) is one of the crucial steps to apply the theory
of Generalized Hydrodynamics to the Toda lattice, as it is explained in [69]. In this manuscript,
the author used some heuristic arguments to explicitly derive the expression for these quantities,
here we rigorously justify his argument applying Theorem 1.6.

First, we extend the definition of Qrns,N
j and J

rns,N
j for n “ 0, setting Q

r0s,N
j “ rj , and

J
r0s,N
j “ ´pj “ ´Qr1s,N

j . We notice that
řN

j“1
J

r0s,N
j “ ´ řN

j“1
Q

r1s,N
j is still a conserved field.

We are now in position to show how to compute the limiting Toda average current

lim
NÑ8

1

N
E

”
J rns,N

ı
,

in terms of the susceptibility matrix (1.7) of the Toda chain, so in particular of the derivative
of the Free energy (3.4). Indeed, we prove the following:

Lemma 3.5. Consider the Lax matrix L (3.2) of the Toda lattice distributed according to the
Generalized Gibbs Ensemble (3.3), and assume that P pxq is a polynomial of even degree with
positive leading order coefficient. Then, for any fixed n P N, and α P R` defining the total
currents J rns,N as in (3.5) we have the following equality

lim
NÑ8

1

N
E

”
J rns,N

ı
“

ż α

0

Bt1Bt2FT ps, P ` it1x` it2x
nq|t1,t2“0

ds.

Proof. In view of the cyclic structure of the measure µT and of the total current, we deduce that

1

N
E

”
J rns,N

ı
“ E

”
J

rns,N
1

ı
.

Furthermore, for any fixed N , we deduce, by differentiating with respect to the parameter α,
the following equality

BαE
”
J

rns,N
1

ı
“ ´Cov

˜
J

rns,N
1

;

Nÿ

j“1

rj

¸
“ ´

Nÿ

j“1

Cov
´
J

rns,N
1

; Q
r0s,N
j

¯
, (3.6)

where we defined for any functions f, g P L2pXN , µT q

Covpf ; gq “ E rfgs ´ E rf sE rgs .
We show now that the following limits coincide

lim
NÑ8

Nÿ

j“1

Cov
´
J

rns,N
1

; Q
r0s,N
j

¯
“ lim

NÑ8

Nÿ

j“1

Cov
´
J

r0s,N
1

; Q
rns,N
N´j`2

¯
. (3.7)

Indeed, for any n,m ě 0 and t P R

Cov
´
J

rns,N
j`1

ptq ´ J
rns,N
j ptq ; Q

rms,N
1

p0q
¯

“ ´ d

dt
Cov

´
Q

rns,N
j ptq ; Q

rms,N
1

p0q
¯

“ ´ d

dt
Cov

´
Q

rns,N
1

p0q ; Q
rms,N
N´j`2

p´tq
¯

“ Cov
´
Q

rns,N
1

p0q ; J
rms,N
N´j`3

p´tq ´ J
rms,N
N´j`2

p´tq
¯
,

(3.8)

where we used that s ÞÑ Q
rns,N
j pt` sqQrms,N

1
psq is constant in law under the Toda dynamic,

and the periodicity of the matrix L (3.2). Denoting the difference operator Bjfpjq “ fpj ` 1q ´
fpjq, equation (3.8) shows that
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Bj
´
Cov

´
J

rns,N
j ptq ; Q

rms,N
1

p0q
¯

´ Cov
´
Q

rns,N
1

p0q; J rms,N
N´j`2

p´tq
¯¯

“ 0

Evaluating the previous expression at t “ 0, we deduce that there is some constant cN , inde-
pendent of j, such that

Cov
´
J

rns,N
j ; Q

rms,N
1

¯
´ Cov

´
Q

rns,N
1

; J
rms,N
N´j`2

¯
“ cN .

Furthermore, since both Q
rns,N
j , and J

rms,N
j are local quantities, in view of Theorem 1.6, we

deduce that limNÑ8 NcN “ 0. So, evaluating the previous expression for m “ 0, we deduce
(3.7). Thus, in the large N limit, we can recast (3.6) as

lim
NÑ8

BαE
”
J

rns,N
1

ı
“ ´ lim

NÑ8

Nÿ

j“1

Cov
´
J

r0s,N
1

; Q
rns,N
j

¯
“ lim

NÑ8

Nÿ

j“1

Cov
´
Q

r1s,N
1

; Q
rns,N
j

¯
.

Moreover, in view of the periodicity properties ot the conserved fields and (3.4)

lim
NÑ8

BαE
”
J

rns,N
1

ı
“ lim

NÑ8
1

N
Cov

´
Qr1s,N ; Qrns,N

¯
“ Bt1Bt2FT pα,P ` it1x` it2x

nq|t1,t2“0
.

Noticing that limαÑ0 E

”
J

rns,N
1

ı
“ 0, and that we can always uniformly bound E

”
J

rns,N
1

ı
by a

constant independent of N , the previous equation implies that

lim
NÑ8

E

”
J

rns,N
1

ı
“

ż α

0

Bt1Bt2FT ps, P ` it1x` it2x
nq|t1,t2“0

ds.

So, we conclude.

The real β-ensemble in the high-temperature regime. The real β-ensemble is the prob-
ability measure on R

N given by

dPHpλ1, . . . , λN q “ 1

ZH
N pβ, P q

ź

iăj

|λj ´ λi|βe´ řN
j“1

P pλjqdλ , (3.9)

where β ą 0 and P is a continuous function such that the partition function

ZH
N pβ, P q “

ż

RN

ź

iăj

|λj ´ λi|βe´ řN
j“1

P pλjqdλ

is finite. This is the case if P grows to infinity fast enough, namely if for some β1 ą maxp1, βq,

lim inf
|x|Ñ8

P pxq
Nβ1 ln |x| ą 1 ,

see [6, equation (2.6.2)].
Dumitriu and Edelman showed in [18] that the β-ensemble admits a tridiagonal representa-

tion

H “

¨
˚̊
˚̊
˚̊
˝

a1 b1 0

b1 a2 b2
. . . . . . . . .

. . . . . . bN´1

0 bN´1 aN

˛
‹‹‹‹‹‹‚
, (3.10)
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where the entries of the matrix are distributed according to the following probability measure

dµH “ 1

ZH
N pβ, P q

N´1ź

j“1

b
βpN´jq´1

j 1bjě0 exp p´Tr pP pHqqqdadb . (3.11)

Then, the eigenvalues of H are distributed according to dPH (3.9). An important example is
the case P pxq “ x2{2 for which we recover the classical Gaussian β Ensemble, see [6, Section
2.5], and the distribution µH factorizes in the following way: the entries of H can be seen to be
independent (modulo the symmetry of the matrix), Gaussian N p0, 1q on the diagonal, and the
law of the off-diagonal elements is given by renormalized chi variables

bj „ 1?
2
χpN´jqβ ,

where the variable X is χκ-distributed if its law is given by the density function

fpxq “ xκ´1e´x2{2

2κ{2´1Γpκ{2q .

We are interested in the so-called high-temperature regime for this model, specifically, we are
interested in the infinite size N limit, in such a way that β “ 2α

N
for some α ą 0. In this regime

the probability distribution (3.11) becomes

dµH “ 1

ZH
N pβq

N´1ź

j“1

b
2αp1´ j

N q´1

j 1bjě0 exp p´Tr pP pHqqqdadb .

This regime has drawn a lot of attention from the random matrix and statistical physics com-
munities lately. Introducing the empirical measure by

dµ̂N “ 1

N

Nÿ

i“1

δλi
,

this model was first considered in [4], where the authors were able to compute the limiting
empirical measure for this model when P pxq “ x2{2. Recently, Garcia-Zelada showed in [28]
that under a general choice of P , the sequence of empirical measures satisfies a large deviation
principle with strictly convex rate function, ensuring the convergence of µ̂N . Although the
limiting measure is not explicit, its density ρPα satisfies for almost every x the nonlinear equation

P pxq ´ 2α

ż

R

log |x ´ y|ρPα pyqdy ` log ρPα pxq “ λPα

for some constant λPα , see [35, Lemma 3.2] for example.
The fluctuations of the eigenvalues in the bulk and at the edge of a configuration were

studied for example in [8, 47, 57, 58, 61]. These fluctuations were shown to be described by
Poisson statistics in this regime. With the choice P pxq “ x2{2, Nakano and Trinh proved
in [57] a Central Limit theorem for this ensemble, namely they proved that for smooth enough
f : R Ñ R, the random variables

?
N

ˆż

R

fdµ̂N ´
ż

R

fρPαdx

˙

converge towards a centred Gaussian variable with variance depending both on α and P . In
[22], the authors showed this central limit theorem for general confining potentials and smooth
enough, decaying at infinity test functions. In this paper, we consider the case where P is a
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polynomial of even degree ě 2. We deduce here from Section 2 a central limit theorem for
polynomial test functions.

Indeed, in view of Corollary 3.2, following the same reasoning as in the case of Toda lattice,
we can apply Theorem 1.2 to the real β ensemble in the high-temperature regime, thus we
deduce that

Corollary 3.6 (CLT for Gaussian β ensemble). Consider the matrix representation (3.10) of
the real β ensemble in the high-temperature regime, and let P pxq be a polynomial of even degree
with positive leading order coefficient. Then, defining the Free energy FHpα,P q as

FHpα,P q “ ´ lim
NÑ8

1

N
lnpZT

N pα,P qq ,

for all j P N fixed, we have the following weak limit

lim
NÑ8

Tr
`
Hj

˘
´ E

“
Tr

`
Hj

˘‰
?
N

á N p0, σ2q ,

where

E
“
Tr

`
Hj

˘‰
“ iNBtFHpα,P ` itxjq|t“0

, σ2 “ |B2tFHpα,P ` itxjq|t“0
| .

Thus, we obtained a central limit theorem for the real β ensemble in the high-temperature
regime with polynomial potential.

Furthermore, we are in place to apply the second part of our result; indeed, we deduce the
following identities

BαpαBtFHpα,P ` itxjq|t“0
q “ BtFT pα,P ` itxjq|t“0

,

BαpαB2tFHpα,P ` itxjq|t“0
q “ B2tFT pα,P ` itxjq|t“0

so we are able to compute both the moments and their variances of the Toda lattice starting
from the one of the real β ensemble at high-temperature.

Remark 3.7. Applying the second part of Theorem 1.2, we deduce the following equality valid
for the currents of the Toda lattice:

lim
NÑ8

E

”
J

rns,N
1

ı
“

ż α

0

Bt1Bt2FT ps, P`it1x`it2xnq|t1,t2“0
ds “ αBt1Bt2FHpα,P`it1x`it2xnq|t1,t2“0

.

3.2 The exponential Toda lattice, and the Laguerre β ensemble at high-

temperature

In this subsection, we focus on the Exponential Toda lattice and its relation with the Laguerre
β ensemble in the high-temperature regime [27]. These two systems were considered in [32]. In
this paper, the authors considered the classical Gibbs ensemble for the Exponential Toda lattice
and were able to compute the density of states for this model connecting it to the Laguerre
α ensemble [51], which is related to the classical β one in the high-temperature regime. Here
we consider both the Generalized Gibbs ensemble for the integrable lattice and the Laguerre β
ensemble at high-temperature with polynomial potential, and we obtain a CLT for both systems,
furthermore, we connect the two in the same way as we did for the Toda lattice and the real β
ensemble.
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The exponential Toda lattice. The exponential Toda lattice is the Hamiltonian system on
R
2N described by the Hamiltonian

HEpp,qq “
Nÿ

j“1

e´pj `
Nÿ

j“1

eqj´qj`1 , pj, qj P R , (3.12)

with canonical Poisson bracket. Here, we consider periodic boundary conditions

qj`N “ qj ` Ω, pj`N “ pj, @ j P Z,

and Ω ě 0 is an arbitrary constant. The equations of motion are given in Hamiltonian form as

9qj “ BHE

Bpj
“ ´e´pj ,

9pj “ ´BHE

Bqj
“ eqj´1´qj ´ eqj´qj`1 .

(3.13)

Following [32], we perform the non-canonical change of coordinates

xj “ e´ pj
2 , yj “ e

qj´qj`1

2 “ e´ rj
2 , rj “ qj`1 ´ qj, j “ 1, . . . , N,

to obtain a Lax Pair for this system. Indeed, in these variables, the Hamiltonian (3.12) transform
into

HEpx,yq “
Nÿ

j“1

px2j ` y2j q ,

and the Hamilton’s equations (3.13) become

9xj “ xj

2

`
y2j ´ y2j´1

˘
, 9yj “ yj

2

`
x2j`1 ´ x2j

˘
, j “ 1, . . . , N, (3.14)

where xN`1 “ x1, y0 “ yN .
Let us introduce the matrices L,A P MatpNq as

L “

¨
˚̊
˚̊
˚̊
˝

x2
1

` y2N x1y1 xNyN
x1y1 x2

2
` y2

1
x2y2

. . . . . . . . .
. . . . . . xN´1yN´1

xNyN xN´1yN´1 x2N ` y2N´1

˛
‹‹‹‹‹‹‚
, (3.15)

A “ 1

2

¨
˚̊
˚̊
˚̊
˝

0 x1y1 ´xNyN
´x1y1 0 x2y2

. . . . . . . . .
. . . . . . xN´1yN´1

xNyN ´xN´1yN´1 0

˛
‹‹‹‹‹‹‚
,

The system of equations (3.14) admits the Lax representation

9L “ rA,Ls.

Hence, the quantities Hm “ Tr pLmq, m “ 1, . . . , N are constants of motion as well as the
eigenvalues of L. For this integrable model, we define the generalized Gibbs ensemble as

dµET “ 1

Z
HE

N pα, γ, P q

Nź

j“1

x
2
α
γ

´1

j y2α´1

j 1xjě01yjě0e
´TrpP pLqqdxdy , (3.16)
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where α, γ ą 0, and P is a real valued polynomial with positive leading coefficient. ZHE

N pα, γ, P q
is the normalization constant.

Remark 3.8. The definition of our Gibbs ensemble is slightly different from the one given in [32],
indeed there the authors were considering just the classical Gibbs ensemble for this model, so the
case P pxq “ x{2.

We notice that the structure of (3.16) resembles the one of µp1q
kM`ℓ (2.1), thus we want to

apply Theorem 1.2. To do this, we have to identify the functions F,W . First, as an application
of Theorem 3.1, we obtain the following corollary

Corollary 3.9. Fix m P N, and consider the matrix L (3.15). Then for N big enough, there
exists some k “ kpmq P N, and two polynomial functions V : R

2k
` ˆ R

2k
` Ñ R and V1 :

R
2k`ℓ
` ˆ R

2k`ℓ
` Ñ R such that

Tr pLmq “
Mÿ

j“1

V pxj ,yj ,xj`1,yj`1q

` V1pxM , xkM`1, . . . , xkM`ℓ,x1,yM , ykM`1, . . . , ykM`ℓ,y1q ,

where N “ kM ` ℓ.

As in the Toda lattice case, if we naively set F px, yq “ x
2
α
γ

´1
y2α´1, this would not fit in the

hypotheses of our theorem, since this is not an L2pR2
`q function. As in the previous case, we

have just to consider a slight modification of the measure:

dµET “ 1

ZHE

N pα, γ, P q

Nź

j“1

x
2
α
γ

´1

j y2α´1

j exp

˜
´ε

x2j ` y2j

2

¸
1xjě01yjě0e

´TrpP pLqq`ε
x2j`y2j

2 dxdy ,

for fixed ε ą 0, but small. In this way, defining F px, y, αq “ x
2
α
γ

´1
y2α´1 expp´εx2`y2

2
q, and

W px1,y1,x2,y2q “ V px1,y1,x2,y2q´ ε
2

ř
2k
j“1

x2j `y2j we are in the same hypotheses as Theorem
1.2, thus we deduce the following corollary

Corollary 3.10 (CLT for the Exponential Toda lattice). Consider the Lax matrix L (3.15)
of the Exponential Toda lattice distributed according to the Generalized Gibbs Ensemble (3.16).
Then, defining the Free energy FHEpα, γ, P q as

FET pα, γ, P q “ ´ lim
NÑ8

1

N
lnpZHE

N pα, γ, P qq ,

for all j P N fixed, we have the following weak limit

lim
NÑ8

Tr
`
Lj

˘
´ E

“
Tr

`
Lj

˘‰
?
N

á N p0, σ2q ,

where

E
“
Tr

`
Lj

˘‰
“ iNBtFET pα, γ, P ` itxjq|t“0

, σ2 “ |B2tFET pα, γ, P ` itxjq|t“0
|

The Laguerre β ensemble in the high-temperature regime. The Laguerre β ensemble
is a random matrix ensemble introduced by Dumitriu and Edelman in [18]. It has the following
matrix representation



3 APPLICATION 25

Q “

¨
˚̊
˚̊
˚̊
˝

x2
1

x1y1
x1y1 x2

2
` y2

1
x2y2

. . . . . . . . .
. . . . . . xN´1yN´1

xN´1yN´1 x2N ` y2N´1

˛
‹‹‹‹‹‹‚
, (3.17)

where the entries of Q are distributed according to

dµL “ 1

ZL
N pβq

Nź

j“1

x
βpM´j`1q´1

j 1xjě0

N´1ź

j“1

yβpN´jq´1
1yjě0 exp p´Tr pP pQqqqdxdy , (3.18)

where M is such that limNÑ8 N{M “ γ P p0, 1s, and P can be any continuous function such
that the partition function is well-defined, for our purpose we consider P pxq to be a polynomial.

The remarkable property of this ensemble is that it is possible to explicitly compute the joint
eigenvalue density as

dPL “ 1

ZL
N pβ, P q

Nź

j“1

λ
β
2

pM´N`1q´1

j 1λjě0

ź

jăi

|λj ´ λi|βe´ řN
j“1

P pλjqdλ .

We are interested in the so-called high-temperature limit, i.e. when β “ 2α
N

, α P R`, which
was considered in [5], where the authors were able to compute the density of states for the
particular case P pxq “ x{2.

In this regime, the density (3.18) takes the form

dµL “ 1

ZL
N pα, γ, P q

Nź

j“1

x
2
α
γ p1´ j`1

N q´1

j 1xjě0

N´1ź

j“1

y2αp1´ j
N q´1

1yjě0 exp p´Tr pP pQqqqdxdy .

The structure of this density resembles the one of dµp2q
kM`ℓ(2.2), indeed proceeding as in the

case of the Exponential Toda lattice, we deduce the following corollary

Corollary 3.11 (CLT for Laguerre β ensemble). Consider the matrix representation (3.17) of
the Laguerre β ensemble in the high-temperature regime, and let P pxq be a real polynomial of
degree at least 1. Then, defining the Free energy FLpα, γ, P q as

FLpα, γ, P q “ ´ lim
NÑ8

1

N
lnpZL

N pα, γ, P qq ,

for all j P N fixed, we have the following weak limit

lim
NÑ8

Tr
`
Qj

˘
´ E

“
Tr

`
Qj

˘‰
?
N

á N p0, σ2q ,

where

E
“
Tr

`
Qj

˘‰
“ iNBtFLpα, γ, P ` itxjq|t“0

, σ2 “ |B2tFLpα, γ, P ` itxjq|t“0
|

Which is the perfect analogue of the result for the Exponential Toda lattice. Furthermore,
we are in position to apply the second part of our result, indeed we can deduce the following
identities

BαpαBtFLpα, γ, P ` itxjq|t“0
q “ BtFET pα, γ, P ` itxjq|t“0

,

BαpαB2tFLpα, γ, P ` itxjq|t“0
q “ BtFET pα, γ, P ` itxjq|t“0

,

thus, we can compute all the quantities involved in the previous theorems from the Free Energy
of the Laguerre ensemble.
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3.3 The Volterra lattice, and the antisymmetric β ensemble at high-temperature

In this subsection, we focus on the Volterra lattice and its relation with the Antisymmetric β
ensemble [20] in the high-temperature regime [27]. These two systems were considered in [32].
In this paper, the authors considered the classical Gibbs ensemble for the Volterra lattice and
were able to compute the density of states for this model connecting it to the Antisymmetric α
ensemble [27], which is related to the classical β one introduced by Dumitriu and Forrester [20].

The Volterra Lattice. The Volterra lattice (or discrete KdV equation) is the following sys-
tems of N coupled ODEs

9aj “ aj paj`1 ´ aj´1q , j “ 1, . . . , N, (3.19)

here aj P R` for j “ 1, . . . , N , and we consider periodic boundary conditions aj “ aj`N for
all j P Z. Volterra introduced it to study evolution of populations in a hierarchical system of
competing species. This system was considered by Kac and van Moerbeke in [42], who solved it
explicitly using a discrete version of the inverse scattering transform introduced by Flaschka [24].

Introducing on the phase space R
N
` the following Poisson bracket

taj , aiuVolt “ ajaipδi,j`1 ´ δi,j´1q ,

and defining the Hamiltonian H1 “
řN

j“1
aj , we can rewrite the equations of motion (3.19) in

Hamiltonian form as
9aj “ taj ,H1uVolt . (3.20)

An elementary constant of motion for the system is H0 “
śN

j“1
aj which is independent of H1.

The Volterra lattice is a completely integrable system, and it admits several equivalents Lax
representations, see e.g. [32, 42, 54]. We use the one presented in [32]. Specifically, we introduce
the matrices L,A P MatpR, Nq as

L “

¨
˚̊
˚̊
˚̊
˝

0
?
a1 ´?

aN
´?

a1 0
?
a2

. . . . . . . . .
. . . . . . ?

aN´1?
aN ´?

aN´1 0

˛
‹‹‹‹‹‹‚
, (3.21)

A “ 1

2

Nÿ

j“1

?
ajaj`1pEj,j`2 ´ Ej`2,jq ,

where Er,s is defined as pEr,sqij “ δirδ
j
s and Ej`N,i “ Ej,i`N “ Ej,i. Then, it follows that the

equations of motion (3.20) are equivalent to

9L “ rL;As .
In view of this Lax pair, we know that Tr

`
Lk

˘
are constant of motion for the model.

Following [32], we introduce the Generalized Gibbs Ensemble of the Volterra lattice (3.19)
as

dµVoltpaq “
eTrpP pLqq śN

j“1
aα´1

j 1ają0da

ZVolt
N pα,P q , (3.22)

where α ą 0, P pxq is a polynomial of the form P pxq “ p´1qjx2j ` l.o.t , otherwise the previous
measure is not normalizable, moreover, we notice that, in view of the antisymmetric nature of
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L, Tr
`
L2j`1

˘
“ 0. For this reason, we perform the change of coordinates ?

aj “ xj, where we
take just the positive root, so the previous measure read

dµVoltpxq “
eTrpP pLqq śN

j“1
x2α´1

j 1xją0dx

ZVolt
N pα,P q .

This Generalized Gibbs ensemble resembles the structure of µp1q
kM`ℓ (2.1), we have just to

identify F,W . We notice that it is possible to generalize Theorem 3.1 also for the antisymmetric
situation, so we deduce the following Corollary:

Corollary 3.12. Fix m P N, and consider the matrix L (3.21). Then for N big enough, there
exists a k “ kpmq P N, and two polynomial functions V : Rk

`ˆR
k
` Ñ R, V1 : Rk

`ˆR
ℓ
`ˆR

k
` Ñ R

such that

Tr pLmq “
Mÿ

j“1

V pxj ,xj`1q ` V1pxM , xkM`1, . . . , xkM`ℓ,x1q ,

where N “ kM ` ℓ.

Thus, following the same kind of reasoning as in the Toda lattice, section 3.1, and the
Exponential Toda lattice, section 3.2, we deduce the following:

Corollary 3.13 (CLT for Volterra lattice). Consider the Lax matrix L (3.21) of the Volterra
lattice distributed according to the Generalized Gibbs Ensemble (3.22). Then, defining the Free
energy FVoltpα,P q as

FVoltpα,P q “ ´ lim
NÑ8

1

N
lnpZVolt

N pα,P qq ,

for all j P N fixed, we have the following weak limit

lim
NÑ8

Tr
`
Lj

˘
´ E

“
Tr

`
Lj

˘‰
?
N

á N p0, σ2q ,

where

E
“
Tr

`
Lj

˘‰
“ iNBtFVoltpα,P ´ itxjq|t“0

, σ2 “ |B2tFVoltpα,P ´ itxjq|t“0
| .

The Antisymmetric β ensemble in the high-temperature regime The Antisymmetric
β ensemble is a random matrix ensemble introduced by Dumitriu and Forrester in [20]; it has
the following matrix representation

Q “

¨
˚̊
˚̊
˚̊
˝

0 x1
´x1 0 x2

. . . . . . . . .
. . . . . . xN´1

´xN´1 0

˛
‹‹‹‹‹‹‚
, (3.23)

and the entries of the matrix Q are distributed according to

dµAG “ 1

ZAG
N pβ, P q

N´1ź

j“1

x
βpN´jq´1

j 1xjě0 exppTr pP pQqqqdx , (3.24)

here P pxq can be any function that makes (3.24) normalizable, but for our purpose we will
consider P pxq polynomial of the form P pxq “ p´1qjx2j ` l.o.t.
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As in the previous cases, we are interested in the high-temperature regime for this model, so
we set β “ 2α

N
, and we rewrite the previous density as

dµAG “ 1

ZAG
N pα,P q

N´1ź

j“1

x
αp1´ j

N q´1

j 1xjě0 exppTr pP pQqqqdx . (3.25)

This regime was introduced in [32], where the author computed the density of states for this
model in the case P pxq “ x2{2. The structure of this last density (3.25) resembles the one of
µ

p2q
kM`ℓ(2.2), indeed proceeding as in the case of the Volterra lattice, we deduce the following

corollary

Corollary 3.14 (CLT for Antisymmetric β ensemble). Consider the matrix representation
(3.23) of the Antisymmetric β ensemble in the high-temperature regime, endowed with the proba-
bility distribution dµAG (3.25), and let P pxq be a polynomial of the form P pxq “ p´1qjx2j`l.o.t..
Then, defining the Free energy FAGpα,P q as

FAGpα,P q “ ´ lim
NÑ8

1

N
lnpZAG

N pα,P qq ,

for all j P N fixed, we have the following weak limit

lim
NÑ8

Tr
`
Qj

˘
´ E

“
Tr

`
Qj

˘‰
?
N

á N p0, σ2q .

where
E

“
Tr

`
Qj

˘‰
“ iNBtFAGpα,P ´ itxjq|t“0

, σ2 “ |B2tFAGpα,P ´ itxjq|t“0
| .

Which is the perfect analogue of the result for the Volterra lattice.

Remark 3.15. In view of Theorem 1.2, we deduce the following identities

BαpαBtFAGpα,P ´ itxjq|t“0
q “ BtFAGpα,P ´ itxjq|t“0

,

BαpαB2tFAGpα,P ´ itxjq|t“0
q “ BtFAGpα,P ´ itxjq|t“0

3.4 The defocusing Ablowitz-Ladik lattice, and the Circular β ensemble at

high-temperature

In this subsection, we focus on the defocusing Ablowitz-Ladik lattice, and its relation to the
Circular β ensemble at high-temperature [34,37,69]. This relation was highlighted by one of the
present authors and T. Grava [34], and independently by H. Spohn [69]. In these papers, the
authors were able to characterize the density of states of the Ablowitz-Ladik lattice in terms
of the one of the Circular β ensemble in the high-temperature regime. Moreover, in [34] the
authors were able to compute explicitly the density of states in the case of linear potential in
terms of the solution of the Double Confluent Heun Equation [16] highlighting a connection
with the Painlevé equations [26,49]. In [53], the two present authors obtained a large deviations
principles for the empirical spectral measure for any continuous and bounded potential.

The defocusing Ablowitz-Ladik lattice. The defocusing Ablowitz-Ladik (dAL) lattice is
defined by the following system of nonlinear equations

i 9aj “ ´paj`1 ` aj´1 ´ 2ajq ` |aj |2paj´1 ` aj`1q , (3.26)

where ajptq P C. We assume N -periodic boundary conditions aj`N “ aj, for all j P Z. The
dAL lattice was introduced by Ablowitz and Ladik [2, 3] as the spatial integrable discretization
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of the defocusing cubic nonlinear Schrödinger Equation for the complex function ψpx, tq, x P S1

and t P R:
iBtψpx, tq “ ´B2xψpx, tq ` 2|ψpx, tq|2ψpx, tq.

As for the others dynamical systems that we considered, the dAL is an integrable system. Its
integrability was proved by Ablowitz and Ladik by discretizing the 2 ˆ 2 Zakharov-Shabat Lax
pair [1, 2] of the cubic nonlinear Schrödinger equation. Furthermore, Nenciu and Simon [60,64]
constructed a new Lax pair for this lattice. Following their construction we double the size of
the chain according to the periodic boundary condition, thus we consider a chain of 2N particles
a1, . . . , a2N such that aj “ aj`N for j “ 1, . . . , N . Define the 2 ˆ 2 unitary matrix Ξj

Ξj “
ˆ
aj ρj
ρj ´aj

˙
, j “ 1, . . . , 2N , ρj “

b
1 ´ |aj |2 (3.27)

and the 2N ˆ 2N matrices

M “

¨
˚̊
˚̊
˚̊
˚̋

´a2N ρ2N
Ξ2

Ξ4

. . .
Ξ2N´2

ρ2N a2N

˛
‹‹‹‹‹‹‹‚
, L “

¨
˚̊
˚̋

Ξ1

Ξ3

. . .
Ξ2N´1

˛
‹‹‹‚ .

Now let us define the unitary Lax matrix

E “ LM , (3.28)

that has the structure of a 5-band periodic diagonal matrix. The matrix E is a periodic CMV
matrix [13]. The equations of motion (3.26) are equivalent to the following Lax equation for the
matrix E :

9E “ i
“
E , E` ` pE`q:‰

,

where : stands for hermitian conjugate and

E`
j,k “

$
’&
’%

1

2
Ej,j j “ k

Ej,k k “ j ` 1 mod 2N or k “ j ` 2 mod 2N

0 otherwise.

Since the matrix E is a periodic band matrix with fixed bandwidth, we can follow the same
reasoning as in the previous cases and conclude the following

Lemma 3.16. Fix m P N, and consider the matrix E (3.28). Then for N big enough, there
exists a k “ kpmq P N, and two polynomials V : Ck

` ˆ C
k
` Ñ R, and V : Ck

` ˆ C
ℓ
` ˆ C

k
` Ñ R

such that

Tr pEmq “
Mÿ

j“1

V paj ,aj`1q ` V1paM ,akM`1, . . . , akM`ℓ,a1q ,

where N “ kM ` ℓ.

Following [34,53,69], we notice that the quantity K0 “ śN
j“1

p1 ´ |aj |2q is conserved, so this
means that if |ajp0q| ă 1 for all j “ 1, . . . , N then |ajptq| ă 1 for all j “ 1, . . . , N for all t P R,
so we can consider D

N as our phase space, here D “ tz P C | |z| ă 1}. On this phase space, we
introduce the Generalized Gibbs ensemble for the defocusing AL lattice as
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dµdAL “
śN

j“1

`
1 ´ |aj |2

˘α´1
1ajPD exp p´Tr pP pEqqq d2a

ZdAL
N pα,P q , (3.29)

where P is a real-valued Polynomial, meaning that there exists a polynomial rP such that P “
ℜp rP q. In view of Lemma 3.16, we are in the hypotheses of Theorem 1.2, thus we deduce the
following:

Corollary 3.17 (CLT for defocusing Ablowitz–Ladik lattice). Consider the Lax matrix E (3.28)
of the defocusing Ablowitz–Ladik lattice distributed according to the Generalized Gibbs Ensemble
(3.29). Then, defining the Free energy FdALpα,P q as

FdALpα,P q “ ´ lim
NÑ8

lnpZdAL
N pα,P qq
2N

,

for all j P N fixed, we have the following weak limit

lim
NÑ8

Tr
`
Ej

˘
´ E

“
Tr

`
Ej

˘‰
?
N

á N p0, σ2q ,

where

E
“
Tr

`
Ej

˘‰
“ iNBtFdALpα,P ` itxjq|t“0

, σ2 “ |B2tFdALpα,P ` itxjq|t“0
| .

The circular β ensemble at high-temperature. The circular β ensemble was introduced
by Killip and Nenciu in [45]; as the other β ensembles that we considered, it possesses a matrix
representation. Consider the two block diagonal matrices

M “ diag pΞ1,Ξ3,Ξ5 . . . , q and L “ diag pΞ0,Ξ2,Ξ4, . . .q ,
where the block Ξj, j “ 1, . . . , N ´ 1 are defined in (3.27), while Ξ0 “ p1q and ΞN “ pαN q are
1 ˆ 1 matrices. Then, we define E as follows

E “ LM. (3.30)

The entries of this matrix are distributed according to

dµC “
śN´1

j“1

`
1 ´ |aj |2

˘βpN´jq´1
1ajPD exp p´Tr pP pEqqq śN´1

j“1
d2aj

daN
iaN

ZdAL
N pβ, P q .

As for the other β ensembles, one can explicitly compute the joint eigenvalue density for this
ensemble as

dPC “ 1

ZC
N pβ, P q

ź

jăℓ

|eiθj ´ eiθℓ |β1θjPTe
´ řN

j“1
P peiθj qdθ ,

here T “ r´π, πq, eiθj are the eigenvalues of E, and P can be any continuous function that
makes the measure normalizable. We restrict our attention to the class of real polynomial P pzq.

We are interested in the high-temperature limit for this ensemble [34,69], so we set β “ 2α
N

,
obtaining

dµC “
śN´1

j“1

`
1 ´ |aj |2

˘
2αp1´ j

N q´1
1ajPD exp p´Tr pP pEqqq

śN´1

j“1
d2aj

daN
iaN

ZdAL
N pα,P q . (3.31)

So, in view of Lemma 3.16, we are in the hypotheses of Theorem 1.2, so we deduce the
following
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Corollary 3.18 (CLT for Circular β ensemble). Consider the matrix representation (3.30) of
the Circular β ensemble in the high-temperature regime, endowed with the probability distribution
dµC (3.31), and let P pxq be a real-valued polynomial. Then, defining the Free energy FCpα,P q
as

FCpα,P q “ ´ lim
NÑ8

lnpZC
N pα,P qq
2N

,

for all j P N fixed, we have the following weak limit

lim
NÑ8

Tr
`
Ej

˘
´ E

“
Tr

`
Ej

˘‰
?
N

á N p0, σ2q ,

where
E

“
Tr

`
Ej

˘‰
“ iNBtFCpα, γ, P ` itxjq|t“0

, σ2 “ |B2tFCpα,P ` itxjq|t“0
| .

Remark 3.19. We notice that

• Hardy and Lambert in [37] already proved a CLT theorem for the Circular β ensemble in the
high-temperature regime for a wider class of functions and potentials than we can consider
with our result. Nevertheless, we highlight the fact that in our case we can explicitly
compute the means, and the variances in terms of the Free energy.

• The following identities hold in view of the last part of Theorem 1.2

BαpαBtFCpα,P ` itxjq|t“0
q “ BtFdALpα,P ` itxjq|t“0

,

BαpαB2tFCpα,P ` itxjq|t“0
q “ BtFdALpα,P ` itxjq|t“0

.

This relation was already proved in [34] with the same kind of argument that we followed.

3.5 The defocusing Schur flow, and the Jacobi β ensemble at high-temperature

In this subsection, we focus on the defocusing Schur flow [30], and its relation to the Jacobi
β ensemble at high-temperature [27]. This relation was first noticed in [69], and then the two
present authors obtained a large deviations principles for the empirical spectral measure for the
defocusing Schur flow, and they were able to link it to the one of the Jacobi β ensemble in the
high-temperature regime [53].

The defocusing Schur flow. The defocusing Schur flow is the system of ODEs [30]

9aj “ ρ2jpaj`1 ´ aj´1q , ρj “
b

1 ´ |aj|2 ,
and, as before, we consider periodic boundary conditions, namely aj “ aj`N for all j P Z.

We notice that, if one chooses an initial data such that ajp0q P R for all j “ 1, . . . , N , then
ajptq P R for all times. Moreover, it is straightforward to verify that K0 “

śN
j“1

`
1 ´ |aj |2

˘
is

conserved along the Schur flow. This implies that we can choose as phase space for the Schur
flow the N -cube I

N , where I :“ p´1, 1q. Furthermore, it was shown in [30], that the Schur flow
has the same Lax matrix as the focusing Ablowitz–Laddik lattice.

Following [32, 69], on I
N we define the finite volume limit GGE as

dµdSpaq “
śN

j“1

´
1 ´ a2j

¯α´1

1ajPI exp p´Tr pP pEqqqda
ZdS
N pα,P q , (3.32)

where P pxq : R Ñ R is a polynomial. Thanks to Lemma 3.16, we can apply Theorem 1.2
obtaining a CLT theorem for the defocusing Schur flow
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Corollary 3.20 (CLT for defocusing Schur flow). Consider the Lax matrix E (3.28) of the
defocusing Schur flow distributed according to the Generalized Gibbs Ensemble (3.32). Then,
defining the Free energy FdSpα,P q as

FdSpα,P q “ ´ lim
NÑ8

lnpZdS
N pα,P qq
2N

,

for all j P N fixed, we have the following weak limit

lim
NÑ8

Tr
`
Ej

˘
´ E

“
Tr

`
Ej

˘‰
?
N

á N p0, σ2q ,

where
E

“
Tr

`
Ej

˘‰
“ iNBtFdSpα,P ` itxjq|t“0

, σ2 “ |B2tFdSpα,P ` itxjq|t“0
| .

The Jacobi β ensemble in the high-temperature regime. The Jacobi β ensemble is a
random matrix ensemble introduced by Killip and Nenciu in [45]. It has two slightly different
matrix representations. The first one is the same as the Circular β ensemble (3.30), but the
distribution of the entries of the matrix is

dµJpaq “
ś

2N´1

j“1

´
1 ´ a2j

¯βp2N´jq{4´1 ś
2N´1

j“1
p1 ´ ajqa`1´β{4p1 ` p´1qjajqb`1´β{4

1ajPI exp p´Tr pP pEqqqda
ZJ
N pβ, P q ,

(3.33)
where a, b ą ´1, P pxq is a real value polynomial. We notice that we are considering an even

number of random variables, and aj P R; for these reasons, all the eigenvalues of E come in
pairs, meaning that if eiθ is an eigenvalue, then e´iθ is another one. Exploiting this symmetry,
Killip and Nenciu found another matrix representation for this ensemble

J “

¨
˚̊
˚̊
˚̊
˝

c1 b1
b1 c2 b2

. . . . . . . . .
. . . . . . bN´1

bN´1 cN

˛
‹‹‹‹‹‹‚
,

$
&
%
bj “

´
p1 ´ a2j´2qp1 ´ a2

2j´1
qp1 ` a2jq

¯
1{2

cj “ p1 ´ a2j´2qa2j´1 ´ p1 ` a2j´2qa2j´3

,

where a0 “ a2N “ ´1, and the eigenvalues tλjuNj“1
of J are related to the one of E as λj “

cospθjq.
Also, in this case, it is possible to compute explicitly the joint eigenvalue density for this

model as

dPJ “ 1

ZJ
N pβ, P q

ź

jăℓ

| cospθjq ´ cospθℓq|β1θjPTe
´2

řN
j“1

P pcospθjqqdθ .

As in the previous cases, we are interested in the high-temperature regime for this ensemble,
so we wet β “ 2α

N
, thus the measure (3.33) read

dµJpaq “
ś

2N´1

j“1

´
1 ´ a2j

¯αp1´ j
2N q ś

2N´1

j“1
p1 ´ ajqa`1´ α

2N p1 ` p´1qjajqb`1´ α
2N
1ajPI exp p´Tr pP pEqqqda

ZJ
N pβ, P q .

(3.34)
This regime was considered in [71] and in the recent paper [56], where the authors established

a CLT for polynomial test functions in the absence of external potential (P “ 0 in (3.34) ) by
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considering orthogonal polynomials, obtaining an explicit recurrence relation for the limiting
variance.

Again, thanks to Lemma 3.16, we can apply Theorem 1.2 deducing the following

Corollary 3.21 (CLT for Jacobi β ensemble in the high-temperature). Consider the matrix
representation E (3.30) of the Jacobi β ensemble in the high-temperature regime (3.34) . Then,
defining the Free energy FJpα,P q as

FJpα,P q “ ´ lim
NÑ8

lnpZJ
N pα,P qq
N

,

for all j P N fixed, we have the following weak limit

lim
NÑ8

Tr
`
Ej

˘
´ E

“
Tr

`
Ej

˘‰
?
N

á N p0, σ2q ,

where
E

“
Tr

`
Ej

˘‰
“ iNBtFJpα,P ` itxjq|t“0

, σ2 “ |B2tFJpα,P ` itxjq|t“0
| .

Remark 3.22. We notice that for N even, for a ` b “ ´1 ` β
4

we can apply the final part of
Theorem 1.2, thus we deduce that

BαpαBtFJpα,P ` itxjq|t“0
q “ BtFdSpα,P ` itxjq|t“0

,

BαpαB2tFJpα,P ` itxjq|t“0
q “ B2tFdSpα,P ` itxjq|t“0

3.6 The Itoh–Narita–Bogoyavleskii lattices

In this section, we apply our results to two families of integrable lattices with short-range
interaction that generalize the Volterra one (3.19). These families are described in [10] (see
also [9, 40, 59]).

One is called additive Itoh–Narita–Bogoyavleskii (INB) r-lattice and is defined by the fol-
lowing equations

9ai “ ai

˜
rÿ

j“1

ai`j ´
rÿ

j“1

ai´j

¸
, i “ 1, . . . , N, N ě r P N. (3.35)

The second family is called the multiplicative Itoh–Narita–Bogoyavleskii (INB) r-lattice and is
defined by the equations

9ai “ ai

˜
rź

j“1

ai`j ´
rź

j“1

ai´j

¸
, i “ 1, . . . , N, N ě r P N. (3.36)

In both cases we consider the periodicity condition aj`N “ aj . We notice that setting r “ 1,
we recover in both cases the Volterra lattice. Moreover, both families admit the KdV equation
as continuum limits, see [10].

In both cases the interaction is short-range, but in the additive case (3.35) the nonlinearity
is quadratic as in the Volterra lattice, instead in the multiplicative one (3.36) it is of polynomial
order.
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As we already mentioned, both families are integrable for all r P N, indeed both families
admits a Lax pair formulation. For the additive INB lattice (3.35), it reads

Lp`,rq “
Nÿ

i“1

pai`rEi`r,i `Ei,i`1q (3.37)

“

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

0 1 0 ¨ ¨ ¨ aN´r 0 0 0

0 0 1 ¨ ¨ ¨ 0 aN´r`1 0 0

0 0 0 1 ¨ ¨ ¨ 0 aN´r`2 0
...

. . . . . . . . . . . . . . .
ar`1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 1 0 0

0 ar`2 0 ¨ ¨ ¨ . . . . . . . . .
...

. . . . . . . . . . . . 0 0 1

1 0 ¨ ¨ ¨ aN´r´1 ¨ ¨ ¨ 0 0 0

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‚

r ` 1 row

N ´ r column

Ap`,rq “
Nÿ

i“1

˜
rÿ

j“0

ai`j

¸
Ei,i ` Ei,i`r`1 ,

we recall that we are always considering periodic boundary conditions, so for all j P Z, aj`N “ aj
and Ei,j`N “ Ei`N,j “ Ei,j. In this notation, the equations of motion (3.35) are equivalent to

9Lp`,rq “ rLp`,rq;Ap`,rqs .
Analogously, the multiplicative INB r-lattices have a Lax Pair formulation, which reads

Lpˆ,rq “
Nÿ

i“1

paiEi,i`1 ` Ei`r,iq , (3.38)

“

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

0 a1 0 ¨ ¨ ¨ 1 0 0 0

0 0 a2 ¨ ¨ ¨ 0 1 0 0

0 0 0 a3 ¨ ¨ ¨ 0 1 0
...

. . . . . . . . . . . . . . .
1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ar 0 0

0 1 0 ¨ ¨ ¨ . . . . . . . . .
...

. . . . . . . . . . . . 0 0 aN´1

aN 0 ¨ ¨ ¨ 1 ¨ ¨ ¨ 0 0 0

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‚

r ` 1 row

N ´ r column

Apˆ,rq “
Nÿ

i“1

˜
rź

j“0

ai`j

¸
Ei,i`r`1 .

Following the construction made in [32], where the authors numerically computed the density
of states for these two families of lattices, we introduce the generalized Gibbs ensemble for these
models as

dµ`,r “
expp´Tr

`
P pLp`,rqq˘q śN

j“1
aα´1

j 1ajě0da

Z
p`,rq
N pa, P q

, (3.39)

dµˆ,r “
expp´Tr

`
P pLpˆ,rqq˘q śN

j“1
aα´1

j 1ajě0da

Z
pˆ,rq
N pα,P q

, (3.40)

where P pxq is a polynomial. Moreover, enforcing the result of [32]
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Lemma 3.23. Fix ℓ P N. Then for N large enough

Tr
´

pLp`,rqqℓ
¯

“ Tr
´

pLpˆ,rqqℓ
¯

“ 0 ,

if ℓ is not an integer multiple of r ` 1.

we can consider just the polynomials P pxq such that P pxq “ xjpr`1q ` l.o.t. for some j P N.
Due to the local structure of Lp`,rq, Lpˆ,rq, one can deduce the following:

Lemma 3.24. Fix m P N, and consider the matrices Lp`,rq, Lpˆ,rq (3.37)-(3.38). Then for N
big enough, there exist kp`,rq “ kp`,rqpmq, kpˆ,rq “ kpˆ,rqpmq P N, and four polynomial functions

V p`,rq : Rkp`,rq
` ˆR

kp`,rq
` Ñ R, V pˆ,rq : Rkpˆ,rq

` ˆR
kpˆ,rq
` Ñ R, V

p`,rq
1

: Rkp`,rq
` ˆR

ℓp`,rq
` ˆR

kp`,rq
` Ñ

R, V
pˆ,rq
1

: Rkpˆ,rq
` ˆ R

ℓpˆ,rq
` ˆ R

kpˆ,rq
` Ñ R such that

Tr
´

pLp`,rqqm
¯

“
M p`,rqÿ

j“1

V p`,rqpxj ,xj`1q

` V
p`,rq
1

pxM p`,rq , xkp`,rqM p`,rq`1
, . . . , xkp`,rqM p`,rq`ℓp`,rq,x1q ,

Tr
´

pLpˆ,rqqm
¯

“
M pˆ,rqÿ

j“1

V pˆ,rqpxj ,xj`1q

` V
pˆ,rq
1

pxM pˆ,rq , xkpˆ,rqM pˆ,rq`1
, . . . , xkpˆ,rqM pˆ,rq`ℓpˆ,rq,x1q ,

where N “ kp`,rqM p`,rq ` ℓp`,rq “ kpˆ,rqM pˆ,rq ` ℓpˆ,rq.

Thus, proceeding as we have done for the others systems previously considered, we obtain
the following:

Corollary 3.25 (CLT for INB lattices). Consider the Lax matrices Lp`,rq, Lpˆ,rq (3.37)-(3.38) of
the additive and multiplicative INB lattices respectively distributed according to their Generalized
Gibbs Ensemble (3.39)-(3.40). Then, defining the Free energies F`,rpα,P q,Fˆ,rpα,P q as

F`,rpα,P q “ ´ lim
NÑ8

1

N
lnpZp`,rq

N pα,P qq ,

Fˆ,rpα,P q “ ´ lim
NÑ8

1

N
lnpZpˆ,rq

N pα,P qq ,

for all j P N fixed, we have the following weak limit

lim
NÑ8

Tr
`
pLp`,rqqpr`1qj˘

´ E
“
Tr

`
pLp`,rqqpr`1qj˘‰

?
N

á N p0, σ2`,rq ,

lim
NÑ8

Tr
`
pLpˆ,rqqpr`1qj˘

´ E
“
Tr

`
pLpˆ,rqqpr`1qj˘‰

?
N

á N p0, σ2ˆ,rq ,

where

E

”
Tr

´
pLp`,rqqpr`1qj

¯ı
“ iNBtF`,rpα,P ` itxpr`1qjq|t“0

, σ2`,r “ |B2tF`,rpα,P ` itxpr`1qjq|t“0
| ,

E

”
Tr

´
pLpˆ,rqqpr`1qj

¯ı
“ iNBtFˆ,rpα,P ` itxpr`1qjq|t“0

, σ2ˆ,r “ |B2tFˆ,rpα,P ` itxpr`1qjq|t“0
| .

Remark 3.26. We recall that in [32], it was shown that the density of states for this model has
support on the complex plane, but despite that all the moments of the Generalized Gibbs ensemble
are reals. Furthermore, in this case, we lack a β ensemble to compare with.
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4 Technical Results

In this section, we prove the technical results that we used to prove our main Theorems 1.2-1.4,
the proof follows the same line as the proof of [34, Proposition 4.2], and we prove Theorem
1.6, whose proof uses the same machinery as the latter proofs. In the last part, we prove a
Berry-Esseen type bound for the type 1 measure µp1q

N . We start by proving Theorem 2.1 and
Theorem 2.2.

To prove these results, we follow the same ideas as in [31, Theorem 2.4]. In particular, we
enforce the following proposition, which can be easily deduced from [31, Proposition 2.3]:

Proposition 4.1. Let λp0q be an isolated eigenvalue of the operator L0 with multiplicity one,
and assume that the family of operators t Ñ Lt depends on t in a Cd way, with d ě 3. Then,
λptq, the corresponding eigenprojection πt and its eigenfunction ϕt are Cd with respect to t.

Moreover, assume that the rest of the spectrum of L0 it is contained in a disk of radius
|λp0q| ´ δ. Writing Qt “ pI ´ πtqLt, so that Lt “ λptqπt ` Qt. For any r ą |λp0q| ´ δ, there
exists a constant C ą 0 independent of t, n such that }Qn

t } ď Crn for all n P N.

Applying the previous proposition, we can prove both Theorem 2.1 and Theorem 2.2. For
the reader’s convenience, we report the two statements here.

Theorem 4.2. Under Assumptions 1.1. Consider a real function H : C Ñ R such that
Tr pHpLqq is circular (HP 5.), and let W be the seed of Tr pGpLq ` itHpLqq, thus W px,yq “
V px,yq ` itUpx,yq for V,U : Xk ˆ Xk Ñ R the seeds of Tr pGpLqq ,Tr pHpLqq. Furthermore,
assume that U P L2dpX2k, expp´2V qq, with N Q d ě 3. Then, there exists an ε ą 0, and two
complex valued functions λ py, tq P C1,dpR` ˆ r´ε, εsq, and ck,ℓpy, tq P C1,dpRˆ r´ε, εsq such that
for all q P N :

E1

”
e´itTrpHpLqq

ı
“
Z

p1q
kM`ℓpα, tq

Z
p1q
kM`ℓpα, 0q

“ ck,ℓpα, tqλpα, tqM´2
`
1 ` opM´qq

˘
, as M Ñ 8 ,

for |t| ă ε, here Z
p1q
kM`ℓpα, tq ” Z

p1q
kM`ℓpα, V ` itUq. Furthermore,

λpx, 0q “ 1

ck,ℓpx, 0q “ 1 .

Moreover, there exist two functions rck,ℓpα, tq P C1,dpRˆ r´ε, εsq and rλpα, tq P C1,dpR` ˆ r´ε, εsq
such that there exist two constants C1, C2 ą 0 such that for all q P N:

C1 ă rck,ℓpα, tq ă C2 ,

λpα, tq “
rλpα, tq
rλpα, 0q

,

Z
p1q
kM`ℓpα, tq “ rck,ℓpα, tqrλpα, tqM´2

`
1 ` opM´qq

˘
.

Proof. Define the kernel operator (depending on k P N, α ą 0 and t P R) Lt,α : L2pXkq Ñ
L2pXkq as

Lt,αfpyq “
ż

Xk

fpxq
kź

q“1

F pxq, αqe´W py,xqdx . (4.1)

Then, for all k P N, α ą 0 and t P R, Lt,α is a Hilbert-Schmidt operator [43], meaning that
the function px,yq ÞÑ śk

q“1
F pxq, αqe´V py,xq is L2pXk ˆ Xkq, and so it is compact. Moreover,

since the kernel is positive, we can apply a generalization of Jentzsch’s theorem [74, Theorem
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137.4] in combinations with Proposition 4.1 deducing that there exist two functions py, tq ÞÑ
rλ py, tq P C1,dpR` ˆ r´ε, εsq, py, tq ÞÑ ϕp¨, y, tq P C1,dpR` ˆ r´ε, εs, L2pXkqq, and an operator
Qt : L2pXkq Ñ L2pXkq such that

Lt,αφpyq “ rλ pα, tq xφ,ϕ p¨, α, tqyϕ py, α, tq ` Qtφpyq , @φ P L2pXkq

where rλ py, 0q ą 0, ϕ px, y, 0q ą 0 is the associated eigenfunction of Lt,α with }ϕ}2 “ 1 and
there exists a δ ą 0 such that ||Qt|| ď |rλ pα, tq |´δ, denoting by x¨, ¨y the standard scalar product
in L2pXkq.

For x P Xk define Gxpyq as

Gxpyq “
# ş

Xℓ

śkM`ℓ
j“kM`1

F pxj , αq exp p´W1py, xkM`1, . . . , xkM`ℓ,xqq śkM`ℓ
j“kM`1

dxj , ℓ ą 0 ,

exp p´W py,xqq , ℓ “ 0 ,

(4.2)
and the linear operator St : L2pXk ˆXkq Ñ C as

Stϕ “
ż

XkˆXk

2kź

j“1

F pxj , αq exp p´W px1,x2qqϕpx1,x2qdx1dx2 , (4.3)

we notice that }St} ď c}F }2k
2

, and so it is continuous.

In this notation, we can recast (2.3), applying St to px,yq ÞÑ
´
LM´2

t,α Gx

¯
pyq, as

Z
p1q
kM`ℓpα, tq “ St

´´
LM´2

t,α Gx1

¯
px2q

¯
“ rλM´2pα, tqSt

`
xϕ p¨, α, tq ;Gx1

yϕpx2, α, tq
˘
`St

`
QM´2

t Gx1
px2q

˘
,

where here and in the sequel, if h P L2pXk ˆ Xkq, we write abusively Stphpx,yqq for Stphq.
Defining

ck,ℓpα, tq “ St

`
xϕ p¨, α, tq ;Gx1

yϕpxM , α, tq
˘

S0

`
xϕ p¨, α, 0q ;Gx1

yϕpxM , α, 0q
˘ ,

λpα, tq “
rλM´2pα, tq
rλM´2pα, 0q

,

and since in view of Proposition 4.1 }Qn
t } ď p|rλptq| ´ δqn we conclude.

Theorem 4.3. Under Assumptions 1.1. Consider a real function H : C Ñ R such that
Tr pHpLqq is circular, and let W be the seed of Tr pGpLq ` itHpLqq, thus W px,yq “ V px,yq `
itUpx,yq for V,U : Xk ˆ Xk Ñ R seeds of Tr pGpLqq ,Tr pHpLqq. Furthermore, assume that
U P L2dpX2k, expp´2V qq, with N Q d ě 3. Then there exists an ε ą 0 and two scalar functions
λ py, tq P C1,dpR ˆ r´ε, εs,Cq, ck,ℓ,Mpy, tq P C1,dpR ˆ r´ε, εsq, such that

E2

”
e´itTrpHpLqq

ı
“
Z

p2q
kM`ℓpα, tq

Z
p2q
kM`ℓpα, 0q

“ck,ℓ,Mpα, tq
M´2ź

j“1

λ

ˆ
α
j

M
, t

˙
p1 ` oM p1qq (4.4)

for |t| ă ε. Furthermore,

λpx, 0q “ 1

lim
tÑ0

ck,ℓ,Mpα, tq “ 1 uniformly in M

the remainder oM p1q is independent of t P r´ε, εs.
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Moreover, there exist two functions rck,ℓ,Mpα, tq P C1,dpR` ˆ r´ε, εsq, rλpα, tq P C1,dpR` ˆ
r´ε, εsq, and three constants C1, C2 ą 0 and p P N such that

C1N
p ă rck,ℓ,Mpα, tq ă C2N

p ,

λpα, tq “
rλpα, tq
rλpα, 0q

,

Z
p2q
kM`ℓpα, tq “ rck,ℓ,Mpα, tq

M´2ź

j“1

rλ
ˆ
α
j

M
, t

˙
p1 ` oM p1qq .

Proof. Define the family of kernel operators (depending on k P N, α ą 0 and t P R) L
pjq
t,α :

L2pXkq Ñ L2pXkq as

L
pjq
t,αfpyq “

ż

Xk

fpxq
kź

q“1

F

ˆ
xq, α

ˆ
1 ´ pj ´ 1qk ` q

N

˙˙
e´W py,xqdx .

Then, for all k P N, α ą 0 and t P R, the kernel of L
pjq
t,α is in L2pXk ˆ Xkq, thus it is

a Hilbert-Schmidt operator, and so it is compact. Moreover, since for t “ 0 the kernel is
positive, we can apply a generalization of Jentzsch’s theorem [74, Theorem 137.4] in combinations
with Proposition 4.1 deducing that there exist two functions pλ “ pλ py, tq P C1,dpR` ˆ r´ε, εsq,
py, tq ÞÑ ϕp¨, y, tq P C1,dpR` ˆ r´ε, εs, L2pXkqq and an operator Q

pjq
t : L2pXkq Ñ L2pXkq such

that @φ P L2pXkq, @|t| ă ε,

L
pjq
t,αφpyq “ pλ

ˆ
α

ˆ
1 ´ j

M

˙
, t

˙
π

pjq
t φpyq ` Q

pjq
t φpyq (4.5)

with

π
pjq
t φpyq “

B
φ;ϕ

ˆ
¨, α

ˆ
1 ´ j

M

˙
, t

˙F
ϕ

ˆ
y, α

ˆ
1 ´ j

M

˙
, t

˙
,

where pλ
´
α

´
1 ´ j

M

¯
, t

¯
is the biggest eigenvalue (in modulus) of Lpjq

t,α, pλpy, 0q ą 0, ϕp¨, y, 0q ą 0,

}ϕp¨, y, tq}2 “ 1 and there exists a δj ą 0 such that }Qpjq
t } ď |pλ

´
α

´
1 ´ j

M

¯
, t

¯
| ´ δj , and we

recall that we denote by x¨, ¨y the standard scalar product in L2pXkq. Furthermore, with rλ the
function of Theorem 4.2, we have

pλ
ˆ
α

ˆ
1 ´ j

M

˙
, t

˙
“ rλ

ˆ
α

ˆ
1 ´ j

M

˙
, t

˙
`O

ˆ
1

M

˙
, (4.6)

Where the O
`

1

M

˘
term is uniform in t P p´ε, εq. Indeed, recalling that Lt,α is defined in (4.1),

by the integrability assumptions on U and on BαF (HP 7. of Assumptions 1.1), we have

}Lpjq
t,α ´ Lt,αp1´j{Mq} ď Ct

α

M
(4.7)

where Ct ě 0 is bounded on r´ε, εs. We then deduce (4.6) by applying Proposition 4.1.
Define the function ht on Xk by

htpxq “
ż

Xk`ℓ

k`ℓ´1ź

j“1

F

ˆ
xkpM´1q`j , α

ˆ
1 ´ j ` kpM ´ 1q

kM ` ℓ

˙˙
exp

`
´W px,xM q

˘
ˆ

ˆexp
`
´W pxM , xkM`1, . . . , xkM`ℓ, 0, . . . , 0q´W pxkM`1, . . . , xkM`ℓ, 0, . . . , 0q

˘
RpxN q

k`ℓź

j“1

dxkpM´1q`j .

(4.8)
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Note that in view of assumptions 1.1, }ht}8 “ OpNcpℓ`kqq.
We recall that W “ V ` itU so ht depends on t , and the linear operator St : L2pXkq Ñ C

as

Stpψq “
ż

Xk

kź

j“1

F

ˆ
xj , α

ˆ
1 ´ j

kM ` ℓ

˙˙
e´W p0,...,0,xqψpxq

kź

j“1

dxj .

We notice that, again in view of the assumptions 1.1 the operator St is uniformly bounded
in k, ℓ for all t P R, and it is continuous in t in the operator norm sense.

In this notation, we can rewrite Zp2q
kM`ℓpα, tq as

Z
p2q
kM`ℓpα, tq “ St

´
L

p2q
t,α . . .L

pM´1q
t,α ht

¯
“ St

˜
M´1ź

j“2

L
pjq
t,αht

¸

Applying the decomposition (4.5), it follows that we can decompose the previous expression
as

Z
p2q
kM`ℓpα, tq “

M´1ź

j“2

pλt
ˆ
α

ˆ
1 ´ j

M

˙˙
St

´
π

p2q
t . . . π

pM´1q
t ht

¯

` St

´
L

p2q
t,α . . .L

pM´2q
t,α Q

pM´1q
t ht

¯

`
M´2ÿ

n“2

M´1ź

j“n`1

pλt
ˆ
α

ˆ
1 ´ j

M

˙˙
St

´
L

p2q
t,α . . .L

pn´1q
t,α Q

pnq
t π

pn`1q
t . . . π

pM´1q
t ht

¯
,

(4.9)

where we arranged the terms of the product of the L
pjq
t,α’s by order of the first appearance from

the right of a factor Q
pjq
t (the first term being the product where no Q

pjq
t appears). We notice

that

St

´
π

p2q
t . . . π

pM´1q
t ht

¯
“ xϕ1{M

t ;hty
M´2ź

i“2

xϕαp1´i{Mq
t ;ϕ

αp1´pi`1q{Mq
t ySt

ˆ
ϕ
αp1´ 2

M q
t

˙
,

where we set ϕαp1´i{Mq
t ” ϕ p¨, αp1 ´ i{Mq, tq to shorten the notation. Furthermore, the ratio

M´1ź

i“2

xϕαp1´ i
M q

t ;ϕ
αp1´ i`1

M q
t y

xϕαp1´ i
M q

0
;ϕ

αp1´ i`1

M q
0

y

converges uniformly to 1 in M ě 1, t P p´ε, εq. This is due to the fact that

xϕαp1´ i
M q

t ;ϕ
αp1´ i`1

M q
t y “ 1 `O

´ α

M

¯
,

because of (4.7) and Proposition 4.1, thus the product

M´1ź

i“2

xϕαp1´ i
M q

t ;ϕ
αp1´ i`1

M q
t y

stays bounded below and above uniformly on M ě 1, t P p´ε, εq.
Denoting the first term of (4.9) by fpα, tq, and the second and third terms by g1pα, tq and

g2pα, tq, we can rewrite (4.4) as



4 TECHNICAL RESULTS 40

Z
p2q
kM`ℓpα, tq

Z
p2q
kM`ℓpα, 0q

“ fpα, tq
fpα, 0q

¨
˝ 1 ` g1pα,tq

fpα,tq ` g2pα,tq
fpα,tq

1 ` g1pα,0q
fpα,0q ` g2pα,0q

fpα,0q

˛
‚ .

Thus, to prove our result we need to show that there exist 3 constants c1, c2, c3 independent of
M such that for all t P p´ε, εq,

ˇ̌
ˇ̌g1pα, tq
fpα, tq

ˇ̌
ˇ̌ ď c1 , (4.10)

ˇ̌
ˇ̌g2pα, tq
fpα, tq

ˇ̌
ˇ̌ ď c2 , (4.11)

ˇ̌
ˇ̌
ˇ̌
ˇ

A
ϕ

p1{Mq
t ;ht

E
Stϕ

αp1´ 2

M q
t

A
ϕ

p1{Mq
0

;h0

E
S0ϕ

αp1´ 2

M q
0

ˇ̌
ˇ̌
ˇ̌
ˇ

ď c3 . (4.12)

If we are able to show this, then defining

ck,ℓ,Mpα, tq “

A
ϕ

p1{Mq
t ;ht

E
Stϕ

αp1´ 2

M q
t

A
ϕ

p1{Mq
0

;h0

E
S0ϕ

αp1´ 2

M q
0

M´1ź

i“2

xϕαp1´ i
M q

t ;ϕ
αp1´ i`1

M q
t y

xϕαp1´ i
M q

0
;ϕ

αp1´ i`1

M q
0

y
,

λpy, tq “
rλ py, tq
rλ py, 0q

,

we obtain (4.4) with the wanted properties. Notice that in the definition of λ we took
rλpy, tq
rλpy, 0q

instead of
pλpy, tq
pλpy, 0q

. This is indeed possible because of equation (4.6).

First, we focus on (4.11). The term g2pα, tq is given by

xϕp1{Mq;hty
M´2ÿ

n“2

M´1ź

j“n`1

pλ
ˆ
α

ˆ
1 ´ j

M

˙
, t

˙ M´n´2ź

i“1

xϕ
αi
M
t ;ϕ

αpi`1q
M

t ySt

ˆ
L

p2q
t,α . . .L

pn´1q
t,α Q

pnq
t ϕ

αp1´n`1

M q
t

˙
.

Because ϕ px, y, tq is regular with respect to y, we deduce that there exists a function py, tq ÞÑ
ψp¨, y, tq P C8pR` ˆ r´ε, εs, L2pXkqq with }ψαp1´n{Mq

t }2 uniformly bounded in n,M and t such
that

Qn
t

ˆ
ϕ
αp1´n`1

M q
t

˙
“ Q

pnq
t

ˆ
ϕ
αp1´ n

M q
t

˙
` 1

M
Q

pnq
t ψ

αp1´n{Mq
t “ 1

M
Q

pnq
t ψ

αp1´n{Mq
t .

given this equality, it is trivial to prove (4.11), recalling that for any t, j,
1

pλpjq
t

L
pjq
t,α has operator

norm smaller than one.
For (4.10), it suffices to show that there exists a constant c2 independent of M such that

››››››
Q

pM´1q
t htA

ϕ
p1{Mq
t , ht

E

››››››
ď c2 . (4.13)

From the assumptions, (4.5) and the definition of ht (4.8), we deduce that there exists a
constant d1 such that
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›››QpM´1q
j ht

››› ď d1

´
λ

´ α

M

¯
´ δ1

¯
Mcpk`ℓq ,

on the other hand, in view of the previous proof and the assumptions, we conclude that, for t
small enough, there exists a constant d2 such that

ˇ̌
ˇ
A
ϕ

p1{Mq
t , ht

Eˇ̌
ˇ ě d2M

cpk`ℓq . (4.14)

Indeed, for t “ 0,
A
ϕ

p1{Mq
0

, h0

E
is given by

ż

X2k`ℓ

ϕ
p1{Mq
0

pxq
k`ℓ´1ź

j“1

F

ˆ
xkpM´1q`j, α

ˆ
1 ´ kpM ´ 1q ` j

kM ` ℓ

˙˙
rpx,xM , rxqdxdxMdrx ,

where we denoted rx “ pxkM`1, . . . , xkM`ℓq and

rpx,xM , rxq “ e´W px,xM q´W pxM ,xkM`1,...,xkM`ℓ,0,...,0q´W pxkM`1,...,xkM`ℓ,0,...,0q .

By Assumptions 1.1 HP.4, and positivity of ϕp1{Mq
0

,

A
ϕ

p1{Mq
0

, h0

E
ě pdpN{αqcqk`ℓ´1

ż

O

ϕ
p1{Mq
0

pxqdx inf
O2k`ℓ

r ě ck,ℓM
k`ℓ

ż

O

ϕp1{Mqpxqdx.

By continuity of η ÞÑ ϕ
η
0
, this last integral converges to

ş
O
ϕ

p1{Mq
0

pxqdx ą 0, thus we conclude
for the case t “ 0. Finally, we conclude on (4.14) for t small enough by continuity.

Combining the two previous estimates, and setting p “ cpk ` ℓq we deduce (4.13), which
leads to (4.11). The proof of (4.12) is analogous, thus we conclude.

We now turn on the proof of Theorem 1.6, which we rewrite here for convenience.

Theorem 4.4 (Decay of correlations). Let W be the seed of Tr pGpLqq and I, J : Xk Ñ R two

local functions such that
ş
XkˆXk

ˇ̌
ˇIpxq śk

i“1
F pxi, αqe´W px,yq

ˇ̌
ˇ
2

dxdy ă 8, and analogously for

Jpxq. Write N “ kM ` ℓ, and let j P t1, . . . ,Mu. Then there exists some 0 ă µ ă 1 such that

E1 rIpx1qJpxjqs ´ E1 rIpx1qsE1 rJpxjqs “ OpµM´j ` µjq .

Proof. Let L “ L0,α with Lt,α given by (4.1). Furthermore, define LpJq

LpJqφpyq “
ż

Xk

φpxq
kź

i“1

F pxi, αqJpxqe´V py,xq “ LpJφqpyq ,

and LpIq analogously. With GpIq
x pyq “ IpxqGxpyq, G given in (4.2), we have for j ě 3

E1 rIpx1qJpxjqs “
S0

´´
LM´jLpJqLj´3G

pIq
x1

¯
px2q

¯

S0pLM´2Gx1
px2qq

“
rλM´jpα, 0qS0pπ0LpJqLj´3G

pIq
x1

px2qq `Oprλj´3rM´jqq
rλM´2pα, 0qS0pπ0Gx1

px2qq `OprM´2q
,

where St is defined in (4.3), and we used the decomposition

Lk
0 “ rλkpα, 0qπ0 ` Qk

0 ,
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where π0 is the orthogonal projection on the (one dimensional) eigenspace associated with
rλpα, 0q, and Q0 is an operator such that }Qk

0
} ď Crk for some 0 ă r ă rλ. Similarly,

S0pπ0LpJqLj´3G
pIq
x1

px2qq “ rλj´3pα, 0qS0pπ0LpJqπ0G
pIq
x1

px2qq `Oprj´3q.

We deduce

E1 rIpx1qJpxjqs “ S0ppπ0LpJqπ0G
pIq
x1

qpx2qq `Oppr{rλqM´j ` pr{rλqj´3q
rλ

´
S0pπ0Gx1

px2qq `Oppr{rλqM´2q
¯ .

Similarly, we deduce

E1rIpx1qsE1rJpxjqs “ S0pπ0GpIq
x1

px2qqS0

`
π0L

pJqπ0Gx1
px2q

˘
`Oppr{rλqM´j ` pr{rλqj´3q

rλ
´
S0pπ0Gx1

px2qq2 `Oppr{rλqM´2q
¯ .

By a direct computation, recalling that π0φ “ xϕ1, φyϕ1 where ϕ1 is the eigenfunction
associated with rλ, we deduce the following

S0

´
π0L

pJqπ0G
pIq
x1

px2q
¯

“ xLpJqϕ1, ϕ1y
ż

xGx, ϕ1y IpxqF pxqϕ1pxqdx ,

S pπ0Gx1
px2qq “

ż
xGx, ϕ1yϕ1pxqF pxqdx , S0

´
π0G

pIq
x1

px2q
¯

“
ż

xGx, ϕ1y IpxqF pxqϕ1pxqdx ,

and
S0

´
π0L

pJqπ0Gx1
px2q

¯
“ xLpJqϕ1, ϕ1y

ż
xGx, ϕ1yF pxqϕ1pxqdx .

These formulas imply that

S0ppπ0LpJqπ0G
pIq
x1

qpx2qq “ S0pπ0GpIq
x1

px2qqS0

`
π0L

pJqπ0Gx1
px2q

˘

S0 pπ0Gx1
px2qq ,

and so
E1 rIpx1qJpxjqs ´ E1 rIpx1qsE1 rJpxjqs “ Oppr{rλqM´j ` pr{rλqj´3q .

Finally, we prove a Berry-Esseen bound type theorem for the measure µp1q
kM`ℓ:

Theorem 4.5. Under Hypotheses 1.1. Consider the measure µ
p1q
kM`ℓ, G satisfying assumptions

1.1 and H : C Ñ R such that Tr pHpLqq is cyclic (HP. 5) with seed h and weed h1 such that
h, h1 P LdpX2k, expp´2W qq, with N Q d ě 6, so that

E1

”
e´itTrpHpLqq

ı
“
Z

p1q
kM`ℓpα,G ` itHq
Z

p1q
kM`ℓpα,Gq

.

Then, there exists A P R, σ,C ą 0 such that if Y „ N p0, σ2q we have for any interval J of the
real line

ˇ̌
ˇP

´
rTr pHpLqq ´ pkM ` ℓqAs {

a
pkM ` ℓq P J

¯
´ P pY P Jq

ˇ̌
ˇ ď Ca

pkM ` ℓq
.
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Proof. We adapt the arguments of [31, Theorem 3.7]. By [23, Lemma XVI.3.2], there exists a
constant C such that for any X real random variable, and Y Gaussian random variable, for any
interval J Ă R and for any T ą 0, we have

|P pX P Jq ´ P pY P Jq| ď C

ż T

0

|Ere´itX s ´ e´σ2t2{2|
t

dt` C

T
.

We take X “ pTr pHpLqq ´ pkM ` ℓqAq {
?
kM ` ℓ. We are going to show that, taking T “

ε
a

pkM ` ℓq for some small enough ε, the last integral remains bounded by Ck,ℓ?
pkM`ℓq

, where

Ck,ℓ is a constant depending on k, ℓ. Recall N “ kM ` ℓ. By Theorem 1.2, there exists an
A P R, σ ą 0 such that as N goes to infinity X converges to N p0, σ2q. Since t´1 is not integrable
at 0, we consider the special interval r0, N´1s. In this interval, we have the following estimate,
denoting by W the seed of Tr pGpLqq:

ˇ̌
ˇE

“
e´itX

‰
´ e´it

?
NA

ˇ̌
ˇ (2.4)“

|Z
p1q
kM`ℓ

´
α,G ` i t?

N
H

¯
´ Z

p1q
kM`ℓ pα,Gq|

Z
p1q
kM`ℓ pα,Gq

“ 1

Z
p1q
kM`ℓ pα,Gq

ˇ̌
ˇ
M´1ÿ

p“1

ż

XkM`ℓ

Fpxq
p´1ź

j“1

e
i t?

N
hpxj ,xj`1q

´
e
i t?

N
hpxp,xp`1q ´ 1

¯ Nź

j“1

dxj

`
ż

XkM`ℓ

Fpxq
´
e
i t?

N
h1pxM ,xkM`1,...,xkM`ℓ,x1q ´ 1

¯ ˇ̌
ˇ ,

with the convention that the empty product is equal to one. Here we defined

Fpxq “
kM`ℓź

j“1

F pxj , αq exp
˜

´
M´1ÿ

j“1

W pxj,xj`1q ´W1pxM , xkM`1, . . . , xkM`ℓ,x1q
¸

ˆ exp

ˆ
it?
N
h1pxM , xkM`1, . . . , xkM`ℓ,x1q

˙
,

where h1 is the weed of H in the sense of HP 5 of Hyphotheses 1.1. Thus, since |e
i t?

N
hpxp,xp`1q ´

1| ď |hpxp,xp`1q|N´1{2t, we deduce the following inequality

ˇ̌
ˇE1re´itX s ´ e´it

?
NA

ˇ̌
ˇ ď E1 r|hpx1,x2q|s t

?
N ` t?

N
E1 r|h1pxM , xkM`1, . . . , xkM`ℓ,x1q|s ,

(4.15)
and this last term is by assumption bounded by Ct

?
N for some C independent of N and t.

Thus integrating for t P r0, N´1s we deduce the following

ż 1

N

0

|E1re´itX s ´ e´σ2t2{2|
t

dt

ď
ż 1

N

0

ˇ̌
ˇE1

“
e´itX

‰
´ e´it

?
NA

ˇ̌
ˇ `

ˇ̌
ˇe´it

?
NA ´ 1

ˇ̌
ˇ `

ˇ̌
ˇ1 ´ e´σ2t2{2

ˇ̌
ˇ

t
dt

(4.15)
ď

ż 1

N

0

C
?
Nt ` t

?
NA` σ2t2{2
t

dt ď C1?
N
,

for some constant C1.
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We now consider the integral on r1{N, ε
?
N s. Here we use the spectral decomposition of

E1reitX s. Since h P LdpX2k, expp´2W qq for some d ě 6, we deduce (following Remark 1.3)
applying Proposition 4.1, and from Theorem 2.1, that there exist two continuous functions
pptq P C0pr´ε, εsq and ck,ℓpy, tq P C1,dpR ˆ r´ε, εsq for some ε ą 0, such that ck,ℓpy, 0q “ 1 and
}p}8 ă `8, such that for q ě 1

ż ε
?
N

1

N

|E1re´itX s ´ e´σ2t2{2|
t

dt “
ż ε

?
N

1

N

ˇ̌
ˇck,ℓpα, t{

?
Nqe´σ2t2{2`t3ppt{

?
Nq{

?
N p1 ` opN´qqq ´ e´σ2t2{2

ˇ̌
ˇ

t
dt ,

thus we have the following estimate

ż ε
?
N

1

N

ˇ̌
ˇE1re´itX s ´ e´σ2t2{2

ˇ̌
ˇ

t
dt ď

ˇ̌ˇ̌
ck,ℓpα, ¨qp1 ` opM´qqq

ˇ̌ˇ̌
8,r0,εs

ż ε
?
N

1

N

ˇ̌
ˇ
´
1 ´ et

3ppt{
?
Nq{

?
N

¯
e´σ2t2{2

ˇ̌
ˇ

t
dt

`
ż ε

?
N

1

N

ˇ̌
1 ´ ck,ℓpα, t{

?
Nqp1 ` opM´qqq

ˇ̌
e´σ2t{2

t
dt ,

where || ¨ ||8,r0,εs in the L8 norm on r0, εs.
We notice that ||ck,ℓpα, ¨qp1 ` opM´qqq||8,r0,εs is uniformly bounded in N . Moreover,

ż ε
?
N

1

N

e´σ2t2{2

t

ˇ̌
ˇet3ppt{

?
Nq{

?
N ´ 1

ˇ̌
ˇ dt ď

ż ε
?
N

1

N

e´σ2t2{2

t
?
N

et
3}p}8,r0,εs{

?
N t3}p}8,r0,εsdt

ď
ż ε

?
N

1

N

e´σ2t2{2
?
N

et
2ε}p}8,r0,εst2}p}8,r0,εsdt ,

where in the first inequality we used the bound |ex ´ 1| ď |x|e|x|. Since for ε small enough
||p||8ε ă σ2{4, thus integrating, we deduce that

ż ε
?
N

1

N

ˇ̌
ˇe´σ2t2{2`t3ppt{

?
Nq{

?
N ´ e´σ2t2{2

ˇ̌
ˇ

t
dt “ O

ˆ
1?
N

˙
.

To conclude, we have to show that the last integral is of order N´1{2. Since ck,ℓpα, tq is C1

in t, and ck,ℓpα, 0q “ 1, it is easy to deduce that there exists a constant C such that

ż ε
?
N

1

N

ˇ̌
1 ´ ck,ℓpα, t{

?
Nqp1 ` opM´qqq

ˇ̌
e´σ2t{2

t
dt ď C?

N

so we conclude.

5 Conclusion and Outlooks

In this paper, we proved a general Central Limit Theorem type result and we apply it to several
models in random matrix theory and integrable systems. By doing this, we strengthen the
connection between these two subjects. Specifically, we could connect the expected values and
the variances of the moments of each classical β ensemble in the high-temperature regime with
one specific integrable model, see Table 1.

The results that we have obtained are relevant for two main reasons. Under the random
matrix theory perspective, we were able to develop a general framework to prove polynomial
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central limit theorems for the classical β ensemble in the high-temperature regime, based on
their band matrix representation and on the transfer operator technique. Under the integrable
systems’ theory point of view, our result enables the explicit computation of the so-called sus-
ceptibility matrix, which is a fundamental object in the theory of Generalized Hydrodynamics
in order to compute the correlation functions for integrable models. Furthermore, we are able
to prove rigorously the exponential decay of correlation for short-range interacting systems with
polynomial potential.

It would be fascinating to generalize our result to a wider class of potential and functions
and to obtain a Berry-Esseen bound for the classical β ensemble in the high-temperature regime.
Furthermore, defining a new β ensemble related to the INB lattice would be interesting. Finally,
we point out that it would be interesting to obtain large deviation principles for the Exponential
Toda lattice and the Volterra one in the spirit of [35, 53].
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