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CLT for β ensembles at high-temperature, and for integrable systems: a transfer operator approach

In this paper, we prove a polynomial Central Limit Theorem for several integrable models, and for the β ensembles at high-temperatures with polynomial potential. Furthermore, we are able to relate the mean values, the variances and the correlations of the moments of these integrable systems with the one of the β ensembles. Moreover, we show that for several integrable models, the local functions' space-correlations decay exponentially fast.

Introduction

In this paper, we study eigenvalue fluctuations for several random matrix models related to some integrable dynamical systems and to the classical β ensembles in the high-temperature regime. Specifically, we consider random band matrices with fixed bandwidth and, under some mild assumptions, we prove a central limit theorem (CLT) for polynomial test functions for the empirical measure of the eigenvalues. In particular, we consider the following kind of matrices , for a " pa 1 , . . . , a N q P R N , b " pb 1 , . . . , b N q P R N `.

• Type 1-ii ) Antisymmetric Bidiagonal Periodic matrices: 

¨0
0 ´aN´1 0 ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
, for a " pa 1 , . . . , a N q P R N `.

• Type 1-iii ) Periodic CMV (after Cantero, Moral and Velazquez) matrices, which are 2N ˆ2N unitary matrices given by

E " LM ,
where we define L and M in the following way. Let a " pa 1 , . . . a 2N q be complex numbers of the unit disk D. Define the 2 ˆ2 unitary matrix Ξ j Ξ j " ˆaj ρ j ρ j ´aj ˙, j " 1, . . . , 2N , ρ j " b 1 ´|a j | 2 .

(1.1)

Then, L and M are the 2N ˆ2N matrices

L " ¨Ξ1 Ξ 3 . . . Ξ 2N ´1‹ ‹ ‹ ' , M " ¨´a 2N ρ 2N Ξ 2 . . . Ξ 2N ´2 ρ 2N a 2N ‹ ‹ ‹ ‹ ‹ '
.

The matrix E is a pentadiagonal periodic matrix and is unitary.

• Type 1-iv ) Two diagonals periodic matrices given by 

‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' r `1 row N ´r column 1 INTRODUCTION 3 
Where a, b P R N `. In applications, we consider either a 1 " a 2 " . . . " a N " 1 or b 1 " b 2 " . . . " b N " 1.

We also consider the non-periodic counterparts of the previous matrices. More specifically:

• Type 2-i ) Jacobi matrices, which are symmetric tridiagonal matrices

¨a1 b 1 b 1 a 2 b 2 b 2 . . . . . . . . . . . . b N ´1 b N ´1 a N ‹ ‹ ‹ ‹ ‹ ‹ '
, where a P R N and b P R N ´1 `.

• Type 2-ii ) Bidiagonal Antisymmetric matrices:

¨0 a 1 0 ´a1 0 a 2 . . . 0 ´a2 0 . . . 0 . . . . . . . . . a N ´1 0 ´aN´1 0 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' , for a P R N ´1 `.
• Type 2-iii ) CMV matrices, 2N ˆ2N unitary matrices of the form E " LM , where L " diag pΞ 0 , Ξ 2 , Ξ 4 , . . . , Ξ 2N q and M " diag pΞ 1 , Ξ 3 , Ξ 5 . . . , Ξ 2N ´1q , and the blocks Ξ j , j " 1, . . . , 2N ´1 are defined in (1.1), while Ξ 0 " p1q and Ξ 2N " pa 2N q are 1 ˆ1 matrices.

The periodic matrices that we consider are the Lax matrices of some integrable models. These are particular dynamical systems that are Liouville integrable, and their integrability is proved obtaining a Lax pair pL, Aq [START_REF] Lax | Integrals of nonlinear equations of evolution and solitary waves[END_REF] representation of the model, meaning that the equations of motions for each of these systems are equivalent to the following linear system for some matrices L, A 9 L " dL dt " rL; As " LA ´AL .

This formulation is useful since it implies that tTr `Lk ˘uN k"1 are a system of independent constants of motion ˆd dt Tr `Lk ˘" 0q ˙for the system at hand, so the system is integrable in classical sense. We call these quantities conserved fields.

Specifically, the Toda lattice [START_REF] Toda | Theory of nonlinear lattices[END_REF] and the Exponential Toda lattice [START_REF] Grava | Discrete integrable systems and random Lax matrices[END_REF] have as Lax matrix a periodic Jacobi matrix, the Volterra lattice [START_REF] Grava | Discrete integrable systems and random Lax matrices[END_REF] has an antisymmetric periodic one, the Ablowitz-Ladik lattice [START_REF] Ablowitz | Nonlinear differential-difference equations[END_REF] and the Schur flow [START_REF] Golinskii | Schur flows and orthogonal polynomials on the unit circle[END_REF] have a periodic CMV one, and the family of Itoh-Narita-Bogoyavleskii [START_REF] Bogoyavlensky | Integrable discretizations of the KdV equation[END_REF] lattices have a bidiagonal periodic one.

We endow the periodic matrices L of type 1 with the so-called Generalized Gibbs Ensemble of the corresponding dynamical system. The main property of these measures is that they are invariant with respect to the dynamics of the corresponding integrable system. These Generalized Gibbs Ensembles have the form

µ p1q N " 1 Z p1q N pα, Gq ˜N ź j"1 F px j , αq ¸e´TrpGpLqq dx , (1.2) 
where x " pa, bq for Jacobi matrices, x " a for antisymmetric matrix, x " a for periodic CMV matrices, x " a (resp. x " b) for bidiagonal periodic matrices if b 1 " . . . " b N " 1 (resp. if a 1 " . . . " a N " 1) and G is a real-valued continuous function.

The non-periodic matrices of type 2 are related to the classical β ensembles, indeed both the real β ensemble and the Laguerre β ensemble [START_REF]Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models[END_REF] can be represented through a Jacobi matrix, the circular and the Jacobi ensemble have a representation in terms of CMV matrices [START_REF] Killip | Matrix models for circular ensembles[END_REF], and the Antisymmetric β ensemble has a representation in terms of an antisymmetric matrix [START_REF] Dumitriu | Tridiagonal realization of the antisymmetric Gaussian β-ensemble[END_REF]. Specifically, we consider these ensembles in the high-temperature regime, meaning that the parameter β is not fixed, but scales with the matrix size N as β " 2α N , α P R `. The joint density for the entries of the matrix representation reads

µ p2q N " 1 Z p2q N pα, Gq ˜N´1 ź j"1 F ˆxj , α ˆ1 ´j N ˙˙¸R px N qe ´TrpGpLqq dx , (1.3) 
where x " pa, bq for tridiagonal matrices, x " a for the antisymmetric one and x " a for CMV one.

As we already mentioned, we focus on the fluctuations (or linear statistics) around the equilibrium measure of these general models, where we choose the functions F and G so that the partition functions

Z p1q N pα, Gq " ż X N ˜N ź j"1 F px j , αq ¸e´TrpGpLqq dx Z p2q N pα, Gq " ż X N ˜N´1 ź j"1 F ˆxj , α ˆ1 ´j N ˙˙¸R px N qe ´TrpGpLqq dx
are finite for all N . Here X is a subset of R d (C being identified with R 2 ). Specifically, we study the fluctuations of polynomial test functions Qpzq, i.e.

ż C Qdν N ´żγ Qdν , (1.4) 
where ν N is the empirical measure of eigenvalues of L given by

ν N " 1 N N ÿ j"1
δ λ j pLq .

(1.5)

Here the λ j pLq are the eigenvalues of L and δ x is the Dirac delta function centred at x, ν is the equilibrium measure (or density of states) of the system and γ is the support of the measure ν. In this paper, we are able to analyse the random variable (1.4) for polynomial potentials G, using a transfer operator technique.

The study of spectral properties of Lax matrices of integrable models was initiated by Spohn in [START_REF]Generalized Gibbs Ensembles of the Classical Toda Chain[END_REF], see also [START_REF] Mazzuca | On the mean density of states of some matrices related to the beta ensembles and an application to the Toda lattice[END_REF]. In this paper, the author investigated time correlation functions for the Toda lattice. Applying the theory of Generalized Hydrodynamic [START_REF] Doyon | Lecture Notes On Generalised Hydrodynamics[END_REF], Spohn argued that they have a ballistic behaviour, meaning that they have symmetrically located peaks, which travel in opposite directions at constant speed and decay as t ´1 when t Ñ 8. To obtain this result, Spohn had to compute the density of states of the Toda Lax matrix; he did it by connecting the Generalized Gibbs Ensemble of the Toda lattice to the real β ensemble in the high-temperature regime [START_REF] Allez | Invariant beta ensembles and the gauss-Wigner crossover[END_REF]. After that, the Generalized Gibbs ensemble for the Ablowitz-Ladik lattice and the Schur flow were connected to the Circular β ensemble and the Jacobi β ensemble in the hightemperature regime [START_REF] Forrester | The classical β-ensembles with β proportional to 1{N : from loop equations to Dyson's disordered chain[END_REF][START_REF] Hardy | CLT for circular beta-ensembles at high temperature[END_REF] respectively by one of the present authors and T. Grava [START_REF] Grava | Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, Circular β-ensemble and double confluent Heun equation[END_REF] and, independently, by H. Spohn [START_REF]The collision rate ansatz for the classical Toda lattice[END_REF]. For all these models, a large deviation principle for their mean density of states were developed in [START_REF] Guionnet | Large deviations for Gibbs ensembles of the classical Toda chain[END_REF][START_REF] Mazzuca | Large deviations for Ablowitz-Ladik lattice, and the Schur flow[END_REF]. Furthermore, in [START_REF] Grava | Discrete integrable systems and random Lax matrices[END_REF] the authors were able to connect the classical Gibbs ensemble for the Exponential Toda lattice and the Volterra one to the Laguerre [START_REF]Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models[END_REF] and to the Antisymmetric β ensemble [START_REF] Dumitriu | Tridiagonal realization of the antisymmetric Gaussian β-ensemble[END_REF] respectively.

As we mentioned, our study does not only involve integrable systems, but also the classical β ensembles. Specifically, we study the random variable (1.4) for these ensembles in the so-called high-temperature regime. The study of these quantities was initiated by Johansson in [START_REF] Johansson | On the fluctuations of eigenvalues of random hermitian matrices[END_REF], where the author obtained a CLT for the Gaussian Unitary Ensemble with polynomial potential, then generalized for other models and other values of β in [START_REF] Borot | Asymptotic expansion of β matrix models in the one-cut regime[END_REF][START_REF] Dumitriu | Global fluctuations for linear statistics of β-Jacobi ensembles[END_REF][START_REF] Shcherbina | Asymptotic expansions for beta matrix models and their applications to the universality conjecture[END_REF], and, more recently, in [START_REF] Bourgade | Optimal local law and central limit theorem for β-ensembles[END_REF], where the authors obtained also a rigidity result for the eigenvalues of the β ensembles. We mention also the work [START_REF] Nakano | Gaussian beta ensembles at high temperature: eigenvalue fluctuations and bulk statistics[END_REF], where the author obtained a CLT for the Gaussian β ensemble in the high-temperature regime for a quadratic potential, the work [START_REF] Hardy | CLT for circular beta-ensembles at high temperature[END_REF] where the authors obtained a CLT for the Circular β ensemble at high-temperature using a normal approximation method, and the recent paper [START_REF] Guera | CLT for real β-Ensembles at High Temperature[END_REF] where the authors obtained a CLT for the real β ensemble in the hightemperature regime for general confining potentials. Another relevant paper that it is worth mentioning is [START_REF] Armstrong | Local laws and rigidity for Coulomb gases at any temperature[END_REF], where the authors studied Coulomb gases in dimension d ě 2 and studied the local laws for any temperature regime. Finally, we recall also the recent work [START_REF] Courteaut | Multivariate normal approximation for traces of orthogonal and symplectic matrices[END_REF][START_REF] Courteaut | From Berry-Esseen to superexponential[END_REF] where the authors obtained a super-exponential bound for the convergence for the moments of the CUE, COE and CSE to a Gaussian vector.

Statement of the results. We come to precise statements of the main results of the present paper. We consider the previously mentioned family of random matrices and make the following assumptions.

Hypotheses 1.1. The following hypotheses are valid throughout the paper: HP 1. X Ď R d ; HP 2. F px, ηq is such that for any η ą 0 F p¨, ηq P C 1 pXq, and for any x P X, F px, ¨q P C 8 pp0, `8qq ; HP 3. F px, ηq ą 0 almost surely for x P X, η P p0, 8q; HP 4. F p¨, ηq P L 1 pX, Bq X L 2 pX, Bq for all η P p0, 8q, and B η F p¨, ηq P L 1 pX, Bq X L 2 pX, Bq; moreover there exist a c P N and a compact set O Ď X such that

• ||F px, ηq|| 2 " Opη ´cq
• There exists d ą 0 such that for all η ą 0, ş O F px, ηqdx ě dη ´c HP 5. The function Tr pGpLqq, where L is one of the matrices of type 1 or 2, is circular, meaning that there exists some k P N ě1 and two functions W :

X k ˆXk Ñ C, W 1 : X ℓ ˆXk Ñ C, Ă W 1 : X k Ñ C, Ă W 2 : X ℓ Ñ C, such that writing N " kM `ℓ with M ě 0 and 0 ď ℓ ď k ´1, we have Tr pGpLqq " $ ' ' ' ' & ' ' ' ' % ř M ´1 j"1 W px j , x j`1 q `W1 px M , x kM `1, . . . , x kM `ℓ, x 1 q
for type 1

M ´1 ÿ j"1 W px j , x j`1 q `Ă W 1 px 1 q `W px M , x kM `1, . . . , x kM `ℓ, 0, . . . , 0q `Ă W 2 px kM `1, . . . , x kM `ℓqq
for type 2 , here x j " px pj´1qk`1 , . . . , x jk q. In this case, we say that W is the seed of G, and

W 1 , Ă W 1 , Ă W 2 are the weeds.
HP 6. The real parts of W, W 1 , Ă W 1 , Ă W 2 are lower bounded. Furthermore, exp p´W q P L 2 pX k Xk q, exp p´W 1 q P L 2 pX k ˆXℓ ˆXk q, exp ´´Ă W 1 ¯P L 2 pX k q, and exp ´´Ă W 2 ¯P L 2 pX ℓ q HP 7. Both integrals ż

X k ˜Bη k ź q"1 F px q , ηq ¸2 e ´2W px,yq dxdy , ż X k ˜Bη k ź q"1 F ˆxq , η ˆ1 ´pj ´1qk `q N ˙˙¸2
e ´2W px,yq dxdy are finite.

HP 8. Rpxq P L 2 pXq X C 8 pXq, and Rpxq ą 0 for all x P X, or Rpxq " δ y pxq for some y P X.

Here L p pX, Bq is the usual L p space.

Remark 1.1. The definition of circular function and seeds was introduced in this context in [START_REF] Giorgilli | An Extensive Adiabatic Invariant for the Klein-Gordon Model in the Thermodynamic Limit[END_REF].

Under these assumptions, we are able to prove our main theorem:

Theorem 1.2. Under hypotheses 1.1. Consider µ p1q N , µ p2q N (1.2)-(1.
3), and let pS N q N ě1 be a sequence of real random variables such that there exists a function H : C Ñ R such that Tr pHpLqq is circular, it satisfies HP 6., and 

E 1 " e ´itS N ‰ " Z p1q N pα, G `itHq Z p1q N pα, Gq , E 2 " e ´itS N ‰ " Z p2q N pα, G `itHq Z p2q N pα,

Apαxqdx

˙{? N

converges to a Gaussian distribution N p0, ş 1 0 σ 2 pαxqdxq as N tends to infinity. Furthermore, defining the free energies

F p1q N pα, Gq, F p2q N pα, Gq as F p1q N pα, Gq " ´lim N Ñ8 1 N ln ´Zp1q N pα, Gq ¯, (1.6) 
F p2q N pα, Gq " ´lim N Ñ8 1 N ln ´Zp2q N pα, Gq ¯, then i. F p1q pα, Gq " B α `αF p2q pα, Gq ȋi. Apαq " iB t F p1q pα, G `itHq | t"0 iii. ş 1 0 Apαxq " iB t F p2q pα, G `itHq | t"0 iv. σ 2 pαq " B 2 t F p1q pα, G `itHq | t"0 v. ş 1 0 σ 2 pαxqdx " B 2 t F p2q pα, G `itHq | t"0 Remark 1.3.
In the central part of the proof we introduce a family of operators acting on L 2 pX k q by

L t,α f pyq " ż X k f pxq k ź j"1
F px j qe ´pW `ithqpx,yq dxdy .

Because of our assumptions, each L t,α is Hilbert-Schmidt, meaning that the kernel

px, yq Þ Ñ k ź j"1 F px j qe ´pW `ithqpx,yq
is in L 2 pX k ˆXk q, thus L t,α is compact, and, as we show in the proof of Theorem 2.1, L 0,α has a simple dominating eigenvalue. Hypothesis HP 7. and the assumption that the integrals ż

X 2k
|hpx, yq| n e ´2W px,yq dxdy n " 2, 4, 6

are finite is merely to ensure that pα, tq Þ Ñ L t,α is regular. In particular, it is differentiable with respect to α, and three times differentiable with respect to t as an operator valued function, which in turn ensures that for t small enough, the operator L t,α has a simple, dominating eigenvalue λpt, αq and that t Þ Ñ λpt, αq is three times differentiable. Note that we only use the existence of a second derivative with respect to t in the proof of the main theorem, but use the existence of a third derivative in the proof of the Berry-Esseen bound, Theorem 4.5. We use the differentiability with respect to α in the proof of Theorem 2.2.

In the central part of our paper, we show how to use the previous result to obtain a polynomial CLT for the integrable models that we mentioned, and for the classical β ensemble in the hightemperature regime. Specifically, we use the previous theorem with G and H polynomials and

S N " 1 N Tr pHpLqq (1.5) " ż C Hpxqdν N pxq .
The expectations we want to compute then reduce to

E j " e ´itS N ‰ " Z pjq N pα, G `itHq Z pjq N pα, Gq , j " 1, 2 .
Furthermore, as a by-product, we are also able to compute the so-called susceptibility matrix C for integrable models. This is the matrix of the space-correlation functions of the conserved fields, i.e.

C m,n " lim N Ñ8

1 N pE 1 rTr pL m q Tr pL n qs ´E1 rTr pL m qs E 1 rTr pL n qsq , where L is the Lax matrix of the integrable system at hand and the mean values are taken with respect to the corresponding Generalized Gibbs ensemble. The computation of such quantities is relevant to obtain the decay of the correlation functions for these integrable systems, as it is shown by Spohn in [START_REF] Spohn | Ballistic space-time correlators of the classical Toda lattice[END_REF]. In particular, we can prove the following:

Theorem 1.4. Under the same hypotheses as Theorem 1.2. Consider µ p1q N (1.2) and define the free energy F p1q pα, Gq as in (1.6), then

C m,n " B t 1 B t 2 ´Fp1q pα, G `it 1 x m `it 2 x n q ¯|t 1 "t 2 "0 . (1.7)
Remark 1.5. In view of Theorem 1.2, we can rewrite (1.7) as

C m,n " B α B t 1 B t 2 ´α ´Fp2q pα, G `it 1 x m `it 2 x n q ¯¯| t 1 "t 2 "0 .
In our context, the previous equality implies that we can compute the susceptibility matrix of the integrable systems that we are considering in terms of just the free energy of the corresponding classical β ensemble in the high-temperature regime.

Finally, considering the type 1 measures (1.2), we investigate the space-correlations for local functions, meaning that they depend only on a finite number (independent of N ) of consecutive variables, proving the following Theorem 1.6 (Decay of correlations). Let W be the seed of Tr pGpLqq and I, J : X k Ñ R two local functions such that ş X k ˆXk ˇˇIpxq ś k i"1 F px i , αqe ´W px,yq ˇˇ2 dxdy ă 8, and analogously for Jpxq. Write N " kM `ℓ, and let j P t1, . . . , M u. Then there exists some 0 ă µ ă 1 such that E 1 rIpx 1 qJpx j qs ´E1 rIpx 1 qs E 1 rJpx j qs " Opµ M ´j `µj q .

In particular, this result implies that the space-correlations between two local functions acting on two different parts of the chain decay exponentially fast according to the distance between the set of particles they are acting on. In section 3.1, we use the previous result to rigorously justify the assumption of H. Spohn on the decay of space-correlations between the local conserved fields and their currents [START_REF]Hydrodynamic Equations for the Toda Lattice[END_REF]; we mention also that one can follow exactly the same reasoning for all the other integrable systems that we consider.

The paper is organized as follows, in section 2 we state the theoretical results that lead to the proofs of Theorems 1.2 and 1.4. In section 3 we show how to apply our results to obtain a central limit theorem for several integrable systems and for the corresponding β ensembles in the high-temperature regime. A summary of these models can be found in Table 1. Specifically, we obtain a CLT for the Toda lattice and the real β ensemble, for the Exponential Toda lattice and the Laguerre β ensemble, the defocusing Ablowitz-Laddik lattice and the Circular β ensemble, the defocusing Schur flow and the Jacobi β ensemble, the Volterra lattice and the antisymmetric β ensemble, and for the families of Itoh-Narita-Bogoyavleskii (INB) multiplicative, and additive lattices. Furthermore, we apply Theorem 1.6 to the Toda lattice to derive the limiting currents of the conserved fields. In section 4, we prove the technical results we used in section 2, we prove Theorem 1.6 and deduce a Berry-Esseen type bound for all the previously considered integrable models. Finally, in section 5 we give some conclusions and outlooks for future developments on this topic.

Integrable System (Type 1)

β-ensemble at high-temperature (Type 2) In this section, we prove Theorem 1.2-1.4, to do that we need to develop the fluctuations' theory of Nagaev-Guivarc'h [START_REF] Gouëzel | Limit theorems in dynamical systems using the spectral method[END_REF][START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov[END_REF][START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF][START_REF] Nagaev | Some limit theorems for stationary Markov chains[END_REF] through transfer operator methods, see for example [START_REF] Kevrekidis | The Discrete Nonlinear Schrödinger Equation: A Survey of Recent Results[END_REF][START_REF] Krumhansl | Dynamics and statistical mechanics of a onedimensional model Hamiltonian for structural phase transitions[END_REF][START_REF] Peyrard | Statistical mechanics of a nonlinear model for DNA denaturation[END_REF]. The proof of these theorems is divided into 3 main parts. In the first one, we compute E 1 " e ´itTrpHq ‰ , E 2 " e ´itTrpHq ‰ through transfer operator techniques. Since the proof of these results is technical, we postpone it to section 4. Our proof follows the same line as the corresponding one in [START_REF] Grava | Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, Circular β-ensemble and double confluent Heun equation[END_REF]. In the second part, we prove a slight generalization of Nagaev-Guivarc'h theorems [START_REF] Gouëzel | Limit theorems in dynamical systems using the spectral method[END_REF]. In the last part, we combine the previous two results to complete the proof of Theorem 1.2-1.4.

In view of the hypotheses 1.1, we consider the following decomposition of N " kM `ℓ, in this notation, we can rewrite our measures as

µ p1q kM `ℓ " 1 Z p1q kM `ℓpα, W q kM `ℓ ź j"1 F px j , αq M ´1 ź j"1 exp p´W px j , x j`1 qq (2.1) ˆexp p´W 1 px M , x kM `1, . . . , x kM `ℓ, x 1 qq kM `ℓ ź j"1 dx j µ p2q kM `ℓ " 1 Z p2q kM `ℓpα, W q kM `ℓ´1 ź j"1 F ˆxj , α ˆ1 ´j kM `ℓ ˙˙M´1 ź j"1
exp p´W px j , x j`1 qq (2.2)

ˆexp ´´Ă W 1 px 1 q ´W px M , x kM `1, . . . , x kM `ℓ, 0, . . . , 0q ēxp ´´Ă W 2 px kM `1, . . . , x kM `ℓq ¯Rpx N q kM `ℓ ź j"1 dx j ,
Where x j " px kpj´1q`1 , . . . , x kj q and the partition functions become:

Z p1q kM `ℓpα, W q " ż X kM `ℓ kM `ℓ ź j"1 F px j , αq M ´1 ź j"1 exp p´W px j , x j`1 qq (2.3) ˆexp p´W 1 px M , x kM `1, . . . , x kM `ℓ, x 1 qq kM `ℓ ź j"1 dx j Z p2q kM `ℓpα, W q " ż X kM `ℓ kM `ℓ´1 ź j"1 F ˆxj , α ˆ1 ´j kM `ℓ ˙˙M´1 ź j"1
exp p´W px j , x j`1 qq (2.4)

ˆexp ´´W px M , x kM `1, . . . , x kM `ℓ, 0, . . . , 0q ´Ă W 2 px kM `1, . . . , x kM `ℓq ēxp ´´Ă W 1 px 1 q ¯Rpx N q kM `ℓ ź j"1 dx j , we set Z psq N pα, W q " Z psq N pα, Gq, s " 1, 2. On the space L 2 pX k , B k q we introduce the standard scalar product for f, g P L 2 pX k , B k q as xf ; gy "

ż X k f pxqgpxqdx .
Furthermore, for I, J Ă R, and E a normed space, denote by C s,d pI ˆJ, Eq the functions f : I ˆJ Ñ X that are C s (respectively C d ) with respect to the first (respectively the second) variable. If s " d, then we set C d pI ˆJ, Eq " C d,d pI ˆJ, Eq, and if the normed space E " C we just omit it.

Transfer operator for partitions functions. As we already stated, in the first part of the section, we apply the transfer operator method in order to compute E 1 " e ´itH ‰ , E 2 " e ´itH ‰ . In particular, we prove the following theorems Theorem 2.1. Under Assumptions 1.1. Consider a real function H : C Ñ R such that Tr pHpLqq is circular, and let W be the seed of Tr pGpLq `itHpLqq, thus W px, yq " V px, yq ìtU px, yq for V, U : X k ˆXk Ñ R seeds of Tr pGpLqq , Tr pHpLqq. Furthermore, assume that U P L d pX 2k , expp´2V qq, with N Q d ě 6. Then, there exists an ε ą 0, and two complex valued functions λ py, tq P C 1,d pR `ˆr´ε, εsq and c k,ℓ py, tq P C 1,d pR ˆr´ε, εsq such that for all q P N :

E 1 " e ´itTrpHq ı " Z p1q kM `ℓpα, tq Z p1q kM `ℓpα, 0q " c k,ℓ pα, tqλpα, tq M ´2 `1 `opM ´q q ˘, as M Ñ 8 , for |t| ă ε, here Z p1q kM `ℓpα, tq " Z p1q kM `ℓpα, V `itU q. Furthermore, λpx, 0q " 1 , c k,ℓ px, 0q " 1 .
Moreover, there exist two functions r c k,ℓ pα, tq P C 1,d pR ˆr´ε, εsq and r λpα, tq P C 1,d pR `ˆr´ε, εsq such that there exist two constants C 1 , C 2 ą 0 such that for all q P N:

C 1 ă r c k,ℓ pα, tq ă C 2 , λpα, tq " r λpα, tq r λpα, 0q , Z p1q kM `ℓpα, tq " r c k,ℓ pα, tq r λpα, tq M ´2 `1 `opM ´qq ˘.
(2.5)

In the next theorem, we prove an analogue decomposition of the partition function for the second type of measure. This decomposition involves the same function λpy, tq as in Theorem 2.1. Theorem 2.2. Under Assumptions 1.1. Consider a real function H : C Ñ R such that Tr pHpLqq is circular (HP 5.), and let W be the seed of Tr pGpLq `itHpLqq, thus W px, yq " V px, yq `itU px, yq for V, U : X k ˆXk Ñ R seeds of Tr pGpLqq , Tr pHpLqq. Furthermore, assume that U P L d pX 2k , expp´2V qq, with N Q d ě 6.

Then, there exists an ε ą 0 and c k,ℓ,M py, tq P C Moreover, there exist two functions r c k,ℓ,M pα, tq P C 1,d pR `ˆr´ε, εsq, r λpα, tq P C 1,d pR `r´ε, εsq, and three constants C 1 , C 2 ą 0 and p P N such that

C 1 N p ă r c k,ℓ,M pα, tq ă C 2 N p , λpα, tq " r λpα, tq r λpα, 0q , Z p2q kM `ℓpα, tq " r c k,ℓ,M pα, tq M ´2 ź j"1 r λ ˆα j M , t ˙p1 `oM p1qq .
Since the proof of these results is technical, we postpone it to Section 4.

Generalization of Nagaev-Guivarc'h method. In this second part, we need to generalize some standard results from the fluctuation theory of Nagaev-Guivarc'h [START_REF] Gouëzel | Limit theorems in dynamical systems using the spectral method[END_REF] to our situation. Specifically, we prove the following:

Theorem 2.3. Let pX n q ně1 be a sequence of real random variables with partial sums pS n q ně1 P R. Assume that there exists ε ą 0, two functions λptq P C 1 pr0, εqq, cptq P C 0 pr0, εqq and h n ptq P C 0 pr0, εqq, such that for all t P r´ε, εs, and all n ě 1 we have

E " e ´itSn ‰ " cptqλptq m p1 `hn ptqq , (2.6) 
Where lim nÑ8 n{m " k P N. Furthermore, assume that: a. there exists A, σ 2 P C such that λptq " exp `´iAt ´σ2 t 2 {2 `opt 3 q ˘as t Ñ 0;

b. h n nÑ8 ÝÝÝÑ 0 uniformly in r´ε, εs, and h n p0q " 0; c. cp0q " 1.

Then A P R, σ 2 ě 0, and pS n ´nA{kq { ? n converges to a Gaussian distribution N p0, σ 2 {kq as n tends to infinity.

Proof. First, evaluating (2.6) at t " 0, we deduce that λp0q " 1. Then, we use the asymptotic expansion of λptq, and properties b.-c. to prove that

E " exp ˆ´it S n ´mA n ˙ ÝÝÝÑ nÑ8 1 .
Thus, by Lévy theorem [START_REF] Williams | Probability with martingales[END_REF], we deduce that S n {n ´A{k converges in distribution to 0. So, since S n is real, then A P R. Exploiting again the asymptotic expansion of λptq and properties b.-c., we show that E " exp ´´it Sn´mA ? n ¯ı converges to the function exp ´´σ 2 t 2 2k ¯. By Lévy theorem [START_REF] Williams | Probability with martingales[END_REF], this must be the characteristic function of a real random variable, proving that σ 2 ě 0, and that pS n ´nA{kq{ ? n converges to a Gaussian distribution N p0, σ 2 {kq.

Further, we prove the following:

Theorem 2.4. Let pX n q ně1 be a sequence of random variables with partial sums pS n q ně1 P R.

Assume that there exists ε ą 0 and functions λpx, tq P C 

F p1q pα, W q " ´lim M Ñ8 lnpZ p1q kM `ℓpα, W qq kM `ℓ , F p2q pα, W q " ´lim M Ñ8 lnpZ p2q kM `ℓpα, W qq kM `ℓ ,
then, using the same notation as in Lemma 2.5, the following holds:

i. F p1q pα, W q " B α `αF p2q pα, W q ȋi.

Apαq

" ikB t F p1q pα, W `itU q | t"0 iii. r Apαq " ikB t F p2q pα, W `itU q | t"0 iv. σpαq " kB 2 t F p1q pα, W `itU q | t"0 v. r σpαq " kB 2 t F p2q pα, W `itU q | t"0
Remark 2.7. The previous theorem implies that

Apαq " B α pα r Apαqq , σ 2 pαq " B α pαr σ 2 pαqq .

Proof. To prove i., we can just compute the free energy of µ p1q kM `ℓ, µ p2q kM `ℓ using Theorem 2.1-2.2. For F p1q pα, W q we deduce immediately that

F p1q pα, W q " ´lim M Ñ8 1 kM `ℓ lnpZ p1q kM `ℓq (2.5) " ´lim M Ñ8 M kM `ℓ lnp r λpα, 0qq " ´1 k lnp r λpα, 0qq .
(2.7)

The proof for F p2q pα, W q follows in the same way. We now prove ii. ´iv. First, we notice that following the notation of Theorem 2.3 -2.1 :

cptq " c k,ℓ pα, tq , h n " 1 `opM ´qq , λptq " λpα, tq , thus to compute explicitly Apα, W q, σpα, W q we have just to expand λpα, tq around t " 0

λpα, tq " 1 `tB t λpα, 0q `t2 2 B 2 t λpα, 0q `opt 3 q , which implies that λpα, tq " exp ˆtB t lnpλpα, tqq | t"0 `t2 2 B 2 t lnpλpα, tqq | t"0 `opt 3 q ˙. (2.8)
This implies that Apαq " ´iB t lnpλpα, tqq | t"0 , σ 2 pαq " ´B2 t lnpλpα, tqq | t"0 . From (2.5), we deduce that B t lnpλpα, tqq | t"0 " B t lnp r λpα, tqq | t"0 , thus from the previous expressions and the explicit form of the free energy (2.7) we conclude.

To prove iii. ´v. we proceed in the same way, thus following the notation of Theorem 2.4 -2.2:

c n ptq " c k,ℓ,M pα, tq , h n " 1 `op1q , λ pj{M, tq " λ ˆα j M , t ˙.
Thus, as in (2.8) except that α Ñ α j M , we expand λ ´α j M , t ¯around t " 0, leading to

r Apαq " B t ˆż 1 0 lnpλpαx, tqqdx ˙|t"0 , r σ 2 pαq " B 2 t ˆż 1 0 lnpλpαx, tqqdx ˙|t"0
which concludes the proof.

Remark 2.8. We notice that the Lemma 2.6, and Lemma 2.5 imply that we can compute the expected values, and the variances of S kM `ℓ according to µ p1q kM `ℓ, µ p2q kM `ℓ just computing derivatives of the corresponding free energy. This property is broadly used in the physics literature, but we lacked of a precise statement, and of a proof for the general result. Furthermore, we can compute the expected value, and the variance of S kM `ℓ according to µ p1q kM `ℓ starting from the corresponding values for µ p2q kM `ℓ. Thus, we have reduced all this problem to the computation of the free energy of µ p2q kM `ℓ.

The proof of both Theorem 1.2 and Theorem 1.4 follows from the four previous lemmas. Thus, we have completed the proof of our main theorems, and now we show how to apply them to some integrable models, and the β ensembles in the high-temperature regime.

Application

In this section, we show how to apply Theorem 1.2 to obtain a CLT for some integrable systems and for the classical β ensembles in the high-temperature regime. Namely, we prove a CLT for the systems of table 1.

Specifically, we are able to prove that all the integrable systems in table 1 in the periodic case have a Generalized Gibbs ensemble of the form µ p1q kM `ℓ (2.1), that is the reason of the label "type 1". Meanwhile, the β ensembles at high-temperatures are characterized by a probability distribution of the form µ p2q kM `ℓ (2.2), that is the reason for the label "type 2". In this way, we proved a further connection between the theory of integrable systems and Random Matrix Theory. Indeed, in view of Theorem 1.2 and Theorem 1.4, for any integrable system in the previous table, we can relate its free energy, moments, variances and covariances with the corresponding quantities of the random matrix model on the same line. Moreover, in the final part of this section, we consider the family of INB lattices that do not have a known β ensemble counterpart. Despite that, we are still able to derive the existence of a polynomial central limit theorem. Finally, applying Theorem 1.6, we are able to show that for the Toda lattice the space-correlations between the local conserved fields and the currents decay exponentially.

The Toda lattice, and the real β ensemble at high-temperature

In this subsection, we focus on the Toda lattice, which is an integrable model, and its relation with the real β ensemble in the high-temperature regime. The connection between these two systems was first realized by Spohn in [START_REF]Generalized Gibbs Ensembles of the Classical Toda Chain[END_REF], see also [START_REF] Mazzuca | On the mean density of states of some matrices related to the beta ensembles and an application to the Toda lattice[END_REF][START_REF] Spohn | Ballistic space-time correlators of the classical Toda lattice[END_REF]. In this seminal paper, the author was able to compute the density of states for the Toda lattice when the initial data is sampled according to a Generalized Gibbs ensemble in terms of one of the Gaussian β ensemble in the high-temperature regime. This was further developed in [START_REF] Guionnet | Large deviations for Gibbs ensembles of the classical Toda chain[END_REF] where the authors obtained a Large Deviations Principle for the Toda lattice, and they connect it to the one for the real β ensemble in the high-temperature regime. In this paper, we further develop this analysis, obtaining a CLT theorem for these two systems, and connecting them. This result is particularly relevant in the context of the so-called Generalized Hydrodynamics, a recent physical theory that allows computing the correlation functions for classical integrable models, for an introduction to the subject see [START_REF] Doyon | Lecture Notes On Generalised Hydrodynamics[END_REF][START_REF]Hydrodynamic Equations for the Toda Lattice[END_REF]. According to this theory, one of the main ingredients to compute the correlation functions for the integrable model at hand is to be able to calculate the correlation functions for the conserved fields at time 0. Thanks to our result, we are able to access these quantities. We show how to do it at the end of this subsection. We mention also the recent work [START_REF] Mazzuca | Equilibrium Spacetime Correlations of the Toda Lattice on the Hydrodynamic Scale[END_REF], where the authors made molecular dynamics simulations of the correlation functions of the Toda lattice, and they compared them with the predictions of linear Generalized Hydrodynamics, showing an astonishing agreement.

The Toda lattice. The classical Toda chain [START_REF] Toda | Theory of nonlinear lattices[END_REF] is the dynamical system described by the following Hamiltonian:

H T pp, qq :" 1 2 N ÿ j"1 p 2 j `N ÿ j"1 V T pq j`1 ´qj q , V T pxq " e ´x `x ´1 ,
with periodic boundary conditions q j`N " q j `Ω @ j P Z, Ω ą 0. Its equations of motion take the form 9 q j " BH T Bp j " p j , 9 p j " ´BH T Bq j " V 1 T pq j`1 ´qj q ´V 1 T pq j ´qj´1 q, j " 1, . . . , N .

(3.1)
It is well known that the Toda chain is an integrable system [START_REF] Hénon | Integrals of the Toda lattice[END_REF][START_REF] Toda | Theory of nonlinear lattices[END_REF], one way to prove it is to put the Toda equations in Lax pair form. This was obtained by Flaschka [START_REF] Toda Lattice | Existence of integrals[END_REF], and Manakov [START_REF] Manakov | Complete integrability and stochastization of discrete dynamical systems[END_REF] through the following non-canonical change of coordinates:

a j :" ´pj , b j :" e 1 2 pq j ´qj`1 q " e ´1 2 r j , 1 ď j ď N ,
where r j " q j`1 ´qj is the relative distance.

Defining the Lax operator L as the periodic Jacobi matrix [START_REF] Van Moerbeke | The spectrum of Jacobi matrices[END_REF] L :"

¨a1 b 1 0 . . . b N b 1 a 2 b 2 . . . . . . 0 b 2 a 3 . . . 0 . . . . . . . . . . . . b N ´1 b N . . . 0 b N ´1 a N ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' , (3.2) 
and the antisymmetric matrix B B :"

¨0 b 1 0 . . . ´bN ´b1 0 b 2 . . . . . . 0 ´b2 0 . . . 0 . . . . . . . . . . . . b N ´1 b N . . . 0 ´bN´1 0 ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
, a straightforward calculation shows that the equations of motions (3.1) are equivalent to

9 L " rB; Ls ,
where rB; Ls " BL ´LB is the commutator of two matrices. This form implies that Tr `Lk ˘,

k " 1, . . . , N are constants of motions for the Toda lattice, so the system is integrable. We call these quantities conserved fields.

On the phase space R N ˆRN `, we introduce the Generalized Gibbs Ensemble

dµ T :" 1 Z T N pα, P q N ź j"1 b 2α´1 j ½ b j ą0 e ´TrpP pLqq da db , (3.3) 
where P pxq is a polynomial of even degree with positive leading coefficients, and α ą 0 is a pressure parameter.

Our aim is to obtain a central limit theorem for the conserved fields when the initial data is sampled according to (3.3). So, we want to apply Theorem 1.2 to this model. To do that, we need some preparation. First, we recall the following result about the structure of the trace of periodic Jacobi matrices which was proved in [START_REF] Grava | Adiabatic invariants for the FPUT and Toda chain in the thermodynamic limit[END_REF]: Theorem 3.1 (cf. Theorem 3.1 [START_REF] Grava | Adiabatic invariants for the FPUT and Toda chain in the thermodynamic limit[END_REF]). For any 1 ď m ď N ´1, consider the matrix L given by (3.2). One has

Tr pL m q " N ÿ j"1 h pmq j
, where h pmq j :" rL m s jj is given explicitly by

h pmq j pp, rq " ÿ pn,qqPA pmq ρ pmq pn, qq r m´1 ź i"´r m a q i j`1 r m´1 ź i"´r m`1 b 2n i j`i ,
where it is understood a j " a j mod N `1, b j " b j mod N `1 and A pmq is the set

A pmq :" ! pn, qq P N Z 0 ˆNZ 0 : r m´1 ÿ i"´r m p2n i `qi q " m, @i ě 0, n i " 0 ñ n i`1 " q i`1 " 0, @i ă 0, n i`1 " 0 ñ n i " q i " 0
) .

The quantity r m :" tm{2u, N 0 " N Y t0u and ρ pmq pn, qq P N is given by ρ pmq pn, qq :" ˆn´1 `n0 `q0

q 0 ˙ˆn ´1 `n0 n 0 ˙r m´1 ź i"´Ă m i‰´1 ˆni `ni`1 `qi`1 ´1 q i`1 ˙ˆn i `ni`1 ´1 n i`1 ˙.
This Theorem immediately leads to the following Corollary Corollary 3.2. Fix m P N, and consider the matrix L (3.2). Then for N big enough, there exists some k " kpmq P N, and two polynomial functions

V : R 2k ˆR2k `Ñ R, V 1 : R 2k`ℓ ˆR2k`ℓ `Ñ R such that Tr pL m q " M ´1 ÿ j"1 V pa j , b j , a j`1 , b j`1 q`V 1 pa M , a kM `1, . . . , a kM `ℓ, a 1 , b M , b kM `1, . . . , b kM `ℓ, b 1 q ,
where N " kM `ℓ, a j " pa pj´1qk`1 , a pj´1qk`2 , . . . a jk q, and similarly for b j .

Remark 3.3. In other words, the function Tr pL m q is circular in the sense of Hypotheses 1.1, HP. 5. Furthermore, we notice that the local potential V px 1 , y 1 , x 2 , y 2 q is bounded from below, this can be proved using the explicit formula in Theorem 3.1 or applying the properties of super-Motzkin paths used for the proof of the theorem in [START_REF] Grava | Adiabatic invariants for the FPUT and Toda chain in the thermodynamic limit[END_REF].

We apply the previous Corollary to the Gibbs measure of the Toda lattice (3.3), so it can be written as

dµ T " 1 Z T N pβ, P q N ź j"1 b 2α´1 j ½ b j ą0 exp ´´M ÿ j"1 V pa j , b j , a j`1 , b j`1 q ´V1 pa M , a kM `1, . . . , a kM `ℓ, a 1 , b M , b kM `1, . . . , b kM `ℓ, b 1 q ¯da db .
We would like to apply Theorem 1.2 to the previous density with F pbq " b 2α´1 , and W " V , but in this case F R L 2 pR `q, so we have to take care of this issue. To do it, we fix ε ą 0, and consider the following measure

dµ T " 1 Z T N pβ, P q N ź j"1 b 2α´1 j e ´εpa 2 j `b2 j q ½ a j ą0 exp ´´M ÿ j"1 V pa j , b j , a j`1 , b j`1 q ´V1 pa M , a kM `1, . . . , a kM `ℓ, a 1 , b M , b kM `1, . . . , b kM `ℓ, b 1 q `ε N ÿ j"1 a 2 j `b2 j ¯da db ,
this is exactly the same measure as before, but, following the notation of Theorem 1.2, we can now set

F pa, b, αq " b 2α´1 e ´εpa 2 `b2 q , W pa j , b j , a j`1 , b j`1 q " V pa j , b j , a j`1 , b j`1 q ´ε 2 2k ÿ n"1 a 2 pj´1qk`n `b2 pj´1qk`n .
These functions satisfy the hypotheses of Theorem 1.2, so we can apply it and deduce the following Corollary 3.4 (CLT for the Toda lattice). Consider the Lax matrix L (3.2) of the Toda lattice distributed according to the Generalized Gibbs Ensemble (3.3), and assume that P pxq is a polynomial of even degree with positive leading order coefficient. Then, defining the Free energy F T pα, P q as F T pα, P q " ´lim N Ñ8

1 N lnpZ T N pα, P qq , for all j P N fixed, we have the following weak limit

lim N Ñ8 Tr `Lj ˘´E " Tr `Lj ˘‰ ? N á N p0, σ 2 q . Where E " Tr `Lj ˘‰ " iN B t F T pα, P `itx j q | t"0 , σ 2 " |B 2 t F T pα, P `itx j q | t"0 | .
Moreover, we can also apply Theorem 1.4 to compute the correlation between the conserved fields at time zero, indeed the theorem immediately implies that

lim N Ñ8 E " Tr `Lj ˘Tr pL n q ‰ ´E " Tr `Lj ˘‰ E rTr pL n qs N " B t 1 B t 2 F T pα, P `it 1 x j `it 2 x n q | t 1 ,t 2 "0 , (3.4 
) where the mean value is taken with respect to the Gibbs measure of the Toda lattice (3.3). We notice that this implies that we can compute the susceptibility matrix of the Toda lattice (1.7) in terms of the derivative of the Free energy.

The Toda chain's currents

Since the conserved fields are local quantities, they must satisfy a local conservation law. Following the notation of [START_REF]Hydrodynamic equations for the Ablowitz-Ladik discretization of the nonlinear Schrödinger equation[END_REF], we define Q rns,N j " L n j,j , where L P MatpN, Rq is (3.2). We can easily compute the evolution equation for such quantities as

d dt Q rns,N j " pBL n ´Ln Bq " b j´1 L n j,j´1 ´bj L n j`1,j . Defining J rns,N j " b j´1 L n j,j´1 , we have d dt Q rns,N j " J rns,N j ´Jrns,N j`1
and we say that J rns,N j is the current of the local conserved field Q rns,N j

. In particular, defining the matrix L Ó as

L Ó i,j " # L i,j if j ă i or i " 1, j " N 0 otherwise
we can recast the previous definition as J rns,N j " pL n L Ó q j,j .

We notice that both Q rns,N j and J rns,N j depend on time, and we adopt the convention that if not explicitly written the evaluation is at time 0. Furthermore, we define

Q rns,N " N ÿ j"1 Q rns,N j , J rns,N " N ÿ j"1 J rns,N j , (3.5) 
and we refer to Q rns,N as the n th -conserved field, and to J rns,N as the n th -total current. The evaluation of the expected values of both the currents J rns,N j and the total current J rns,N according to the Generalized Gibbs ensemble (3.3) is one of the crucial steps to apply the theory of Generalized Hydrodynamics to the Toda lattice, as it is explained in [START_REF]Hydrodynamic equations for the Ablowitz-Ladik discretization of the nonlinear Schrödinger equation[END_REF]. In this manuscript, the author used some heuristic arguments to explicitly derive the expression for these quantities, here we rigorously justify his argument applying Theorem 1.6.

First, we extend the definition of Q rns,N j and J rns,N j

for n " 0, setting Q r0s,N j " r j , and

J r0s,N j " ´pj " ´Qr1s,N j . We notice that ř N j"1 J r0s,N j " ´řN j"1 Q r1s,N j
is still a conserved field. We are now in position to show how to compute the limiting Toda average current

lim N Ñ8 1 N E " J rns,N ı ,
in terms of the susceptibility matrix (1.7) of the Toda chain, so in particular of the derivative of the Free energy (3.4). Indeed, we prove the following:

Lemma 3.5. Consider the Lax matrix L (3.2) of the Toda lattice distributed according to the Generalized Gibbs Ensemble (3.3), and assume that P pxq is a polynomial of even degree with positive leading order coefficient. Then, for any fixed n P N, and α P R `defining the total currents J rns,N as in (3.5) we have the following equality

lim N Ñ8 1 N E " J rns,N ı " ż α 0 B t 1 B t 2 F T ps, P `it 1 x `it 2 x n q | t 1 ,t 2 "0 ds.
Proof. In view of the cyclic structure of the measure µ T and of the total current, we deduce that

1 N E " J rns,N ı " E " J rns,N 1 ı .
Furthermore, for any fixed N , we deduce, by differentiating with respect to the parameter α, the following equality

B α E " J rns,N 1 ı " ´Cov ˜Jrns,N 1 ; N ÿ j"1 r j ¸" ´N ÿ j"1 Cov ´Jrns,N 1 ; Q r0s,N j ¯, (3.6) 
where we defined for any functions f, g P L 2 pX N , µ T q Covpf ; gq " E rf gs ´E rf s E rgs .

We show now that the following limits coincide N ´j`2 p´tq ¯¯" 0 Evaluating the previous expression at t " 0, we deduce that there is some constant c N , independent of j, such that

lim N Ñ8 N ÿ j"1 Cov ´Jrns,N 1 ; Q r0s,N j ¯" lim N Ñ8 N ÿ j"1 Cov ´Jr0s,N 1 ; Q rns,N N ´j`2 ¯. ( 3 
Cov ´Jrns,N j ; Q rms,N 1 ¯´Cov ´Qrns,N 1 ; J rms,N N ´j`2 ¯" c N .
Furthermore, since both Q rns,N j , and J rms,N j are local quantities, in view of Theorem 1.6, we deduce that lim N Ñ8 N c N " 0. So, evaluating the previous expression for m " 0, we deduce (3.7). Thus, in the large N limit, we can recast (3.6) as

lim N Ñ8 B α E " J rns,N 1 ı " ´lim N Ñ8 N ÿ j"1 Cov ´Jr0s,N 1 ; Q rns,N j ¯" lim N Ñ8 N ÿ j"1 Cov ´Qr1s,N 1 ; Q rns,N j ¯.
Moreover, in view of the periodicity properties ot the conserved fields and (3.4)

lim N Ñ8 B α E " J rns,N 1 ı " lim N Ñ8 1 N Cov ´Qr1s,N ; Q rns,N ¯" B t 1 B t 2 F T pα, P `it 1 x `it 2 x n q | t 1 ,t 2 "0 . Noticing that lim αÑ0 E " J rns,N 1 
ı " 0, and that we can always uniformly bound E

" J rns,N 1 
ı by a constant independent of N , the previous equation implies that

lim N Ñ8 E " J rns,N 1 ı " ż α 0 B t 1 B t 2 F T ps, P `it 1 x `it 2 x n q | t 1 ,t 2 "0 ds.
So, we conclude.

The real β-ensemble in the high-temperature regime. The real β-ensemble is the probability measure on R N given by

dP H pλ 1 , . . . , λ N q " 1 Z H N pβ, P q ź iăj |λ j ´λi | β e ´řN j"1 P pλ j q dλ , (3.9) 
where β ą 0 and P is a continuous function such that the partition function

Z H N pβ, P q " ż R N ź iăj |λ j ´λi | β e ´řN j"1 P pλ j q dλ
is finite. This is the case if P grows to infinity fast enough, namely if for some β 1 ą maxp1, βq,

lim inf |x|Ñ8 P pxq N β 1 ln |x| ą 1 , see [6, equation (2.6.2)].
Dumitriu and Edelman showed in [START_REF] Dumitriu | Matrix models for beta ensembles[END_REF] that the β-ensemble admits a tridiagonal representation

H " ¨a1 b 1 0 b 1 a 2 b 2 . . . . . . . . . . . . . . . b N ´1 0 b N ´1 a N ‹ ‹ ‹ ‹ ‹ ‹ ' , (3.10) 
where the entries of the matrix are distributed according to the following probability measure

dµ H " 1 Z H N pβ, P q N ´1 ź j"1 b βpN ´jq´1 j ½ b j ě0 exp p´Tr pP pHqqq dadb . (3.11)
Then, the eigenvalues of H are distributed according to dP H (3.9). An important example is the case P pxq " x 2 {2 for which we recover the classical Gaussian β Ensemble, see [6, Section 2.5], and the distribution µ H factorizes in the following way: the entries of H can be seen to be independent (modulo the symmetry of the matrix), Gaussian N p0, 1q on the diagonal, and the law of the off-diagonal elements is given by renormalized chi variables

b j " 1 ? 2 χ pN ´jqβ ,
where the variable X is χ κ -distributed if its law is given by the density function

f pxq " x κ´1 e ´x2 {2
2 κ{2´1 Γpκ{2q .

We are interested in the so-called high-temperature regime for this model, specifically, we are interested in the infinite size N limit, in such a way that β " 2α N for some α ą 0. In this regime the probability distribution (3.11) becomes

dµ H " 1 Z H N pβq N ´1 ź j"1 b 2αp1´j N q´1 j ½ b j ě0 exp p´Tr pP pHqqq dadb .
This regime has drawn a lot of attention from the random matrix and statistical physics communities lately. Introducing the empirical measure by

dμ N " 1 N N ÿ i"1 δ λ i ,
this model was first considered in [START_REF] Allez | Invariant beta ensembles and the gauss-Wigner crossover[END_REF], where the authors were able to compute the limiting empirical measure for this model when P pxq " x 2 {2. Recently, Garcia-Zelada showed in [START_REF] García-Zelada | A large deviation principle for empirical measures on Polish spaces: application to singular Gibbs measures on manifolds[END_REF] that under a general choice of P , the sequence of empirical measures satisfies a large deviation principle with strictly convex rate function, ensuring the convergence of μN . Although the limiting measure is not explicit, its density ρ P α satisfies for almost every x the nonlinear equation

P pxq ´2α ż R log |x ´y|ρ P α pyqdy `log ρ P α pxq " λ P α
for some constant λ P α , see [START_REF] Guionnet | Large deviations for Gibbs ensembles of the classical Toda chain[END_REF]Lemma 3.2] for example. The fluctuations of the eigenvalues in the bulk and at the edge of a configuration were studied for example in [START_REF] Benaych-Georges | Poisson statistics for matrix ensembles at large temperature[END_REF][START_REF] Lambert | Poisson statistics for Gibbs measures at high temperature[END_REF][START_REF] Nakano | Gaussian beta ensembles at high temperature: eigenvalue fluctuations and bulk statistics[END_REF][START_REF]Poisson statistics for beta ensembles on the real line at high temperature[END_REF][START_REF] Pakzad | Poisson statistics at the edge of Gaussian β-ensemble at high temperature[END_REF]. These fluctuations were shown to be described by Poisson statistics in this regime. With the choice P pxq " x 2 {2, Nakano and Trinh proved in [START_REF] Nakano | Gaussian beta ensembles at high temperature: eigenvalue fluctuations and bulk statistics[END_REF] a Central Limit theorem for this ensemble, namely they proved that for smooth enough f : R Ñ R, the random variables

? N ˆżR f dμ N ´żR f ρ P α dx
ċonverge towards a centred Gaussian variable with variance depending both on α and P . In [START_REF] Guera | CLT for real β-Ensembles at High Temperature[END_REF], the authors showed this central limit theorem for general confining potentials and smooth enough, decaying at infinity test functions. In this paper, we consider the case where P is a polynomial of even degree ě 2. We deduce here from Section 2 a central limit theorem for polynomial test functions.

Indeed, in view of Corollary 3.2, following the same reasoning as in the case of Toda lattice, we can apply Theorem 1.2 to the real β ensemble in the high-temperature regime, thus we deduce that Corollary 3.6 (CLT for Gaussian β ensemble). Consider the matrix representation (3.10) of the real β ensemble in the high-temperature regime, and let P pxq be a polynomial of even degree with positive leading order coefficient. Then, defining the Free energy F H pα, P q as F H pα, P q " ´lim N Ñ8

1 N lnpZ T N pα, P qq , for all j P N fixed, we have the following weak limit

lim N Ñ8
Tr `Hj ˘´E " Tr `Hj ˘‰

? N á N p0, σ 2 q , where E " Tr `Hj ˘‰ " iN B t F H pα, P `itx j q | t"0 , σ 2 " |B 2 t F H pα, P `itx j q | t"0 | .
Thus, we obtained a central limit theorem for the real β ensemble in the high-temperature regime with polynomial potential.

Furthermore, we are in place to apply the second part of our result; indeed, we deduce the following identities

B α pαB t F H pα, P `itx j q | t"0 q " B t F T pα, P `itx j q | t"0 , B α pαB 2
t F H pα, P `itx j q | t"0 q " B 2 t F T pα, P `itx j q | t"0 so we are able to compute both the moments and their variances of the Toda lattice starting from the one of the real β ensemble at high-temperature.

Remark 3.7. Applying the second part of Theorem 1.2, we deduce the following equality valid for the currents of the Toda lattice:

lim N Ñ8 E " J rns,N 1 ı " ż α 0 B t 1 B t 2 F T ps, P `it 1 x`it 2 x n q | t 1 ,t 2 "0 ds " αB t 1 B t 2 F H pα, P `it 1 x`it 2 x n q | t 1 ,t 2 "0 .

The exponential Toda lattice, and the Laguerre β ensemble at hightemperature

In this subsection, we focus on the Exponential Toda lattice and its relation with the Laguerre β ensemble in the high-temperature regime [START_REF] Forrester | The classical β-ensembles with β proportional to 1{N : from loop equations to Dyson's disordered chain[END_REF]. These two systems were considered in [START_REF] Grava | Discrete integrable systems and random Lax matrices[END_REF]. In this paper, the authors considered the classical Gibbs ensemble for the Exponential Toda lattice and were able to compute the density of states for this model connecting it to the Laguerre α ensemble [START_REF] Mazzuca | On the mean density of states of some matrices related to the beta ensembles and an application to the Toda lattice[END_REF], which is related to the classical β one in the high-temperature regime. Here we consider both the Generalized Gibbs ensemble for the integrable lattice and the Laguerre β ensemble at high-temperature with polynomial potential, and we obtain a CLT for both systems, furthermore, we connect the two in the same way as we did for the Toda lattice and the real β ensemble.

The exponential Toda lattice. The exponential Toda lattice is the Hamiltonian system on R 2N described by the Hamiltonian

H E pp, qq " N ÿ j"1
e ´pj `N ÿ j"1 e q j ´qj`1 , p j , q j P R , (3.12)

with canonical Poisson bracket. Here, we consider periodic boundary conditions q j`N " q j `Ω, p j`N " p j , @ j P Z,

and Ω ě 0 is an arbitrary constant. The equations of motion are given in Hamiltonian form as 9 q j " BH E Bp j " ´e´p j , 9 p j " ´BH E Bq j " e q j´1 ´qj ´eq j ´qj`1 .

(3.13)

Following [START_REF] Grava | Discrete integrable systems and random Lax matrices[END_REF], we perform the non-canonical change of coordinates

x j " e ´pj 2 , y j " e q j ´qj`1 2

" e ´rj 2 , r j " q j`1 ´qj , j " 1, . . . , N, to obtain a Lax Pair for this system. Indeed, in these variables, the Hamiltonian (3.12) transform into

H E px, yq " N ÿ j"1 px 2 j `y2 j q ,
and the Hamilton's equations (3.13) become

9 x j " x j 2 `y2 j ´y2 j´1 ˘, 9 y j " y j 2 `x2 j`1 ´x2 j ˘, j " 1, . . . , N, (3.14) 
where x N `1 " x 1 , y 0 " y N . Let us introduce the matrices L, A P MatpN q as

L " ¨x2 1 `y2 N x 1 y 1 x N y N x 1 y 1 x 2 2 `y2 1 x 2 y 2 . . . . . . . . . . . . . . . x N ´1y N ´1 x N y N x N ´1y N ´1 x 2 N `y2 N ´1‹ ‹ ‹ ‹ ‹ ‹ ' , (3.15) 
A " 1 2

¨0 x 1 y 1 ´xN y N ´x1 y 1 0 x 2 y 2 . . . . . . . . . . . . . . . x N ´1y N ´1 x N y N ´xN´1 y N ´1 0 ‹ ‹ ‹ ‹ ‹ ‹ ' ,
The system of equations (3.14) admits the Lax representation

9

L " rA, Ls.

Hence, the quantities H m " Tr pL m q, m " 1, . . . , N are constants of motion as well as the eigenvalues of L. For this integrable model, we define the generalized Gibbs ensemble as

dµ ET " 1 Z H E N pα, γ, P q N ź j"1
x 2 α γ ´1 j y 2α´1 j ½ x j ě0 ½ y j ě0 e ´TrpP pLqq dxdy , (3.16) where α, γ ą 0, and P is a real valued polynomial with positive leading coefficient. Z H E N pα, γ, P q is the normalization constant.

Remark 3.8. The definition of our Gibbs ensemble is slightly different from the one given in [START_REF] Grava | Discrete integrable systems and random Lax matrices[END_REF], indeed there the authors were considering just the classical Gibbs ensemble for this model, so the case P pxq " x{2.

We notice that the structure of (3.16) resembles the one of µ p1q kM `ℓ (2.1), thus we want to apply Theorem 1.2. To do this, we have to identify the functions F, W . First, as an application of Theorem 3.1, we obtain the following corollary Corollary 3.9. Fix m P N, and consider the matrix L (3.15). Then for N big enough, there exists some k " kpmq P N, and two polynomial functions V : R 2k

`ˆR 2k `Ñ R and V 1 : R 2k`ℓ `ˆR 2k`ℓ `Ñ R such that Tr pL m q " M ÿ j"1
V px j , y j , x j`1 , y j`1 q `V1 px M , x kM `1, . . . , x kM `ℓ, x 1 , y M , y kM `1, . . . , y kM `ℓ, y 1 q , where N " kM `ℓ.

As in the Toda lattice case, if we naively set F px, yq " x 2 α γ ´1y 2α´1 , this would not fit in the hypotheses of our theorem, since this is not an L 2 pR 2 `q function. As in the previous case, we have just to consider a slight modification of the measure:

dµ ET " 1 Z H E N pα, γ, P q N ź j"1 x 2 α γ ´1 j y 2α´1 j exp ˜´ε x 2 j `y2 j 2
¸½x j ě0 ½ y j ě0 e ´TrpP pLqq`ε x 2 j `y2 j 2 dxdy , for fixed ε ą 0, but small. In this way, defining F px, y, αq " x 2 α γ ´1y 2α´1 expp´ε x 2 `y2 2 q, and W px 1 , y 1 , x 2 , y 2 q " V px 1 , y 1 , x 2 , y 2 q´ε 2 ř 2k j"1 x 2 j `y2 j we are in the same hypotheses as Theorem 1.2, thus we deduce the following corollary Corollary 3.10 (CLT for the Exponential Toda lattice). Consider the Lax matrix L (3.15) of the Exponential Toda lattice distributed according to the Generalized Gibbs Ensemble (3.16). Then, defining the Free energy F HE pα, γ, P q as

F ET pα, γ, P q " ´lim N Ñ8 1 N lnpZ H E N pα, γ, P qq ,
for all j P N fixed, we have the following weak limit

lim N Ñ8 Tr `Lj ˘´E " Tr `Lj ˘‰ ? N á N p0, σ 2 q , where E " Tr `Lj ˘‰ " iN B t F ET pα, γ, P `itx j q | t"0 , σ 2 " |B 2 t F ET pα, γ, P `itx j q | t"0 |
The Laguerre β ensemble in the high-temperature regime. The Laguerre β ensemble is a random matrix ensemble introduced by Dumitriu and Edelman in [START_REF] Dumitriu | Matrix models for beta ensembles[END_REF]. It has the following matrix representation

Q " ¨x2 1 x 1 y 1 x 1 y 1 x 2 2 `y2 1 x 2 y 2 . . . . . . . . . . . . . . . x N ´1y N ´1 x N ´1y N ´1 x 2 N `y2 N ´1‹ ‹ ‹ ‹ ‹ ‹ ' , (3.17) 
where the entries of Q are distributed according to

dµ L " 1 Z L N pβq N ź j"1 x βpM ´j`1q´1 j ½ x j ě0 N ´1 ź j"1
y βpN ´jq´1 ½ y j ě0 exp p´Tr pP pQqqq dxdy ,

where M is such that lim N Ñ8 N {M " γ P p0, 1s, and P can be any continuous function such that the partition function is well-defined, for our purpose we consider P pxq to be a polynomial.

The remarkable property of this ensemble is that it is possible to explicitly compute the joint eigenvalue density as

dP L " 1 Z L N pβ, P q N ź j"1 λ β 2 pM ´N `1q´1 j ½ λ j ě0 ź jăi |λ j ´λi | β e ´řN j"1 P pλ j q dλ .
We are interested in the so-called high-temperature limit, i.e. when β " 2α N , α P R `, which was considered in [START_REF] Allez | Invariant β-Wishart ensembles, crossover densities and asymptotic corrections to the Marčenko-Pastur law[END_REF], where the authors were able to compute the density of states for the particular case P pxq " x{2.

In this regime, the density (3.18) takes the form

dµ L " 1 Z L N pα, γ, P q N ź j"1 x 2 α γ p1´j `1 N q´1 j ½ x j ě0 N ´1 ź j"1
y 2αp1´j N q´1 ½ y j ě0 exp p´Tr pP pQqqq dxdy .

The structure of this density resembles the one of dµ p2q kM `ℓ(2.2), indeed proceeding as in the case of the Exponential Toda lattice, we deduce the following corollary Corollary 3.11 (CLT for Laguerre β ensemble). Consider the matrix representation (3.17) of the Laguerre β ensemble in the high-temperature regime, and let P pxq be a real polynomial of degree at least 1. Then, defining the Free energy F L pα, γ, P q as F L pα, γ, P q " ´lim N Ñ8 1 N lnpZ L N pα, γ, P qq , for all j P N fixed, we have the following weak limit

lim N Ñ8 Tr `Qj ˘´E " Tr `Qj ˘‰ ? N á N p0, σ 2 q ,
where E " Tr `Qj ˘‰ " iN B t F L pα, γ, P `itx j q | t"0 , σ 2 " |B 2 t F L pα, γ, P `itx j q | t"0 | Which is the perfect analogue of the result for the Exponential Toda lattice. Furthermore, we are in position to apply the second part of our result, indeed we can deduce the following identities B α pαB t F L pα, γ, P `itx j q | t"0 q " B t F ET pα, γ, P `itx j q | t"0 , B α pαB 2 t F L pα, γ, P `itx j q | t"0 q " B t F ET pα, γ, P `itx j q | t"0 , thus, we can compute all the quantities involved in the previous theorems from the Free Energy of the Laguerre ensemble.

The Volterra lattice, and the antisymmetric β ensemble at high-temperature

In this subsection, we focus on the Volterra lattice and its relation with the Antisymmetric β ensemble [START_REF] Dumitriu | Tridiagonal realization of the antisymmetric Gaussian β-ensemble[END_REF] in the high-temperature regime [START_REF] Forrester | The classical β-ensembles with β proportional to 1{N : from loop equations to Dyson's disordered chain[END_REF]. These two systems were considered in [START_REF] Grava | Discrete integrable systems and random Lax matrices[END_REF]. In this paper, the authors considered the classical Gibbs ensemble for the Volterra lattice and were able to compute the density of states for this model connecting it to the Antisymmetric α ensemble [START_REF] Forrester | The classical β-ensembles with β proportional to 1{N : from loop equations to Dyson's disordered chain[END_REF], which is related to the classical β one introduced by Dumitriu and Forrester [START_REF] Dumitriu | Tridiagonal realization of the antisymmetric Gaussian β-ensemble[END_REF].

The Volterra Lattice. The Volterra lattice (or discrete KdV equation) is the following systems of N coupled ODEs 9 a j " a j pa j`1 ´aj´1 q , j " 1, . . . , N,

here a j P R `for j " 1, . . . , N , and we consider periodic boundary conditions a j " a j`N for all j P Z. Volterra introduced it to study evolution of populations in a hierarchical system of competing species. This system was considered by Kac and van Moerbeke in [START_REF] Kac | On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices[END_REF], who solved it explicitly using a discrete version of the inverse scattering transform introduced by Flaschka [START_REF] Flaschka | On the Toda lattice. II. Inverse-scattering solution[END_REF].

Introducing on the phase space R N `the following Poisson bracket ta j , a i u Volt " a j a i pδ i,j`1 ´δi,j´1 q , and defining the Hamiltonian H 1 " ř N j"1 a j , we can rewrite the equations of motion (3.19) in Hamiltonian form as 9 a j " ta j , H 1 u Volt .

An elementary constant of motion for the system is H 0 " ś N j"1 a j which is independent of H 1 . The Volterra lattice is a completely integrable system, and it admits several equivalents Lax representations, see e.g. [START_REF] Grava | Discrete integrable systems and random Lax matrices[END_REF][START_REF] Kac | On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices[END_REF][START_REF] Moser | Three integrable Hamiltonian systems connected with isospectral deformations[END_REF]. We use the one presented in [START_REF] Grava | Discrete integrable systems and random Lax matrices[END_REF]. Specifically, we introduce the matrices L, A P MatpR, N q as L "

¨0

? ´?a N ´1 0

‹ ‹ ‹ ‹ ‹ ‹ ' , (3.21) 
A " 1 2

N ÿ j"1
? a j a j`1 pE j,j`2 ´Ej`2,j q , where E r,s is defined as pE r,s q ij " δ i r δ j s and E j`N,i " E j,i`N " E j,i . Then, it follows that the equations of motion (3.20) are equivalent to 9 L " rL; As .

In view of this Lax pair, we know that Tr `Lk ˘are constant of motion for the model.

Following [START_REF] Grava | Discrete integrable systems and random Lax matrices[END_REF], we introduce the Generalized Gibbs Ensemble of the Volterra lattice (3.19) as dµ Volt paq " e TrpP pLqq ś N j"1 a α´1 j ½ a j ą0 da

Z Volt N pα, P q , ( 3.22) 
where α ą 0, P pxq is a polynomial of the form P pxq " p´1q j x 2j `l.o.t , otherwise the previous measure is not normalizable, moreover, we notice that, in view of the antisymmetric nature of L, Tr `L2j`1 ˘" 0. For this reason, we perform the change of coordinates ? a j " x j , where we take just the positive root, so the previous measure read

dµ Volt pxq " e TrpP pLqq ś N j"1 x 2α´1 j ½ x j ą0 dx Z Volt N pα, P q .
This Generalized Gibbs ensemble resembles the structure of µ p1q kM `ℓ (2.1), we have just to identify F, W . We notice that it is possible to generalize Theorem 3.1 also for the antisymmetric situation, so we deduce the following Corollary: Corollary 3.12. Fix m P N, and consider the matrix L (3.21). Then for N big enough, there exists a k " kpmq P N, and two polynomial functions V : R k

`ˆR k `Ñ R, V 1 : R k `ˆR ℓ `ˆR k `Ñ R such that Tr pL m q " M ÿ j"1 V px j , x j`1 q `V1 px M , x kM `1, . . . , x kM `ℓ, x 1 q ,
where N " kM `ℓ.

Thus, following the same kind of reasoning as in the Toda lattice, section 3.1, and the Exponential Toda lattice, section 3.2, we deduce the following: Corollary 3.13 (CLT for Volterra lattice). Consider the Lax matrix L (3.21) of the Volterra lattice distributed according to the Generalized Gibbs Ensemble (3.22). Then, defining the Free energy F Volt pα, P q as

F Volt pα, P q " ´lim N Ñ8 1 N lnpZ Volt N pα, P qq ,
for all j P N fixed, we have the following weak limit

lim N Ñ8
Tr `Lj ˘´E " Tr `Lj ˘‰

? N á N p0, σ 2 q , where E " Tr `Lj ˘‰ " iN B t F Volt pα, P ´itx j q | t"0 , σ 2 " |B 2 t F Volt pα, P ´itx j q | t"0 | .
The Antisymmetric β ensemble in the high-temperature regime The Antisymmetric β ensemble is a random matrix ensemble introduced by Dumitriu and Forrester in [START_REF] Dumitriu | Tridiagonal realization of the antisymmetric Gaussian β-ensemble[END_REF]; it has the following matrix representation

Q " ¨0 x 1 ´x1 0 x 2 . . . . . . . . . . . . . . . x N ´1 ´xN´1 0 ‹ ‹ ‹ ‹ ‹ ‹ ' , (3.23)
and the entries of the matrix Q are distributed according to

dµ AG " 1 Z AG N pβ, P q N ´1 ź j"1 x βpN ´jq´1 j ½ x j ě0 exppTr pP pQqqqdx , (3.24) 
here P pxq can be any function that makes (3.24) normalizable, but for our purpose we will consider P pxq polynomial of the form P pxq " p´1q j x 2j `l.o.t.

As in the previous cases, we are interested in the high-temperature regime for this model, so we set β " 2α N , and we rewrite the previous density as

dµ AG " 1 Z AG N pα, P q N ´1 ź j"1 x αp1´j N q´1 j ½ x j ě0 exppTr pP pQqqqdx . (3.25)
This regime was introduced in [START_REF] Grava | Discrete integrable systems and random Lax matrices[END_REF], where the author computed the density of states for this model in the case P pxq " x 2 {2. The structure of this last density (3.25) resembles the one of

µ p2q kM `ℓ(2.
2), indeed proceeding as in the case of the Volterra lattice, we deduce the following corollary Corollary 3.14 (CLT for Antisymmetric β ensemble). Consider the matrix representation (3.23) of the Antisymmetric β ensemble in the high-temperature regime, endowed with the probability distribution dµ AG (3.25), and let P pxq be a polynomial of the form P pxq " p´1q j x 2j `l.o.t.. Then, defining the Free energy F AG pα, P q as

F AG pα, P q " ´lim N Ñ8 1 N lnpZ AG N pα, P qq ,
for all j P N fixed, we have the following weak limit

lim N Ñ8 Tr `Qj ˘´E " Tr `Qj ˘‰ ? N á N p0, σ 2 q .
where E " Tr `Qj ˘‰ " iN B t F AG pα, P ´itx j q | t"0 , σ 2 " |B 2 t F AG pα, P ´itx j q | t"0 | . Which is the perfect analogue of the result for the Volterra lattice. Remark 3.15. In view of Theorem 1.2, we deduce the following identities B α pαB t F AG pα, P ´itx j q | t"0 q " B t F AG pα, P ´itx j q | t"0 , B α pαB 2 t F AG pα, P ´itx j q | t"0 q " B t F AG pα, P ´itx j q | t"0

The defocusing Ablowitz-Ladik lattice, and the Circular β ensemble at high-temperature

In this subsection, we focus on the defocusing Ablowitz-Ladik lattice, and its relation to the Circular β ensemble at high-temperature [START_REF] Grava | Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, Circular β-ensemble and double confluent Heun equation[END_REF][START_REF] Hardy | CLT for circular beta-ensembles at high temperature[END_REF][START_REF]Hydrodynamic equations for the Ablowitz-Ladik discretization of the nonlinear Schrödinger equation[END_REF]. This relation was highlighted by one of the present authors and T. Grava [START_REF] Grava | Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, Circular β-ensemble and double confluent Heun equation[END_REF], and independently by H. Spohn [START_REF]Hydrodynamic equations for the Ablowitz-Ladik discretization of the nonlinear Schrödinger equation[END_REF]. In these papers, the authors were able to characterize the density of states of the Ablowitz-Ladik lattice in terms of the one of the Circular β ensemble in the high-temperature regime. Moreover, in [START_REF] Grava | Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, Circular β-ensemble and double confluent Heun equation[END_REF] the authors were able to compute explicitly the density of states in the case of linear potential in terms of the solution of the Double Confluent Heun Equation [START_REF][END_REF] highlighting a connection with the Painlevé equations [START_REF] Fokas | Painlevé transcendents[END_REF][START_REF] Lisovyy | Accessory parameters in confluent Heun equations and classical irregular conformal blocks[END_REF]. In [START_REF] Mazzuca | Large deviations for Ablowitz-Ladik lattice, and the Schur flow[END_REF], the two present authors obtained a large deviations principles for the empirical spectral measure for any continuous and bounded potential.

The defocusing Ablowitz-Ladik lattice. The defocusing Ablowitz-Ladik (dAL) lattice is defined by the following system of nonlinear equations i 9 a j " ´pa j`1 `aj´1 ´2a j q `|a j | 2 pa j´1 `aj`1 q , (3.26)

where a j ptq P C. We assume N -periodic boundary conditions a j`N " a j , for all j P Z. The dAL lattice was introduced by Ablowitz and Ladik [START_REF] Ablowitz | Nonlinear differential-difference equations[END_REF][START_REF]Nonlinear differential-difference equations and Fourier analysis[END_REF] as the spatial integrable discretization of the defocusing cubic nonlinear Schrödinger Equation for the complex function ψpx, tq, x P S 1 and t P R: iB t ψpx, tq " ´B2

x ψpx, tq `2|ψpx, tq| 2 ψpx, tq. As for the others dynamical systems that we considered, the dAL is an integrable system. Its integrability was proved by Ablowitz and Ladik by discretizing the 2 ˆ2 Zakharov-Shabat Lax pair [START_REF] Ablowitz | Coherent pulse propagation, a dispersive, irreversible phenomenon[END_REF][START_REF] Ablowitz | Nonlinear differential-difference equations[END_REF] of the cubic nonlinear Schrödinger equation. Furthermore, Nenciu and Simon [START_REF] Nenciu | Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle[END_REF][START_REF] Simon | Orthogonal Polynomials on the Unit Circle[END_REF] constructed a new Lax pair for this lattice. Following their construction we double the size of the chain according to the periodic boundary condition, thus we consider a chain of 2N particles a 1 , . . . , a 2N such that a j " a j`N for j " 1, . . . , N . Define the 2 ˆ2 unitary matrix Ξ j

Ξ j " ˆaj ρ j ρ j ´aj ˙, j " 1, . . . , 2N , ρ j " b 1 ´|a j | 2 (3.27)
and the 2N ˆ2N matrices

M " ¨´a 2N ρ 2N Ξ 2 Ξ 4 . . . Ξ 2N ´2 ρ 2N a 2N ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' , L " ¨Ξ1 Ξ 3 . . . Ξ 2N ´1‹ ‹ ‹ ' .

Now let us define the unitary Lax matrix

E " LM , (3.28) 
that has the structure of a 5-band periodic diagonal matrix. The matrix E is a periodic CMV matrix [START_REF] Cantero | Minimal representations of unitary operators and orthogonal polynomials on the unit circle[END_REF]. The equations of motion (3.26) are equivalent to the following Lax equation for the matrix E: 9 E " i " E, E ``pE `q: ‰ , where : stands for hermitian conjugate and

E j,k " $ ' & ' % 1 2 E j,j j " k E j,k k " j `1 mod 2N or k " j `2 mod 2N 0 otherwise.
Since the matrix E is a periodic band matrix with fixed bandwidth, we can follow the same reasoning as in the previous cases and conclude the following Lemma 3.16. Fix m P N, and consider the matrix E (3.28). Then for N big enough, there exists a k " kpmq P N, and two polynomials

V : C k `ˆC k `Ñ R, and V : C k `ˆC ℓ `ˆC k `Ñ R such that Tr pE m q " M ÿ j"1
V pa j , a j`1 q `V1 pa M , a kM `1, . . . , a kM `ℓ, a 1 q , where N " kM `ℓ.

Following [START_REF] Grava | Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, Circular β-ensemble and double confluent Heun equation[END_REF][START_REF] Mazzuca | Large deviations for Ablowitz-Ladik lattice, and the Schur flow[END_REF][START_REF]Hydrodynamic equations for the Ablowitz-Ladik discretization of the nonlinear Schrödinger equation[END_REF], we notice that the quantity K 0 " ś N j"1 p1 ´|a j | 2 q is conserved, so this means that if |a j p0q| ă 1 for all j " 1, . . . , N then |a j ptq| ă 1 for all j " 1, . . . , N for all t P R, so we can consider D N as our phase space, here D " tz P C | |z| ă 1}. On this phase space, we introduce the Generalized Gibbs ensemble for the defocusing AL lattice as

dµ dAL " ś N j"1 `1 ´|a j | 2 ˘α´1 ½ a j PD exp p´Tr pP pEqqq d 2 a Z dAL N pα, P q , (3.29)
where P is a real-valued Polynomial, meaning that there exists a polynomial r P such that P " ℜp r P q. In view of Lemma 3.16, we are in the hypotheses of Theorem 1.2, thus we deduce the following: Corollary 3.17 (CLT for defocusing Ablowitz-Ladik lattice). Consider the Lax matrix E (3.28) of the defocusing Ablowitz-Ladik lattice distributed according to the Generalized Gibbs Ensemble (3.29). Then, defining the Free energy F dAL pα, P q as F dAL pα, P q " ´lim N Ñ8 lnpZ dAL N pα, P qq 2N , for all j P N fixed, we have the following weak limit

lim N Ñ8
Tr `Ej ˘´E " Tr `Ej ˘‰

? N á N p0, σ 2 q , where E " Tr `Ej ˘‰ " iN B t F dAL pα, P `itx j q | t"0 , σ 2 " |B 2 t F dAL pα, P `itx j q | t"0 | .
The circular β ensemble at high-temperature. The circular β ensemble was introduced by Killip and Nenciu in [START_REF] Killip | Matrix models for circular ensembles[END_REF]; as the other β ensembles that we considered, it possesses a matrix representation. Consider the two block diagonal matrices

M " diag pΞ 1 , Ξ 3 , Ξ 5 . . . , q and L " diag pΞ 0 , Ξ 2 , Ξ 4 , . . .q ,
where the block Ξ j , j " 1, . . . , N ´1 are defined in (3.27), while Ξ 0 " p1q and Ξ N " pα N q are 1 ˆ1 matrices. Then, we define E as follows

E " LM. (3.30) 
The entries of this matrix are distributed according to

dµ C " ś N ´1 j"1 `1 ´|a j | 2 ˘βpN´jq´1 ½ a j PD exp p´Tr pP pEqqq ś N ´1 j"1 d 2 a j da N ia N Z dAL N pβ, P q .
As for the other β ensembles, one can explicitly compute the joint eigenvalue density for this ensemble as

dP C " 1 Z C N pβ, P q ź jăℓ |e iθ j ´eiθ ℓ | β ½ θ j PT e
´řN j"1 P pe iθ j q dθ , here T " r´π, πq, e iθ j are the eigenvalues of E, and P can be any continuous function that makes the measure normalizable. We restrict our attention to the class of real polynomial P pzq.

We are interested in the high-temperature limit for this ensemble [START_REF] Grava | Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, Circular β-ensemble and double confluent Heun equation[END_REF][START_REF]Hydrodynamic equations for the Ablowitz-Ladik discretization of the nonlinear Schrödinger equation[END_REF], so we set β " 2α N , obtaining

dµ C " ś N ´1 j"1 `1 ´|a j | 2 ˘2αp1´j N q´1 ½ a j PD exp p´Tr pP pEqqq ś N ´1 j"1 d 2 a j da N ia N Z dAL N pα, P q . ( 3.31) 
So, in view of Lemma 3.16, we are in the hypotheses of Theorem 1.2, so we deduce the following Corollary 3.18 (CLT for Circular β ensemble). Consider the matrix representation (3.30) of the Circular β ensemble in the high-temperature regime, endowed with the probability distribution dµ C (3.31), and let P pxq be a real-valued polynomial. Then, defining the Free energy F C pα, P q as

F C pα, P q " ´lim N Ñ8 lnpZ C N pα, P qq 2N ,
for all j P N fixed, we have the following weak limit

lim N Ñ8 Tr `Ej ˘´E " Tr `Ej ˘‰ ? N á N p0, σ 2 q , where E " Tr `Ej ˘‰ " iN B t F C pα, γ, P `itx j q | t"0 , σ 2 " |B 2 t F C pα, P `itx j q | t"0 | .
Remark 3.19. We notice that

• Hardy and Lambert in [START_REF] Hardy | CLT for circular beta-ensembles at high temperature[END_REF] already proved a CLT theorem for the Circular β ensemble in the high-temperature regime for a wider class of functions and potentials than we can consider with our result. Nevertheless, we highlight the fact that in our case we can explicitly compute the means, and the variances in terms of the Free energy.

• The following identities hold in view of the last part of Theorem 1.2

B α pαB t F C pα, P `itx j q | t"0 q " B t F dAL pα, P `itx j q | t"0 ,
B α pαB 2 t F C pα, P `itx j q | t"0 q " B t F dAL pα, P `itx j q | t"0 . This relation was already proved in [START_REF] Grava | Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, Circular β-ensemble and double confluent Heun equation[END_REF] with the same kind of argument that we followed.

The defocusing Schur flow, and the Jacobi β ensemble at high-temperature

In this subsection, we focus on the defocusing Schur flow [START_REF] Golinskii | Schur flows and orthogonal polynomials on the unit circle[END_REF], and its relation to the Jacobi β ensemble at high-temperature [START_REF] Forrester | The classical β-ensembles with β proportional to 1{N : from loop equations to Dyson's disordered chain[END_REF]. This relation was first noticed in [START_REF]Hydrodynamic equations for the Ablowitz-Ladik discretization of the nonlinear Schrödinger equation[END_REF], and then the two present authors obtained a large deviations principles for the empirical spectral measure for the defocusing Schur flow, and they were able to link it to the one of the Jacobi β ensemble in the high-temperature regime [START_REF] Mazzuca | Large deviations for Ablowitz-Ladik lattice, and the Schur flow[END_REF].

The defocusing Schur flow. The defocusing Schur flow is the system of ODEs [START_REF] Golinskii | Schur flows and orthogonal polynomials on the unit circle[END_REF] 

9 a j " ρ 2 j pa j`1 ´aj´1 q , ρ j " b 1 ´|a j | 2 ,
and, as before, we consider periodic boundary conditions, namely a j " a j`N for all j P Z. We notice that, if one chooses an initial data such that a j p0q P R for all j " 1, . . . , N , then a j ptq P R for all times. Moreover, it is straightforward to verify that K 0 " ś N j"1 `1 ´|a j | 2 ˘is conserved along the Schur flow. This implies that we can choose as phase space for the Schur flow the N -cube I N , where I :" p´1, 1q. Furthermore, it was shown in [START_REF] Golinskii | Schur flows and orthogonal polynomials on the unit circle[END_REF], that the Schur flow has the same Lax matrix as the focusing Ablowitz-Laddik lattice.

Following [START_REF] Grava | Discrete integrable systems and random Lax matrices[END_REF][START_REF]Hydrodynamic equations for the Ablowitz-Ladik discretization of the nonlinear Schrödinger equation[END_REF], on I N we define the finite volume limit GGE as

dµ dS paq " ś N j"1 ´1 ´a2 j ¯α´1 ½ a j PI exp p´Tr pP pEqqq da Z dS N pα, P q , ( 3.32) 
where P pxq : R Ñ R is a polynomial. Thanks to Lemma 3.16, we can apply Theorem 1.2 obtaining a CLT theorem for the defocusing Schur flow Corollary 3.20 (CLT for defocusing Schur flow). Consider the Lax matrix E (3.28) of the defocusing Schur flow distributed according to the Generalized Gibbs Ensemble (3.32). Then, defining the Free energy F dS pα, P q as F dS pα, P q " ´lim N Ñ8 lnpZ dS N pα, P qq 2N , for all j P N fixed, we have the following weak limit

lim N Ñ8 Tr `Ej ˘´E " Tr `Ej ˘‰ ? N á N p0, σ 2 q , where E " Tr `Ej ˘‰ " iN B t F dS pα, P `itx j q | t"0 , σ 2 " |B 2 t F dS pα, P `itx j q | t"0 | .
The Jacobi β ensemble in the high-temperature regime. The Jacobi β ensemble is a random matrix ensemble introduced by Killip and Nenciu in [START_REF] Killip | Matrix models for circular ensembles[END_REF]. It has two slightly different matrix representations. The first one is the same as the Circular β ensemble (3.30), but the distribution of the entries of the matrix is

dµ J paq " ś 2N ´1 j"1 ´1 ´a2 j ¯βp2N´jq{4´1 ś 2N ´1 
j"1 p1 ´aj q a`1´β{4 p1 `p´1q j a j q b`1´β{4 ½ a j PI exp p´Tr pP pEqqq da

Z J N pβ, P q , (3.33) 
where a, b ą ´1, P pxq is a real value polynomial. We notice that we are considering an even number of random variables, and a j P R; for these reasons, all the eigenvalues of E come in pairs, meaning that if e iθ is an eigenvalue, then e ´iθ is another one. Exploiting this symmetry, Killip and Nenciu found another matrix representation for this ensemble

J " ¨c1 b 1 b 1 c 2 b 2 . . . . . . . . . . . . . . . b N ´1 b N ´1 c N ‹ ‹ ‹ ‹ ‹ ‹ ' , $ & % b j " ´p1 ´a2j´2 qp1 ´a2 2j´1 qp1 `a2j q ¯1{2 c j " p1 ´a2j´2 qa 2j´1 ´p1 `a2j´2 qa 2j´3
, where a 0 " a 2N " ´1, and the eigenvalues tλ j u N j"1 of J are related to the one of E as λ j " cospθ j q.

Also, in this case, it is possible to compute explicitly the joint eigenvalue density for this model as

dP J " 1 Z J N pβ, P q ź jăℓ | cospθ j q ´cospθ ℓ q| β ½ θ j PT e ´2 ř N j"1 P pcospθ j qq dθ .
As in the previous cases, we are interested in the high-temperature regime for this ensemble, so we wet β " 2α N , thus the measure (3.33) read

dµ J paq " ś 2N ´1 j"1 ´1 ´a2 j ¯αp1´j 2N q ś 2N ´1 
j"1 p1 ´aj q a`1´α 2N p1 `p´1q j a j q b`1´α 2N ½ a j PI exp p´Tr pP pEqqq da Z J N pβ, P q .

(3.34) This regime was considered in [START_REF] Trinh | Beta Jacobi Ensembles and Associated Jacobi Polynomials[END_REF] and in the recent paper [START_REF] Nakano | Beta Jacobi ensembles and associated Jacobi polynomials[END_REF], where the authors established a CLT for polynomial test functions in the absence of external potential (P " 0 in (3.34) ) by considering orthogonal polynomials, obtaining an explicit recurrence relation for the limiting variance.

Again, thanks to Lemma 3.16, we can apply Theorem 1.2 deducing the following Corollary 3.21 (CLT for Jacobi β ensemble in the high-temperature). Consider the matrix representation E (3.30) of the Jacobi β ensemble in the high-temperature regime (3.34) . Then, defining the Free energy F J pα, P q as F J pα, P q " ´lim N Ñ8 lnpZ J N pα, P qq N , for all j P N fixed, we have the following weak limit

lim N Ñ8 Tr `Ej ˘´E " Tr `Ej ˘‰ ? N á N p0, σ 2 q , where E " Tr `Ej ˘‰ " iN B t F J pα, P `itx j q | t"0 , σ 2 " |B 2 t F J pα, P `itx j q | t"0 | .
Remark 3.22. We notice that for N even, for a `b " ´1 `β 4 we can apply the final part of Theorem 1.2, thus we deduce that B α pαB t F J pα, P `itx j q | t"0 q " B t F dS pα, P `itx j q | t"0 , B α pαB 2 t F J pα, P `itx j q | t"0 q " B 2 t F dS pα, P `itx j q | t"0

The Itoh-Narita-Bogoyavleskii lattices

In this section, we apply our results to two families of integrable lattices with short-range interaction that generalize the Volterra one (3.19). These families are described in [START_REF]Algebraic constructions of integrable dynamical systems-extensions of the Volterra system[END_REF] (see also [START_REF] Bogoyavlensky | Integrable discretizations of the KdV equation[END_REF][START_REF] Itoh | An H-theorem for a system of competing species[END_REF][START_REF] Narita | Soliton solution to extended Volterra equation[END_REF]).

One is called additive Itoh-Narita-Bogoyavleskii (INB) r-lattice and is defined by the following equations

9 a i " a i ˜r ÿ j"1 a i`j ´r ÿ j"1 a i´j ¸, i " 1, . . . , N, N ě r P N. (3.35) 
The second family is called the multiplicative Itoh-Narita-Bogoyavleskii (INB) r-lattice and is defined by the equations

9 a i " a i ˜r ź j"1 a i`j ´r ź j"1 a i´j ¸, i " 1, . . . , N, N ě r P N. (3.36) 
In both cases we consider the periodicity condition a j`N " a j . We notice that setting r " 1, we recover in both cases the Volterra lattice. Moreover, both families admit the KdV equation as continuum limits, see [START_REF]Algebraic constructions of integrable dynamical systems-extensions of the Volterra system[END_REF].

In both cases the interaction is short-range, but in the additive case (3.35) the nonlinearity is quadratic as in the Volterra lattice, instead in the multiplicative one (3.36) it is of polynomial order.

As we already mentioned, both families are integrable for all r P N, indeed both families admits a Lax pair formulation. For the additive INB lattice (3.35), it reads 

L p`,rq " N ÿ i"1 pa i`r E i`r,i `Ei,i`1 q (3.37) " ¨0 1 0 ¨¨¨aN´r 0 0 0 0 0 1 ¨¨¨0 a N ´r`1 0 0 0 0 0 1 ¨¨¨0 a N
‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' r `1 row N ´r column A p`,rq " N ÿ i"1 ˜r ÿ j"0 a i`j ¸Ei,i `Ei,i`r`1 ,
we recall that we are always considering periodic boundary conditions, so for all j P Z, a j`N " a j and E i,j`N " E i`N,j " E i,j . In this notation, the equations of motion (3.35) are equivalent to 9 L p`,rq " rL p`,rq ; A p`,rq s .

Analogously, the multiplicative INB r-lattices have a Lax Pair formulation, which reads 

L pˆ,rq " N ÿ i"1 pa i E i,i`1 `Ei`r,i q , (3.38) 
" ¨0 a 1 0 ¨¨¨1 0 0 0 0 0 a 2 ¨¨¨0 1 0 0 0 0 0 a 3 ¨¨¨0 1 
a N 0 ¨¨¨1 ¨¨¨0 0 0 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' r `1 row N ´r column A pˆ,rq " N ÿ i"1 ˜r ź j"0 a i`j ¸Ei,i`r`1 .
Following the construction made in [START_REF] Grava | Discrete integrable systems and random Lax matrices[END_REF], where the authors numerically computed the density of states for these two families of lattices, we introduce the generalized Gibbs ensemble for these models as dµ `,r " expp´Tr `P pL p`,rqq ˘q ś N j"1 a α´1 j ½ a j ě0 da Z p`,rq N pa, P q , (3.39) dµ ˆ,r " expp´Tr `P pL pˆ,rqq ˘q ś N j"1 a α´1 j ½ a j ě0 da Z pˆ,rq N pα, P q , (3.40)

where P pxq is a polynomial. Moreover, enforcing the result of [START_REF] Grava | Discrete integrable systems and random Lax matrices[END_REF] Lemma 3.23. Fix ℓ P N. Then for N large enough

Tr ´pL p`,rq q ℓ ¯" Tr ´pL pˆ,rq q ℓ ¯" 0 , if ℓ is not an integer multiple of r `1.

we can consider just the polynomials P pxq such that P pxq " x jpr`1q `l.o.t. for some j P N.

Due to the local structure of L p`,rq , L pˆ,rq , one can deduce the following: Lemma 3.24. Fix m P N, and consider the matrices L p`,rq , L pˆ,rq (3.37)- (3.38). Then for N big enough, there exist k p`,rq " k p`,rq pmq, k pˆ,rq " k pˆ,rq pmq P N, and four polynomial functions V p`,rq : R k p`,rq `ˆR k p`,rq `Ñ R, V pˆ,rq : R k pˆ,rq `Ñ R such that

`ˆR k pˆ,rq `Ñ R, V p`,
Tr ´pL p`,rq q m ¯" M p`,rq ÿ j"1

V p`,rq px j , x j`1 q `V p`,rq 1 px M p`,rq , x k p`,rq M p`,rq `1, . . . , x k p`,rq M p`,rq `ℓp`,rq , x 1 q , Tr ´pL pˆ,rq q m ¯" M pˆ,rq ÿ j"1

V pˆ,rq px j , x j`1 q `V pˆ,rq 1 px M pˆ,rq , x k pˆ,rq M pˆ,rq `1, . . . , x k pˆ,rq M pˆ,rq `ℓpˆ,rq , x 1 q , where N " k p`,rq M p`,rq `ℓp`,rq " k pˆ,rq M pˆ,rq `ℓpˆ,rq . Thus, proceeding as we have done for the others systems previously considered, we obtain the following: Then, defining the Free energies F `,r pα, P q, F ˆ,r pα, P q as F `,r pα, P q " ´lim N Ñ8 Tr `pL p`,rq q pr`1qj ˘´E " Tr `pL p`,rq q pr`1qj ˘‰

? N á N p0, σ 2 `,r q , lim N Ñ8
Tr `pL pˆ,rq q pr`1qj ˘´E " Tr `pL pˆ,rq q pr`1qj ˘‰ ? N á N p0, σ 2 ˆ,r q , where E " Tr ´pL p`,rq q pr`1qj ¯ı " iN B t F `,r pα, P `itx pr`1qj q | t"0 , σ 2 `,r " |B 2 t F `,r pα, P `itx pr`1qj q | t"0 | , E " Tr ´pL pˆ,rq q pr`1qj ¯ı " iN B t F ˆ,r pα, P `itx pr`1qj q | t"0 , σ 2 ˆ,r " |B 2 t F ˆ,r pα, P `itx pr`1qj q | t"0 | .

Remark 3.26. We recall that in [START_REF] Grava | Discrete integrable systems and random Lax matrices[END_REF], it was shown that the density of states for this model has support on the complex plane, but despite that all the moments of the Generalized Gibbs ensemble are reals. Furthermore, in this case, we lack a β ensemble to compare with.

Technical Results

In this section, we prove the technical results that we used to prove our main Theorems 1.2-1.4, the proof follows the same line as the proof of [34, Proposition 4.2], and we prove Theorem 1.6, whose proof uses the same machinery as the latter proofs. In the last part, we prove a Berry-Esseen type bound for the type 1 measure µ p1q N . We start by proving Theorem 2.1 and Theorem 2.2.

To prove these results, we follow the same ideas as in [START_REF] Gouëzel | Limit theorems in dynamical systems using the spectral method[END_REF]Theorem 2.4]. In particular, we enforce the following proposition, which can be easily deduced from [START_REF] Gouëzel | Limit theorems in dynamical systems using the spectral method[END_REF]Proposition 2.3]: Proposition 4.1. Let λp0q be an isolated eigenvalue of the operator L 0 with multiplicity one, and assume that the family of operators t Ñ L t depends on t in a C d way, with d ě 3. Then, λptq, the corresponding eigenprojection π t and its eigenfunction ϕ t are C d with respect to t.

Moreover, assume that the rest of the spectrum of L 0 it is contained in a disk of radius |λp0q| ´δ. Writing Q t " pI ´πt qL t , so that L t " λptqπ t `Qt . For any r ą |λp0q| ´δ, there exists a constant C ą 0 independent of t, n such that }Q n t } ď Cr n for all n P N. Applying the previous proposition, we can prove both Theorem 2.1 and Theorem 2.2. For the reader's convenience, we report the two statements here. Theorem 4.2. Under Assumptions 1.1. Consider a real function H : C Ñ R such that Tr pHpLqq is circular (HP 5.), and let W be the seed of Tr pGpLq `itHpLqq, thus W px, yq " V px, yq `itU px, yq for V, U : X k ˆXk Ñ R the seeds of Tr pGpLqq , Tr pHpLqq. Furthermore, assume that U P L 2d pX 2k , expp´2V qq, with N Q d ě 3. Then, there exists an ε ą 0, and two complex valued functions λ py, tq P C 1,d pR `ˆr´ε, εsq, and c k,ℓ py, tq P C 1,d pR ˆr´ε, εsq such that for all q P N : Moreover, there exist two functions r c k,ℓ pα, tq P C 1,d pR ˆr´ε, εsq and r λpα, tq P C 1,d pR `ˆr´ε, εsq such that there exist two constants C 1 , C 2 ą 0 such that for all q P N:

C 1 ă r c k,ℓ pα, tq ă C 2 , λpα, tq " r λpα, tq r λpα, 0q , Z p1q kM `ℓpα, tq " r c k,ℓ pα, tq r λpα, tq M ´2 `1 `opM ´qq ˘.
Proof. Define the kernel operator (depending on k P N, α ą 0 and t P R) L t,α :

L 2 pX k q Ñ L 2 pX k q as L t,α f pyq " ż X k f pxq k ź q"1
F px q , αqe ´W py,xq dx . Then, for all k P N, α ą 0 and t P R, L t,α is a Hilbert-Schmidt operator [START_REF] Kato | Perturbation theory for linear operators[END_REF], meaning that the function px, yq Þ Ñ ś k q"1 F px q , αqe ´V py,xq is L 2 pX k ˆXk q, and so it is compact. Moreover, since the kernel is positive, we can apply a generalization of Jentzsch's theorem [START_REF] Zaanen | Riesz spaces[END_REF]Theorem 137.4] in combinations with Proposition 4.1 deducing that there exist two functions py, tq Þ Ñ r λ py, tq P C 1,d pR `ˆr´ε, εsq, py, tq Þ Ñ ϕp¨, y, tq P C 1,d pR `ˆr´ε, εs, L 2 pX k qq, and an operator Q t : L 2 pX k q Ñ L 2 pX k q such that L t,α φpyq " r λ pα, tq xφ, ϕ p¨, α, tqy ϕ py, α, tq `Qt φpyq , @ φ P L 2 pX k q where r λ py, 0q ą 0, ϕ px, y, 0q ą 0 is the associated eigenfunction of L t,α with }ϕ} 2 " 1 and there exists a δ ą 0 such that ||Q t || ď | r λ pα, tq |´δ, denoting by x¨, ¨y the standard scalar product in L 2 pX k q.

For x P X k define G x pyq as

G x pyq " # ş X ℓ ś kM `ℓ
j"kM `1 F px j , αq exp p´W 1 py, x kM `1, . . . , x kM `ℓ, xqq ś kM `ℓ j"kM `1 dx j , ℓ ą 0 , exp p´W py, xqq , ℓ " 0 , (4.2) and the linear operator S t : L 2 pX k ˆXk q Ñ C as

S t ϕ " ż X k ˆXk 2k ź j"1 F px j , αq exp p´W px 1 , x 2 qq ϕpx 1 , x 2 qdx 1 dx 2 , (4.3) 
we notice that }S t } ď c}F } 2k 2 , and so it is continuous. In this notation, we can recast (2.3), applying S t to px, yq Þ Ñ ´LM´2 t,α G x ¯pyq, as

Z p1q kM `ℓpα, tq " S t ´´L M ´2 t,α G x 1 ¯px 2 q ¯" r λ M ´2pα, tqS t `xϕ p¨, α, tq ; G x 1 y ϕpx 2 , α, tq ˘`S t `QM´2 t G x 1 px 2 q ˘,
where here and in the sequel, if h P L 2 pX k ˆXk q, we write abusively S t phpx, yqq for S t phq. Proof. Define the family of kernel operators (depending on k P N, α ą 0 and t P R)

L pjq t,α : L 2 pX k q Ñ L 2 pX k q as L pjq t,α f pyq " ż X k f pxq k ź q"1 F ˆxq , α ˆ1 ´pj ´1qk `q N ˙˙e ´W py,xq dx .
Then, for all k P N, α ą 0 and t P R, the kernel of L pjq t,α is in L 2 pX k ˆXk q, thus it is a Hilbert-Schmidt operator, and so it is compact. Moreover, since for t " 0 the kernel is positive, we can apply a generalization of Jentzsch's theorem [START_REF] Zaanen | Riesz spaces[END_REF]Theorem 137.4] in combinations with Proposition 4.1 deducing that there exist two functions p λ " p λ py, tq P C 1,d pR `ˆr´ε, εsq, py, tq Þ Ñ ϕp¨, y, tq P C 1,d pR `ˆr´ε, εs, L 2 pX k qq and an operator Q 

pjq t : L 2 pX k q Ñ L 2 pX k q such that @ φ P L 2 pX k q, @|t| ă ε, L pjq t,α φpyq " p λ ˆα ˆ1 ´j M ˙,
ż X k`ℓ k`ℓ´1 ź j"1 F ˆxkpM´1q`j , α ˆ1 ´j `kpM ´1q kM `ℓ ˙˙exp `´W px, x M q ˘êxp
`´W px M , x kM `1, . . . , x kM `ℓ, 0, . . . , 0q´W px kM `1, . . . , x kM `ℓ, 0, . . . , 0q ˘Rpx N q k`ℓ ź j"1 dx kpM ´1q`j .

(4.8)

Note that in view of assumptions 1.1, }h t } 8 " OpN cpℓ`kq q. We recall that W " V `itU so h t depends on t , and the linear operator S t : L 2 pX k q Ñ C as

S t pψq " ż X k k ź j"1 F ˆxj , α ˆ1 ´j kM `ℓ ˙˙e ´W p0,...,0,xq ψpxq k ź j"1 dx j .
We notice that, again in view of the assumptions 1.1 the operator S t is uniformly bounded in k, ℓ for all t P R, and it is continuous in t in the operator norm sense.

In 

; ϕ αp1´pi`1q{M q t y S t ˆϕαp1´2 M q t ˙,
where we set ϕ αp1´i{M q t " ϕ p¨, αp1 ´i{M q, tq to shorten the notation. Furthermore, the ratio

M ´1 ź i"2 xϕ αp1´i M q t ; ϕ αp1´i `1 M q t y xϕ αp1´i M q 0 ; ϕ αp1´i `1
M q 0 y converges uniformly to 1 in M ě 1, t P p´ε, εq. This is due to the fact that 

xϕ αp1´i M q t ; ϕ αp1´i `1 M q t y " 1 `O ´α M ¯, because 
; h t E S t ϕ αp1´2 M q t A ϕ p1{M q 0 ; h 0 E S 0 ϕ αp1´2 M q 0 ˇˇˇˇˇˇď c 3 . (4.12) 
If we are able to show this, then defining First, we focus on (4.11). The term g 2 pα, tq is given by

c k,ℓ,M pα, tq " A ϕ p1{M q t ; h t E S t ϕ αp1´2 M q t A ϕ p1{M q 0 ; h 0 E S 0 ϕ αp1´2 M q 0 M ´1 ź i"2 xϕ αp1´i M q t ; ϕ αp1´i `1 M q t y xϕ αp1´i M q 0 ; ϕ αp1´i `1 M q 0 y ,
xϕ p1{M q ; h t y M ´2 ÿ n"2 M ´1 ź j"n`1 p λ ˆα ˆ1 ´j M ˙, t ˙M´n´2 ź i"1 xϕ αi M t ; ϕ αpi`1q M t y S t ˆLp2q t,α . . . L pn´1q t,α Q pnq t ϕ αp1´n `1 M q t ˙.
Because ϕ px, y, tq is regular with respect to y, we deduce that there exists a function py, tq Þ Ñ ψp¨, y, tq P C 8 pR `ˆr´ε, εs, L 2 pX k qq with }ψ αp1´n{M q t } 2 uniformly bounded in n, M and t such that

Q n t ˆϕαp1´n `1 M q t ˙" Q pnq t ˆϕαp1´n M q t ˙`1 M Q pnq t ψ αp1´n{M q t " 1 M Q pnq t ψ αp1´n{M q t .
given this equality, it is trivial to prove (4.11), recalling that for any t, j, 1 p λ pjq t L pjq t,α has operator norm smaller than one.

For (4.10), it suffices to show that there exists a constant c 2 independent of M such that 

› › › › › › Q pM ´1q t h t A ϕ p1{M q t , h t E › › › › › › ď c 2 . ( 4 
, h 0 E is given by ż X 2k`ℓ ϕ p1{M q 0 pxq k`ℓ´1 ź j"1 F ˆxkpM´1q`j , α ˆ1 ´kpM ´1q `j kM `ℓ ˙˙rpx, x M , r xqdxdx M dr x ,
where we denoted r

x " px kM `1, . . . , x kM `ℓq and rpx, x M , r xq " e ´W px,x M q´W px M ,x kM `1,...,x kM `ℓ,0,...,0q´W px kM `1,...,x kM `ℓ,0,...,0q .

By Assumptions 1.1 HP.4, and positivity of ϕ

p1{M q 0 , A ϕ p1{M q 0 , h 0 E ě pdpN {αq c q k`ℓ´1 ż O ϕ p1{M q 0 pxqdx inf O 2k`ℓ r ě c k,ℓ M k`ℓ ż O ϕ p1{M q pxqdx.
By continuity of η Þ Ñ ϕ η 0 , this last integral converges to ş O ϕ p1{M q 0 pxqdx ą 0, thus we conclude for the case t " 0. Finally, we conclude on (4.14) for t small enough by continuity.

Combining the two previous estimates, and setting p " cpk `ℓq we deduce (4.13), which leads to (4.11). The proof of (4.12) is analogous, thus we conclude.

We now turn on the proof of Theorem 1.6, which we rewrite here for convenience. Theorem 4.4 (Decay of correlations). Let W be the seed of Tr pGpLqq and I, J : X k Ñ R two local functions such that ş X k ˆXk ˇˇIpxq ś k i"1 F px i , αqe ´W px,yq ˇˇ2 dxdy ă 8, and analogously for Jpxq. Write N " kM `ℓ, and let j P t1, . . . , M u. Then there exists some 0 ă µ ă 1 such that E 1 rIpx 1 qJpx j qs ´E1 rIpx 1 qs E 1 rJpx j qs " Opµ M ´j `µj q .

Proof. Let L " L 0,α with L t,α given by (4.1). Furthermore, define L pJq L pJq φpyq " , where S t is defined in (4.3), and we used the decomposition

L k 0 " r λ k pα, 0qπ 0 `Qk 0 ,
where π 0 is the orthogonal projection on the (one dimensional) eigenspace associated with r λpα, 0q, and Q 0 is an operator such that }Q k 0 } ď Cr k for some 0 ă r ă r λ. Similarly, S 0 pπ 0 L pJq L j´3 G pIq x 1 px 2 qq " r λ j´3 pα, 0qS 0 pπ 0 L pJq π 0 G pIq x 1 px 2 qq `Opr j´3 q. We deduce E 1 rIpx 1 qJpx j qs " S 0 ppπ 0 L pJq π 0 G pIq x 1 qpx 2 qq `Oppr{ r λq M ´j `pr{ r λq j´3 q r λ ´S0 pπ 0 G x 1 px 2 qq `Oppr{ r λq M ´2q ¯.

Similarly, we deduce E 1 rIpx 1 qsE 1 rJpx j qs " S 0 pπ 0 G pIq x 1 px 2 qqS 0 `π0 L pJq π 0 G x 1 px 2 q ˘`Oppr{ r λq M ´j `pr{ r λq j´3 q r λ ´S0 pπ 0 G x 1 px 2 qq 2 `Oppr{ r λq M ´2q ¯.

By a direct computation, recalling that π 0 φ " xϕ 1 , φy ϕ 1 where ϕ 1 is the eigenfunction associated with r λ, we deduce the following These formulas imply that S 0 ppπ 0 L pJq π 0 G pIq x 1 qpx 2 qq " S 0 pπ 0 G pIq x 1 px 2 qqS 0 `π0 L pJq π 0 G x 1 px 2 q S0 pπ 0 G x 1 px 2 qq ,

and so E 1 rIpx 1 qJpx j qs ´E1 rIpx 1 qs E 1 rJpx j qs " Oppr{ r λq M ´j `pr{ r λq j´3 q .

Finally, we prove a Berry-Esseen bound type theorem for the measure µ Then, there exists A P R, σ, C ą 0 such that if Y " N p0, σ 2 q we have for any interval J of the real line ˇˇP ´rTr pHpLqq ´pkM `ℓqAs { a pkM `ℓq P J ¯´P pY P Jq ˇˇď C a pkM `ℓq .

Proof. We adapt the arguments of [START_REF] Gouëzel | Limit theorems in dynamical systems using the spectral method[END_REF]Theorem 3.7]. By [23, We take X " pTr pHpLqq ´pkM `ℓqAq { ? kM `ℓ. We are going to show that, taking T " ε a pkM `ℓq for some small enough ε, the last integral remains bounded by

C k,ℓ ? pkM `ℓq
, where C k,ℓ is a constant depending on k, ℓ. Recall N " kM `ℓ. By Theorem 1.2, there exists an A P R, σ ą 0 such that as N goes to infinity X converges to N p0, σ 2 q. Since t ´1 is not integrable at 0, we consider the special interval r0, N ´1s. hpx j ,x j`1 q ´ei t ? N hpxp,x p`1 q ´1¯N ź j"1 dx j `żX kM `ℓ Fpxq ´ei t ? N h 1 px M ,x kM `1,...,x kM `ℓ,x 1 q ´1¯ˇˇˇ, with the convention that the empty product is equal to one. Here we defined

Fpxq " kM `ℓ ź j"1 F px j , αq exp ˜´M´1 ÿ j"1 W px j , x j`1 q ´W1 px M , x kM `1, . . . , x kM `ℓ, x 1 q ȩxp ˆit ? N h 1 px M , x kM `1, . . . , x kM `ℓ, x 1 q ˙, where h 1 is the weed of H in the sense of HP 5 of Hyphotheses for some constant C 1 .

We now consider the integral on r1{N, ε ? N s. Here we use the spectral decomposition of E 1 re itX s. Since h P L d pX 2k , expp´2W qq for some d ě 6, we deduce (following Remark 1.3) applying Proposition 4.1, and from Theorem 2.1, that there exist two continuous functions pptq P C 0 pr´ε, εsq and c k,ℓ py, tq P C 1,d pR ˆr´ε, εsq for some ε ą 0, such that c k,ℓ py, 0q " 1 and }p} 8 ă `8, such that for q ě 1 ż ε ? N To conclude, we have to show that the last integral is of order N ´1{2 . Since c k,ℓ pα, tq is C 1 in t, and c k,ℓ pα, 0q " 1, it is easy to deduce that there exists a constant C such that

ż ε ? N 1 N
ˇˇ1 ´ck,ℓ pα, t{ ? N qp1 `opM ´q qq ˇˇe ´σ2 t{2 t dt ď C ? N so we conclude.

Conclusion and Outlooks

In this paper, we proved a general Central Limit Theorem type result and we apply it to several models in random matrix theory and integrable systems. By doing this, we strengthen the connection between these two subjects. Specifically, we could connect the expected values and the variances of the moments of each classical β ensemble in the high-temperature regime with one specific integrable model, see Table 1.

The results that we have obtained are relevant for two main reasons. Under the random matrix theory perspective, we were able to develop a general framework to prove polynomial central limit theorems for the classical β ensemble in the high-temperature regime, based on their band matrix representation and on the transfer operator technique. Under the integrable systems' theory point of view, our result enables the explicit computation of the so-called susceptibility matrix, which is a fundamental object in the theory of Generalized Hydrodynamics in order to compute the correlation functions for integrable models. Furthermore, we are able to prove rigorously the exponential decay of correlation for short-range interacting systems with polynomial potential.

It would be fascinating to generalize our result to a wider class of potential and functions and to obtain a Berry-Esseen bound for the classical β ensemble in the high-temperature regime. Furthermore, defining a new β ensemble related to the INB lattice would be interesting. Finally, we point out that it would be interesting to obtain large deviation principles for the Exponential Toda lattice and the Volterra one in the spirit of [START_REF] Guionnet | Large deviations for Gibbs ensembles of the classical Toda chain[END_REF][START_REF] Mazzuca | Large deviations for Ablowitz-Ladik lattice, and the Schur flow[END_REF].
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 12 Type 1-i ) Periodic Jacobi matrices, which are periodic tridiagonal matrix of the form ¨a1 b

. 7 )

 7 Indeed, for any n, m ě 0 and t P RCov N ´j`2 p´tq ¯,(3.8)where we used that s Þ Ñ Qrns,N j pt `sqQ rms,N1psq is constant in law under the Toda dynamic, and the periodicity of the matrix L (3.2). Denoting the difference operator B j f pjq " f pj `1q f pjq, equation(3.8) shows that

Corollary 3 . 25 (

 325 CLT for INB lattices). Consider the Lax matrices L p`,rq , L pˆ,rq (3.37)-(3.38) of the additive and multiplicative INB lattices respectively distributed according to their Generalized Gibbs Ensemble (3.39)-(3.40).

  , 0q " c k,ℓ pα, tqλpα, tq M ´2 `1 `opM ´qq ˘, as M Ñ 8 , for |t| ă ε, here Z p1q kM `ℓpα, tq " Z p1q kM `ℓpα, V `itU q. Furthermore, λpx, 0q " 1 c k,ℓ px, 0q " 1 .

1 F 3 E 1

 131 px i , αqJpxqe ´V py,xq " LpJφqpyq , and L pIq analogously. With G pIq x pyq " IpxqG x pyq, G given in (4.2), we have for j ě rIpx 1 qJpx j qs "S 0 ´´L M ´j L pJq L j´3 G pIq x 1 ¯px 2 q S0 pL M ´2G x 1 px 2 qq " r λ M ´j pα, 0qS 0 pπ 0 L pJq L j´3 G pIq x 1 px 2 qq `Op r λ j´3 r M ´j qq r λ M ´2pα, 0qS 0 pπ 0 G x 1 px 2 qq `Opr M ´2q

S

  0 ´π0 L pJq π 0 G pIq x 1 px 2 q ¯" xL pJq ϕ 1 , ϕ 1 y ż xG x , ϕ 1 y IpxqF pxqϕ 1 pxqdx , S pπ 0 G x 1 px 2 qq " ż xG x , ϕ 1 y ϕ 1 pxqF pxqdx , S 0 ´π0 G pIq x 1 px 2 q ¯" ż xG x , ϕ 1 y IpxqF pxqϕ 1 pxqdx ,andS 0 ´π0 L pJq π 0 G x 1 px 2 q ¯" xL pJq ϕ 1 , ϕ 1 y ż xG x , ϕ 1 y F pxqϕ 1 pxqdx .

p1q kM `ℓ: Theorem 4 . 5 . 1 "

 451 Under Hypotheses 1.1. Consider the measure µ p1q kM `ℓ, G satisfying assumptions 1.1 and H : C Ñ R such that Tr pHpLqq is cyclic (HP. 5) with seed h and weed h 1 such that h, h 1 P L d pX 2k , expp´2W qq, with N Q d ě 6, so that E

  Furthermore, let W, h be the seeds of Tr pGpLqq and Tr pHpLqq respectively, and assume that ş X 2k |hpx, yq| n e ´2W px,yq dxdy for n " 2, 4, 6 are finite. Then, there exist two continuous functions

		Apxq : R `ÝÑ R , σ 2 pxq : R `ÝÑ R `,
	such that under µ	p1q N (1.2)
		pS

Gq , are finite, here E 1 r¨s , E 2 r¨s are the mean values taken with respect to µ p1q N , µ p2q N respectively. N ´N Apαqq { ? N converges to a Gaussian distribution N p0, σ 2 pαqq as N tends to infinity, and under µ p2q N (1.3), ˆSN ´N ż 1 0

  1,0 pr0, 1q ˆRq, c n ptq P C 0 pRq, and h n ptq continuous in 0, such that for all t P r´ε, εs, and all n ě 1 we have Tr pHpLqq is circular (HP.5) with seed U , so that W `itU is the seed of Tr pGpLq `itHpLqq. Let S kM `ℓ " Tr pHpLqq. Then Gaussian distribution N p0, σ 2 pαq{kq as M tends to infinity, and under µ Gaussian distribution N p0, r σ 2 pαq{kq as M tends to infinity.The proof of the previous result is a trivial application of Theorem 2.1-2.2-2.3-2.4. Furthermore, we can interpret the previous relations through the free energies of µ Lemma 2.6. Under the same hypotheses and notation of Lemma 2.5. Consider the two measures µ

	E where lim nÑ8 n{m " k. Furthermore, assume that: " e ´itSn ‰ a. there exists two continuous functions Apxq, σ 2 pxq : r0, 1s Ñ C such that " c n ptq ˜m ź j"1 λ pj{m, tq ¸p1 `hn ptqq , λpx, tq " exp `´iApxqt ´σ2 pxqt 2 {2 `opt 2 q ˘as t Ñ 0; p1q kM `ℓ, pS kM `ℓ ´pkM `ℓqApαq{kq { ? kM `ℓ converges to a p2q kM `ℓ, ¯{? ´SkM`ℓ ´pkM `ℓq r Apαq{k kM `ℓ
	b. ||h n || 8 c. c n p0q " 1 and lim nÑ8 c n pt{ nÑ8 ÝÝÝÑ 0 uniformly in r´ε, εs, and h n p0q " 0; ? nq " lim nÑ8 c n pt{nq " 1. Then ş 1 0 Apxqdx P R, ş 1 0 σ 2 pxqdx P R `, and ? n ˆSn n ´ş1 0 Apxqdx k distribution N ˆ0, ş 1 0 σ 2 pxqdx k converges to a p1q ˙converges to a Gaussian kM `ℓ, µ p2q kM `ℓ (2.1) -(2.2): ˙as n tends to infinity. p1q kM `ℓ, µ
	lim nÑ8	E	" e ´ir tpSn{n´1 n	ř m ℓ"1 Apℓ{mqq	ı	" lim nÑ8	E	«	e ´ir t ˆSn{n´ş 0 Apxqdx 1 k
		´ir t ?	npSn{n´1 n	ř n ℓ"1 Apℓ{mqq	ı	" lim nÑ8	E	« e ´ir t ?	1 0 Apxqdx n ˆSn{n´ş k
	E 1	" e ´itS kM `ℓ ‰	"	Z kM `ℓpα, tq p1q Z p1q kM `ℓpα, 0q	, E 2	" e ´itS kM `ℓ ‰	"	Z Z	p2q kM `ℓpα, tq

Proof. First, let t " r t{n, then by hypothesis c.

˙ff " 1 .

Thus, by

Levy theorem, S n {n Ñ ş 1 0 Apxqdx k almost surely, thus, since S n P R, this implies that ş 1 0 Apxqdx P R. Consider now t " r t{ ? n, following the same reasoning one conclude that lim nÑ8 E " e ˙ff " lim nÑ8 e ´r t 2 2n ř m ℓ"1 σ 2 pℓ{mq " e ´r t 2 2k ş 1 0 σ 2 pxqdx , thus, by Lévy theorem [73], e ´r t 2 2k ş 1 0 σ 2 pxqdx must be the characteristic function of a real random variable, proving that ş 1 0 σ 2 pxq P R `. Proof of Theorem 1.2-1.4. We are now ready to prove Theorem 1.2-1.4, for convenience, we split the proof into two Lemmas, which combined give the full proof of our results. Lemma 2.5. Under hypotheses 1.1. Consider µ p1q kM `ℓ, µ p2q kM `ℓ (2.1)-(2.2), and let H : C Ñ R such that p2q kM `ℓpα, 0q , where E 1 r¨s , E 2 r¨s are the mean values taken with respect to µ p1q kM `ℓ, µ p2q kM `ℓ respectively. Furthermore, assume that U P L d pX 2k , expp´2W qq, with N Q d ě 3. Then, there exist four continuous functions Apxq : R `ÝÑ R , r Apxq : R `ÝÑ R , σpxq : R `ÝÑ R `, r σpxq : R `ÝÑ R `, such that under µ p2q kM `ℓ (2.1)-(2.2), and define the free energies as

  Theorem 4.3. Under Assumptions 1.1. Consider a real function H : C Ñ R such that Tr pHpLqq is circular, and let W be the seed of Tr pGpLq `itHpLqq, thus W px, yq " V px, yq ìtU px, yq for V, U : X k ˆXk Ñ R seeds of Tr pGpLqq , Tr pHpLqq. Furthermore, assume that U P L 2d pX 2k , expp´2V qq, with N Q d ě 3. Then there exists an ε ą 0 and two scalar functions λ py, tq P C 1,d pR ˆr´ε, εs, Cq, c k,ℓ,M py, tq P C 1,d pR ˆr´ε, εsq, such that Moreover, there exist two functions r c k,ℓ,M pα, tq P C 1,d pR `ˆr´ε, εsq, r λpα, tq P C 1,d pR `r´ε, εsq, and three constants C 1 , C 2 ą 0 and p P N such that C 1 N p ă r c k,ℓ,M pα, tq ă C 2 N p ,

		λpα, tq "	r λpα, tq r λpα, 0q	,				
		Z	p2q kM `ℓpα, tq " r c k,ℓ,M pα, tq	M ´2 ź j"1	r λ	ˆα j M	, t ˙p1 `oM p1qq .
	Defining										
			c k,ℓ pα, tq " λpα, tq "	S0 S t `xϕ p¨, α, tq ; G x 1 y ϕpx M , α, tq ˘, `xϕ p¨, α, 0q ; G x 1 y ϕpx M , α, 0q r λ M ´2pα, tq r λ M ´2pα, 0q ,
	and since in view of Proposition 4.1 }Q n t } ď p| r λptq| ´δq n we conclude.
	E 2	" e ´itTrpHpLqq	ı	"	Z kM `ℓpα, tq p2q Z p2q kM `ℓpα, 0q	"c k,ℓ,M pα, tq	M ´2 ź j"1	λ	ˆα j M	, t ˙p1 `oM p1qq	(4.4)
	for |t| ă ε. Furthermore,								
			λpx, 0q " 1 lim					

tÑ0 c k,ℓ,M pα, tq " 1 uniformly in M the remainder o M p1q is independent of t P r´ε, εs.

  Where the O `1 M ˘term is uniform in t P p´ε, εq. Indeed, recalling that L t,α is defined in (4.1), by the integrability assumptions on U and on B α F (HP 7. of Assumptions 1.1), we have

								˙πpjq
							t	t φpyq	`Qpjq t φpyq	(4.5)
	with where p λ	´α	π ´1 ´j λ the pjq t φpyq " B φ; ϕ ˆ¨, α ˆ1 ´j M ˙, t ˙F ϕ ˆy, α ˆ1 ˙, ˙, t ´j M
	function of Theorem 4.2, we have p λ ˆα ˆ1 ´j M	˙, t ˙" r λ	ˆα	ˆ1	´j M	˙, t ˙`O	ˆ1 M	˙,	(4.6)
			}L	pjq t,α ´Lt,αp1´j{Mq } ď C t	α M	(4.7)
	where C t ě 0 is bounded on r´ε, εs. We then deduce (4.6) by applying Proposition 4.1. Define the function h t on X k by
	h t pxq "							

M ¯, t ¯is the biggest eigenvalue (in modulus) of L pjq t,α , p λpy, 0q ą 0, ϕp¨, y, 0q ą 0, }ϕp¨, y, tq} 2 " 1 and there exists a δ j ą 0 such that }Q pjq t } ď | p λ ´α ´1 ´j M ¯, t ¯| ´δj , and we recall that we denote by x¨, ¨y the standard scalar product in L 2 pX k q. Furthermore, with r

  this notation, we can rewrite Z

				Z kM `ℓpα, tq " S t p2q	p2q kM `ℓpα, tq as ´Lp2q t,α . . . L pM ´1q t,α	h t ¯" S t	j"2 ˜M´1 ź	L	pjq t,α h t	Applying
		the decomposition (4.5), it follows that we can decompose the previous expression
	as						
	Z kM `ℓpα, tq " p2q	M ´1 ź j"2 ´Lp2q p λ t ˆα t,α . . . L ˆ1 pM ´2q ´j M t,α Q ˙˙S t pM ´1q ´πp2q t . . . π t h t M´2 St pM ´1q t h t ÿ n"2 M ´1 ź j"n`1 p λ t ˆα ˆ1 ´j M ˙˙S t ´Lp2q t,α . . . L pn´1q t,α Q pnq t π pn`1q t . . . π t h t pM ´1q ¯, (4.9)
	where we arranged the terms of the product of the L	pjq t,α 's by order of the first appearance from
	the right of a factor Q pjq t (the first term being the product where no Q pjq t appears). We notice that
	S t	´πp2q t . . . π	pM ´1q t	h t ¯" xϕ 1{M t	; h t y	M ´2 ź i"2	xϕ αp1´i{M q t

  Thus, to prove our result we need to show that there exist 3 constants c 1 , c 2 , c 3 independent of M such that for all t P p´ε, εq,

	Z kM `ℓpα, tq p2q Z p2q kM `ℓpα, 0q	"	f pα, tq f pα, 0q	¨1 `g1 pα,tq f pα,tq 1 `g1 pα,0q f pα,0q	`g2 pα,tq f pα,tq f pα,0q `g2 pα,0q	' .
	ˇˇˇg 1 pα, tq f pα, tq ˇˇˇg 2 pα, tq f pα, tq ˇˇˇˇˇˇA ϕ p1{M q ˇˇˇď c 1 , ˇˇˇď c 2 , t				(4.10) (4.11)
	of (4.7) and Proposition 4.1, thus the product	
	M ´1 ź i"2 xϕ αp1´i M q t	; ϕ αp1´i `1 M q	

t y stays bounded below and above uniformly on M ě 1, t P p´ε, εq.

Denoting the first term of (4.9) by f pα, tq, and the second and third terms by g 1 pα, tq and g 2 pα, tq, we can rewrite (4.4) as

  on the other hand, in view of the previous proof and the assumptions, we conclude that, for t small enough, there exists a constant d 2 such that

		› › ›Q pM ´1q j	h t	› › › ď d 1	´λ	´α M	¯´δ 1	¯M cpk`ℓq ,
		ˇˇAϕ p1{M q t	, h t	Eˇˇˇě	d 2 M cpk`ℓq .	(4.14)
	Indeed, for t " 0,	A ϕ p1{M q 0					

.13) 

From the assumptions, (4.5) and the definition of h t (4.8), we deduce that there exists a constant d 1 such that

  Lemma XVI.3.2], there exists a constant C such that for any X real random variable, and Y Gaussian random variable, for any interval J Ă R and for any T ą 0, we have |P pX P Jq ´P pY P Jq| ď C

	ż T 0	|Ere ´itX s ´e´σ 2 t 2 {2 | t	dt	`C T	.

  In this interval, we have the following estimate, denoting by W the seed of Tr pGpLqq:

	ˇˇE	" e ´itX ‰	´e´it ?	N A ˇˇ( 2.4) " " Z kM `ℓ pα, Gq |Z p1q kM `ℓ ´α, G `i t ? N H ¯´Z Z p1q kM `ℓ pα, Gq 1 p1q ˇˇM ´1 ÿ p"1 ż X kM `ℓ Fpxq p1q kM `ℓ pα, Gq| j"1 p´1 ź e i t ? N

  1.1. Thus, since |e , x p`1 q|N ´1{2 t, we deduce the following inequalityˇˇE 1 re ´itX s ´e´it ? N A ˇˇď E 1 r|hpx 1 , x 2 q|s t ? N `t ? N E 1 r|h 1 px M , x kM `1, . . . , x kM `ℓ, x 1 q|s , (4.15) and this last term is by assumption bounded by Ct? N for some C independent of N and t. Thus integrating for t P r0, N ´1s we deduce the following

	ď |hpx p ż 1 N 0	|E 1 re ´itX s ´e´σ 2 t 2 {2 | t ż 1 N ˇˇE 1 " e ´itX ‰ ´e´it dt ? ď 0 (4.15) ď ż 1 N 0 C ? Nt `t? N A `σ2 t 2 {2 N A ˇˇ`ˇˇe ´it ? t dt ď N A ´1ˇˇˇ`ˇˇˇ1 C 1 ? N ,	i t ? N ´e´σ 2 t 2 {2 ˇť hpxp,x p`1 q 1| dt

  |E 1 re ´itX s ´e´σ 2 t 2 {2 | ˇˇE 1 re ´itX s ´e´σ 2 t 2 {2 ˇť where || ¨|| 8,r0,εs in the L 8 norm on r0, εs. We notice that ||c k,ℓ pα, ¨qp1 `opM ´q qq|| 8,r0,εs is uniformly bounded in N . Moreover, ε}p} 8,r0,εs t 2 }p} 8,r0,εs dt , where in the first inequality we used the bound |e x ´1| ď |x|e |x| . Since for ε small enough ||p|| 8 ε ă σ 2 {4, thus integrating, we deduce that

	1 N		t	dt "	1 N ż ε ? N	ˇˇc k,ℓ pα, t{	?	N qe ´σ2 t 2 {2`t 3 ppt{	?	N q{	?	N p1 `opN ´qqq ´e´σ 2 t 2 {2 ˇť dt ,
	thus we have the following estimate						
	ż ε 1 N ?	N		dt ď `ż ε ˇˇˇˇc k,ℓ pα, ¨qp1 `opM ´q qq ˇˇˇˇ8 ? N 1 N ˇˇ1 ´ck,ℓ pα, t{ ? N qp1 `opM ´q qq ˇˇe ,r0,εs ż ε ? N 1 ˇˇ´1 ´et 3 ppt{ N ´σ2 t{2 t dt , ?	N q{	?	N ¯e´σ 2 t 2 {2 ˇť dt
		ż ε 1 N ? N	e ´σ2 t 2 {2 t e t 2 ż ε ˇˇe t 3 ppt{ ? N q{ ? N ´1ˇˇˇd t ď ż ε ? N 1 e ´σ2 t 2 {2 t ? N e t 3 }p} 8,r0,εs { N ď ż ε ? N 1 N e ´σ2 t 2 {2 ? N ? N ˇˇe ´σ2 t 2 {2`t 3 ppt{ ? N q{ ?	? N t 3 }p} 8,r0,εs dt
			1								
			N								

N ´e´σ 2 t 2 {2 ˇť dt " O ˆ1 ? N ˙.
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