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CLT for g ensembles at high-temperature, and for integrable
systems: a transfer operator approach.

G. Mazzuca! R. Memin'

May 11, 2023

Abstract

In this paper, we prove a polynomial Central Limit Theorem for several integrable mod-
els, and for the 8§ ensembles at high-temperatures with polynomial potential. Furthermore,
we are able to relate the mean values, the variances and the correlations of the moments
of these integrable systems with the one of the § ensembles. Moreover, we show that for
several integrable models, the local functions’ space-correlations decay exponentially fast.
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1 Introduction

In this paper, we study eigenvalue fluctuations for several random matrix models related to
some integrable dynamical systems and to the classical 8 ensembles in the high-temperature
regime. Specifically, we consider random band matrices with fixed bandwidth and, under some
mild assumptions, we prove a central limit theorem (CLT) for polynomial test functions for the
empirical measure of the eigenvalues. In particular, we consider the following kind of matrices
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1 INTRODUCTION

e Type 1-i) Periodic Jacobi matrices, which are periodic tridiagonal matrix of the form

ai by O by
by as by
by as 0 )
: ' by_1
by 0 by_1 an
for a = (a1,...,an) € RN, b= (by,...,bx) e RY.

e Type 1-ii) Antisymmetric Bidiagonal Periodic matrices:

for a = (ay,...,ay) e RY.

0

0

an

ai
0

—ay

0 —an

a2

0 0 )
aN—1

0 —an—1 0

e Type 1-iii) Periodic CMV (after Cantero, Moral and Velazquez) matrices, which
are 2N x 2N unitary matrices given by

E=LM,

where we define £ and M in the following way. Let a = (a1, ...asn) be complex numbers
of the unit disk ID. Define the 2 x 2 unitary matrix Z;

—

— . —

oy =

(

aj
Pj

Pj

—a;

Then, £ and M are the 2N x 2N matrices

[1]
@

Hon—1

>, j=1,...,2N, ,oj=m- (1.1)

The matrix £ is a pentadiagonal periodic matrix and is unitary.

e Type 1-iv) Two diagonals periodic matrices given by

by

an

aq

by

az

bN—r

bN—r+1
0

Ar—1

—Q2N P2N
=P
Hon—2
P2N asN
lN — 7 column
0 0 0
bN—ry2 O 0

0 0 by r+ 1 row
ar 0 0
0 0 anN-—1
0 0 0
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Where a,b € ]Rf. In applications, we consider either a1 = as = ... = ay = 1 or
by =bs=...=by =1.

We also consider the non-periodic counterparts of the previous matrices. More specifically:

e Type 2-i) Jacobi matrices, which are symmetric tridiagonal matrices

a; by
b1 a9 b2
b2 )
- byaa
by-1  an
where a€ RY and b e Rf‘l.
e Type 2-i7) Bidiagonal Antisymmetric matrices:
0 al 0
—al 0 a9
0 —as 0 . 0 )
. an-1
0 —aN-1 0

forae Rffl.
e Type 2-ii) CMV matrices, 2N x 2N unitary matrices of the form
¢ = £,
where
£ = diag (20, E9,Z4, ..., Z2N) and M = diag (£1,Z3,Z5...,Zan-1) ,

and the blocks Z;, j = 1,...,2N — 1 are defined in (LT)), while Zg = (1) and Zan = (G@an)
are 1 x 1 matrices.

The periodic matrices that we consider are the Lax matrices of some integrable models.
These are particular dynamical systems that are Liouville integrable, and their integrability is
proved obtaining a Lax pair (L, A) [48] representation of the model, meaning that the equations
of motions for each of these systems are equivalent to the following linear system for some
matrices L, A

dL

L=-—"=[L:Al=LA— AL.
dt [’ ]

This formulation is useful since it implies that {Tr (L¥)}{_, are a system of independent

d
constants of motion <&Tr (Lk) = 0)) for the system at hand, so the system is integrable in

classical sense. We call these quantities conserved fields.

Specifically, the Toda lattice [70] and the Exponential Toda lattice [32] have as Lax matrix a
periodic Jacobi matrix, the Volterra lattice [32] has an antisymmetric periodic one, the Ablowitz-
Ladik lattice [2] and the Schur flow [30] have a periodic CMV one, and the family of Itoh-Narita—
Bogoyavleskii [9] lattices have a bidiagonal periodic one.
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We endow the periodic matrices L of type 1 with the so-called Generalized Gibbs Ensemble of
the corresponding dynamical system. The main property of these measures is that they are in-
variant with respect to the dynamics of the corresponding integrable system. These Generalized
Gibbs Ensembles have the form

N
1) _ ~Tr(G(L)) q
1 xi,a) e X, (1.2)
N Z(1 (o, G) <1:[ ’ >
where x = (a, b) for Jacobi matrices, x = a for antisymmetric matrix, x = a for periodic CMV
matrices, x = a (resp. x = b) for bidiagonal periodic matrices if by = ... = by = 1 (resp. if
ap =...=ay = 1) and G is a real-valued continuous function.

The non-periodic matrices of type 2 are related to the classical 5 ensembles, indeed both the
real B ensemble and the Laguerre § ensemble [19] can be represented through a Jacobi matrix,
the circular and the Jacobi ensemble have a representation in terms of CMV matrices [45], and
the Antisymmetric 8 ensemble has a representation in terms of an antisymmetric matrix [20].
Specifically, we consider these ensembles in the high- temperature regime meaning that the
parameter [ is not fixed, but scales with the matrix size N as § = £, o € R,. The joint density
for the entries of the matrix representation reads

N—1 .
e (o)) s o

O, @)

where x = (a, b) for tridiagonal matrices, x = a for the antisymmetric one and x = a for CMV
one.

As we already mentioned, we focus on the fluctuations (or linear statistics) around the
equilibrium measure of these general models, where we choose the functions F' and G so that
the partition functions

Z(l)(oz G) f <H F(zj,a > e~ Tr(G(L) 4%
N-1 .
Z](\?) (Oé, G) = J;(N (H F <CC]',OZ (1 — %))) R(CCN)eiTr(G(L))dX

7j=1

are finite for all N. Here X is a subset of R? (C being identified with R?).
Specifically, we study the fluctuations of polynomial test functions Q(z), i.e.

L Qdvy — L Qdv, (1.4)

where vy is the empirical measure of eigenvalues of L given by

1 N
=5 20w (1.5)
j=1

Here the \;(L) are the eigenvalues of L and J, is the Dirac delta function centred at z, v is the
equilibrium measure (or density of states) of the system and ~ is the support of the measure
v. In this paper, we are able to analyse the random variable (I4)) for polynomial potentials G,
using a transfer operator technique.

The study of spectral properties of Lax matrices of integrable models was initiated by Spohn
in [66], see also [5I]. In this paper, the author investigated time correlation functions for the
Toda lattice. Applying the theory of Generalized Hydrodynamic [17], Spohn argued that they
have a ballistic behaviour, meaning that they have symmetrically located peaks, which travel
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in opposite directions at constant speed and decay as t~! when t — c0. To obtain this result,
Spohn had to compute the density of states of the Toda Lax matrix; he did it by connecting the
Generalized Gibbs Ensemble of the Toda lattice to the real 8 ensemble in the high-temperature
regime [4]. After that, the Generalized Gibbs ensemble for the Ablowitz-Ladik lattice and the
Schur flow were connected to the Circular 8 ensemble and the Jacobi S ensemble in the high-
temperature regime [27,37] respectively by one of the present authors and T. Grava [34] and,
independently, by H. Spohn [67]. For all these models, a large deviation principle for their
mean density of states were developed in [35,/53]. Furthermore, in [32] the authors were able to
connect the classical Gibbs ensemble for the Exponential Toda lattice and the Volterra one to
the Laguerre [19] and to the Antisymmetric § ensemble [20] respectively.

As we mentioned, our study does not only involve integrable systems, but also the classical 3
ensembles. Specifically, we study the random variable (IL4)) for these ensembles in the so-called
high-temperature regime. The study of these quantities was initiated by Johansson in [41], where
the author obtained a CLT for the Gaussian Unitary Ensemble with polynomial potential, then
generalized for other models and other values of § in [11L21,63], and, more recently, in [12],
where the authors obtained also a rigidity result for the eigenvalues of the 8 ensembles. We
mention also the work [57], where the author obtained a CLT for the Gaussian S ensemble in
the high-temperature regime for a quadratic potential, the work [37] where the authors obtained
a CLT for the Circular 5 ensemble at high-temperature using a normal approximation method,
and the recent paper [22] where the authors obtained a CLT for the real 5 ensemble in the high-
temperature regime for general confining potentials. Another relevant paper that it is worth
mentioning is 7], where the authors studied Coulomb gases in dimension d > 2 and studied the
local laws for any temperature regime. Finally, we recall also the recent work [14,15] where the
authors obtained a super-exponential bound for the convergence for the moments of the CUE,
COE and CSE to a Gaussian vector.

Statement of the results. We come to precise statements of the main results of the present
paper. We consider the previously mentioned family of random matrices and make the following
assumptions.

Hypotheses 1.1. The following hypotheses are valid throughout the paper:
HP 1. X c RY;

HP 2. F(x,n) is such that for any n > 0 F(-,n) € CYX), and for any z € X,F(x,") €
C*((0,+2)) ;

HP 3. F(x,n) > 0 almost surely for x € X, n € (0,00);
HP 4. F(-,n) € LY(X,B) n L*(X,B) for all n € (0,0), and 0,F(-,n) € L'(X,B) n L*(X,B);

moreover there exist a c € N and a compact set O € X such that

o [[F(z,n)ll2 =O0m°)
e There exists d > 0 such that for alln >0, §, F(z,n)dz > dn~°

HP 5. The function Tr (G(L)), where L is one of the matrices of type 1 or 2, is circular, meaning
that there exists some k € Ns1 and two functions W : X* x Xk - C, W7 : Xt x X*F -
C, Wy s Xk C, Wy : X! — C, such that writing N = kM + ¢ with M > 0 and
0<l<k—1, we have
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S Wy, Xj41) + Wi (Xs, Tearsats - - > Thdrro, X1) Jor type 1
M-1

Tr (G(L)) = Z W(xj,x541) + Wi(x1) + W(xar, emsts - - - T 46,0, -, 0) ,
oy for type 2
+ Wa(Zkarsts - - > Trnrre))

here x; = (x(j_l)k_;’_l’...’xjk). In this case, we say that W is the seed of G, and

Wi, Wi, Ws are the weeds.

HP 6. The real parts of W, W7, WNfl, Wy are lower bounded. Furthermore, exp (—W) € L2(X* x
XK, exp (—W1) € L2(X* x X! x X*), exp (-Wl) e L2(X*), and exp <—ﬁ72> e L2(XY)

HP 7. Both integrals

k 2
f (%HF(%,??)) e W) dxdy,
Xk a=1

k . 2
—1
ka (an 1_[ F (wqﬂ? (1 _ %))) e_QW(XW)dxdy
g=1

HP 8. R(z) € L*(X) n C*(X), and R(x) > 0 for allz € X, or R(z) = d,(x) for some y € X.

are finite.

Here LP(X, B) is the usual LP space.
Remark 1.1. The definition of circular function and seeds was introduced in this context in [29].

Under these assumptions, we are able to prove our main theorem:

Theorem 1.2. Under hypotheses [L1. Consider ,ug\lf), ,uf,) C2)-@T3), and let (Sn)n=1 be a
sequence of real random wvariables such that there exists a function H : C — R such that
Tr (H(L)) is circular, it satisfies HP 6., and

4 ZO(a, G +itH :
By [oieow] = IO O M) g, [
Zy' (@, G)

2 (a, G + itH)
Z3 (@, G)

are finite, here Eq[-], Eo[] are the mean values taken with respect to ,ug\lf), ,ug\?) respectively.
Furthermore, let W, h be the seeds of Tr (G(L)) and Tr (H(L)) respectively, and assume that

§x2n [ (x, y)|"e WY dxdy for n = 2,4,6 are finite. Then, there exist two continuous func-
tions

A(z) : Ry — R,

o*(z) : Ry — Ry,

such that under ,ug\lf) (T2)
(Sy — NA(a)) /VN

converges to a Gaussian distribution N'(0,02(a)) as N tends to infinity, and under ,ugg,) ([T3),

<5N - N fol A(am)dx) /NN
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converges to a Gaussian distribution N(O,Sé o?(ax)dr) as N tends to infinity. Furthermore,

defining the free energies ]:](\;)(oz, G),]:](\?) (o, G) as

]:J(\})(oz,G) — lim —ln (Z(l)(oz G)) (1.6)

N—ow N

f](\?)(a,G) = — lim Nln (Z(z) (v, G))

N—o

then

el , .
iii. {, Alax) = i0,F (o, G +itH)|,_
i, FO(a,@) = 0 (aFD (o, G)) 0 o

w. o2(a) = ZFD (o, G + itH)

lt=0

ii. Ae) = ioyF D (v, G + itH)),_, v. §0%(ax)de = FFP(a, G +itH)

lt=0

Remark 1.3. In the central part of the proof we introduce a family of operators acting on L?(XF)
by

k
Liaf(y) f H ~(WHith)(xy) qxdy .

Because of our assumptions, each Ly 15 Hzlbert—Schmzdt, meaning that the kernel
k
() o [ | Flay)e 0+ 0053)

is in L2(X* x X*), thus Lyt s compact, and, as we show in the proof of Theorem[2.1], Lo o has
a stmple dominating eigenvalue. Hypothesis HP 7. and the assumption that the integrals

f |h(x,y)["e VY dxdy n=2,4,6
X2k

are finite is merely to ensure that (o, t) — Ly o ts reqular. In particular, it is differentiable with
respect to o, and three times differentiable with respect to t as an operator valued function, which
in turn ensures that for t small enough, the operator L, has a simple, dominating eigenvalue
A(t,«) and that t — A(t,«) is three times differentiable. Note that we only use the existence of
a second derivative with respect to t in the proof of the main theorem, but use the existence of a
third derivative in the proof of the Berry-Esseen bound, Theorem[].5 We use the differentiability
with respect to « in the proof of Theorem [2.2.

In the central part of our paper, we show how to use the previous result to obtain a polynomial
CLT for the integrable models that we mentioned, and for the classical 8 ensemble in the high-
temperature regime. Specifically, we use the previous theorem with G and H polynomials and

Sy = %Tr (H(L) & L H(z)dvy ().

The expectations we want to compute then reduce to

(4) ;
i Zy'(a, G+ itH )
Ej[e tSN]: N((j) ), j=12.
Zy (o, G)

Furthermore, as a by-product, we are also able to compute the so-called susceptibility matriz
C for integrable models. This is the matrix of the space-correlation functions of the conserved

fields, i.e.
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Con = Jim (B [Tr (L) Tr (E")] — Ba [Tr (L)) Ba [Tr (27)])

where L is the Lax matrix of the integrable system at hand and the mean values are taken with
respect to the corresponding Generalized Gibbs ensemble. The computation of such quantities
is relevant to obtain the decay of the correlation functions for these integrable systems, as it is
shown by Spohn in [65]. In particular, we can prove the following:

Theorem 1.4. Under the same hypotheses as Theorem [1.2. Consider ,ug\lf) (L2) and define the
free energy FV (o, G) as in (L8), then

Coon = 0030ty (FV (0, G + ity a™ + itgx")> . (1.7)

lt;=to=0

Remark 1.5. In view of Theorem [L.2, we can rewrite (L) as

Conne = Ot Ory (a (f<2> (@, G + ity ™ + z'tgx")»

|t1:t2:0

In our context, the previous equality implies that we can compute the susceptibility matrix of the
integrable systems that we are considering in terms of just the free energy of the corresponding
classical B ensemble in the high-temperature regime.

Finally, considering the type 1 measures ([[2)), we investigate the space-correlations for local
functions, meaning that they depend only on a finite number (independent of N) of consecutive
variables, proving the following

Theorem 1.6 (Decay of correlations). Let W be the seed of Tr (G(L)) and I,J : X* — R two
local functions such that §yi. ‘I(x) Hle F(mi,a)e_W(X’Y)’ dxdy < o0, and analogously for
J(x). Write N = kM + £, and let j € {1,...,M}. Then there exists some 0 < < 1 such that

Eq [1(x1)J (x;)] = B [T(x1)] B [J(x;)] = O(u™ ™ + 1) .

In particular, this result implies that the space-correlations between two local functions
acting on two different parts of the chain decay exponentially fast according to the distance
between the set of particles they are acting on. In section Bl we use the previous result to
rigorously justify the assumption of H. Spohn on the decay of space-correlations between the
local conserved fields and their currents [68]; we mention also that one can follow exactly the
same reasoning for all the other integrable systems that we consider.

The paper is organized as follows, in section 2] we state the theoretical results that lead to
the proofs of Theorems and [[4l In section Bl we show how to apply our results to obtain a
central limit theorem for several integrable systems and for the corresponding 5 ensembles in the
high-temperature regime. A summary of these models can be found in Table [[l Specifically, we
obtain a CLT for the Toda lattice and the real 8 ensemble, for the Exponential Toda lattice and
the Laguerre 8 ensemble, the defocusing Ablowitz—Laddik lattice and the Circular 8 ensemble,
the defocusing Schur flow and the Jacobi 3 ensemble, the Volterra lattice and the antisymmetric
B ensemble, and for the families of Itoh—Narita—Bogoyavleskii (INB) multiplicative, and additive
lattices. Furthermore, we apply Theorem to the Toda lattice to derive the limiting currents
of the conserved fields. In section [, we prove the technical results we used in section 2, we prove
Theorem and deduce a Berry-Esseen type bound for all the previously considered integrable
models. Finally, in section [5] we give some conclusions and outlooks for future developments on
this topic.



2 NAGAEV-GUIVARC’H THEORY: A TRANSFER OPERATOR APPROACH 9

Integrable System (Type 1) p-ensemble at high-temperature (Type 2)
Toda lattice Real
Defocusing Ablowitz-Ladik lattice Circular
Exponential Toda lattice Laguerre
Defocusing Schur flow Jacobi
Volterra lattice Antisymmetric

Table 1: Integrable systems and random matrix ensembles

2 Nagaev—Guivarc’h theory: a transfer operator approach

In this section, we prove Theorem [L2H[.4] to do that we need to develop the fluctuations’ theory
of Nagaev—Guivarc’h [313613855] through transfer operator methods, see for example [441/46162].

The proof of these theorems is divided into 3 main parts. In the first one, we compute
Eq [e*““(H)] ,[Eo [e*itrﬁ"(H)] through transfer operator techniques. Since the proof of these
results is technical, we postpone it to section @l Our proof follows the same line as the corre-
sponding one in [34]. In the second part, we prove a slight generalization of Nagaev—Guivarc’h
theorems [3I]. In the last part, we combine the previous two results to complete the proof of
Theorem

In view of the hypotheses [[LT] we consider the following decomposition of N = kM + £, in
this notation, we can rewrite our measures as

o KM+ M-1
Hiiree = H F(zj,0) [ ] exp(-W(x;,x11)) (2.1)
kM+€(a’ j=1
KM+
x exp (—Wi(Xar, Trnro1s - - - e, x1)) || da

o 1 kM+L—1 i M-1
Beriie = —Gr H F (CEj,Oé <1 — >) H exp (—W(xj,x;41)) (2.2)

Z W) G WM L)) 54

X exp <7W1(X1) — W (XM Tl 415 - - - s Theh+050, - .. ,0))
N kM40
X exp <—W2(36kM+1, e 7ka+£)> R(zy) [] dz;,

Where x; = (Z(j—1)41,- - -, Tk;) and the partition functions become:
W kM+¢ M—-1
Zyvrsol, W) [ 1:[ F(zj,a ]11 exp (=W (x;,%;+1)) (2.3)
kM+4
x exp (—Wi(Xn, TepM+1, - - - ThM+£X1)) H dz;

o EM+0—1 j M-1
Zivipola, W) = JX]CMH H I (xj,oz (1 Y +£>) 1_[ exp (—W(xj,x41)) (2.4

J=1 Jj=1

X exp <*W(XM,331¢M+1, s M40, 0,00, 0) = Wo(Tparsds - - - aCUkM+€)>

kM +£
xexp( W1 xl) (xN) 1_[ dz;,
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we set Z](\‘;) (o, W) = Z](\‘;)(a,G), s=1,2.
On the space L(X*, B*) we introduce the standard scalar product for f, g e L*(X*, B*) as

(frg) = Lkmmdx.

Furthermore, for I,J < R, and E a normed space, denote by C*%(I x J, E) the functions
f:1xJ— X that are C° (respectively C9) with respect to the first (respectively the second)
variable. If s = d, then we set CH(I x J, E) = C%4(I x J, E), and if the normed space E = C
we just omit it.

Transfer operator for partitions functions. As we already stated, in the first part of the
section, we apply the transfer operator method in order to compute E; [e_’tH ] ,Eq [e_’tH ] . In
particular, we prove the following theorems

Theorem 2.1. Under Assumptions [I.1. Consider a real function H : C — R such that
Tr (H(L)) is circular, and let W be the seed of Tr (G(L) +itH (L)), thus W(x,y) = V(x,y) +
itU(x,y) for V,U : X* x X* — R seeds of Tr (G(L)), Tr (H(L)). Furthermore, assume that
U e LYX? exp(—2V)), with N 3 d = 6. Then, there exists an € > 0, and two complex valued
functions X (y,t) € CL4(R, x [—¢,€]) and cke(y,t) € CH4R x [—¢,€]) such that for all g€ N :

)
. Z t
E, [e*“m(H)] = %(a) = crola, DN, M2 (1 4+ o(M~9)) , as M — 0,
ZkM+é<a7O)

for |t| < e, here Z,S&H(a,t) = Z]S&JFZ(O(, V +itU). Furthermore,

Az,0) =1,
Ck,g(.%',()) =1.

Moreover, there exist two functions ¢ ¢(c,t) € CH4(R x [—¢,€]) and Mo, t) € CH(R, x [—¢,€])
such that there exist two constants C1,Co > 0 such that for all g € N:

’ (2.5)
Z,S&H(a,t) = ~k,z(Oé,75)5\(0475)]\/[_2 (14 o(M™9)) .

In the next theorem, we prove an analogue decomposition of the partition function for the
second type of measure. This decomposition involves the same function A(y,¢) as in Theorem

21

Theorem 2.2. Under Assumptions [L1. Consider a real function H : C — R such that
Tr (H(L)) is circular (HP 5.), and let W be the seed of Tr (G(L) +itH (L)), thus W(x,y) =
V(x,y) + itU(x,y) for V,U : X¥ x X*¥ — R seeds of Tr (G(L)), Tr (H(L)). Furthermore,
assume that U € LY X2k, exp(—2V)), with N > d > 6.

Then, there exists an € > 0 and cpon(y,t) € CH(R x [~¢,¢€]), such that, with \ given by
Theorem [21)

(2) —2 .
. Z 1
E, [eﬂm(m] - %(O‘) = ceonr(ant) TT A (O‘ﬁ’t) (1 + oar(1))
Ziarse(,0) j=1

S
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for |t| < e. Furthermore,
Az,0) =1
PI% ceem(a,t) =1 uniformly in M
the remainder opr(1) is independent of t € [—¢,¢].

Moreover, there exist two functions S p(c,t) € CHHRL x [—g,€]), Mo, t) € CH(R, x
[—e,¢]), and three constants C1,Co > 0 and p € N such that

Cle < Ek,&M(a,t) < CQNp,
Xav, t)
XM, 0)

M—2 .
(2 ~ 3 J
Zselant) = Geenr(ant) j}:[l A (aﬂ,t> (1+om(1)) -

Ma, t) =

Since the proof of these results is technical, we postpone it to Section 4l

Generalization of Nagaev—Guivarc’h method. In this second part, we need to generalize
some standard results from the fluctuation theory of Nagaev—Guivarc’h [31] to our situation.

Specifically, we prove the following:

Theorem 2.3. Let (X,,)n>1 be a sequence of real random variables with partial sums (Sp)n=1 €
R. Assume that there evists ¢ > 0, two functions \(t) € CL([0,¢)), c(t) € C°([0,¢)) and
ha(t) € C°([0,¢)), such that for all t € [—¢, €], and all n = 1 we have

E[e "] = c()A0)™ (1 + (1)) , (2.6)

Where lim,,—,o, n/m = k € N.
Furthermore, assume that:

a. there exists A, 0? € C such that A(t) = exp (—iAt — 0*t?/2 + o(t?)) as t — 0;
b. hy 2225 0 uniformly in [—e, €], and hy,(0) = 0;
c. ¢(0) =1.
Then A€ R, 02 >0, and (S, — nA/k) /\/n converges to a Gaussian distribution N (0,02 /k)
as n tends to infinity.

Proof. First, evaluating (2.0) at t = 0, we deduce that A(0) = 1. Then, we use the asymptotic
expansion of A(t), and properties b.-c. to prove that

E [exp (—itS" — mA)} 1.
n n—00

Thus, by Lévy theorem [73], we deduce that S,,/n — A/k converges in distribution to 0. So, since
Sp is real, then A € R. Exploiting again the asymptotic expansion of A(t) and properties b.-c., we

show that E |exp ( —it22=24 ) | converges to the function exp _o2) By Lévy theorem [73],
7n ok

this must be the characteristic function of a real random variable, proving that ¢? > 0, and that
(S, — nA/k)//n converges to a Gaussian distribution A'(0,02/k). O

Further, we prove the following:
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Theorem 2.4. Let (X,,)n>1 be a sequence of random variables with partial sums (Sp)n>1 € R.
Assume that there exists € > 0 and functions \(x,t) € CH0([0,1) x R), ¢, (t) € CO(R), and hy,(t)
continuous in 0, such that for all t € [—¢,€], and all n = 1 we have

E[e 5] = ea(t) (]‘[ A (j/m,t)> (1 + hn(t))
j=1

where lim,,_,oo n/m = k.
Furthermore, assume that:

a. there exists two continuous functions A(x), o*(z) : [0,1] — C such that

Mz, t) = exp (—iA(z)t — o?(2)t?/2 + o(t?)) as t — 0;
b. ||hnlloo =25 0 uniformly in [—e, €], and hy,(0) = 0;

c. ¢p(0) =1 and lim, o ¢, (t/4/n) = limy, o cp(t/n) = 1.
Sl A(z)dx .
Then SO r)dz € R, So z)dz € Ry, and \/n | 22 — 02——— | converges to a Gaussian

distribution N( oo (x)dx> as n tends to infinity.

Proof. First, let t = tN/n, then by hypothesis c.

lim E[ it(Sn/n—1 %A(f/m))] — lim E[ 7”<S = ¢> 1.

n—ao0 n—o0

Thus, by Levy theorem, S,/n —
Sé A(z)dz € R. Consider now t = t/4/n, following the same reasoning one conclude that

1
So Alw)dz Agf)dx almost surely, thus, since S5,, € R, this implies that

n—aoo0 n—0o0

lim E [e—ifﬁ(sn/n—%zg;lA(z/m))] . E[ ﬂtf<5 . SOA(x)dx>]

I :
= lim e 2 2 o2 Wm) — omox So o2 (z)dz
n—o0

)

2
thus, by Lévy theorem [73], e 2% Jo (@)% gt be the characteristic function of a real random

variable, proving that SO o%(z) e Ry. O

Proof of Theorem [I.2HT.4. We are now ready to prove Theorem [[L2H.4], for convenience,
we split the proof into two Lemmas, which combined give the full proof of our results.

Lemma 2.5. Under hypotheses [L1 Consider ,u,(:]‘)/[M, M](€2]\)4+f 1)-@22), and let H : C - R
such that Tr (H (L)) is circular (HP.5) with seed U, so that W+itU is the seed of Tr (G(L) + itH(L)).
Let SkMJrg =Tr (H(L)) Then

]El [efltSkJV[Jrg] _ ](611\)4+5 ’ EQ [efltSkMJrg] _ 1232]\)4+Z
Zpsre(@,0) Ziarse(,0)
1)

where Eq [-], Eg [-] are the mean values taken with respect to py ;. 4, /‘l(d\)/[+£ respectively. Further-
more, assume that U € L4(X?* exp(—2W)), with N > d = 3. Then, there exist four continuous
functions

)
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A@) Ry —R,  A(): R, —R,
U(I’):R+—>R+7 5($):R+—>R+7
such that under /LSAZH,
(SkMJrg — (/{?M + K)A(Oé)/k) /\/W

converges to a Gaussian distribution N'(0,0%(a)/k) as M tends to infinity, and under ,ug\)dﬁ,
(SkMM — (kM + E)fl(a)/k) INEM + ¢

converges to a Gaussian distribution N'(0,5%(a)/k) as M tends to infinity.

The proof of the previous result is a trivial application of Theorem R.IH2.2H2 3124l Further-
(1) (2)

more, we can interpret the previous relations through the free energies of py i\ ., tyvr.y
-[22):

Lemma 2.6. Under the same hypotheses and notation of LemmalZ.3. Consider the two measures
plglz\)/[Jrg, /‘122]\)/[+é @I)-22), and define the free energies as

Iz 0 W) (25 (0 W)
FO (a, W) = _z\}linoo kk]:\/[]\/‘[+£+ ) , FO(a,W) = _J\}ILHOO k]x\}i - ;

then, using the same notation as in Lemma 2.0, the following holds:

iii. A(a) = iko FO (o, W+ itU)|,_,
i. FO(a,W) = 0, (aF@ (a,W))
w. o(a) = kd?FY (a, W +itU)

lt=0

ii. A(e) = ikoy FO (a, W +itU) v. 5(a) = kA7 FP (a, W +itU)

lt=0 lt=0

Remark 2.7. The previous theorem tmplies that

Ala) = 0q(aA()), o?(a) = du(ad? ().
Proof. To prove 4., we can just compute the free energy of ,u,(:]\)/f o H/(f]\)/[ ¢ using Theorem
For 7 (o, W) we deduce immediately that

m(z® VB im MR, 0))

M—w kM + ¢

1
= 7 n(X(e,0)).

The proof for F(2) (a, W) follows in the same way. We now prove ii. — iv. First, we notice that
following the notation of Theorem [2.3]- 2.1 :

c(t) = cpp(a,t), hp=1+0M77), At)=XNot),
thus to compute explicitly A(a, W), o(a, W) we have just to expand A(«,t) around ¢ = 0

2
Mat) = 1+ ta\ (e, 0) + %afx(a, 0) + oft?),
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which implies that
2
AMa,t) = exp (t&t In(A(a,t))),_, + %8,52 In(A(a,t))),_, + 0(t3)> . (2.8)

This implies that A(a) = —i0; In(A(av, 1)) o?(a) = =02 In(A(a, 1)) From (2.5)), we deduce
that 0 In(A(a, 1))|,_, = O In(A(a, t))},—o» thus from the previous expressions and the explicit form
of the free energy (2.7)) we conclude.

To prove #ii. — v. we proceed in the same way, thus following the notation of Theorem 2.4 -
2.2

lt=0 » le=0"

enlt) = croar(@nt), hm=1+0(1), A(G/M,¢) = A (a%,t) .

Thus, as in (2.8)) except that o — a%, we expand A (a%, t) around t = 0, leading to

Aa) = ¢, <J1 ln(A(om:,t))dx) ,

0 [t=0
1
5 (a) = 07 (f ln()\(owv,t))dx)
0 lt=0
which concludes the proof. O

Remark 2.8. We notice that the Lemma [28, and Lemma [23 imply that we can compute the
expected values, and the variances of Siprie according to ,u,(:]‘)/[M, M](€2]\)4+f just computing deriva-
tives of the corresponding free energy. This property is broadly used in the physics literature,
but we lacked of a precise statement, and of a proof for the general result. Furthermore, we can

compute the expected value, and the variance of Skpyrie according to u,(j]\)/[ ¢ starting from the

corresponding values for /‘551\)/1 +¢- Thus, we have reduced all this problem to the computation of

the free energy of /‘1(921\)/[+£'

The proof of both Theorem and Theorem [[4] follows from the four previous lemmas.
Thus, we have completed the proof of our main theorems, and now we show how to apply them
to some integrable models, and the 8 ensembles in the high-temperature regime.

3 Application

In this section, we show how to apply Theorem [[L2] to obtain a CLT for some integrable systems
and for the classical § ensembles in the high-temperature regime. Namely, we prove a CLT for
the systems of table [Il

Specifically, we are able to prove that all the integrable systems in table [Il in the periodic
case have a Generalized Gibbs ensemble of the form MSA)/[ +¢ .10, that is the reason of the label
“type 17. Meanwhile, the 5 ensembles at high-temperatures are characterized by a probability
distribution of the form u,(f]\)/[ +¢ 22), that is the reason for the label “type 2. In this way, we
proved a further connection between the theory of integrable systems and Random Matrix The-
ory. Indeed, in view of Theorem and Theorem [[L4], for any integrable system in the previous
table, we can relate its free energy, moments, variances and covariances with the corresponding
quantities of the random matrix model on the same line. Moreover, in the final part of this sec-
tion, we consider the family of INB lattices that do not have a known § ensemble counterpart.
Despite that, we are still able to derive the existence of a polynomial central limit theorem. Fi-
nally, applying Theorem [[.@] we are able to show that for the Toda lattice the space-correlations
between the local conserved fields and the currents decay exponentially.
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3.1 The Toda lattice, and the real 5 ensemble at high-temperature

In this subsection, we focus on the Toda lattice, which is an integrable model, and its relation
with the real 8 ensemble in the high-temperature regime. The connection between these two
systems was first realized by Spohn in [66], see also [51L65]. In this seminal paper, the author
was able to compute the density of states for the Toda lattice when the initial data is sampled
according to a Generalized Gibbs ensemble in terms of one of the Gaussian 8 ensemble in the
high-temperature regime. This was further developed in [35] where the authors obtained a Large
Deviations Principle for the Toda lattice, and they connect it to the one for the real 5 ensemble
in the high-temperature regime. In this paper, we further develop this analysis, obtaining a
CLT theorem for these two systems, and connecting them. This result is particularly relevant
in the context of the so-called Generalized Hydrodynamics, a recent physical theory that allows
computing the correlation functions for classical integrable models, for an introduction to the
subject see [17,[68]. According to this theory, one of the main ingredients to compute the
correlation functions for the integrable model at hand is to be able to calculate the correlation
functions for the conserved fields at time 0. Thanks to our result, we are able to access these
quantities. We show how to do it at the end of this subsection. We mention also the recent work
[52], where the authors made molecular dynamics simulations of the correlation functions of the
Toda lattice, and they compared them with the predictions of linear Generalized Hydrodynamics,
showing an astonishing agreement.

The Toda lattice. The classical Toda chain [70] is the dynamical system described by the
following Hamiltonian:

N N
1 _—
Hr(p,q) =5 2,05+ 2, Vrlgn —q) . Vr(a) =e ™ +x -1,
j=1 j=1

with periodic boundary conditions ¢y = ¢j +Q Vj€ Z, 1 > 0. Its equations of motion
take the form

aHT . aI{T
=Pj, Pj=—
apj J J 8qj

qj = =Vr(gj1 = ¢) = Vrlg —gj-1), 7=1....N. (31

It is well known that the Toda chain is an integrable system [39[70], one way to prove it is to
put the Toda equations in Lax pair form. This was obtained by Flaschka [25], and Manakov [50]
through the following non-canonical change of coordinates:

Lgi—q: 1, .
aj == —pj, b = e2(G—G+1) = 73" I<j<N

where r; = gj41 — g; is the relative distance.
Defining the Lax operator L as the periodic Jacobi matrix [72]

ap by 0 by
by ay b
L:= 0 by ag 0 ) (3.2)
bn-1
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and the antisymmetric matrix B

0 b 0 ... —by
—b; 0 by :
B:=1 0 —b o . 0 :
Lo S
by ... 0 —by_1 O

a straightforward calculation shows that the equations of motions ([B.I]) are equivalent to

L=[B;L],

where [B; L] = BL — LB is the commutator of two matrices. This form implies that Tr (Lk),
k =1,...,N are constants of motions for the Toda lattice, so the system is integrable. We call
these quantities conserved fields.

On the phase space RV x ]Rf, we introduce the Generalized Gibbs Ensemble

N
H b?a_l]lbj>oe_Tr(P(L))da db, (3.3)
j=1

1

dur i= ————
M 7T, P)

where P(z) is a polynomial of even degree with positive leading coefficients, and « > 0 is a
pressure parameter.

Our aim is to obtain a central limit theorem for the conserved fields when the initial data is
sampled according to ([B.3]). So, we want to apply Theorem to this model. To do that, we
need some preparation. First, we recall the following result about the structure of the trace of
periodic Jacobi matrices which was proved in [33]:

Theorem 3.1 (cf. Theorem 3.1 [33]). For any 1 < m < N — 1, consider the matriz L given by

B2). One has
N
Tr (L™) = Z h§m) ,

7j=1
(m)

where h;™ 1= [L™];; is given explicitly by

m—1 m—1
W = N pmWema [T ek [T 6

(n,q)e_A(m) t=—m i=—m+1

where it is understood a; = ajmod N+1, bj = bjmod N+1 and A s the set

m—1
A () BN S )=

Vi=0, mni=0=ni41=¢q+1 =0,

Vi < 0, ni+1=O:>ni:qi:0}.

The quantity m := |m/2|, No = N U {0} and p™ (n,q) € N is given by

m—1
P (n, q) = <n1 +no + C_Io) (nl + no) ﬁ (n@ +Nir1 + Gyl — 1> (nz + i1 — 1)
7 qo0 1o i i di+1 Ni+1
it—1
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This Theorem immediately leads to the following Corollary

Corollary 3.2. Fizm € N, and consider the matriz L [3.2). Then for N big enough, there exists
some k = k(m) € N, and two polynomial functions V : R?* xR?* - R, V; : RZ+Ex Ri’”g —-R
such that

M-—1
Tr (L™) = Z V(aj,bj,aj11,bj1) +Vi(an, agnrs - - - knre, a1, bar, beassas - - beare, 1)
j=1

where N = kM + {, aj = (a(j_1)k+1, Aj—1)k+2> - - - Qjk), and similarly for b;.

Remark 3.3. In other words, the function Tr (L™) is circular in the sense of Hypotheses [I.]],
HP. 5. Furthermore, we notice that the local potential V (x1,y1,X2,y2) is bounded from below,
this can be proved using the explicit formula in Theorem [31] or applying the properties of super-
Motzkin paths used for the proof of the theorem in [33)].

We apply the previous Corollary to the Gibbs measure of the Toda lattice ([B.3]), so it can be
written as

N M
1
dpr = ——— | | 2% 14 ~0exp < — ) V(aj,bj,aj11,bj1)
ZJT/(@P)H J > ]; j» Pjr & j
—Vi(am, arprsts - - Qrnge, @1, bar, bpargts - o brear 4o, b1)>dadb-

We would like to apply Theorem to the previous density with F(b) = b>**~! and W =V,
but in this case F' ¢ L?(R,), so we have to take care of this issue. To do it, we fix ¢ > 0, and
consider the following measure

N M
1 1 —e(a21b2
dur = ST A O H b?a le E(UL]er])]laj>0 exp < - Z V(aj7bj7aj+17 bj+1)
ZN(IB’P) j=1 j=1
— Vi(am, agprs1s - - - Qb+, a1, bar, bkt - -+ bkarye, b1)

N
+2 ) a2 +b})dadb,
j=1

this is exactly the same measure as before, but, following the notation of Theorem [[L2] we can
now set

F(a, b, Oé) _ b2a71675(a2+b2) ’

2k
£
W(aj, bj,aj41,bj11) = V(aj, bj, aj41,bj1) — 5 D GG typrn VG typen -
n=1

These functions satisfy the hypotheses of Theorem [[L2] so we can apply it and deduce the
following

Corollary 3.4 (CLT for the Toda lattice). Consider the Lax matriz L [B.2)) of the Toda lat-
tice distributed according to the Generalized Gibbs Ensemble (83), and assume that P(x) is a
polynomial of even degree with positive leading order coefficient. Then, defining the Free energy
Fr(a, P) as



3 APPLICATION 18

1
Fr(a, P) = — lim Nln(zﬁ(a,P)),

N—o0

for all j € N fized, we have the following weak limit

. (L7) —E[Tr (L7)]

R 2
i i N(0,07).

Where

E[Tr (L7)] = iNo,Fr(a, P + ita?) o? = |02 Fr(a, P +itx?)

lt=0> \t:0| :

Moreover, we can also apply Theorem [[L4] to compute the correlation between the conserved
fields at time zero, indeed the theorem immediately implies that

i B [Tr (L7) Tr (L") = E [Tr (Z7) | E[Tx (L™)]

R N = 8t1 8t2}'T(a, P+ itlxj + itg:ﬂn)

|t1,t2:0 ’

(3.4)
where the mean value is taken with respect to the Gibbs measure of the Toda lattice ([B.3]). We
notice that this implies that we can compute the susceptibility matrix of the Toda lattice (.7
in terms of the derivative of the Free energy.

3.1.1 The Toda chain’s currents

Since the conserved fields are local quantities, they must satisfy a local conservation law. Fol-
lowing the notation of [69], we define

[n]vN — n
Q] - L],] )
where L € Mat(N,R) is ([B:2]). We can easily compute the evolution equation for such quantities
as

d n],N n n n n
%QE W (BLM = L"B) = b (L} — b L, .

Defining J]["]’N =bj—1L7,_4, we have

d [N _ N qn],N
EQj :Jj *Jj+1

and we say that

J ][n]’N is the current of the local conserved field Qg»n]’N. In particular, defining

the matrix L' as

. _{LM ifj<iori=1,j=N
0=

0 otherwise

we can recast the previous definition as

n 7]V n
TP = (L

We notice that both an]’N and J ][n]’N depend on time, and we adopt the convention that if not
explicitly written the evaluation is at time 0. Furthermore, we define

n],N _ n|,N n],N __ n|,N
QU = QI i S 33)

N N
j=1 j=1
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and we refer to QN as the n'-conserved field, and to JI"V as the n'-total current.
The evaluation of the expected values of both the currents J ][n]’N and the total current JV
according to the Generalized Gibbs ensemble (3.3)) is one of the crucial steps to apply the theory
of Generalized Hydrodynamics to the Toda lattice, as it is explained in [69]. In this manuscript,
the author used some heuristic arguments to explicitly derive the expression for these quantities,
here we rigorously justify his argument applying Theorem
First, we extend the definition of an]’N and J][n]’N for n = 0, setting QE.O]’N = rj, and

J][O]’N = —p; = fQE»l]’N. We notice that Z;V=1 J][O]’N = — Z;V=1 QEH’N is still a conserved field.

We are now in position to show how to compute the limiting Toda average current
lim —E R
N—wo N ’

in terms of the susceptibility matrix (7)) of the Toda chain, so in particular of the derivative
of the Free energy (B.4]). Indeed, we prove the following:

Lemma 3.5. Consider the Lax matriz L [3.2) of the Toda lattice distributed according to the
Generalized Gibbs Ensemble (33), and assume that P(x) is a polynomial of even degree with
positive leading order coefficient. Then, for any fited n € N, and o € Ry defining the total
currents JMN as in BE) we have the following equality

ds.

N—o |t1,t2:0

1 (o4
lim NE [J[n]’N] = jo é’tl 8t2}'T(5, P +itix + itgx")
Proof. In view of the cyclic structure of the measure pr and of the total current, we deduce that

e [7] =[]

Furthermore, for any fixed N, we deduce, by differentiating with respect to the parameter «,
the following equality

N
G || = —Cov (Jl["]’N Y rj>
j=1

where we defined for any functions f,g e L?(X", ur)

N
Cov (Jl[n]’N : QE-O]’N> , (3.6)
1

j=

Cov(f; g) =E[fg] —E[f]E[g] .

We show now that the following limits coincide

N N
. n|,N 0],N . 0],N n|,N
i, 2 Cow (A1 Q) = g, 3y o (1 Q) 0)

Jj= Jj=

Indeed, for any n,m > 0 and t e R
n n m d n m
Cov (1Y () = AN (1) 5 QY (0)) = —ZCov (@I (1) : QMY (0))
d

= 2 cov (@ 0) 1 QY1)

n],N m],N m],N
= Cov (Qg OF J][ij+3(ft) - z[\/jj+2(*7f)> ;
(3.8)
where we used that s — Qg»n]’N(t + s)ng]’N(s) is constant in law under the Toda dynamic,

and the periodicity of the matrix L ([3.2). Denoting the difference operator 0;f(j) = f(j +1) —
f(4), equation ([B.8) shows that
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) (Cov < SNy ngLN(o)) — Cov (QE"]’N(O); Jz[v”l]ﬁQ(—t))) =0

Evaluating the previous expression at ¢ = 0, we deduce that there is some constant cp, inde-
pendent of j, such that

Cov (JIY; QM) — Cov (@M JFEY,) = en

Furthermore, since both Qg»n]’N, and J][m]’N are local quantities, in view of Theorem [L.6] we
deduce that limy_,o, Ney = 0. So, evaluating the previous expression for m = 0, we deduce
B7). Thus, in the large N limit, we can recast (B3.0]) as

lim ¢ IE[ gl ] — lim Z Cov <J1 ; QE] ) = lim Z Cov <Q1 ; Qg»n]’N> .

N—w N—»oo N—»oo

Moreover, in view of the periodicity properties ot the conserved fields and (B.4)

. n|,N . 1 n . . n
A}linoo OB [J1[ ] ] = ]\}'linoo NCOV (QD]’N ; Q[ ]’N) = 0y, O, Fr(a, P + ity + itox™)

‘tl,t2:0 N

Noticing that lima—0 E [Jl[n]’N] = 0, and that we can always uniformly bound E [Jl[n]’N] by a
constant independent of IV, the previous equation implies that

ds.

lt1,t5=0

hm E [Jl[ f O, O, Fr (s, P+ ityx + itox™)
So, we conclude. O

The real S-ensemble in the high-temperature regime. The real S-ensemble is the prob-
ability measure on RY given by

1 _yN .
APy (M, ..., AN) = WH A — Aiffe D5 PO, (3.9)
N\

1<j
where 8 > 0 and P is a continuous function such that the partition function
BN(IBa J HM —\ |5 =X POV
RN i<j

is finite. This is the case if P grows to infinity fast enough, namely if for some 8’ > max(1, 3),

P
lim inf (z)

—— > 1,
|z|—>00 NG In |£C|

see [6, equation (2.6.2)].
Dumitriu and Edelman showed in [I8] that the 5-ensemble admits a tridiagonal representa-

tion
aq b1 0

H— , (3.10)
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where the entries of the matrix are distributed according to the following probability measure
I = g
_ [T —i)-
d,LLH = W 1 b] ]]-ijO exp (—TI' (P(H)))dadb (311)

Then, the eigenvalues of H are distributed according to dPy ([3.9). An important example is
the case P(x) = x2/2 for which we recover the classical Gaussian 3 Ensemble, see [6, Section
2.5], and the distribution p g factorizes in the following way: the entries of H can be seen to be
independent (modulo the symmetry of the matrix), Gaussian N'(0,1) on the diagonal, and the
law of the off-diagonal elements is given by renormalized chi variables

1

bj ~ —=X(N_1)3
] ﬁX(N 7)8

where the variable X is x,-distributed if its law is given by the density function

1 a2
h lem/Q

1@ = =)

We are interested in the so-called high-temperature regime for this model, specifically, we are
interested in the infinite size N limit, in such a way that g = QWO‘ for some o > 0. In this regime
the probability distribution (B.I1]) becomes

1
ZN(B)

N-1 -

2a(1—<)—1
Ay = [102°0 )70, g exp (—Tr (P(H))) dadb.
j=1

This regime has drawn a lot of attention from the random matrix and statistical physics com-
munities lately. Introducing the empirical measure by

this model was first considered in [4], where the authors were able to compute the limiting
empirical measure for this model when P(x) = 22/2. Recently, Garcia-Zelada showed in [28]
that under a general choice of P, the sequence of empirical measures satisfies a large deviation
principle with strictly convex rate function, ensuring the convergence of . Although the
limiting measure is not explicit, its density pf satisfies for almost every x the nonlinear equation

P(z) 20 jR log |z — ylp (y)dy + log o (z) = AL

for some constant AL see [35] Lemma 3.2] for example.

The fluctuations of the eigenvalues in the bulk and at the edge of a configuration were
studied for example in [8 47,57, 58, [61]. These fluctuations were shown to be described by
Poisson statistics in this regime. With the choice P(x) = 22/2, Nakano and Trinh proved
in [57] a Central Limit theorem for this ensemble, namely they proved that for smooth enough
f R — R, the random variables

VN < fR Fdii - fR for dw)

converge towards a centred Gaussian variable with variance depending both on « and P. In
[22], the authors showed this central limit theorem for general confining potentials and smooth
enough, decaying at infinity test functions. In this paper, we consider the case where P is a
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polynomial of even degree > 2. We deduce here from Section Pl a central limit theorem for
polynomial test functions.

Indeed, in view of Corollary [3.2] following the same reasoning as in the case of Toda lattice,
we can apply Theorem to the real § ensemble in the high-temperature regime, thus we
deduce that

Corollary 3.6 (CLT for Gaussian 8 ensemble). Consider the matriz representation (3.10) of
the real B ensemble in the high-temperature regime, and let P(x) be a polynomial of even degree
with positive leading order coefficient. Then, defining the Free energy Fr(«, P) as

1
-FH(a7P) :_]\}li)nooﬁln(zlj\;(aap))a

for all j € N fized, we have the following weak limit

. (H?) —E[Tr (HY)]

N 2
Jim i N(0,07),

where

E[Tr (H?)] =iNoyFu(a, P + ita?) 0 = |02 Fu(a, P+ ita?)

lt=0 |t:0| :

Thus, we obtained a central limit theorem for the real 8 ensemble in the high-temperature
regime with polynomial potential.

Furthermore, we are in place to apply the second part of our result; indeed, we deduce the
following identities

Oa (O Frr (o, P+ itmj)‘tzo) = OuFr(a, P + itxj)‘tzo ,
0o (02 Fr(a, P + itwj)|t:0) = ?Fr(a, P+ ita?)

lt=0

so we are able to compute both the moments and their variances of the Toda lattice starting
from the one of the real § ensemble at high-temperature.

Remark 3.7. Applying the second part of Theorem [1.2, we deduce the following equality valid
for the currents of the Toda lattice:

ds = a@tl atQ}—H (Oé, P+it1$+’it2$n)

ltq,t9=0 ltq,ta=0"

lim E [Jl[nLN] = L é’tl 6t2fT(s, P+’it1$+it2$n)

N—o0

3.2 The exponential Toda lattice, and the Laguerre § ensemble at high-
temperature

In this subsection, we focus on the Exponential Toda lattice and its relation with the Laguerre
[ ensemble in the high-temperature regime [27]. These two systems were considered in [32]. In
this paper, the authors considered the classical Gibbs ensemble for the Exponential Toda lattice
and were able to compute the density of states for this model connecting it to the Laguerre
a ensemble [51], which is related to the classical 8 one in the high-temperature regime. Here
we consider both the Generalized Gibbs ensemble for the integrable lattice and the Laguerre
ensemble at high-temperature with polynomial potential, and we obtain a CLT for both systems,
furthermore, we connect the two in the same way as we did for the Toda lattice and the real 3
ensemble.
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The exponential Toda lattice. The exponential Toda lattice is the Hamiltonian system on
R2N described by the Hamiltonian

N N

HE(pa q) = Z e P+ Z el ai+t y  Dj,dj € Ra (312)
j=1 j=1

with canonical Poisson bracket. Here, we consider periodic boundary conditions
G+N =q; + 8, pjrN = pj, Vjez,
and {2 > 0 is an arbitrary constant. The equations of motion are given in Hamiltonian form as

0HEg

qj = on. —e™H,
gﬂH (3.13)
pi= — 2 = U171 _ gl 41
J aqj

Following [32], we perform the non-canonical change of coordinates

Pj 95795 +1 -4
2

rpj=e 2, yj=e 2 =€ 2, Ti=¢11—¢, j=1...,N,

to obtain a Lax Pair for this system. Indeed, in these variables, the Hamiltonian (8:12]) transform
into

N
Zx +y]

7=1
and the Hamilton’s equations (B.I3]) become
. Zj . Yj 2 2 .
Tj = 2] (v —vi-1) yj:E](%H*%‘)’ j=1...,N, (3.14)

where Ty41 = Z1, Yo = YN-
Let us introduce the matrices L, A € Mat(V) as

$% + y12v T1Y1 TNYN
Ty T3+ Yl ways
L= : (3.15)
TN-1YN—-1
TNYN TN-1YN-1 CU?V + yjz\[_l
0z —INYN
—r1y1 0 22y
1 .
A== : ,
2
TN-1YN-1
TNYN —IN_1YN-1 0

The system of equations (3.14) admits the Lax representation
L=[AL].

Hence, the quantities H,, = Tr(L™), m = 1,..., N are constants of motion as well as the
eigenvalues of L. For this integrable model, we define the generalized Gibbs ensemble as

d — o T P | T (PL) qxdy | 3.16
HET = Z (a ’)/, 1_[ i=04y;>0€ y ( )
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where a,y > 0, and P is a real valued polynomial with positive leading coefficient. ZJI\{E (cv, 7, P)
is the normalization constant.

Remark 3.8. The definition of our Gibbs ensemble is slightly different from the one given in [32),
indeed there the authors were considering just the classical Gibbs ensemble for this model, so the
case P(x) = x/2.

We notice that the structure of (B.I6]) resembles the one of pg]\)/[ 4o @J), thus we want to
apply Theorem To do this, we have to identify the functions F, W. First, as an application
of Theorem [3.I] we obtain the following corollary

Corollary 3.9. Fiz m € N, and consider the matriz L (3I5). Then for N big enough, there
exists some k = k(m) € N, and two polynomial functions V : R%f X R%f — R and V
RikH X RikH — R such that

M
= > V(x5 Y5, X541, Yj41)
j=1

+ V1(XM790kM+17 ey LM A0, X1, YM s Yk M 415 - - - ,ykM+£,Y1) s

where N = kM + /¢.

As in the Toda lattice case, if we naively set F'(z,y) = x2%71y20‘*1, this would not fit in the

hypotheses of our theorem, since this is not an Lz(Ri) function. As in the previous case, we
have just to consider a slight modification of the measure:

dppr =

N 2 2 2,.2
71 x5+ s % 4y?
ZHE H Za ! exXp <_€ ’ 9 yj) lxj>0]1yj>067Tr(P(L))+€ 2z dxdy,

for fixed e > 0, but small. In this way, deﬁning F(z,y,a) = x2%71y20‘_1 exp(— $2—5y2), and

W(x1,y1,%2,y2) = V(X1,y1,X2,¥2) — § ZJ 125 +yj we are in the same hypotheses as Theorem
L2 thus we deduce the following corollary

Corollary 3.10 (CLT for the Exponential Toda lattice). Consider the Lax matriz L (B.15)
of the Exponential Toda lattice distributed according to the Generalized Gibbs Ensemble (3.10)).
Then, defining the Free energy Frap(a,y, P) as

1
Fer(a,y, P) = — lim —In(Zy"(a,7, P)),

N—0
for all j € N fized, we have the following weak limit
Tr (L7) —E[Tr (L7)]

. IR 2
M N N(0,0%),

where

E [Tr (Lj)] = iNOFrr(a,vy, P+ itxj)hzo . ol = |8§fET(a,7, P+ itxj)‘t:0|
The Laguerre 8 ensemble in the high-temperature regime. The Laguerre 8 ensemble
is a random matrix ensemble introduced by Dumitriu and Edelman in [I8]. It has the following

matrix representation
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2
Ty T1Y1

2 2
T1yr Ty T Y7 T2y2

Q == ’ : . ’ ° . ’ ° . ) (3.17)
' ' IN-1YN-1
ENIYN-1 TN YR
where the entries of () are distributed according to

=

N—
2§ M, H PN, o exp (=Tr (P(Q))) dxdy,  (3.18)

where M is such that limy_,oc N/M = v € (0,1], and P can be any continuous function such
that the partition function is well-defined, for our purpose we consider P(z) to be a polynomial.

The remarkable property of this ensemble is that it is possible to explicitly compute the joint
eigenvalue density as

N
1 B¢ .
=S LY AT o [T = e S PO an,

We are interested in the so-called high-temperature limit, i.e. when g8 = ]\Of‘, a € R, which
was considered in [5], where the authors were able to compute the density of states for the
particular case P(x) = z/2.

In this regime, the density (3.I8]) takes the form

<t

1 N 22 (1-4H) gk
ane = ———— T [ H 1,20 exp (=Tr (P(Q)) dxdy

The structure of this density resembles the one of d,uk 11+¢22), indeed proceeding as in the
case of the Exponential Toda lattice, we deduce the following corollary

Corollary 3.11 (CLT for Laguerre 8 ensemble). Consider the matriz representation [BIT) of
the Laguerre B ensemble in the high-temperature regime, and let P(x) be a real polynomial of
degree at least 1. Then, defining the Free energy Fr (a7, P) as

1
‘FL(O‘,V?P) — lim NID(ZN( aWaP))a

N—o0

for all j € N fized, we have the following weak limit

(@) —E[1(@)]
N—00 \/N

— N(0,0?),
where
E[Tr (Qj)] = iNoFr(a,y, P + ita?) = |02 Fr(a, 7y, P + ita?)

Which is the perfect analogue of the result for the Exponential Toda lattice. Furthermore,
we are in position to apply the second part of our result, indeed we can deduce the following
identities

lt=0 > |t:0|

Oa (O Fr(a,y, P + itxj)‘tzo) = 0 Fer(o,y, P+ itx?)
aa(aatQ]:L(aary, P+ ’it:ﬂj)|t:0) = at]:ET(O[a v P+ itxj)

thus, we can compute all the quantities involved in the previous theorems from the Free Energy
of the Laguerre ensemble.

lt=0 >

[t=0
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3.3 The Volterra lattice, and the antisymmetric § ensemble at high-temperature

In this subsection, we focus on the Volterra lattice and its relation with the Antisymmetric g
ensemble [20] in the high-temperature regime [27]. These two systems were considered in [32].
In this paper, the authors considered the classical Gibbs ensemble for the Volterra lattice and
were able to compute the density of states for this model connecting it to the Antisymmetric «
ensemble [27], which is related to the classical 8 one introduced by Dumitriu and Forrester [20)].

The Volterra Lattice. The Volterra lattice (or discrete KdV equation) is the following sys-
tems of N coupled ODEs

dj = aj (aj+1—aj_1), j:L---7N7 (3'19)

here a; € Ry for j = 1,..., N, and we consider periodic boundary conditions a; = aj4n for

all j € Z. Volterra introduced it to study evolution of populations in a hierarchical system of

competing species. This system was considered by Kac and van Moerbeke in [42], who solved it

explicitly using a discrete version of the inverse scattering transform introduced by Flaschka [24].
Introducing on the phase space Rﬂ\r] the following Poisson bracket

{aj, ai}vore = aja;(d;j41 — 0ij-1),

and defining the Hamiltonian H; = ZN

j=10; , we can rewrite the equations of motion ([B19) in

Hamiltonian form as
dj = {aj, Hl}Volt . (320)

An elementary constant of motion for the system is Hy = Hj\[:l a; which is independent of Hj.

The Volterra lattice is a completely integrable system, and it admits several equivalents Lax
representations, see e.g. [32,42,[54]. We use the one presented in [32]. Specifically, we introduce
the matrices L, A € Mat(R, N) as

0
—\/ai Vaz
L= : (3.21)
B A/aN—1
ﬁ/aN —./aN_1 0
1
=3 Z Vaiaii1(Ejj2 — Ejya;)

an

-
:
\

where E, ¢ is defined as (Er,s)ij = 5£5§ and Ejin; = Eji+n = Ej;. Then, it follows that the
equations of motion (B3.20) are equivalent to

= [L; A].

In view of this Lax pair, we know that Tr (Lk) are constant of motion for the model.
Following [32], we introduce the Generalized Gibbs Ensemble of the Volterra lattice (3.19)
as

eTr(P(L)) Hj\;l a?‘_ljlla].>0da

Z\% (a1, P) !

dpvort(a) = (3.22)

where a > 0, P(z) is a polynomial of the form P(x) = (—1)/z% + lo.t , otherwise the previous
measure is not normalizable, moreover, we notice that, in view of the antisymmetric nature of
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L, Tr (L2j+1) = 0. For this reason, we perform the change of coordinates ,/a; = x;, where we
take just the positive root, so the previous measure read
N _
oTr(P(L)) Hj:l xia l]lm].>odx
ZX[Olt ( a, P)

dMVolt (X) =

This Generalized Gibbs ensemble resembles the structure of /‘211\)4 +¢ @210, we have just to
identify F,W. We notice that it is possible to generalize Theorem 3] also for the antisymmetric
situation, so we deduce the following Corollary:

Corollary 3.12. Fiz m € N, and consider the matriz L (321I]). Then for N big enough, there
exists a k = k(m) € N, and two polynomial functions V' : R’i xR’i - R,V : R’i XRﬁ ><IR’}CF - R
such that
M
Tr (L™) = > V(%5 Xj41) + VA(Xar, Trare1s - Tenr4e: X1)
j=1
where N = kM + ¢.

Thus, following the same kind of reasoning as in the Toda lattice, section Bl and the
Exponential Toda lattice, section 3.2] we deduce the following:

Corollary 3.13 (CLT for Volterra lattice). Consider the Lax matriz L [B.21)) of the Volterra
lattice distributed according to the Generalized Gibbs Ensemble [322)). Then, defining the Free
energy Fyou(a, P) as

L T
Fvour(a, P) = - Jim In(Zy"(a, P)),

for all j € N fized, we have the following weak limit

T (D) ~B [T ()]

N 2
Jim i N(0,07),

where

E [Tr (Lj)] = iN O Fyou(c, P — ita?) 02 = |0? Fyou(a, P — ita?)

lt=0 > |t:0| :

The Antisymmetric 8 ensemble in the high-temperature regime The Antisymmetric
B ensemble is a random matrix ensemble introduced by Dumitriu and Forrester in [20]; it has
the following matrix representation

—X1 0 X9
Q= , (3.23)

TN-1
—ITN-1 0

and the entries of the matrix () are distributed according to

N—-1
1 B(N—j)—1
dpag = | | X' 1, soexp(Tr (P(Q)))dx, 3.24
Z34(B.P) j 5 s20 (T (PQ)) 24

here P(z) can be any function that makes (3.24) normalizable, but for our purpose we will
consider P(x) polynomial of the form P(z) = (—1)72% + Lo.t.
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As in the previous cases, we are interested in the high-temperature regime for this model, so
we set § = =%, and we rewrite the previous density as

N— j
dpag = 7 AG H 1,50 exp(Tr (P(Q)))dx. (3.25)

This regime was introduced in [32], where the author computed the density of states for this
model in the case P(x) = 22/2. The structure of this last density (325) resembles the one of
ul(j\)/[ i , indeed proceeding as in the case of the Volterra lattice, we deduce the following

corollary

Corollary 3.14 (CLT for Antisymmetric S ensemble). Consider the matriz representation
B23) of the Antisymmetric B ensemble in the high-temperature regime, endowed with the proba-
bility distribution duac B25), and let P(z) be a polynomial of the form P(z) = (—1)7 2% 4 Lo.t..
Then, defining the Free energy Fac(a, P) as

. 1
Fac(o, P) = = lim —In(Zy%(a, P)),
for all j € N fized, we have the following weak limit

T (@) - E[T (@)
N—w VN

— N(0,6?%).

where

E[Tr (Q7)] = iNo; Fac(a, P — ita?) 0% =02 Fac(a, P —itx?)

lt=0 > \t:0| :

Which is the perfect analogue of the result for the Volterra lattice.

Remark 3.15. In view of Theorem[1.2, we deduce the following identities

Oa (s Fac(a, P — itxj)‘t:o) = 0y Fac(a, P — itwj)|t:0 )
0o (02 Fag(a, P — itwj)|t:0) = 0t Fac(a, P — itxj)‘

t=0
3.4 The defocusing Ablowitz-Ladik lattice, and the Circular 5 ensemble at
high-temperature

In this subsection, we focus on the defocusing Ablowitz-Ladik lattice, and its relation to the
Circular /8 ensemble at high-temperature [34,37,[69]. This relation was highlighted by one of the
present authors and T. Grava [34], and independently by H. Spohn [69]. In these papers, the
authors were able to characterize the density of states of the Ablowitz-Ladik lattice in terms
of the one of the Circular 8 ensemble in the high-temperature regime. Moreover, in [34] the
authors were able to compute explicitly the density of states in the case of linear potential in
terms of the solution of the Double Confluent Heun Equation [16] highlighting a connection
with the Painlevé equations [261[49]. In [53], the two present authors obtained a large deviations
principles for the empirical spectral measure for any continuous and bounded potential.

The defocusing Ablowitz-Ladik lattice. The defocusing Ablowitz-Ladik (dAL) lattice is
defined by the following system of nonlinear equations

wj = f(ajﬂ +aj—1— 2aj) + |aj|2(aj,1 + aj+1), (326)

where a;(t) € C. We assume N-periodic boundary conditions aj;n = aj, for all j € Z. The
dAL lattice was introduced by Ablowitz and Ladik [2,[3] as the spatial integrable discretization
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of the defocusing cubic nonlinear Schrédinger Equation for the complex function v (z,t), x € S*
and t e R:

i0ep(w,t) = —0z(x,t) + 2[w(z, 1) ¥ (z, ).

As for the others dynamical systems that we considered, the dAL is an integrable system. Its
integrability was proved by Ablowitz and Ladik by discretizing the 2 x 2 Zakharov-Shabat Lax
pair [IL2] of the cubic nonlinear Schrodinger equation. Furthermore, Nenciu and Simon [60}64]
constructed a new Lax pair for this lattice. Following their construction we double the size of
the chain according to the periodic boundary condition, thus we consider a chain of 2/N particles
ai,...,asyn such that a; = ajn for j =1,..., N. Define the 2 x 2 unitary matrix =;

_ s : )
:j:<J. _p]‘)? J=1,...2N,  pj=4/1—]a;[? (3.27)
Pj —aj

and the 2N x 2N matrices

—Qa2N P2N

Hon—2 Hon-1
P2N as N

Now let us define the unitary Lax matrix
E=LM, (3.28)

that has the structure of a 5-band periodic diagonal matrix. The matrix £ is a periodic CMV
matrix [I3]. The equations of motion (B.26) are equivalent to the following Lax equation for the
matrix &:

E=il&EF +(ENT],

where T stands for hermitian conjugate and

1 -
365 J=F
S;fk: 5j,k k=j+1mod2Nork = j+ 2 mod 2N
0 otherwise.

Since the matrix £ is a periodic band matrix with fixed bandwidth, we can follow the same
reasoning as in the previous cases and conclude the following

Lemma 3.16. Fiz m € N, and consider the matrix £ [B.28)). Then for N big enough, there
erists a k = k(m) € N, and two polynomials V : (C’i X (C’i - R, and V : (C’i X (C?F X (C’i — R
such that
M
Tr (E™) = Z V(aj,aj41) + Vi(an, akr41, - - - GkM+¢,21) 5
j=1
where N = kM + 4.

Following [34,53,169], we notice that the quantity Ky = Hj.vzl(l — |a;|?) is conserved, so this
means that if |a;(0)] < 1 for all j =1,..., N then |a;(t)] <1forall j =1,...,N forall t € R,
so we can consider DV as our phase space, here D = {z € C||z| < 1}. On this phase space, we
introduce the Generalized Gibbs ensemble for the defocusing AL lattice as
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[0 (1 —1a;?)* " Layen exp (~Tr (P (£))) d2a
ZIAL(a, P) ’

dpaaL = (3.29)

where P is a real-valued Polynomial, meaning that there exists a polynomial P such that P =
R(P). In view of Lemma B.I6] we are in the hypotheses of Theorem [[.2] thus we deduce the
following;:

Corollary 3.17 (CLT for defocusing Ablowitz—Ladik lattice). Consider the Lax matriz € (B.28])
of the defocusing Ablowitz—Ladik lattice distributed according to the Generalized Gibbs Ensemble
B29). Then, defining the Free energy Faar(a, P) as

. In(Z#L(a, P

for all j € N fized, we have the following weak limit

LT (E9) B [T (¢9)]

. 2
Jim i N(0,07),

where

E[Tr (7)] = iNé . Faar(e, P + ita?) 0% = |02 Faar(a, P + ita?)

lt=0 > \t=0| .

The circular 5 ensemble at high-temperature. The circular 8 ensemble was introduced
by Killip and Nenciu in [45]; as the other [ ensembles that we considered, it possesses a matrix
representation. Consider the two block diagonal matrices

WZdiag(El,Eg,Egg...,) and £=diag(Eo,EQ,E4,...) s

where the block Z;, j = 1,..., N — 1 are defined in (327)), while =y = (1) and =y = (@) are
1 x 1 matrices. Then, we define € as follows

¢ = £, (3.30)

The entries of this matrix are distributed according to

_ N—j)—1 a
D5 (= 102" 1y en exp (=T (P (€)) [T), da,
Z3H (5, P) '

As for the other 5 ensembles, one can explicitly compute the joint eigenvalue density for this

dpc =

ensemble as

H |ez€ i€g|B]]_0jeTe— Z;V:1 P(eiej)de :
j<€

dP¢e =
35(8, P) 5,
here T = [—m,7), €% are the eigenvalues of €, and P can be any continuous function that
makes the measure normalizable. We restrict our attention to the class of real polynomial P ( )
We are interested in the high-temperature limit for this ensemble [341[69], so we set § = =&,
obtaining

[TV (1 = Jag2)20(-3) Loyen oxp (- Tr (P(E) [ da, 5

o ) (3.31)

duc =

So, in view of Lemma B.I6, we are in the hypotheses of Theorem [[2] so we deduce the
following
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Corollary 3.18 (CLT for Circular 5 ensemble). Consider the matriz representation (3.30) of
the Circular 3 ensemble in the high-temperature regime, endowed with the probability distribution
dpc B31), and let P(x) be a real-valued polynomial. Then, defining the Free energy Fo(a, P)
as

_ o In(ZF(a, P))
FoloP) == fim =N
for all j € N fized, we have the following weak limit

lim Tr ((’Ej) —E [Tr (@j)]

N 2
e N N (0.,

where

E[Tr (¢7)] = iNo,Fola, v, P + ita?) 0% = |02 Fc(a, P+ ita?)

lt=0 > \t=0| .

Remark 3.19. We notice that

e Hardy and Lambert in [37)] already proved a CLT theorem for the Circular B ensemble in the
high-temperature regime for a wider class of functions and potentials than we can consider
with our result. Nevertheless, we highlight the fact that in our case we can explicitly
compute the means, and the variances in terms of the Free energy.

e The following identities hold in view of the last part of Theorem

0o (O Fo(a, P + itxj)|t:0) = Oy Fgar(a, P + itwj)‘tzo ,
O (a0 Fo(a, P + itwj)‘t:o) = Oy Faar(a, P + itxj)|t:

0

This relation was already proved in [3])] with the same kind of argument that we followed.

3.5 The defocusing Schur flow, and the Jacobi S ensemble at high-temperature

In this subsection, we focus on the defocusing Schur flow [30], and its relation to the Jacobi
B ensemble at high-temperature [27]. This relation was first noticed in [69], and then the two
present authors obtained a large deviations principles for the empirical spectral measure for the
defocusing Schur flow, and they were able to link it to the one of the Jacobi 8 ensemble in the
high-temperature regime [53].

The defocusing Schur flow. The defocusing Schur flow is the system of ODEs [30)]

dj = pilaje —aj-1), pj=4/1—la;?,

and, as before, we consider periodic boundary conditions, namely a; = a;4n for all j € Z.

We notice that, if one chooses an initial data such that a;(0) € R for all j = 1,..., N, then
a;(t) € R for all times. Moreover, it is straightforward to verify that Ky = H§V=1 (1—1a;|?) is
conserved along the Schur flow. This implies that we can choose as phase space for the Schur
flow the N-cube IV, where I := (—1,1). Furthermore, it was shown in [30], that the Schur flow
has the same Lax matrix as the focusing Ablowitz—Laddik lattice.

Following [32[69], on IV we define the finite volume limit GGE as

I (1 - a§)°‘71 Lo cexp (—Tx (P (€))) da
deS(a) = Z]O\I,S(a, P) )

where P(z) : R — R is a polynomial. Thanks to Lemma [BI6] we can apply Theorem
obtaining a CLT theorem for the defocusing Schur flow

(3.32)
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Corollary 3.20 (CLT for defocusing Schur flow). Consider the Lax matriz € [B28]) of the
defocusing Schur flow distributed according to the Generalized Gibbs Ensemble ([332). Then,
defining the Free energy Fqs(a, P) as

o In(Z% a, P
Fas(a, P) = A}liﬂoo—( NQ](V ) ;

for all j € N fized, we have the following weak limit

LT (E9) B [T (€9)]

R 2
Jim i N(0,07),

where

E[Tr (€7)] = iNéFas(a, P + itx?) 0% = |02 Fas(av, P + ita?)

lt=0 > |t:0| :

The Jacobi § ensemble in the high-temperature regime. The Jacobi g ensemble is a
random matrix ensemble introduced by Killip and Nenciu in [45]. It has two slightly different
matrix representations. The first one is the same as the Circular 5 ensemble ([3.30]), but the

distribution of the entries of the matrix is

J=1 J=1

B2N—j)/4-1 |
I (1-a2) 7 TN (= a2 00 (1 4 (1P a4 exp (T (P (€))) da

d:uJ(a) Z]‘\][(,B,P)
(3.33)
where a,b > —1, P(x) is a real value polynomial. We notice that we are considering an even
number of random variables, and a; € R; for these reasons, all the eigenvalues of € come in
pairs, meaning that if e’ is an eigenvalue, then e is another one. Exploiting this symmetry,

Killip and Nenciu found another matrix representation for this ensemble

c b
bi ¢ by ) 1/2
g ’ b; = ((1*(12]'72)(1*a2j71)(1+a2j)) ’
b cj = (1— a2j72)(12j71 —(1+ a2jf2)a2j73
bv-1  cn
where ap = asny = —1, and the eigenvalues {)\j}j-v:l of J are related to the one of € as \; =

cos(6;).
Also, in this case, it is possible to compute explicitly the joint eigenvalue density for this
model as

dPy = ﬁﬁp) H | cos(0;) — Cos(94)|5]lgjeqy672zévzl Pleos¥3)) g .
N 9

As in the previous cases, we are interested in the high-temperature regime for this ensemble,
so we wet 3 = 22, thus the measure (3.33) read

j<t

j=1 J Jj=1

| (1 — a2>a(1_%) G5 a- ;)TN (1 + (—1) ;)P 2N Lgerexp (—Tr (P (€)))da

d:uJ(a) = Zj{f(ﬁ, P) (3 34)

This regime was considered in [71] and in the recent paper [56], where the authors established
a CLT for polynomial test functions in the absence of external potential (P = 0 in (3:34)) ) by

)
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considering orthogonal polynomials, obtaining an explicit recurrence relation for the limiting
variance.
Again, thanks to Lemma [3.16] we can apply Theorem deducing the following

Corollary 3.21 (CLT for Jacobi 8 ensemble in the high-temperature). Consider the matriz
representation € ([330) of the Jacobi B ensemble in the high-temperature regime (3.34) . Then,
defining the Free energy Fj(c, P) as

In(ZJ (a, P
Fy(a,P) = — lim In(Zy (e, P)) N]E[Oé’ )),

N—o

for all j € N fized, we have the following weak limit

lim Tr ((’Ej) —E [Tr (@j)]

. 2
im iy N(0,07),

where

E[Tr (¢7)] = iNoWFs(a, P + ita?) o2 = |0?Fj(a, P + ita?)

le=0 > |t:0| :

Remark 3.22. We notice that for N even, fora+b = —1+ % we can apply the final part of
Theorem [L.3, thus we deduce that

6a(a8t}"J(a, P+ Z'txj)‘tzo) = 8t}'dg(a, P+ itxj)|t:0 R
Oa(ad? Fy(a, P + itxj)|t:0) = 02 Fus(a, P+ ita?)

[t=0

3.6 The Itoh—Narita—Bogoyavleskii lattices

In this section, we apply our results to two families of integrable lattices with short-range
interaction that generalize the Volterra one ([B.I9). These families are described in [I0] (see
also [9,40,59]).

One is called additive Itoh—Narita—Bogoyavleskii (INB) r-lattice and is defined by the fol-
lowing equations

r r
dizai<2ai+j—2ai_j>, i=1,...,N, N=reN. (3.35)
j=1 j=1

The second family is called the multiplicative Itoh—Narita—Bogoyavleskii (INB) r-lattice and is
defined by the equations

r r
dizai<1_[ai+j1_[aij>, i=1,...,.N, N>reN. (336)
j=1 j=1

In both cases we consider the periodicity condition aj;n = a;. We notice that setting r = 1,
we recover in both cases the Volterra lattice. Moreover, both families admit the KdV equation
as continuum limits, see [10].

In both cases the interaction is short-range, but in the additive case (B35 the nonlinearity
is quadratic as in the Volterra lattice, instead in the multiplicative one (3.30) it is of polynomial
order.
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As we already mentioned, both families are integrable for all » € N, indeed both families
admits a Lax pair formulation. For the additive INB lattice (8.35), it reads

L(+,7') Z az—i—?" i+r,i =+ EZ Z+1) (337)
i=1 lN — 7 column
0 1 0 aAN—r 0 0 0
0 0 1 e 0 AN—ri1 0 0
0 0 0 1 0 an—r+2 O
_ N N - r+ 1 row
= | a1 0 0 1 0 0
0 Qrio 0--
: - 0 0 1
1 0 aAN—r—1 0 0 0
A7)

N r
= Z Z aivj | Eii+ Eijitre1,
i=1 \j=0

we recall that we are always considering periodic boundary conditions, so for all j € Z, aj4 N = a;
and F; j.n = Eiyn; = E; ;. In this notation, the equations of motion (B.35]) are equivalent to
L) = [L); AT

Analogously, the multiplicative INB r-lattices have a Lax Pair formulation, which reads

N
70ar) — Z (a:Eiit1 + Eivri) (3.38)
i=1 N — r column
0 m 0 1 0 o0 0
0 O as 0 1 0 0
0 0 0 as 0 1 0
_ B r+ 1 row
= 1 0 0 a O 0
0 1 0 '
. 0 0 any-1
ay O 1 0 o0 0
AT

N r
= Z 1_[ Qivj | Eiitri1-
Jj=0

Following the construction made in [32], where the authors numerically computed the density
of states for these two families of lattices, we introduce the generalized Gibbs ensemble for these

models as

exp(=Tr (P(LE DN T, a0 1, ;=o0da
i = S o ,) =1 , (3.39)
Zy " a, )
exp(—T T, a% 1, ;=o0da
Appc = (P (wg 1% , (3.40)
Zy " (a, P)

where P(z) is a polynomial. Moreover, enforcing the result of [32]
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Lemma 3.23. Fix £ € N. Then for N large enough

Tr (L)) = T (27)f) =0,

if £ is not an integer multiple of r + 1.

we can consider just the polynomials P(x) such that P(z) = 27("*1) 4 Lo.t. for some j € N.
Due to the local structure of Lt L") one can deduce the following:

Lemma 3.24. Fiz m € N, and consider the matrices L") L") (337)-B38). Then for N
big enough, there exist k(+7) = k(1) (m), k1) = g7 (m) € N, and four polynomial functions
V(+,T’) . Rli(*vr) XRI—T_(JHT) N R, V(x,r) . R]i(xvr) XRI—T_(X’T) N R, V1(+77’) . RI_T_(J“T) XRﬂEJﬁ T Rk + T)

R, VO RECT S RED S RECY R such that

M)
Tr (( ) Z VD (x5, x541)
V(+7 )
A+ VI (R ) s T M) 15 -+ = > Tplm) 1) () > K1)

Tr (L)) = (2 0 (7, %711)

+ Vl( ’ )(XM(X,r)axk(X,T)M(X7T)+1’""xk(XvT)M(X’T)-M(X’T)’Xl)’
where N = k() MHr) 4 gtr) = g0O6r) ppOar) 4op0ar),

Thus, proceeding as we have done for the others systems previously considered, we obtain
the following:

Corollary 3.25 (CLT for INB lattices). Consider the Lax matrices L) L") (337)-([B38) of
the additive and multiplicative INB lattices respectively distributed according to their Generalized

Gibbs Ensemble [3.39)-3.40). Then, defining the Free energies Fy ,(a, P), Fx r(a, P) as

Firlo, P) =~ Jim (2" (a, P)),

N—o

Furlo, P) =~ Jim < In(Z{" (a, P)),

N—w

for all j € N fized, we have the following weak limit
i Tr ((L(+,r))(r+1)j) ~E[Tr ((L(+,r))(r+1)j)]
Nl—r>noo Vv N
_ Te ((LO)rH07) — B [Tr ((LO07) D7) ]
lim
N—0 VN

— N(0, U—Zi-,r) )

—N(0,0% ),

where

E|Tx (L) H09) | = iNOFy plen P it 09 0% = |08 F g0 P it
B[ Tr (L0 H09) | = iNOFoplen P it 09 0% = |08 Fp( Pt it ]

Remark 3.26. We recall that in [32], it was shown that the density of states for this model has
support on the complex plane, but despite that all the moments of the Generalized Gibbs ensemble
are reals. Furthermore, in this case, we lack a B ensemble to compare with.
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4 Technical Results

In this section, we prove the technical results that we used to prove our main Theorems [T.21T.4]
the proof follows the same line as the proof of [34, Proposition 4.2], and we prove Theorem
[L6l whose proof uses the same machinery as the latter proofs. In the last part, we prove a
Berry-Esseen type bound for the type 1 measure ug\lf). We start by proving Theorem 2.1] and
Theorem

To prove these results, we follow the same ideas as in [31, Theorem 2.4]. In particular, we

enforce the following proposition, which can be easily deduced from |31, Proposition 2.3]:

Proposition 4.1. Let \(0) be an isolated eigenvalue of the operator Ly with multiplicity one,
and assume that the family of operators t — L, depends on t in a C% way, with d = 3. Then,
A(t), the corresponding eigenprojection m; and its eigenfunction oy are C% with respect to t.

Moreover, assume that the rest of the spectrum of Lo it is contained in a disk of radius
IAN(0)| — 0. Writing Q; = (I — m¢)Lt, so that Ly = AN(t)m + Q. For any r > |\(0)| — 9, there
exists a constant C > 0 independent of t,n such that |Q}| < Cr™ for all n € N.

Applying the previous proposition, we can prove both Theorem 2.1] and Theorem For
the reader’s convenience, we report the two statements here.

Theorem 4.2. Under Assumptions [I.1. Consider a real function H : C — R such that
Tr (H(L)) is circular (HP 5.), and let W be the seed of Tr (G(L) + itH(L)), thus W(x,y) =
V(x,y) +itU(x,y) for V,U : X¥ x X¥ — R the seeds of Tr (G(L)),Tr (H(L)). Furthermore,
assume that U € L?* (X% exp(—2V)), with N 3 d = 3. Then, there exists an ¢ > 0, and two
complez valued functions X (y,t) € CL4(R, x [—¢,€]), and cyo(y,t) € CLVYR x [—¢,€]) such that
forallge N :

(1)
A Z t
Eq [G_ZtTr(H(L))] = %&1) = cpp(a, )Mo, )2 (1 +0o(M™ 7)), as M — o,
Znrse(,0)

for |t| < e, here Z,S‘ZM(a,t) = Z,S\Z[M(a, V +itU). Furthermore,

AMz,0) =1
Ck,g(.%',()) =1.

Moreover, there exist two functions Sy (v, t) € CH4(R x [—¢,€]) and Mo, t) € CHU(R, x [—¢,£])
such that there exist two constants C'1,Co > 0 such that for all g € N:

Cl < E&g(a,t) < CQ,

e
Zir o t) = B oo )X, )72 (1 + 0(M77)) .

Proof. Define the kernel operator (depending on k € N, @ > 0 and t € R) £;,, : L*(X*) —
L?(X*) as

k
Liafly) = M F&) [ Flaga)e™V®ax. (4.1)
q=1

Then, for all k € N, a > 0 and t € R, L;, is a Hilbert-Schmidt operator [43], meaning that
the function (x,y) — H];:l F(xy,a)e”V¥) is [2(X* x X*) and so it is compact. Moreover,
since the kernel is positive, we can apply a generalization of Jentzsch’s theorem [74, Theorem



4 TECHNICAL RESULTS 37

137.4] in combinations with Proposition E.I] deducing that there exist two functions (y,t) —
A1) € CHRT x [—¢,¢]), (5,) — 9l 9,1) € CHR™ x [—¢,e], I(X*)), and an operator
Q; : L*(X*) - L?(X*) such that

Liad(y) =X, t) (b, 0 () oy, at) + Qoly), Voe L (XF)

where X (y,0) > 0, ¢ (x,y,0) > 0 is the associated eigenfunction of Lo with @]z = 1 and
there exists a & > 0 such that ||Q;|| < |X (e, t) | =4, denoting by (-, -) the standard scalar product
in L2(X*).

For x € X* define Gy (y) as

kM+¢ kM+¢
Gx(y) = le Hj:k—}_MJrl F(zj, o) exp (=Wi(y, rarets - - - Thdrie; X)) Hj:k—}\_dJrl dz;, {>0,
exp (=W (y,x)) , £=0,
(4.2)
and the linear operator S; : L?(X* x X¥) — C as
2k
Sip = f H F(xj,a)exp (=W (x1,%2)) p(x1, X2)dx;dx2, (4.3)
X’“><Xk
we notice that |Si|| < ¢|F|3¥, and so it is continuous.

In this notation, we can recast (23], applying S; to (x,y) — (E%;?Gx) (y), as

Zihilant) = 80 (L0726, ) (x2)) = N30, 08,(€p (0, 1) 5 Gy y plxa, 0, 1))+ (@2, (x2)

where here and in the sequel, if h € L2(X* x X*), we write abusively S;(h(x,y)) for Si(h).
Defining

St(<90( ) GX1>SD(XM’O"t))

Ck Z(a t) )
SO(<SD( ) GX1>Q0(XM’O"0))
NM—2
Ao, t) = M,
AM=2(a, 0)
and since in view of Proposition 1] | Q}| < (IX(#)| — &)™ we conclude. O

Theorem 4.3. Under Assumptions [[1. Consider a real function H : C — R such that
Tr (H(L)) is circular, and let W be the seed of Tr (G(L) + itH (L)), thus W(x,y) = V(x,y) +
itU(x,y) for V,U : X* x X* — R seeds of Tr (G(L)), Tr (H(L)). Furthermore, assume that
U e L?4(X?* exp(—2V)), with N 3d = 3. Then there exists an € > 0 and two scalar functions
A(y,t) € CH(R x [—¢,¢],C), ckor(y,t) € CLYR x [—¢,¢€]), such that

—itTr(H(L Zi(j\)ug( )
EQ [6 itTr(H( ))] = ( ) _ckZM a, t 1_[ (Oé— t) 1 +0M(1)) (44)
Z5vawiCE j=1
for |t| < e. Furthermore,
Az,0) =1

PI% ceem(a,t) =1 uniformly in M

the remainder opr(1) is independent of t € [—¢, ].
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Moreover, there exist two functions Gy on(a,t) € CHYR, x [—e,e]), Mo, t) € CYAR, x
[—e,€]), and three constants C1,Co > 0 and p € N such that

Cle < Ek,&M(a,t) < CQNp,
Mat) = 2ut)
Ae, 0)

M—-2 .
2 ~ Y J
723 (at) = Goar(ayt) 1:[1 X <aﬂ,t> (1+om(1)) .

<

i .
e

Proof. Define the family of kernel operators (depending on k € N, o > 0 and t € R) Eg
LY(XF) — L2(XF) as

k .
e5) = [ 1T F (g (1= EEEEL) Y Wi
q=1

Then, for all k € N, o > 0 and ¢t € R, the kernel of EEQ is in L2(X* x X*), thus it is
a Hilbert-Schmidt operator, and so it is compact. Moreover, since for ¢ = 0 the kernel is
positive, we can apply a generalization of Jentzsch’s theorem [74, Theorem 137.4] in combinations
with Proposition 1] deducing that there exist two functions A = A (y,t) € CY4RT x [—¢,¢]),

(y,t) — (-, y,t) € CLYRT x [—¢,¢], L2(X*)) and an operator ng) : L2(X*) — L*(X*) such
that V¢ € L2(XF), V|t| < e,

c2o) =3 (a (1= £} ) 7o) + oty (45)

o= (o (1) oo (12

where (a (1 - ﬁ) ,t) is the biggest eigenvalue (in modulus) of £ X(y, 0) >0, ¢(,y,0) >0,

t,o

with

le(-,y,t)|[l2 = 1 and there exists a d; > 0 such that Hng)H < |3\ (a (1 - ﬁ) ,t) | —0;, and we

recall that we denote by ¢-,-) the standard scalar product in L2(X*). Furthermore, with X the
function of Theorem 2] we have

(RS old)

Where the O (ﬁ) term is uniform in ¢ € (—¢, ). Indeed, recalling that £, is defined in (@),
by the integrability assumptions on U and on 0, F (HP 7. of Assumptions [[T]), we have

(4) o
Hﬁt,joz — Ly aq—jm)l < CtM (4.7)

where Cy = 0 is bounded on [—e¢,e]. We then deduce (&6]) by applying Proposition [£.1]
Define the function h; on X* by

k4+£4—-1

hi(x) = LW ]1:[1 F <xk(M1)+j,a (1 —~ %)) exp (— W (x,%ar)) %

k+¢

Xexp (_W(XM7-%'I<;M+17 e s TEM 0, 07 cee 70)_W(ka+17 e s TEM 0, 0, cee ,0))R(1‘N) H dxk(M,1)+j .

j=1

(4.8)
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Note that in view of assumptions LT} ||t = O(NSE+R),
We recall that W =V + itU so h; depends on t , and the linear operator S; : L2(Xk) —C
as

k . k
j L1 <x]’ < kM]+€>>eW(OMQX)MX)HMJ'
j=1 j=1

We notice that, again in view of the assumptions [[.T] the operator S; is uniformly bounded
in k, ¢ for all £ € R, and it is continuous in ¢ in the operator norm sense.
In this notation, we can rewrite ZIE?\ZI-M(O" t) as

2t =S (L2 £ ) = 5, (Hﬁ )

Applying the decomposition (£3]), it follows that we can decompose the previous expression
as

M—1 .
z2 ) = [ & (a (1 - ﬁ)) S (2 ..a™ )

j=2
+8, (cg?a...cgfg{ 2) QM= ”ht) (4.9)
M-2 M-1 R .
+ o (a (1 - L))St (282 el V™D aM )
n=2 j=n-+1 M

where we arranged the terms of the product of the E(j )g by order of the ﬁrst appearance from

the right of a factor ng ) (the first term being the product where no Qt appears). We notice
that

. all_2
S (Wt(?)- M 1)ht> oMby ]_[ (o7, =Dy <90t S M)> :

o(1—i/M)

where we set ¢, = ¢ (-,a(l —i/M),t) to shorten the notation. Furthermore, the ratio

—a1). (=57

]\Jl)
1_[ <<Pt . R4 )

oz 1—— a(l—l—

=2 <‘Po 7900 >

converges uniformly to 1 in M > 1, ¢t € (—¢,¢). This is due to the fact that

<<Pt i)j@t(l—%)>:1+o<%)’

because of (A7) and Proposition L] thus the product

H<(Pt a@t(l_%)>

stays bounded below and above uniformly on M > 1, t € (—¢,¢).
Denoting the first term of ([@9) by f(«,t), and the second and third terms by ¢1(«,t) and
g2(a, t), we can rewrite (4] as



4 TECHNICAL RESULTS 40

1+ gi(ant) + g2(at)

2
Z;EAZM(a,t) _ flayt) Flad) T flat)
(2,0)

; a a,0
Zl(f]\)4+€<a70) f(Oé,O) 1+ gl(a 0) + 92((a 0))

Thus, to prove our result we need to show that there exist 3 constants c1, co, ¢ independent of
M such that for all ¢t € (—¢,¢),

gl(a7t)
<cp, 4.1
fla,t) ‘ “ (4.10)
92(0"t)
f(a,t) ‘ < e, (411)
ol

<@VMLM>&¢A ir)

a0 a(l < c3. (412)
<s0(() ,ho>Sosoo M

If we are able to show this, then defining

< (1/M ht>8t()0t ~i1) M-1, a(l-57). a(lfiztfl)>

cre,m(e <%1/ h0>80800 —i) 1 <900( ﬁ');%( 'M)>,
Agat) = 200
A(y,0)
we obtain (£4]) with the wanted properties. Notice that in the definition of A we took %
A, 1)

instead of = . This is indeed possible because of equation (Z.6]).

My, 0)
First, we focus on ([@II]). The term go(,t) is given by

"y M-2 M-1 N M—n—2 a(i+l) (2) (n 1 n (1 n+1)
0n) 33 TT Afa(1-4) 1) [ o™ (22 lieer ).
n=2 j=n+1
Because ¢ (x,y, t) is regular with respect to y, we deduce that there exists a function (y,t) —
Y(-,y,t) € CP(RY x [—¢,¢], L2(XF¥)) with Hq/}ta(l_n/M)Hg uniformly bounded in n, M and ¢ such
that

or <@?(1’h)> _ an) <¢?(1;)> N _Qtn % oa(1-n/M) _ _Qtn % a(l-n/M)

given this equality, it is trivial to prove (£I1]), recalling that for any ¢, j, TE(J ) has operator
A
norm smaller than one.

For (£I0), it suffices to show that there exists a constant co independent of M such that

(1)
L (4.13)

<¢MM>M> =@

From the assumptions, (£35]) and the definition of h; (48], we deduce that there exists a
constant dj such that
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0] < (3 ) - ) 0

on the other hand, in view of the previous proof and the assumptions, we conclude that, for ¢
small enough, there exists a constant dy such that

’<¢§1/M),ht>’ > dy Mo+ (4.14)

Indeed, for t = 0, <cp(()1/ M), h0> is given by

k+6—1 .
1/M E(M—1)+j N N
J;(mk% QD(() / )(X) jl:[l F <$k(M—1)+j, o <1 - W T(X, XM, X)dXdXde,

where we denoted X = (Txar41,-- -, Tharre) and
r(x, xar, %) = e W xar) =W Ak n 155k 40,0500) =W (Zhar 1508k 4£,05-,0)

By Assumptions [T HP.4, and positivity of cpél/ M)

)

o @

O2k+L

By continuity of 7 — ¢{, this last integral converges to SO 30(()1/ M) (x)dx > 0, thus we conclude

for the case t = 0. Finally, we conclude on (£I4) for ¢ small enough by continuity.
Combining the two previous estimates, and setting p = c(k + ¢) we deduce (£I3)), which
leads to (£II)). The proof of ([AI2)) is analogous, thus we conclude. O

We now turn on the proof of Theorem [I.6] which we rewrite here for convenience.

Theorem 4.4 (Decay of correlations). Let W be the seed of Tr (G(L)) and I,J : X* — R two

local functions such that §yi, ‘I(x) Hle F(mi,a)e_W(X’Y)’ dxdy < o0, and analogously for

J(x). Write N = kM + ¢, and let j € {1,...,M}. Then there exists some 0 < u < 1 such that
By [1(x1)J(x)] = E1 [I(x0)] E1 [J(x;)] = O(u™ 7 + p/) .

Proof. Let L = Ly o with Ly, given by (d1]). Furthermore, define £

k

900 = [ 960 | [ Flasa) e 0% = £(76)(y).

i=1

and £) analogously. With e (y) = I(x)Gx(y), G given in ([@2)), we have for j > 3

So <<£ij ) gf?»g@) (X2)>

So(LM=2Gy, (x2))
_ WM (0, 0)80(mo £V £73GE) (x9) + OV M)
AM=2(ay, 0)Sy (70 Gy, (x2)) + O(rM=2)

Eq1 [I(x1)J(x5)] =

)

where S; is defined in (£3), and we used the decomposition

L,k = Xk(Oé,O)T('o + ng ,
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where 7 is the orthogonal projection on the (one dimensional) eigenspace associated with
M@, 0), and Qp is an operator such that |Qk| < Cr* for some 0 < 7 < X. Similarly,

So(mo L) 773G (x2)) = X3 (e, 0)So (mo LN 70 G (x2)) + O(ri—3).
We deduce

SO((?Toﬁ(J)woG,(gl))(XQ)) + O((T/X)ij 4 (T/X)j*?’) |

E; [I(x1)J(x;)] =
b 3 (SolmoG (x2)) + O((r/A)M=2))

Similarly, we deduce

So((moGie (x2))So (mo L G, (x2)) + O((r/ )M 7 + (r/3) %)

Eq1lI(x1)|E1|J(x;)]| =
1[ ( 1)] 1[ ( ])] X(SO(Wonl(Xz))Q+O((7°/X)M72)>

By a direct computation, recalling that mo¢ = {p1,0) 1 where ¢ is the eigenfunction
associated with A, we deduce the following

o (molmG) (x2)) = (L1, 01) [ (G o) TOOF () (x)dx,

S (moGx, (x2)) J<GX7<P1>801( JF(x)dx,  So <7T0Gx1 X2 f<GX7<P1>I x)F(x)p1(x)dx,

and

o (ML oGy (x2)) = (L 1,0) [ (Greior) Ploin ().

These formulas imply that

So(moG¥ (x2))So (oL oG, (x2))
So (m0Gx, (%2)) ’

So((moL N 70GE)) (x2)) =

and so

Eq [1(x1)J(x;)] — Eq1 [I(x1)] Eq [J(x;)] = O((r/AN)M~7 + (r/A)73).

(1)

Finally, we prove a Berry-Esseen bound type theorem for the measure p i, ,:

Theorem 4.5. Under Hypotheses[I.1l. Consider the measure /‘gj\)wm G satisfying assumptions

L1 and H : C — R such that Tr (H(L)) is cyclic (HP. 5) with seed h and weed hy such that
h,hy € LYX? exp(—2W)), with N 2d > 6, so that

(1) :

E, [e—itTr(H(L))] ~ Zparselon G+ itH) ‘

Z\ (@, G)

Then, there exists A€ R, o,C > 0 such that if Y ~ N(0,02%) we have for any interval J of the
real line

‘P([Tr(H( )) — (kM + 0)A /WEJ) YeJ)]<W.
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Proof. We adapt the arguments of [31, Theorem 3.7]. By [23] Lemma XVI.3.2|, there exists a
constant C' such that for any X real random variable, and Y Gaussian random variable, for any
interval J < R and for any T > 0, we have

_ e—a2t2/2|

t

T —itX
E
|]P’(XeJ)—]P’(YeJ)|<CJ Bl dt+%.
0
We take X = (Tr(H(L)) — (kM + 0)A) /v/kM + ¢. We are going to show that, taking T' =

eq/ (kM + £) for some small enough e, the last integral remains bounded by %,

Cj e is a constant depending on k,¢. Recall N = kM + ¢. By Theorem [[.2] there exists an
A€ R,o > 0such that as N goes to infinity X converges to N'(0,0?). Since ¢t~ is not integrable
at 0, we consider the special interval [0, N~1]. In this interval, we have the following estimate,
denoting by W the seed of Tr (G(L)):

where

1) .t . (1)
] - @ i (26 + ) - 2 (0.

1
ZIEJ&IM (a,G)
p=1 . N
O ‘ Z f kML §(x) Helﬁh(xj,xjﬂ) (elﬁh(x”’xf’“) N 1) dej
Zch+£ Xk j=1 i1

)

n %'(X) (ezﬁhl(XM,:BkMH,---,ZBkMM,Xl) . 1)
Xk]bf-%

with the convention that the empty product is equal to one. Here we defined

kM4 M-1
= 1_[ F(xj,oz)exp ( Z W(Xj?XjJrl)WI(XM,‘T]CM-FD"'axk‘M-i-faXl))
- o1

)t
X exp <Z—h1(XM,~’UkM+1, . ,CCkM+z,X1)> ,
vIN

¢
where h; is the weed of H in the sense of HP 5 of Hyphotheses [Tl Thus, since |ezﬁh(xP’x”+1) —
1] < |h(%p, Xp41)|[N"Y2t, we deduce the following inequality

i i N, b
‘El[e tX] —e t\/NA‘ < El [|h(X1,X2)|] tv N + \/—NEl [|h1<XM7ka+17 ... ,.%'kMJrg,Xl)H ,
(4.15)

and this last term is by assumption bounded by Cty/N for some C independent of N and t.
Thus integrating for ¢ € [0, N~!] we deduce the following

1 .
fN |E1 [e—ti] _ 6—02t2/2| "
0 t

[e=itX] — e—it\/NA’ n ’e—it\/ﬁA _ 1‘ n ’1 _ 6—0%2/2’

%
- "
0 t

@) f% CVNt + tVNA+ o*2)2 G
x 0 P &S \/N7

for some constant Cf.
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We now consider the integral on [1/N,ev/N]. Here we use the spectral decomposition of
Eq[e?*X]. Since h € LY X?* exp(—2W)) for some d > 6, we deduce (following Remark [[3)
applying Proposition Il and from Theorem 2.1l that there exist two continuous functions
p(t) € C%([—¢,¢]) and ¢y (y,t) € CH4(R x [—¢,¢€]) for some € > 0, such that ¢ (y,0) = 1 and
|plloc < 400, such that for ¢ > 1

1 t

1 t

N N

thus we have the following estimate

JE\/N By eitX] - 6_02t2/2|d jeﬁ ’Ck’z(a’t/\/ﬁ)e,U2t2/2+t3p(t/x/N)/\/N(1 +o(N—9)) — efgztz/z‘
t=

VN ‘(1 - et?’p(t/\/ﬁ)/x/ﬁ) 6—0%2/2’

eV N ‘E1[€7itX] - 67022&2/2‘
f dt < [[ep,e(a, ) (1 + o(Mq>>Hoo,[ovg]f

1 3 1 t
! VN y - —a?t/2
V1 el VAL oMt e 2
* jl t ’
N
where || - || 0,¢] in the L norm on [0, ].

We notice that ||cg (e, -)(1 + o(M~9))|| is uniformly bounded in N. Moreover,

00,[0,¢]

eV N 6—0'2152/2

221l [0,V 43

VN 6—02152/2
[ [l o

FpeNRNVN 1| g f
e t <
L t ‘ L tv/' N
VN 6—02152/2
<J, %

2]l oo, 0,61 42
% \/N € « t ”p”OO,[O,e]dt,

where in the first inequality we used the bound |e* — 1| < |z|el*l. Since for & small enough
||p||soe < 02/4, thus integrating, we deduce that

VN ‘6—02t2/2+t3p(t/\/ﬁ)/\/ﬁ _ 6—021:2/2‘

[ o )

1/2

z

To conclude, we have to show that the last integral is of order N~"/*. Since cj ¢(cx, 1) is ct
in ¢, and ¢ ¢(c,0) = 1, it is easy to deduce that there exists a constant C' such that

dt < —=

% t VN

so we conclude. O

JE\/N ’1 — Ck,g(a,t/\/ﬁ)(l + O(M—q))‘ e—OQt/Q o

5 Conclusion and Outlooks

In this paper, we proved a general Central Limit Theorem type result and we apply it to several
models in random matrix theory and integrable systems. By doing this, we strengthen the
connection between these two subjects. Specifically, we could connect the expected values and
the variances of the moments of each classical 5 ensemble in the high-temperature regime with
one specific integrable model, see Table [1l

The results that we have obtained are relevant for two main reasons. Under the random
matrix theory perspective, we were able to develop a general framework to prove polynomial

dt,

dt
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central limit theorems for the classical 8 ensemble in the high-temperature regime, based on
their band matrix representation and on the transfer operator technique. Under the integrable
systems’ theory point of view, our result enables the explicit computation of the so-called sus-
ceptibility matrix, which is a fundamental object in the theory of Generalized Hydrodynamics
in order to compute the correlation functions for integrable models. Furthermore, we are able
to prove rigorously the exponential decay of correlation for short-range interacting systems with
polynomial potential.

It would be fascinating to generalize our result to a wider class of potential and functions
and to obtain a Berry-Esseen bound for the classical 8 ensemble in the high-temperature regime.
Furthermore, defining a new § ensemble related to the INB lattice would be interesting. Finally,
we point out that it would be interesting to obtain large deviation principles for the Exponential
Toda lattice and the Volterra one in the spirit of [35,53].
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