
HAL Id: hal-04096291
https://hal.science/hal-04096291

Submitted on 8 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Review of Passenger-Oriented Railway Rescheduling
Approaches

Bishal Sharma, Paola Pellegrini, Joaquín Rodriguez, Neeraj Chaudhary

To cite this version:
Bishal Sharma, Paola Pellegrini, Joaquín Rodriguez, Neeraj Chaudhary. A Review of Passenger-
Oriented Railway Rescheduling Approaches. European Transport Research Review, 2023, 15 (14),
�10.1186/s12544-023-00587-0�. �hal-04096291�

https://hal.science/hal-04096291
https://hal.archives-ouvertes.fr


1

A Review of Passenger-Oriented Railway
Rescheduling Approaches

Bishal Sharma1, Paola Pellegrini2, Joaquin Rodriguez3, and Neeraj Chaudhary4

1,2,3Univ Gustave Eiffel, COSYS-ESTAS, F-59650, Villeneuve d’Ascq, France
1,4Rail Concept, 30133, Les Angles, France

Abstract

Railway operations are highly susceptible to delays and disruptions caused by various factors, such as technical issues,
operational inefficiencies, and unforeseen events. To counter these delays and ensure efficient railway operations during real-time
management, several rescheduling approaches can be implemented. Among these approaches, passenger-oriented rescheduling
considers train rescheduling while taking passenger data into account, as opposed to operation-oriented rescheduling. This paper
provides an overview of the former group of approaches. Particular focus is put on different ways passenger data is exploited to
optimize rescheduling and on the measures the approaches can decide on. The rescheduling measures typically considered vary
from decisions on maintaining transfers, canceling trains, adding emergency trains, changing routes and orders of trains, skipping
or adding stops at stations, short turning trains, applying speed control and modifying rolling stock compositions. In this regard,
the paper presents a comprehensive analysis of real-time rescheduling approaches adopted in both conventional and urban rail
transits, and points out possible directions for further research in the field.

Index Terms

Railway Transportation, Rescheduling, Passenger’s perspective, Real time traffic management, Conventional Railway, Urban
Rail Transit

I. INTRODUCTION

Railway transportation has long been recognized as a highly efficient and sustainable mode of transport, offering a wide range
of unique advantages over other modes. In particular, railways are known for their superior safety record, good organization,
exceptional dependability, and capacity to move large quantities of passengers and goods. Despite these numerous benefits,
however, the smooth operation of railways can be hampered by a multitude of unexpected internal and external factors, resulting
in significant delays that can propagate throughout the system and ultimately lead to congestion and even the cancellation of
some trains. Such disturbances can significantly compromise the competitiveness of railways with respect to other modes.

When unexpected events occur within the railway system, dispatchers are in charge of the critical responsibility of making
rescheduling decisions that will either restore the original timetable or implement a new timetable to mitigate the impact
of disturbances. These decisions may apply several measures like rerouting, retiming, reordering, adding or skipping stops,
neglecting transfer connections, or canceling trains. Mostly, dispatchers make such decisions according to their intuition and
experience. However, given the complexity of the system, these decisions may be inefficient and unable to properly mitigate
delays. Therefore, it is necessary to deploy appropriate optimization approaches to support dispatchers. These approaches may
account for various levels of detail and realism of the system, and must be designed to run in a computational time compatible
with real-time applications.

In the existing literature, many optimization approaches have been developed for railway rescheduling, and several studies
have analyzed the current state of the art in this area. Notably, Törnquist (2006) presents an overview of tactical, operational,
and rescheduling approaches published between 1973 and 2005. The author classifies the papers based on problem types,
solution techniques, and types of evaluation. Similarly, Cacchiani et al. (2014) provide a comprehensive review of rescheduling
algorithms and models, categorizing them based on the magnitude of the unexpected events they are intended to cope with.
The paper delves into the specifics of timetable, rolling stock, and crew rescheduling. Moreover, Fang et al. (2015) conduct
a detailed study of rescheduling papers, classifying them with respect to modeling choices, solution approaches, and problem
types. Meanwhile, Qu et al. (2015) provide an overview of the literature on passenger and freight train rescheduling, focusing
on the level of detail considered for the infrastructure. Josyula and Törnquist Krasemann (2017) conduct a review of passenger-
oriented railway traffic rescheduling strategies that utilize dynamic passenger flow data. Lastly, König (2020) concentrates on
delay management and the decision-making process concerning whether trains should wait to ensure connections or not in the
case of disturbances.

In this paper, we propose a novel and comprehensive literature review on rescheduling approaches that take into account
passengers, in both conventional and urban rail transit. The emphasis is on similarities and differences between the existing
approaches as per their positioning under different perspectives: rescheduling measures, types and strategies of passenger
information, modeling choices, nature of capacity and other constraints imposed. Moreover, we specify and discuss various
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other criteria that differentiate the analyzed approaches. To the best of our knowledge, this is a novel contribution, as a
thorough overview of how passenger data have been incorporated in rescheduling is still missing despite the growing attention
passengers are receiving in the latest years. Previous studies have tended to focus on specific passenger data (Josyula and
Törnquist Krasemann (2017)) or a specific rescheduling problem (König (2020)). Here, we set the scope of the analysis to
cover all aspects of passenger demand as they appear in the literature (static information, dynamic data, preferences, complaints,
etc) and on how they are articulated with the used solution techniques, infrastructure considerations, and rescheduling measures.
At the end of this analysis, we identify promising areas for future research in this field.

The rest of the paper is structured as follows: Section II focuses on the methodology we use to collect papers for this
review. Section III describes the classification criteria that we propose for both conventional railway and urban rail transit.
Section IV focuses on the actual literature review on conventional railway and Section V on urban rail transit. Section VI
discusses research gaps and further research directions, and Section VII concludes the paper.

II. METHODOLOGY

We apply a systematic review methodology to overview the state of the art of real-time traffic management approaches
explicitly considering passengers. Figure 1 shows the design of the research protocol we follow to identify the papers we
analyze in this review.

We consider all papers resulting from the search of two groups of keywords in various databases: ScienceDirect, Scopus, and
Google Scholar. The search is not time-limited. “Railway rescheduling” and “Real time traffic management” are the keywords
of first group. “Passenger perspective” and “Passenger viewpoints” are the keywords of second group. The Boolean operator
“OR” is used in the search to combine the two keywords from each group. The boolean operator “AND” is used to combine
the two groups of keywords. This gives four different combinations for the search. We find 138 results in total (ScienceDirect
– 29 results; Scopus – 12 results; Google Scholar – 97 results). We use multiple databases to compare findings and provide a
comprehensive overview of the subject. Once the papers collected, we study their title and abstract for relevance. In particular,
we exclude the papers that do not mention passengers specifically: we consider only articles that propose or analyze algorithms
for optimizing traffic while taking into account the passenger perspective in either the objective function or in the problem
constraints. We account for both conventional railway and urban rail transit. Finally, we add to the analysis relevant papers
from the references of the ones collected so far.

The paper provides a clear and concise summary of the 26 so identified papers dealing with rescheduling for conventional
railway and the 11 papers addressing urban rail transit with passenger considerations.

III. CLASSIFICATION CRITERIA FOR RESCHEDULING APPROACHES

The papers we study are different from several perspectives. To organize the analysis, we identify a variety of criteria that
differentiate them, including the types of rescheduling measures implemented, the specific passenger details considered, and
the objective functions optimized. In this Section, we present the list of these criteria, which we will use in the following to
point out commonalities and differences among the studies. Specifically, we indicate several categories which are used with
respect to each criterion.

Rescheduling measures. There are several rescheduling measures adopted in case of unexpected events that disturb the
normal operations of trains. To ensure a comprehensive analysis of the literature, we consider several measures which include
Retiming (RT), Reordering (RO), Rerouting (RR), Adding Stop (AS), Cancellation (C), Emergency Train (E), Skip-stop (SS),
Short-turning (ST), Rolling Stock Rescheduling (RSR), and Speed Control (SC). They are defined as follows. Retiming (RT)
is the adjustment of train arrival and departure times at stations or entering and leaving time, at block sections. Reordering
(RO) is the rearrangement of the passing order of trains in parts of the railway infrastructure. Rerouting (RR) is the allocation
of new routes to trains, different from the original timetable. Adding Stop (AS) is the planning of new stops to facilitate more
passengers. Some trains can also be canceled (C) or additional emergency trains (E) can be deployed during rescheduling.
Skip-stop (SS) is the elimination of some designated stops for a train. Short-turning (ST) involves reducing a train service by
changing its terminus to an earlier station along its route and starting a new service from there. Rolling Stock Rescheduling
(RSR) consists in changing the train units used to perform the timetable, with respect to the ones originally planned. Finally,
during the rescheduling process, it may be pertinent to alter the train speed profiles, which is known as Speed Control (SC).

Capacity constraints. The rescheduling models in railway systems are subject to a multitude of capacity constraints that
require careful consideration. However, the varying degrees of precision with which these constraints can be taken into account
may pose computational challenges. This results in certain constraints being overlooked in many rescheduling models. In this
paper, we identify four distinct categories of capacity constraints that are commonly encountered in railway systems. The first
is Track Capacity (TC), which refers to the maximum number of vehicles that can travel along a given route within a specified
time period. This is typically modeled as the minimum headway constraint which is the minimum time separation required
between two trains passing a location. The second is Station Capacity (SC), which is defined by the station track length,
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Figure 1: Research Protocol

number of platforms, signals, and crossings. The third is Rolling Stock Capacity (RSC), which refers to the number and types
of train units that can be used during the rescheduling process. Finally, Train Seat Capacity (TSC) is either the maximum
number of available seats on trains or the maximum number of on-board passengers allowed, based on comfort norms.

Model. Solving the rescheduling problem after the occurrence of unexpected events involves the formulation of a rescheduling
model considering traffic, infrastructure constraints, and network topology. Integer Programming (IP) models used in reschedul-
ing approaches generally have binary variables or/and non-binary integer variables. Binary decision variables are often used
to represent choises like priority between two trains, maintaining connections, resource usage. Mixed Integer Programming
(MIP) models have arrival and departure times as well as delays represented by continuous variables. Alternative Graph (AG)
models includes nodes, a set of fixed arcs, and a set of alternative arcs in an event activity network. A solution of an AG
model includes one arc from every pair of alternative arcs. Finally, some approaches use less common modeling techniques
classified as others (O).

Passenger details. The approaches from the literature involve various levels of Passenger details. In this classification, we
define three categories: a model is designated as static (S) if passenger data do not change during the rescheduling process. A
model is designated as dynamic (D) if the passenger count is calculated dynamically. Other (O) models account for additional
layers of passenger information, such as passenger complaints, time spent going from one platform to another in any station,
and data not concerning the number of passengers.

Objective function. The objectives in several rescheduling approaches considered in this review are generally in the interest
of passengers. Several approaches explore multi-objective functions that include both passenger and operation interests. In
some cases, the passenger and operational perspectives are combined into a single goal, with different weights assigned to
each of them. However, determining the appropriate value of weights can be challenging. Several passenger-oriented objectives
like minimizing total passenger delay, passenger inconvenience, passenger cost, total passenger travel time in the system in
combination with operation-oriented objectives are considered in this review.
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Solution approach. As real-world railway networks are complex, rescheduling models entail several constraints and variables,
and solving them may take a long time. The solution space generally grows exponentially when increasing the scale of
rescheduling problems. Several solution approaches consider a balance between computation time and solution accuracy. We
define three categories of solution approach. An exact method (E) will always find the optimal solution to the problem as long
as the computation time is not limited. Problem-specific Heuristics (H) and metaheuristics (M), do not guarantee optimality
but aim to return near-optimal results quickly. The former are methods defined specifically for a given problem. The latter are
problem-independent algorithmic principles that can be converted into methods for tackling specific problems. Exact methods
are typically used for less complicated networks meanwhile heuristics and meta-heuristics are applied for large-scale models
to find rescheduling solutions in real-time.

Infrastructure scope. The infrastructure representation considered defines the scope of the approaches. Microscopic models
(MI) represent the railway infrastructure with more details, such as tracks divided into block sections separated by signals
and including switches. Such models generally consider blocking graphs with details about specific allocation time of block
sections and track detection sections. Macroscopic models (MA) do not take into account the fine details of railway networks,
such as signals, block sections, and track detection sections: they opt for an aggregated view of the infrastructure with stations
represented by nodes of a graph and tracks by arcs. Some approaches consider both microscopic and macroscopic representations
for different sections of the infrastructure.

Type of disturbance. A further criterion for classification is the type of disturbance for which the approaches are designed.
There are two main types of disturbances considered for railway system rescheduling problems: perturbations and disruptions.
Perturbation (P) are relatively smaller delays from which it is possible to recover the original schedule. Examples of perturbations
are longer running times or dwell times at stations. Perturbations can propagate if not properly handled and cause further
delays in the system. Disruption (D) refers to exceptionally long delays, train breakdowns, major infrastructure failures, or
line interruptions. With disruptions, the original timetable cannot be easily recovered and some major modifications must be
decided.

IV. CONVENTIONAL RAILWAY RESCHEDULING

Rescheduling approaches for conventional railway services are discussed in this section. Trains that travel large distances
and often connect cities make up the conventional railway system. The trains run on laid-on tracks which are generally shared
by trains offering various types of services (e.g., conventional or high speed) and carrying either passengers or freight. Trains
have fixed arrival and departure times at stations and can overtake other trains by using sidings.

While considering all classification criteria presented in Section III, we first group approaches according to their infrastructure
scope. We discuss macroscopic approaches first, then pass to microscopic ones. In Table II we show the number of these
approaches in which each criterion and category is considered. In the appendix, Table III contains the details regarding all
criteria for the approaches discussed in this section.

Most of the papers cited in this section are related to delay management and to the reduction of passenger inconvenience
in the case of disturbances.

A. Macroscopic Approaches

The papers in this section consider macroscopic representation for different sections of the infrastructure as mentioned in
Section III. We further split papers on macroscopic rescheduling on the basis type of disturbances handled.

Perturbations.
There are a number of papers that propose macroscopic rescheduling models dealing with perturbations and focusing on

passengers.
As a first contribution, Schöbel (2001) define the novel problem of delay management. It is relevant when passenger transfers

are planned, and it decides whether connecting vehicles should wait for feeder ones in case of perturbation. If the connecting
train waits, the delay propagates through the network. To the best of our knowledge, this is the first paper in which the problem
of delay management is discussed. The author presents a MIP model that minimizes the sum of all delays of passengers when
they reach their destination. Passenger origin-destination (OD) data is considered as weights in the objective function. The
model is based on an event-activity network with nodes representing all train arrival and departure events at stations. Edges
connect nodes and have weights corresponding to slack times that represent dwell time at stations, train driving time between
stations, and train connection time between two trains at any station to facilitate passenger transfer. The purpose of the approach
is to determine the best paths for multiple ODs on this graph, so as to identify which connection arc should be maintained in
the event of a perturbation in order to reduce total passenger delays.

Solving the complete model introduced by Schöbel (2001) take a lot of computational effort. To try to decrease it, Heilporn
et al. (2008) propose two equivalent MIP models for variable reduction for the problem in Schöbel (2001). The two models
are designed by neglecting departure events. Equivalence between those proposed two models and one derived by Schöbel
(2001) is presented. They differ in the number of variables, constraints, and set of paths. They are solved by a branch and cut
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procedure and by a constraint generation approach respectively. They consider passenger OD data as in Schöbel (2001) and
solve the problem with faster computation time especially for the MIP model solved using the constraint generation approach.

In their paper, Schachtebeck and Schöbel (2008) present an Integer Programming (IP) formulation for the capacitated delay
management problem. They consider the use of disjunctive constraints to make priority decisions, with the goal of reducing
the delay across all trains and the number of missed connections. The authors propose a reduction technique that facilitates
the extension of the never-meet property from an uncapacitated delay management problem to a capacitated one. To solve the
problem, exact and heuristic approaches such as First Scheduled, First-Served (FSFS), First Rescheduled, First-Served (FRFS),
FRFS with Early Connection Fixing (EARLYFIX), and a combination of FSFS and FRFS are developed. The efficacy of these
approaches is evaluated both theoretically and on real-world data provided by a German railway company.

The approaches described up to now, do not take track capacities into consideration. Schöbel (2009) incorporate constraints
to take this capacity into account in the delay management problem. The author includes capacity constraints in macroscopic
model considering only edges between stations and minimum separation time between departures of two trains. The paper uses
heuristics like first-rescheduled -first-served (FRFS) and branch-and-bound with optimal scheduling decision (B & B -OS) to
calculate the solution. The approaches are applied and compared on a real-world example provided by Deutsche Bahn.

Dollevoet et al. (2012) extend the delay management problem with the possibility of rerouting passengers. In the previously
discussed approaches, if passengers missed a connection, they would have to wait for the next train operating the same service
as the missed one, which is rarely the case in practice. Dollevoet et al. (2012) assume that passengers are informed of upcoming
train and choose the shortest route to get to their destination. The proposed approach is based on an event-activity network
as the previous ones, with additional events to include the origin and destination of passengers. For modeling the routing
decisions, binary decision variables that indicate if any connection is utilized by passengers in the OD pair are introduced.
The approach is tested on part of the Dutch railway network with promising results.

Dollevoet and Huisman (2014) is a follow-up paper to Dollevoet et al. (2012). It introduces heuristics to solve large instances
of the delay management problem with passenger rerouting. With weights specified by the average number of passengers per
OD pair, the weighted total of delays is minimized. The first set of heuristics uses dispatching rules like the fixed maximum
waiting time rule or the ratio of transferring passengers that are commonly used by dispatchers nowadays. The second set
of heuristics solves the traditional delay management model without passenger rerouting, whereas the third set of heuristics
iteratively updates the parameters of the traditional model to incorporate passenger rerouting until convergence, or until the
maximum number of iterations is reached. The performance of these heuristics is examined using six real-world case studies
of various sizes from the Dutch railway, with satisfactory results using the no-wait policy as a benchmark for comparison.

Dollevoet et al. (2015) include station capacities in the delay management problem. Small instances of this problem can
be solved exactly, but bigger ones require the use of heuristics. According to the paper, platform track adjustments for trains
help lessen passenger inconvenience during disruptions. The priorities of trains are initially calculated keeping platform track
assignments fixed. Then, Platform track assignments in each station are modified iteratively. The approach is tested on a Dutch
railway network. The results show that platform reassignment minimizes passenger delays.

Kanai et al. (2011) present a model to find a delay management plan minimizing a passenger disutility function. This function
includes total time passengers spend on board, waiting time, number of transfers, and train congestion rate. The authors propose
an approach to combine simulation and optimization. They develop a simulation framework that includes a passenger flow and
a train traffic simulators, working in parallel. A tabu search approach is used for optimizing the delay management plan. The
paper assumes static OD passenger data. It also assumes that passengers always decide their routes to minimize the disutility
function defined. The approach is implemented and tested on a high-frequency Japanese rail network with satisfactory results.

In summary, the delay management problem has been studied considering several infrastructure constraints and solution
approaches. For all the above-mentioned literature, the passenger OD demand is taken into account for defining weights in the
objective functions.

Other literature aims to lessen passenger inconvenience in case of perturbation. Many criteria are used to define what
constitutes passenger inconvenience. Norio et al. (2005) investigate rescheduling with passenger-related objective function but
without employing passenger data sources. Instead, the paper analyzes the situation where the passenger would complain and
collect them in a chain file. With minimization of passenger dissatisfaction as the objective function, the model is solved with
Project Evaluation and Review Technique (PERT) and Simulated Annealing (SA) approaches. They are applied to a case study
from the Japan railway network.

Tanaka et al. (2009) consider passenger inconvenience defined by three factors: traveling time, transfer burden, and congestion.
The model uses shortest path algorithms and a disaggregate demand model to calculate the number of passengers selecting
paths during rescheduling. The approach considers retiming and reordering of trains during rescheduling and considers trains
with limited capacity.

Sato et al. (2013) propose a model to minimize the inconvenience defined by the sum of on-board traveling time, waiting
time at platforms, and the number of transfers. The paper shows that passenger and operation-oriented objectives are often in
conflict, as decreasing passenger inconvenience comes at the expense of additional train delays. The research considers two
objectives: minimizing train arrival delays and passenger inconvenience. The first phase determines the amount of inconvenience
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to passengers in the planned timetable. A second phase aims to reduce train arrival delays after a perturbation occurs, and a
final phase tries to reduce the positive difference in inconvenience between the planned and revised timetables. The approach
is tested in a case study representing a part of the Japanese railway network.

Disruptions.
Zhu and Goverde (2019) propose a MIP model for rescheduling during complete track blockage with a plethora of possible

measures: retiming, reordering, flexible stopping adding and skipping stations’, train canceling, and flexible short turning.
With the objective of reducing passenger delay, the authors introduce flexible short turning and stopping for the first time for
rescheduling. The model is tested on a sub-network of the Dutch railways and the results show that flexible short-turning is
advantageous in a network with high frequency.

Zhu and Goverde (2020), the same authors propose a novel model that integrates timetable rescheduling and passenger
reassignment which assigns passenger groups to a particular path based on the weight of the path. The authors formulate a
model that minimizes generalized travel time, which includes time spent in the vehicle or waiting at stops, and number of
transfers. Passengers are assigned to trains after the application of several rescheduling measures, including retiming, reordering,
canceling, re-servicing, and a skip-stop strategy. Iteratively, the model is solved using the fix-and-optimize technique with a
restricted passenger group. An optimal operation-oriented rescheduling model for a Dutch railway network with the goal of
minimizing train cancellation and arrival delays is considered as a benchmark. In experiments based on a part of the Dutch
network, the proposed approach reduces passenger generalized travel time by thousands of minutes, while adding about ten
minutes to the total train arrival delays.

Binder et al. (2017) develop a multi-objective rescheduling approach. The objectives are the minimization of passenger
dissatisfaction, along with the minimization of operation costs and deviation from the original timetable. An epsilon-constraint
method is used, setting passenger dissatisfaction as an objective function and the other two objectives as constraints. Passengers
might adjust their destination, their desired departure time, or even their chosen travel mode in a disrupted situation. The paper
included dynamic passenger demand following the announcement of the disruption. The approach is tested on a portion of the
Dutch railway network and solved with a commercial solver.

Binder et al. (2021) consider a passenger choice model in which passengers choose their route and compete for limited
resources. The model considers a single disruption that blocks tracks between stations completely. The authors assume that the
duration of the disruption is known at its beginning, and will not change over time. The paper uses three objective functions:
operating costs, deviation from the original timetable, and passenger convenience. The approach considers OD passenger data,
as well as passenger awareness of the timetable and selection of the most convenient option. It creates an approximation Pareto
frontier and is successfully tested on the Swiss and Dutch railway networks.

Hong et al. (2021) focus on adding extra stops to non-canceled trains for serving disrupted passengers. The train rescheduling
and passenger reassignment problems are integrated taking into consideration the limited seat capacity of the trains. A new
timetable is determined using a MIP model, where the objective is to minimize the weighted delay of non-canceled trains and
maximize the number of disrupted passengers reaching their final destination. The disrupted passengers are represented by
passenger groups with the same destination. The model is implemented on part of the Beijing-Shanghai high-speed railway
line. The efficiency and efficacy of the approach are shown by obtaining Pareto optimal solutions using the weighted sum
method.

All approaches discussed so far take train unit compositions as fixed. The next three papers, instead, also deal with Rolling
Stock Rescheduling.

First in this group, Kroon et al. (2015) consider rescheduling under dynamic passenger flow with aim of minimizing passenger
delay. The approach proposes a simulation model for passenger flows, based on their traveling strategies and capacities allocated
to the train. It also considers iterative heuristics to solve rolling stock rescheduling with dynamic passenger flow. The author
presents a two-step simulation approach in which passenger traffic is first simulated and then the results are fed into a rolling
stock rescheduling model. The simulation is done again to see if the optimized rescheduling model fits better with the passenger
flow. The model is tested on a number of instances of Dutch railways.

Veelenturf et al. (2017) aim for rescheduling by changing rolling stock composition in response to change in passenger de-
mand. The approach uses a passenger simulation model introduced by Kroon et al. (2015) to determine dynamic passenger flow
during disruption. The approach develops an IP model based on Nielsen et al. (2012) with the objective of minimizing rolling
stock rescheduling costs, passenger rescheduling costs, and passenger service costs by combining rolling stock rescheduling
and adding extra stops. The approach is tested on the Dutch railway network with satisfactory results.

Finally, Hoogervorst et al. (2020) introduce the Passenger Delay Reduction Problem (PDRP) to minimize passenger delays
using rolling stock rescheduling. It minimizes the delay of passengers considering comfort and operational efficiency. The
paper uses changes in train composition through shunting movements at stations and turn-around. It considers large number of
mutually conflicting objectives with predetermined weights. Two approaches are proposed: a delay composition and a delay path
model. These are tested in a part of the Dutch network. Delay composition is found to perform best in finding a high-quality
solution in a limited time.
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B. Microscopic Approaches

As for macroscopic approaches in Section III.A, we group the papers representing infrastructure microscopically on the
basis of the type of disturbances handled.

Perturbations.
All the papers presented in this section consider delay management and microscopic train rescheduling. Rescheduling

measures allowed include retiming, reordering, speed control and cancellation of trains.
First, Corman et al. (2012) develop a bi-objective delay management strategy that aims to minimize weighted passenger

delay and number of missed connections. The paper uses two heuristics algorithms based on alternative graphs to calculate
an approximated Pareto front of non-dominated schedules. It iteratively reschedules trains with fixed connections and chooses
connections to be enforced. The approach is tested on part of the Dutch railway network with five stations.

Espinosa-Aranda and Garcı́a-Ródenas (2013) consider the minimization of total passenger delay at destination. The paper
introduces the Avoid Most Delayed Alternative Arc (AMDAA) approach to solve the problem. This approach is an extension
to the Avoid Maximum Current Cmas Branch-and-Cut. AMDAA, AMCC, and FCFS approaches are used to solve the model
and the results are tested for the Renfe Cercanias Madrid railway, considering four stations. The results demonstrate that exact
approaches are practical for solving medium-sized problems in real-time, whereas heuristics can provide near-optimal outcomes
for large problems at a lower computational cost. Also, for randomly generated passenger OD data, the AMDAA approach
considerably reduces passenger delay, sometimes at the expense of total makespan.

Dollevoet et al. (2014) consider the weighted sum of passenger arrival time at the final destination as an objective function
in the delay management problem. The delay management model calculates which connection to maintain and which to drop,
whereas microscopic train scheduling validates the departure and arrival times and respects the detailed information about
the tracks and switches within the stations. The approach applies the two algorithms iteratively. It is tested on the Dutch
railway network with 46 stations including Utrecht Central Station, which is considered microscopically in the train scheduling
problem. The rest of the network is represented macroscopically. Two sets of instances are generated for testing: one with
small initial delays and the other with large ones. The proposed approach is found to be efficient for small initial delays but
less so for large delays.

As a follow-up to Corman et al. (2012), Corman et al. (2017) consider the same problem and develops an algorithm for the
fast calculation of upper and lower bounds. Passenger OD data in terms of the average volume of passengers at the station is
considered for delay management. The problem is decomposed into train rescheduling and passenger routing problems, and
three heuristics are proposed. The instance is studied on the Dutch railway network. Two sets of instances are considered: one
is small, with eleven stations, and the other is much larger, encompassing a considerable portion of the Dutch railway network,
but no details are supplied in the paper. The problems are solved to optimality for small-size instances whereas four heuristics
are developed to solve large-size instances in a short time.

Finally, Toletti and Weidmann (2016) present a train rescheduling approach for mixed traffic that minimizes passenger
discomfort. It establishes three alternative objective functions to minimize: train delay, passenger delay, and passenger incon-
venience. As Sato et al. (2013), it perceive station waiting time to be twice as inconvenient as time on board. The approach
implements a Resource Conflict Graph and exploits a commercial IP solver. Computational experiments are run on a part of
the Swiss rail network with two large and four small stations. The results demonstrate that only minimizing train delays has
an extraordinarily large negative impact on passenger delays. Thus, the authors suggest that any rescheduling approach should
explicitly include passengers.

Disruptions.
Only two papers propose microscopic rescheduling approaches dealing with disruptions and focusing on passengers. They

have both been published extremely recently.
Shakibayifar et al. (2020) aim to reduce weighted train delays and deviations from the original timetable, with weights that

are proportional to passenger demand at each station. A MIP formulation models the railway infrastructure imposing limited
station capacity. To solve the problem, an exact approach and two heuristics, namely right-shift rescheduling and two-stage
rescheduling, are provided. They are tested on the Iranian railway network with 53 stations, with several disruptions considered
in bottleneck areas. Only one train at a time is allowed to use a track between two stations. The exact approach is shown to
be useful only when track blockage duration is short: it is unable to find a realistic solution in a fair amount of time as this
duration increases.

Zhan et al. (2021) take into account limited seat capacity for trains. The authors consider train routing in a station area at a
microscopic level. The approach is based on the Disrupted Trains Waiting Strategy (DTWS): trains are stopped ahead of the
blockage until the track is cleared; then they are allowed to continue their journey. A passenger routing problem and a train
rescheduling problem are integrated into a set of shortest path problems. The paper aims to reschedule the affected passengers
such that operational costs for the railway companies and travel costs for the passengers are minimized. The cost of each
available passenger route depends on travel time, waiting time, number of transfers, and late departure of trains. Passengers
are assumed to select the route with the lowest cost. The problem is solved with a dynamic programming approach and tested
on a part of the Chinese railway network with 17 stations, with satisfactory results.
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In Table I, we present the overview of the literature discussed for rescheduling the conventional railway. In particular, the
table lists all papers depending on the Infrastructure scope and type of disturbance considered.

Pertubation Disruptions

Macroscopic

Schöbel (2001), Heilporn et al. (2008),
Schachtebeck and Schöbel (2008), Schöbel
(2009), Dollevoet et al. (2012), Dollevoet and
Huisman (2014), Dollevoet et al. (2015), Sato
et al. (2013), Tanaka et al. (2009), Kanai et al.
(2011), Norio et al. (2005)

Zhu and Goverde (2019), Zhu and Goverde
(2020), Binder et al. (2017), Binder et al.
(2021), Hong et al. (2021), Kroon et al. (2015),
Veelenturf et al. (2017), Hoogervorst et al.
(2020)

Microscopic
Espinosa-Aranda and Garcı́a-Ródenas (2013),
Dollevoet et al. (2014), Corman et al. (2012),
Corman et al. (2017), Toletti and Weidmann
(2016)

Shakibayifar et al. (2020), Zhan et al. (2021)

Table I: Conventional Railway Rescheduling

V. URBAN RAIL TRANSIT RESCHEDULING

The nature of urban rail transit systems presents unique challenges that set them apart from conventional railway systems.
Specifically, these systems are characterized by the absence of overtaking and crossing operations, with trains typically following
a strictly pre-determined sequence. As passenger flows in urban transit systems exhibit a high degree of uncertainty and follow
complex dynamics, probabilistic approaches are often employed to model them. Moreover, due to the extremely short intervals
between trains during rush hour, even minor delays can rapidly propagate throughout the system. As a result, urban rail transit
is comprised of high-capacity, high-frequency, homogeneous lines that run on independent tracks, and are not amenable to
reordering or rerouting. These systems are tailored to the needs of metropolitan centers and their suburbs, covering shorter
distances and having stations in closer proximity than conventional trains (Li et al., 2017).

A fundamental difference between rescheduling in conventional railway and urban rail transit lies in the considerations made
for passengers. In conventional railway systems, rescheduling typically relies on static data where the number of passengers
traveling from each origin-destination is known to the dispatcher. By contrast, in urban rail transit, rescheduling primarily
relies on dynamic data where origin-destination plans of passengers are not readily available to the dispatcher. Urban rail
transit systems are characterized by high frequency and traffic capacity, and as such, passenger flow distribution models
are commonly employed to approximate passenger flow in the network. Automatic fare collection data is often leveraged
to calculate passenger flow dynamics in a large spatiotemporal space. Moreover, some models take into account passenger
behavior and network factors beyond just passenger flow, providing a more comprehensive picture of the system. Dynamic
data can approximate passenger behavior in case of delay whereas static data cannot. Another drawback of static data is that
it doesn’t incorporate changes in the number of passengers in real-time , although passengers may accumulate in stations in
case of delays. The models used for dynamic data collection are approximation models, and approximation models inherently
have flaws, thus they are not always the optimum method for estimating the number of passengers.

The present section pertains to an in-depth review of the literature on passenger behavior and minimizing passenger incon-
venience during disturbances. Interestingly, none of the eleven publications examined in this review discuss train reordering,
rerouting, or adding stops as potential rescheduling measures. Instead, retiming, skip-stop, and speed control are identified as
the most commonly used rescheduling measures. It is noteworthy that station capacity is restricted to accommodate only one
train at a time. Moreover, the reviewed papers assume that only one train can operate between two stations at any given time.
As no track details are present, all papers are classified as macroscopic in this review. Despite this limitation, we classify the
papers according to all Section III criteria in the appendix, as previously done for conventional railways. Table II presents the
number of papers that consider each criterion and category, while Table IV provides additional details on each paper.

Almodóvar and Garcı́a-Ródenas (2013) propose an on-line optimization approach based on a discrete event simulation model
for rescheduling trains in case of emergencies. It tries to minimize the total time passengers spend in the system. The disruption
here is caused by unexpectedly high demand that exceeds service capacity. The authors discuss ways of rescheduling rolling
stocks from other lines to the disturbed line to meet excess demand. A discrete event simulation model uses the demand and
service model to represent passenger flow dynamically. The optimization model is solved with two greedy heuristics to get
near-optimal solutions. The simulation model used in the paper properly depicts the dynamic features of passenger flow and
response of passengers to disturbances. This work clearly demonstrates that when using an on-line optimization strategy in
conjunction with a simulation model to estimate the objective function, a trade-off between accuracy and response speed must
be found, as demonstrated by the experiments run on the Madrid regional train network.
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Studying urban transit, Zhen and Jing (2016) propose a rescheduling model that takes passenger behavior into account. The
paper assumes that under rescheduled timetable passengers may wait for the next train, choose a different route or cancel
their planned trip altogether. The approach proposed attempts to reduce the negative impact of railway delays on passengers,
which is measured by total travel time and cost for canceling a planned trip. The formulated train rescheduling problem is
non-convex and tackled with a genetic algorithm. It manages to significantly cut travel time and planned trip cancellations on
Beijing subway instances.

Another paper that makes use of a genetic algorithm is Xu et al. (2017). It presents a passenger-oriented rescheduling
algorithm to minimize generalized travel time: delay time of alighting passengers and penalty time of stranded passengers.
The authors use a genetic algorithm with adaptive mutation rate and elite strategy to deal with the rescheduling problem.
The approach is tested in Beijing metro line 13 with a 9.47 % reduction of average generalized delay time in comparison to
train-oriented models.

Considering a very different approach, Yin et al. (2016) present a stochastic programming model for urban rail transit
rescheduling problems with dynamic passenger flow. It aims to minimize passenger delay, total travel time, and total energy
consumption. The model uses a non-homogeneous probability distribution for passenger arrivals at station, with an intensity
function based on a time-varying OD passenger demand matrix. To deal with the proposed model’s complexity and uncertainty,
and swiftly discover a reasonably practicable solution, approximate dynamic programming (ADP) is used. Here the problem
is decomposed into multistage stochastic decision process. Each stage concerns the movement of a train from one station to
another. The train is rescheduled at each stage based on predicted costs, and the system is updated with new data on running
time, dwell time, and number of people alighting, waiting, and boarding. The ADP effectiveness and robustness are tested
using a small simulated metro line and real-world data from the Beijing metro Yizhuang line.

Hao et al. (2019) present a rescheduling approach based on a Markov decision process. It examines the interactive link
between train operation and passenger behavior and reschedules trains considering dynamic passenger flow. The number of
controlled passengers which defines the number of waiting passengers who are unable to board the train because of capacity
and time constraints and the train running time between two stations two decision variables and the process is divided into
numbers of multiple decision-making stages. The paper aims to minimize the weighted combination of total passenger delay
calculated by waiting delay at stations, passenger control penalty, and train regulation penalty. Like Yin et al. (2016), the
authors use ADP. In this proposal, the ADP approximates the value function using state features to increase computational
efficiency, to deal with large-scale problems.

Li et al. (2017) develop a coupled dynamic model for both passenger flow regulation and train rescheduling. The dynamic
model considers an accurate picture of the train rescheduling problem. Rather than using a time-dependent OD matrix to
describe passenger demand, as most papers do, this work accounts for a dynamic evolution of passenger demand based on
train headway. The number of alighting passengers at stops is also considered to be proportional to the number of passengers in
trains. The model aims to minimize the cost function which is a weighted function of timetable deviation, headway regularity,
and train control actions. It is solved with a model predictive control (MPC) approach. This approach is shown to be exploitable
in actual metro lines in real-time. Moreover, it is found to be effective in reducing train delays, passenger load errors, and
train headway deviations.

Hou et al. (2019) propose a MIP approach for train rescheduling. It takes into account the onboard Automatic Train Operation
(ATO) system’s preprogrammed speed profiles. To minimize total train delay, total number of stranded passengers, and total
train energy consumption, the authors formulate a multi-objective optimization problem. They use continuous decision variables
for arrival and departure timings, as well as binary variables to indicate the preprogrammed speed profile. The model is tested
using real-world data, and its efficiency is confirmed.

Some papers consider skipping stops during rescheduling. Gao et al. (2016) propose an optimization model to reschedule a
metro line under disturbances. It considers over-crowded passenger flow: passengers with different destinations randomly arrive
and get mixed in each station. The capacity of trains is presumed to be limited. The authors describe methods for linearizing
the constraints of the optimization model. Then, they decompose it into a series of MIP problems using heuristics and solve
them using an iterative approach. Results obtained with this approach indicate that during interruptions, regardless of arrival
rate or OD matrix, a suitable skip-stop pattern outperforms the standard all-stop pattern if the number of stranded passengers
is substantial. Twelve distinct conditions are tested, including a heterogeneous/homogeneous OD matrix, increasing/decreasing
arrival rates, and a short/medium/long disturbance period. The approach is tested on Beijing Metro and results are found to
ascertain its effectiveness and efficiency.

Altazin et al. (2017) also present a rescheduling approach for urban rail transit with stop skipping. The objective of the
paper is the minimization of the waiting time of passengers and the recovery time of the original timetable. An IP approach
is proposed. It uses passenger OD data with a fixed number of boarding and alighting passengers at each station. Rolling
stock limitations are taken into consideration. The approach doesn’t take train capacity into account. It is tested on a crowded
railway system in the Paris area, and it demonstrates that skipping stops is an efficient approach for lowering recovery time.

Along with Altazin et al. (2017), Cadarso et al. (2013) also deal with rolling stock rescheduling in event of disturbances.
Cadarso et al. (2013) present an integrated optimization model to deal with both timetable and rolling stock rescheduling under
dynamic demand. In contrast to many of the previous studies, this approach is applied to a metro network rather than a metro



10

line. The authors use two iterative steps to solve the model. In the first step, anticipated passenger demand is calculated using
the multinomial logit model. The authors solve a MIP model for both timetabling and rolling stock rescheduling problems in
the second step, with objectives related to the operation of trains, rolling stock allocation and cancellation, number of denied
passengers, train empty movements, and deviation from the original timetable. Operation strategies like canceling and adding
emergency trains are considered, but the possibility of changing departure times for planned services is not considered. The
approach is applied to RENFE’s regional network in Madrid with satisfactory results.

Hassannayebi et al. (2021) develop a rescheduling model with short-turn and skip-stops to minimize passengers’ waiting
time. The arrival rate of passengers at stations is defined as a non-stationary Poisson arrival rate. As a decision support system
for managing disturbances in urban rail transit lines, the authors present a new integrated simulation-optimization approach,
supplemented with a variable neighborhood search algorithm. They show that the variable neighborhood search algorithm can
find the optimal solution in a reasonable time for some instances representing large disturbances. The approach is tested on
the Tehran metropolitan network with considerable success.

VI. RESEARCH GAPS AND OPEN ISSUES

The analysis of the literature reported in the previous sections shows that one of the less explored research areas is one on
the microscopic rescheduling approaches, specifically dealing with perturbations. These approaches is extremely well studied
when focusing on an operational perspective, but they have been seldom extended to consider passengers. In particular, there
is currently no literature that attempts to incorporate rerouting in the case of microscopic rescheduling approaches considering
passengers. Currently, rescheduling approaches do not consider the stopping platforms of the trains involved during rescheduling
as modifiable. However, exploiting rerouting is known to be an effective measure to limit delay propagation in railway traffic
management (D’Ariano et al., 2008; Corman et al., 2010; Pellegrini et al., 2014). When considering passengers, new subtleties
need to be accounted for. For example, for allowing transfer, it is necessary to consider that passengers have to walk from one
train to another in the available connection time, hence the assignment of far away platforms may become impossible. On the
other hand, if trains stop at very close platforms, some delay propagation may be avoided by reducing the minimum connection
time. How to efficiently model the additional subtleties associated with rerouting is an open research question. This will require
the extension of the existing models or a complete change of approach if the computation becomes too time-consuming.

The present analysis of the literature reveals a research gap in the inclusion of passenger behavior modeling in delay
management for conventional railways. While existing approaches mostly assume demand inelastic to the schedule or use
simplistic models to capture passenger reactions, it is crucial to acknowledge that passengers can decide to wait, choose an
alternative route, or cancel their trip when facing delays. In this regard, there is a need to incorporate advanced techniques
to predict passenger behavior into rescheduling approaches. Although some studies have explored this avenue in urban rail
transit, it remains largely unexplored in conventional railways, where the service mix and infrastructure topology pose additional
challenges to traffic management. Nonetheless, the integration of passengers into rescheduling approaches will be crucial to
address the growing demand for mobility and ensure sustainable railway operations.

An area that has received very little attention in the discussed literature is the management of mixed traffic, which encompasses
both passenger and freight trains. Devising an appropriate objective function that takes into account the distinct objectives of
freight and passenger traffic presents a significant challenge. Furthermore, the rescheduling measures that are appropriate for
different types of passenger trains may vary considerably, potentially resulting in diverse levels of inconvenience. Addressing
the emerging challenges will require a comprehensive understanding of the unique characteristics of each type of traffic and
the development of sophisticated algorithms that can account for the complexities associated with mixed traffic management.

In order to make theoretical and methodological advancements in traffic management, it is imperative to have a comprehensive
understanding of passenger habits and preferences. However, the current literature lacks a multi-disciplinary approach that
integrates insights from surveys and other related fields to better define and measure passenger inconvenience. While some
studies have been conducted in specific cities and for particular types of passenger trips, there is a scarcity of generalization
attempts, which are crucial for establishing a comprehensive understanding of passenger inconvenience. Future research should
thus focus on developing a more nuanced understanding of passenger inconvenience that incorporates a wide range of factors
and is generalizable across different contexts.

Other factors that will need to be considered in future research are the availability and reliability of the information on
passengers. Indeed, too optimistic assumptions may limit the scope of the applicability of the proposed approaches. However,
the set of hypotheses made on the knowledge available on passengers when making decisions is always neglected in the
discussions. In particular, all the approaches studied for this literature review consider the origin and destination of passengers
as known when making decisions. However, apart from trains requiring a reservation, today the system can be aware of
passenger destinations only when this destination is actually reached. And even in this case, only a few existing systems
actually monitor when passengers leave. In most conventional railway services, no information is available at all, unless the
train or station personnel is interviewed. The impact of this lack of information is today completely unknown. At the very least,
in our opinion, the research community will need to find a way to assess this impact to show the usefulness of the approaches
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we propose even when not everything is known in advance. Then, we may propose new approaches, maybe considering
robust or stochastic optimization, to see if this impact can be decreased. This type of research may be particularly useful
for practitioners, not only to move towards optimized traffic management but also to decide what investment would be most
beneficial for improving the quality of service. For example, different benefits will derive from the installation of passenger
counters on all trains, on station platforms, or even from the deployment of a system in which passenger has to declare their
destination when entering the system.

VII. CONCLUSION

This study offers a comprehensive review of the literature on rescheduling, with a focus on the passenger dimensions, for both
conventional railways and urban rail transits. The review encompasses a broad spectrum of rescheduling measures, including
but not limited to retiming, reordering, rerouting, adding and skipping stops, canceling trains, adding emergency trains, speed
control, short-turning, and rolling stock rescheduling. Our study shows how these measures are employed by different papers
for rescheduling. Furthermore, the study evaluates various capacity constraints, rescheduling models, and solution methods that
are utilized by the rescheduling approaches described in the literature. We also discuss several ways in which passenger details
are accounted for.

It is evident from the literature review that the majority of papers adopt a macroscopic representation of the railway
infrastructure to deal with perturbations and disruptions. However, there are a few notable exceptions that propose the integration
of microscopic and macroscopic representations. Furthermore, the literature review highlights the significant attention given
to delay management, with passenger demand serving as a crucial factor in the optimization objective function. The papers
reviewed in this study also place a significant emphasis on minimizing passenger inconvenience, with several different definitions
proposed. Finally, during disruptions, rolling stock rescheduling emerges as a viable and effective rescheduling measure, with
several papers exploring this option.

Our review reveals that while retiming and reordering rescheduling measures are widely considered in all papers on
conventional railway rescheduling, the papers on urban rail transit tend to neglect reordering, rerouting, adding stops, and
rolling stock rescheduling. Moreover, the majority of studies on conventional railway rescheduling primarily focus on track
capacity evaluation at the macroscopic level, i.e., imposing minimum headway times between passing trains. Less than half
of the papers take station capacity into account, in terms of number of available platforms. In contrast, all papers on urban
rail transit consider both track and station capacity. Furthermore, we found that the consideration of passenger count varies
significantly between conventional railway and urban rail transit rescheduling. In conventional railway rescheduling, static
passenger count is commonly used. Conversely, urban rail transit studies tend to place more emphasis on dynamic passenger
count. Finally, we also observe a disparity in the representation of the railway infrastructure between the conventional railway
and urban rail transit studies. The majority of pa pers on conventional railway tend to adopt a macroscopic approach, whereas
only about one-third of papers consider a microscopic representation of infrastructure.

Through our review, we identified several research gaps that need to be addressed in future studies. While the approaches
presented in the literature have shown promising results in experiments, deploying them in real-time railway operations remains
a significant challenge. This is due to the complex nature of railway operations and the cultural changes that optimization
tools require. The explicit consideration of passengers, as demonstrated in the approaches we reviewed, adds a further
layer of complexity. In reality, monitoring passenger flows and utilizing them in optimization remains a challenge, although
advancements in technology are constantly being made. To overcome these challenges, a clear understanding of available data
and how to properly exploit it is necessary. This is a critical milestone that needs to be achieved in order to advance the state
of the art in railway traffic management optimization.
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Kroon, L., Maróti, G., and Nielsen, L. (2015). Rescheduling of railway rolling stock with dynamic passenger flows.

Transportation Science, 49(2):165–184.
Li, S., Dessouky, M. M., Yang, L., and Gao, Z. (2017). Joint optimal train regulation and passenger flow control strategy for

high-frequency metro lines. Transportation Research Part B: Methodological, 99:113–137.
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APPENDIX

Table II includes the various criteria considered for each paper, as well as the number of papers for which criterion is used
in the rescheduling process. For each paper, Table III and Table IV cover the rescheduling approaches well as the criteria used
during rescheduling for conventional railways and urban rail transits (URT), respectively.

Classification
Criterion Categories Papers (Conventional) Papers (URT)

out of 26 out of 11

Capacity

Track Capacity (TC) 21 11
Station Capacity (SC) 10 10

Rolling Stock Capacity (RSC) 2 2
Train Seat Capacity (TSC) 6 9

Type Perturbations (P) 16 9
Disruption(D) 10 2

Scope
Microscopic (MI) 7 -

Macroscopic (MA) 19 11

Rescheduling Measures

Retiming (RT) 26 10
Reordering (RO) 26 -
Rerouting (RR) 7 -

Adding Stop (AS) 4 -
Cancelling Trains (C) 4 2
Emergency Trains (E) 5 1

Skip-Stop (SS) 3 3
Short-turning (ST) 3 1

Rolling Stock Rescheduling(RSR) 4 1
Speed control (SC) 1 3

Rescheduling Model

Integer Programming (IP) 12 2
Mixed Integer Programming (MIP) 11 3

Alternative Graphs (AG) 4 -
Others (O) 2 6

Passenger Details
Static Passenger Count (S) 18 2

Dynamic Passenger Count (B) 7 9
Other details (O) 1 -

Objective Function Minimized

Total Passenger Delay (TPD) 10 2
Number of Missed Connections (NMC) 4 2

Arrival Time of Passengers (ATP) 1 -
Number of Track Changes (NTC) 1 -

Passenger Inconvenience (PI) 7 -
Operation Cost (OC) 3 -

Total Train Delay (TTD) 5 2
Generalized Travel Time (GTT) 4 3

Rolling Stock Rescheduling Cost (RSR) 2 -
Passenger Comfort (PC) 1 -

Trip Cancellation Cost (TCC) - 1
Total Energy Consumption (TEC) - 2

Service Quality (SC) 1 1
Number of Stranded Passenger (NSP) 1 3

Waiting Time at Stations (WTS) - 3
Penalty Cost (PEC) 2 2

Solution Approach
Exact Method (E) 11 2

Problem Specific Heuristics (H) 13 5
Meta heuristics (M) 4 4

Table II: Rescheduling approaches: classification framework
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