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Abstract

In this paper, we present a general approach to studying the problem of finite-time and fixed-time stabilization of a chain of integrators
with input delay. To accomplish this, we first reformulate the chain of integrators with input delay as a cascade ODE-PDE system (i.e.,
a cascade of a linear transport partial differential equation (PDE) with the chain of integrators) where the transport equation models the
effect of the delay on the input. Next, we use a nonlinear infinite-dimensional backstepping transformation to convert the cascade system
to a suitable target system that is chosen to be finite-time or fixed-time stable. We perform the stability analysis on the target system by
means of classical non-asymptotic concepts and tools such as the linear homogeneity and “generalized K L ” functions. Then, we use
the inverse transformation to transfer back the stability property to the closed-loop system. Finally, we give some characterizations of
finite/fixed time predictor-based controllers followed by numerical simulations.

Key words: Finite-time stability, fixed-time stability, linear homogeneity, delay systems, chain of integrators, input delay, cascade
ODE-PDE system.

1 Introduction:

Time-delay systems are ubiquitous in control engineering.
As time delays may cause performance degradation or in-
stability of the closed-loop system, control design is a cen-
tral issue; but due to the infinite-dimensional nature of those
systems, control, and estimation still continue to be chal-
lenging. Most of the existing results on stabilization and es-
timation for time-delay systems are based on asymptotic or
exponential guarantees, though in many applications (e.g.,
missile guidance, spacecraft docking, trajectory tracking for
nonholonomic mobile robots, finite-time deployment and
formation control for multi-agent systems,...) the transient
process must occur within a given time while also account-
ing for the effect of the delay. The need to meet time con-
straints and increase temporal performance has motivated
non-asymptotic stabilization that can be classified as finite/-
fixed and prescribed-time stabilization. Non-asymptotic con-
cepts have been extensively studied within the framework of
linear and nonlinear ordinary differential equations (ODEs).

⋆ This work has been partially supported by ANR Project Fi-
nite4SoS (ANR 15-CE23-0007).
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(Salim Zekraoui), nicolas.espitia-hoyos@univ-lille.fr
(Nicolas Espitia), wilfrid.perruquetti@centralelille.fr
(Wilfrid Perruquetti).

The most widely known and used of these notions is finite-
time stability (FTS) which means that the studied system
is stable and the solutions converge to the equilibrium in a
finite time that depends on the initial conditions. If such a
time is independent of the initial conditions (in fact, the set-
tling time is uniformly bounded independent of the initial
conditions but dependent on some parameters), the type of
stability is referred to as fixed-time stability (FxTS) [15].
More recently, the prescribed-time stabilization concept has
arisen, which allows the terminal time to be prescribed inde-
pendently of initial conditions and parameters. It was orig-
inally introduced in [18] and has been the basis of several
contributions, see e.g., [7,10,19,21,5] for finite-dimensional
systems.

However, finite-/fixed-/prescribed-time concepts for time-
delay systems still remain sparse and constitute challeng-
ing topics. One may refer first to some of the pioneer-
ing contributions on non-asymptotic concepts for time-
delay systems e.g. [9] (dealing with finite-time stabiliza-
tion for a class of triangular time-varying systems de-
scribed by retarded functional differential equations) and
[13] (dealing with finite-time stabilization of linear time-
delay systems by using Artstein’s transformation). In [6]
prescribed-time predictor-based controller for LTI systems
with input delay is proposed by relying on the PDE-based
backstepping approach and making use of time-varying
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kernels. An extension of the methodology was carried
out in [20] (using reduction-based transformation coupled
with a backstepping-forwarding transformation) to achieve
prescribed-time stabilization of a class of controllable LTI
systems with distributed input delay. Furthermore, key re-
cent contributions [24] and [12] deal with FxTS of general
LTI systems with input delay. The former builds upon the
Artstein–Kwon–Pearson reduction transformation and uses
weighted homogeneity to achieve FxTS for general LTI sys-
tems with input delay. The latter proposes a novel strategy
based on act-and-wait predictor-based control and opens new
research avenues on fixed-time control design.

In this paper, we revisit the problem of finite/fixed stabiliza-
tion of a chain of integrators with input delay and propose
a more general approach for the design of finite/fixed-time
state-dependent predictor-based controllers. We use a cas-
cade ODE-PDE system (i.e., a cascade of a linear transport
partial differential equation (PDE) with the chain of inte-
grators) where the transport equation models the effect of
the delay on the input and builds on a nonlinear infinite-
dimensional backstepping transformation inspired by [11].
Compared to [6]-which uses a linear transformation and
time-varying tools to ensure the prescribed-time stability
property for an LTI system with input delay- our approach
uses a nonlinear transformation and nonsmooth tools to en-
sure a different (i.e. finite/fixed) stability property. Both
methods bring different challenges and have specific issues.
For example, one of the main drawbacks of the time-varying
controllers in the framework of prescribed-time stabilization
is their implementability. The approach in this paper allows
to perform the stability analysis on a suitable target system
(chosen to exhibit the desired stability properties, i.e., ei-
ther finite time or fixed time) while employing classical no-
tions and tools such as Lyapunov-based characterization of
finite/fixed-time stability property of ODEs, the “generalized
K L ” (in short ”G K L ”) functions [8] and linear homo-
geneity [16]. Hence, we can provide some characterizations
of the resulting finite/fixed-time predictor-based controllers.

It is worth mentioning that [13,24] achieve similar results
(finite/fixed-time stabilization of LTI systems with input
delay) to ours using Artstein’s model reduction. Never-
theless, no state estimates of the closed-loop solution are
provided. The actuator dynamic is not identified through-
out the analysis, either. Moreover, extensions of [13,24]
to complex infinite-dimensional systems (including cas-
caded systems) with constant/time-varying/state-dependent
delays, distributed delays are not straightforward. In con-
trast, our approach does account for the infinite dimension-
ality of the input, and may allow possible extensions to more
complex infinite dimensional systems (e.g., 1D reaction-
diffusion PDEs with delayed boundary) or when just cas-
cading finite/fixed-time ISS subsystems.

This paper is organized as follows. In Section 2, we give
some preliminary definitions and tools to be used in the rest
of the paper. In Section 3, we give the problem statement in
which we present the chain of integrators with input delay

and its reformulation within an ODE-PDE setting. In Sec-
tion 4, we give a general approach to stabilize the chain of
integrators in a finite time or fixed time. We present the non-
linear backstepping transformation to transform the ODE-
PDE setting to a suitable target system and to come up with
a finite/fixed-time predictor-based control. Next, in Section
5 we apply our approach to different target systems to attain
finite-time stability or fixed-time stability. Then, we give in
Section 6 some numerical simulations to illustrate the re-
sults. Finally, conclusions and perspectives are given in Sec-
tion 7.

Notations:

For any real number a ≥ 0 and for all x ∈ R, the signed
power a of x is defined by {x}a = sign(x)|x|a. R+ denotes
the set of non negative real numbers. For j = 1, · · · ,n, e j

denotes the jth vector of the unit basis of Rn, and Mn(R)
the set of square real matrices of dimension n×n, then the
induced matrix norm is denoted as ∥.∥Mn .
We denote by L2((0,h),Rn) the set of all functions f :
[0,h] → Rn such that

∫ h
0 ∥ f (x)∥2dx < ∞ (with ∥ · ∥ is the

euclidean norm of Rn), and for simplicity, we will use the
notation L2(0,h) or L2 instead of L2((0,h),Rn). A function
α : R+ → R+ is said to be a class-K function if it is con-
tinuous, zero at zero, and strictly increasing. If in addition,
α is unbounded with its argument then α is said to be a
class-K∞.

2 Preliminaries on non-asymptotic concepts

This section recalls some definitions of non-asymptotic con-
cepts (finite/fixed-time stability in the framework of finite-
dimensional systems.

Consider the following autonomous system described by:

ż = g(z), z ∈ Ω, (1)

where g : Ω →Rn is such that g(0) = 0, Ω ⊂Rn is an open
connected set containing the origin (n ∈ N\{0}), and such
that (1) has the property of existence and uniqueness of
solutions in forward time outside the origin. Let O be a
neighborhood of zero.
Definition 1. The origin of system (1) is said to be

• stable if there is σ ∈ K such that for any z0 ∈ O , the
solutions are defined and ∥z(t)∥ ≤ σ (∥z0∥) for all t ≥ 0,

• asymptotically stable if it is stable and
lim

t→+∞
∥z(t)∥= 0 for any z0 ∈ O ,

• finite-time stable (FTS) if it is stable and for
any z0 ∈ O there exists 0 ≤ T z0 < +∞ such that
z(t) = 0 for all t ≥ T z0 . The functional T (z0) =
inf{T z0 ≥ 0 : z(t) = 0,∀t ≥ T z0} defines the settling time
of the system (1),
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• nearly fixed-time stable (nearly FxTS) if it is stable and
for any ρ > 0 there exists 0< Tρ <+∞ such that ∥z(t)∥≤
ρ for all t ≥ Tρ and all z0 ∈ O ,

• fixed-time stable (FxTS) if it is FTS and sup
z0∈O

T (z0)<+∞.

If O = Rn, then the corresponding properties are called
global.

3 Problem statement

We consider the following chain of integrators with input
delay:

ż j(t) = z j+1(t), j = 1, . . . ,n−1,
żn(t) =U(t −h),

(2)

where z(t) = (z1(t), . . . ,zn(t))⊤ ∈ Rn (n ∈ N\{0}) is the in-
stantaneous state of the system, U(t) ∈ R is the control in-
put, and h > 0 is a known constant delay.

Our goal is to design a nonlinear predictor-based controller
for the system (2) to achieve FTS or FxTS. To this end, the
methodology developed in this paper relies on representing
the actuator delay as a linear transport PDE and builds upon
the cascade ODE-PDE setting (i.e., a cascade of linear hy-
perbolic PDE with an LTI system) of [11].

Remark 1. Note that in [2], the problem of exponential sta-
bilization of the following class of strict-feedback system
with delayed integrators and delayed input

ż j(t) =
j

∑
i=1

a jizi(t)+ z j+1(t −h j), j = 1, . . . ,n−1,

żn(t) =
n

∑
i=1

anizi(t)+U(t −hn),

(3)

was solved, where the coefficients (a ji)1≤i≤ j≤n are real con-
stants, and (h j)1≤ j≤n are positive known delays. This class
of systems is more challenging compared to (2), but can be
dealt with to achieve finite/fixed-time stabilization, as shown
in details in Section 6, using the approach given in this pa-
per. The idea is to use the state transformation (52)-(53)
introduced in [2] (with c1, · · · ,cn = 0) to get rid of the non-
delayed terms from (3). Then, we use the following change
of variables z̄ j+1(t) = z j+1(t −∑

j
i=1 hi) for all j = 1, . . . ,n,

which moves the delays to the last equation. As a result,
we obtain a similar system to (2) with some additional de-
layed and non-delayed terms in the last equation. Therefore,
studying (3) comes down to studying (2). This motivates
applying our approach to the simplest case (2) in order to
better communicate the ideas of the approach.

We henceforth represent system (2) as

ż j(t) = z j+1(t), j = 1, . . . ,n−1,
żn(t) = u(t,0),

ut(t,x) = ux(t,x),
u(t,h) =U(t).

(4)

with t ≥ t0 ≥ 0, x ∈ [0,h], and u(t, ·) is the transport PDE
state whose solution is given by

u(t,x) =

{
u0(t + x− t0), t0 ≤ t + x ≤ t0 +h,

U(t + x−h), t + x ≥ t0 +h,

with u0 is a bounded function in L2. We denote by ut(t,x)
(resp. ux(t,x)) the partial derivative of u with respect to the
time (resp. space) variable t (resp. x).

The objective of the first part of this paper is to give a general
approach to design a controller (predictor-type) for the sys-
tem (2), to attain FTS and/or FxTS. We employ a nonlinear
infinite-dimensional backstepping transformation. The key
idea is to transform the original system into a suitable target
system that is chosen to exhibit the FTS or FxTS properties.

4 Finite/Fixed-time predictor-based controller via
PDE-based backstepping approach

4.1 Nonlinear infinite-dimensional backstepping trans-
formation

Inspired by [3] and [11, Chapter 10], we consider the follow-
ing nonlinear infinite-dimensional backstepping transforma-
tion:

ω(t,x) = u(t,x)−F (ϕ1(t,x), . . . ,ϕn(t,x)), (5)

where F is a suitable nonlinear function to be characterized
later on, and ϕ1, . . . ,ϕn are the solutions of

ϕ j,x(t,x) = ϕ j+1(t,x),
ϕ j(t,0) = z j(t), j = 1, . . . ,n−1, (6)

ϕn,x(t,x) = u(t,x),
ϕn(t,0) = zn(t). (7)

Notice that ϕi(t,x) = zi(t + x) for all i = 1, · · · ,n, all t ≥ t0
and all x ∈ [0,h]. Then, by the variation of the constant
formula, we obtain:

ϕi(t,x) =
∫ x

0

(x− y)n−i

(n− i)!
u(t,y)dy+

n

∑
j=i

x j−i

( j− i)!
z j(t). (8)

The proof of (8) is as follows:

z(t + x) = eAxz(t)+
∫ t+x

t
eA(t+x−s)Bu(s,0)ds,
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with z=(z1, · · · ,zn)
⊤, B= en, and A :=

{
Ai j

}
∈Rn×n, where

Ai j = 1 if j = i+1 and Ai j = 0 otherwise.

Next, using the change of variables y = s− t, we get

z(t + x) = eAxz(t)+
∫ x

0
eA(x−y)Bu(t + y,0)dy,

= eAxz(t)+
∫ x

0
eA(x−y)Bu(t,y)dy..

Using the expression eAx =
n−1

∑
k=0

xk

k!
Ak, we recover

z(t + x) =
n−1

∑
k=0

xk

k!
Akz(t)+

n−1

∑
k=0

∫ x

0

(x− y)k

k!
AkBu(t,y)dy.

Then, using the fact Akz(t) = (zk+1(t), · · · ,zn(t),0, · · · ,0)⊤
and AkB = en−k, we obtain

zi(t + x) =
n−i

∑
k=0

xk

k!
zk+i(t)+

∫ x

0

(x− y)n−i

(n− i)!
u(t,y)dy,

=
n

∑
j=i

x j−i

( j− i)!
z j(t)+

∫ x

0

(x− y)n−i

(n− i)!
u(t,y)dy.

Next, using (5) we transform the system (4) into the follow-
ing nonlinear target system:

ż j(t) = z j+1(t), j = 1, . . . ,n−1,
żn(t) = F (z1(t), . . . ,zn(t))+ω(t,0),

ωt(t,x) = ωx(t,x),
ω(t,h) = 0,

(9)

with ω : [0,+∞)× [0,h] → R is the transport PDE state.
The nonlinear function F , to be specified latter on (see
Subsection 4.3), is suitably chosen to get FTS/FxTS of the
target system when ω(t,0) becomes zero (this key feature
of the transport PDE ω is discussed in Subsection 4.4).

Note that using the fact that ϕ(t,x) = z(t + x) for all t ≥ t0
and al x ∈ [0,h], it is clear that the nonlinear transformation
(5) satisfies the PDE part of (9) (i.e. ωt(t,x) = ωx(t,x)).

4.2 Inverse transformation

The inverse transformation is given by,

u(t,x) = ω(t,x)+F (ϕ̄1(t,x), . . . , ϕ̄n(t,x)), (10)

where ϕ̄1, . . . , ϕ̄n are the solutions of:

ϕ̄ j,x(t,x) = ϕ̄ j+1(t,x), j = 1, . . . ,n−1,
ϕ̄ j(t,0) = z j(t), j = 1, . . . ,n−1, (11)

ϕ̄n,x(t,x) =F (ϕ̄1(t,x), . . . , ϕ̄n(t,x))+ω(t,x),
ϕ̄n(t,0) = zn(t). (12)

Similarly to the direct transformation, we recover from the
inverse transformation: ut(t,x) = ux(t,x).

4.3 On the selection of the Finite/Fixed-time predictor-
based controller

In this section, we give an important assumption on the
nonlinear function F given in (9) to ensure FTS or FxTS
properties. Then, we give the expression of our predictor-
based controller U(t) using the transformation (5) or (10).

4.3.1 An assumption on the nonlinear function F

In order to ensure that the target system (9) is FTS (resp.
FxTS), let us assume that F satisfies the following assump-
tion (for the ODE part of (9)):
Assumption 1. F is a continuous nonlinear function, differ-
entiable everywhere except at zero, such that F (0, · · · ,0) =
0 and the origin of the following system (ż j(t) = z j+1(t),
j = 1, . . . ,n− 1, żn(t) = F (z1(t), . . . ,zn(t))) is FTS (resp.
FxTS) i.e., there exists a class G K L function β such that
the solution of the previous system, satisfies:

∥z(t)∥ ≤ β (∥z̄0∥, t − t̄0), ∀t ≥ t̄0, (13)

where z̄0 = (z̄1,0, . . . , z̄n,0) is the initial condition at time t̄0.
Moreover, there exists an increasing function T (·) such that
∥z(t)∥ → 0 when t → t̄0 +T (∥z(t̄0)∥), (resp. a positive real
constant Tmax such that ∥z(t)∥= 0 when t ≥ t̄0 +Tmax).

Remark 2. A construction of a Lyapunov function
t 7→ V (z(t),ω(t, ·)) such that one has an estimate
of this type V̇ (z(t),w(t, ·)) ≤ −c1V α(z(t),w(t, ·)) −
c2V β (z(t),w(t, ·)), c1,c2 > 0,α ∈ (0,1),β > 1, could be
an alternative yielding the finite/fixed time stability property
to the target system and thereby the original one. However,
unfortunately, for a cascade nonlinear ODE - transport
PDE system (such as (9)), it is still unclear whether one
can construct such a Lyapunov function (without even the
PDE part). This is one reason why, our approach relies on
G K L -class functions β and estimates on the solutions.

4.3.2 Finite/Fixed-time predictor-based controller

Under Assumption 1, and from (5) at x = h, and using (8),
the boundary control is then,

U(t) = u(t,h) = F (ϕ1(t,h), . . . ,ϕn(t,h)), (14)

where ϕi(t,h) =
∫ h

0

(h− y)n−i

(n− i)!
u(t,y)dy+

n

∑
j=i

h j−i

( j− i)!
z j(t).

Or form (10), at x = h,

U(t) = u(t,h) = F (ϕ̄1(t,h), . . . , ϕ̄n(t,h)), (15)

where ϕ̄1, . . . , ϕ̄n are resp. the solutions of (11)-(12).
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4.4 Stability analysis

In this subsection, we first perform the stability analysis on
the target system (9). Then, we use the inverse transforma-
tion (10) to establish the boundedness of the state of the
original system (4) and its convergence to zero in finite-time
(resp. fixed-time) using a suitable norm equivalence.
Proposition 1. Let t ≥ t0 + h, there exists a class G K L
function β1 such that the solution of system (11)-(12),
ϕ̄(t,x) = (ϕ̄1(t,x), . . . , ϕ̄n(t,x)) satisfies

∥ϕ̄(t, ·)∥L2 ≤ β1(∥z(t0 +h)∥, t − t0 −h). (16)

Moreover, ∥ϕ̄(t, ·)∥L2 → 0 when t → t0 +h+T (∥z(t0 +h)∥)

(resp. t → t0+h+Tmax), where ∥ϕ̄(t, ·)∥2
L2 =

n

∑
j=1

∥ϕ̄ j(t, ·)∥2
L2 ,

T (·) and Tmax are given in Assumption 1.

Proof. By the method of the characteristics, the solution of
the ω−dynamics of the target system (9) for any t ≥ t0+h is
zero (i.e. ω(t,x)= 0 for all x∈ [0,h] and t ≥ t0+h). Then, we
can conclude using Assumption 1 (replacing ”t” by ”x”) that
the solution of the system (11)-(12) satisfies for t ≥ t0 +h

∥ϕ̄(t,x)∥ ≤ β (∥z(t)∥,x), ∀x ∈ [0,h],

where β is a class G K L function. Moreover, there ex-
ists an increasing function T (·) such that ∥ϕ̄(t,x)∥ → 0
when x → T (∥z(t)∥) (resp. x → Tmax). Furthermore, when
t → t0 + h + T (∥z(t0 + h)∥) (resp. t → t0 + h + Tmax)
∥ϕ̄(t,x)∥→ 0.

Now, using the fact that β is decreasing with respect to the
second variable x, we get,

∥ϕ̄(t,x)∥ ≤ β (∥z(t)∥,0), ∀x ∈ [0,h], ∀t ≥ t0 +h. (17)

By squaring and integrating with respect to x from 0 to h,
then passing to the square roots, we find,

∥ϕ̄(t, ·)∥L2 ≤
√

hβ (∥z(t)∥,0), ∀t ≥ t0 +h.

Next, we use inequality (13) from Assumption 1 to obtain,

∥ϕ̄(t, ·)∥L2 ≤
√

hβ (β (∥z(t0+h)∥, t− t0−h),0), ∀t ≥ t0+h.

Then, ∥ϕ̄(t, ·)∥L2 ≤ β1(∥z(t0 + h)∥, t − t0 − h), ∀t ≥ t0 + h,
where for any s, t ∈R+, β1 is a class G K L function given
by, β1(s, t) =

√
hβ (β (s, t),0). Furthermore, when t → t0 +

h+T (∥z(t0+h)∥) (resp. t → t0+h+Tmax), β (s, t)→ 0, and
by continuity β1(s, t)→ 0. ■

Proposition 2. There exists a class G K L function β2 such
that for any x ∈ [0,h], F (ϕ̄1(t,x), . . . , ϕ̄n(t,x)) satisfies for

t ≥ t0 +h,

|F (ϕ̄1(t,x), . . . , ϕ̄n(t,x))| ≤ β2(∥z(t0 +h)∥, t − t0 −h),
(18)

and

∥F (ϕ̄1(t, ·), . . . , ϕ̄n(t, ·))∥L2 ≤
√

hβ2(∥z(t0 +h)∥, t − t0 −h).
(19)

Moreover, for all x ∈ [0,h], |F (ϕ̄1(t,x), . . . , ϕ̄n(t,x))| → 0
and ∥F (ϕ̄1(t, ·), . . . , ϕ̄n(t, ·))∥L2 → 0 when t → t0 + h +
T (∥z(t0 +h)∥) (resp. t → t0 +h+Tmax).

Proof. Let x ∈ [0,h]. We can see from Proposition 1 that
∥ϕ̄(t,x)∥ → 0 when t → t0 + h+T (∥z(t0 + h)∥) (resp. t →
t0+h+Tmax), and stays zero after. Next, by continuity of F ,
we also have F (ϕ̄1(t,x), . . . , ϕ̄n(t,x))→ 0 when t → t0+h+
T (∥z(t0 +h)∥) (resp. t → t0 +h+Tmax). Then, there exists a
class G K L function β2 such that F (ϕ̄1(t,x), . . . , ϕ̄n(t,x))
satisfies,

|F (ϕ̄1(t,x), . . . , ϕ̄n(t,x))| ≤ β2(∥z(t0 +h)∥, t − t0 −h),

for all x ∈ [0,h] and t ≥ t0 +h.

Next, by squaring and integrating from 0 to h with respect
to x and passing to the square roots, we find,

∥F (ϕ̄1(t, ·), . . . , ϕ̄n(t, ·))∥L2 ≤
√

hβ2(∥z(t0 +h)∥, t − t0 −h),

for all t ≥ t0 + h. In addition, for all x ∈ [0,h],
we have, |F (ϕ̄1(t,x), . . . , ϕ̄n(t,x))| → 0 and
∥F (ϕ̄1(t, ·), . . . , ϕ̄n(t, ·))∥L2 → 0 when t → t0 + h +
T (∥z(t0 +h)∥) (resp. t → t0 +h+Tmax). ■

Proposition 3. From the transformation (10), the following
estimate holds for t ≥ t0 +h:

∥u(t, ·)∥L2 ≤
√

2hβ2(∥z(t0 +h)∥, t − t0 −h), (20)

where β2 is a class G K L function given in Proposition 2 .

Proof. Using (10), we have

|u(t,x)| ≤ |ω(t,x)|+ |F (ϕ̄1(t,x), . . . , ϕ̄n(t,x))|,∀t ≥ t0.

Next, squaring the previous inequality and using Young in-
equality, we get,

|u(t,x)|2 ≤ 2|ω(t,x)|2 +2|F (ϕ̄1(t,x), . . . , ϕ̄n(t,x))|2.

Now, using ω(t,x) = 0,∀t ≥ t0 + h,∀x ∈ [0,h], we ob-
tain |u(t,x)|2 ≤ 2|F (ϕ̄1(t,x), . . . , ϕ̄n(t,x))|2 ∀t ≥ t0+h,∀x∈
[0,h]. Finally, by integrating from 0 to h with respect to the
space variable x and passing to the square roots, we get

∥u(t, ·)∥L2 ≤
√

2∥F (ϕ̄1(t, ·), . . . , ϕ̄n(t, ·))∥L2 , ∀t ≥ t0 +h.
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Using inequality (19) from Proposition 2, we obtain,
∥u(t, ·)∥L2 ≤

√
2hβ2(∥z(t0+h)∥, t− t0−h), ∀t ≥ t0+h. ■

Theorem 1. Let the input initial condition Ut0 : s∈ [−h,0] 7→
U(t0 + s) be defined and bounded in L2(−h,0). Let h > 0
and t0 ≥ 0. Then, the solution of the closed-loop system (4)
with finite-time (resp. fixed-time) predictor-based controller
(14) (or (15)) is FTS (resp. FxTS) in the following sense: For
any initial condition z0 ∈ Rn, the quantity I(t) = ∥z(t)∥2 +
∥u(t, ·)∥2

L2 remains bounded for t ∈ [t0, t0 + h], and for all
t ∈ [t0 + h, t0 + h + T

(
Bh(∥z0∥,∥Ut0∥∞)

)
) (resp. t ∈ [t0 +

h, t0 + h+ Tmax)), there exists a class G K L function β3
such that,

I(t)≤ β3
(
Bh(∥z0∥,∥Ut0∥∞), t − t0 −h

)
, (21)

with Bh(s1,s2) = ehs1 +he2hs2 for any s1,s2 ≥ 0.

In particular, I(t) → 0 and |U(t)| → 0, as t → t0 + h +
T
(
Bh(∥z0∥,∥Ut0∥∞)

)
(resp. t → t0 +h+Tmax).

Proof. Let us start by proving the boundedness of ∥z(t)∥ for
all t ∈ [t0, t0 + h]. By the variation of the constant formula
on (2) we recover,

z(t) = eA(t−t0)z0 +
∫ t

t0
eA(t−y)BU(y−h)dy,

= eA(t−t0)
[

z0 +
∫ t

t0
eA(t0−y)BU(y−h)dy

]
.

Using the change of variables s = y−h− t0, we obtain

z(t) = eA(t−t0)
[

z0 +
∫ t−t0−h

−h
eA(−s−h)BU(t0 + s)ds

]
.

Using ∥eA(t−t0)∥Mn ≤ eh and ∥eA(−s−h)∥Mn ≤ eh, we get

∥z(t)∥ ≤ eh∥z0∥+ e2h
∫ t−t0−h

−h
|Ut0(s)|ds,

≤ eh∥z0∥+ e2h
∫ 0

−h
|Ut0(s)|ds,

≤ eh∥z0∥+he2h∥Ut0∥∞,

= Bh
(
∥z0∥,∥Ut0∥∞

)
.

(22)

Then, ∥z(·)∥ is bounded in [t0, t0 +h].

Next, let us prove inequality (21). Let t ≥ t0 +h. Using (20)
from Proposition 3, we have

I(t)≤ ∥z(t)∥2 +2hβ2(∥z(t0 +h)∥, t − t0 −h)2.

By inequality (13) from Assumption 1, we get

I(t)≤β (∥z(t0+h)∥, t−t0−h)+2hβ2(∥z(t0+h)∥, t−t0−h)2,

which leads to I(t)≤ β3(∥z(t0 +h)∥, t − t0 −h), with β3 =
β +2hβ 2

2 is a class G K L function.

Then, using inequality (22), we obtain, I(t) ≤
β3

(
Bh(∥z0∥,∥Ut0∥∞), t − t0 −h

)
. In particular, we recover

that I(t)→ 0 when t → t0+h+T
(
Bh(∥z0∥,∥Ut0∥∞)

)
(resp.

when t → t0 + h+Tmax) and that ∥z(t)∥ is bounded for all
t ≥ t0.

Now, let us prove that ∥u(t, ·)∥L2 is bounded for all t ∈
[t0, t0 +h]. Notice that the solution u is given by

u(t,x) =

{
u0(t + x− t0), t ∈ [t0, t0 +h− x],

U(t + x−h), t ∈ [t0 +h− x, t0 +h].

From this last equation, it is easy to deduce the bounded-
ness of ∥u(t, ·)∥L2 using the transformation (10), the fact that
|U(t+x−h)| ≤ |F (z1(t + x), . . . ,zn(t + x)) | and the bound-
edness of ||z(t + x)|| for all t + x ≥ t0. As a result, I(t) is
bounded for all t ∈ [t0, t0 +h].

Finally, let us prove that |U(t)| → 0 as t → t0 + h +
T
(
Bh(∥z0∥,∥Ut0∥∞)

)
(resp. t → t0 + h + Tmax). From the

equation (14), we have,

|U(t)|= |F (ϕ̄1(t,h), . . . , ϕ̄n(t,h))|.

and that |U(t)| is bounded for all t ∈ [t0, t0 + h] (because
ϕ̄(t,h) = z(t +h) bounded for all t ≥ t0).

By Proposition 2, we obtain from inequality (18),

|U(t)| ≤ β2(∥z(t0 +h)∥, t − t0 −h),∀t ≥ t0 +h.

Then, using inequality (22), we get

|U(t)| ≤ β2
(
Bh(∥z0∥,∥Ut0∥∞), t − t0 −h

)
.

From where we deduce the desired property. ■

5 Some characterizations of F for the design of finite-
time/fixed-time predictor-based controllers

The previous section provides a general setting in which, as
soon as one chooses F satisfying Assumption 1, one can
design a nonlinear predictor-based controller to stabilize the
system (4) in finite time or in fixed time. In this section, let
us give some characterizations of F . For simplicity let us
take t0 = 0.

5.1 Explicit controllers for double chain of integrators

For the target system (9) with n = 2, we propose the follow-
ing characterization of F inspired by [4]:

F (z1(t),z2(t)) =−k1{z1(t)}α1 − k2{z2(t)}α2 , (23)
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which satisfies Assumption 1 as soon as k1,k2 are any posi-
tive reals numbers and α1,α2 are selected so that weighted
homogeneity of negative degree κ is obtained for (9) with
n = 2 and ω ≡ 0: for example by selecting r >−2κ and

r1 = r,r2 = r+κ,α1 =
r+2κ

r
,α2 =

r+2κ

r+κ
.

Hence, we can realize the resulting nonlinear predictor-based
controller U(t) (14), with F having the structure in (23),
stabilizing the system (4) in finite time.

Let us give now a characterization of F to get a FxTS
counterpart:
Proposition 4. The z−subsystem of the target system (9)
with n = 2 is FxTS when F is selected as follows:

F (z1(t),z2(t)) =−k1,0 {z1(t)}α1,0 − k2,0 {z2(t)}α2,0

−k1,∞ {z1(t)}α1,∞ − k2,∞ {z2(t)}α2,∞ , (24)

where k1,0,k2,0,k1,∞,k2,∞ are any positive real numbers and

α1,0 =
r0+2κ0

r0
, α1,∞ = r∞+2κ∞

r∞
, α2,0 =

r0+2κ0
r0+κ0

,α2,∞ = r∞+2κ∞

r∞+κ∞

with κ0 < 0, κ∞ > 0, r0 >−2κ0, r∞ > 0.

Proof. Consider (9) with ω ≡ 0. Using LaSalle invariance

principle with V (z) =
∫ z1

0
k1,0 {s}α1,0 + k1,∞ {s}α1,∞ ds+

z2
2
2

combined with [1, Corollary 2.24] ends the proof. ■

5.2 Implicit Controllers for chain of integrators

For the z−subsystem of the target system (9),we can use
the results from [16,22,23] to characterize a new F from
which we can subsequently design a nonlinear predictor-
based controller U(t) achieving FTS or nearly FxTS. How-
ever, for such a chain of integrators, it appears that Gd has
to be of the form Gd = diag(r1, . . . ,rn), ri = r+(i−1)κ,r >
max(0,−nκ),κ ∈ R (κ is the degree of homogeneity) then

d(s) = eGds = diag(er1s, . . . ,erns). (25)

Note that AGd−GdA = κA (the driftless part ”Az” is homo-
geneous) [17] can be rephrased as:
Proposition 5. [see [17] for details] Let a,b be chosen
positive real numbers. For the z−subsystem of the target
system (9), let

F (z) = ∥z∥r+nκ

d kd(− ln∥z∥d)z, (26)

where d is the dilation defined by (25) with ri = r +(i−
1)κ,r > max(0,−nκ), ∥z∥d is its associated homogeneous
norm and gain k = yP is derived from the solution X ∈Rn×n

(X = P−1), y ∈ R1×n of the LMIs:

XA⊤+AX + y⊤B⊤+By+aX ≤ 0, (27)
X > 0, bX ≥ GdX +XG⊤

d > 0, (28)

where A = ((0(n−1)×1, In−1)
⊤,0n×1)

⊤,B = (0, . . . ,0,1)⊤.
Then, the z−subsystem of (9) with w ≡ 0 is

• globally FTS for κ < 0 and the settling time is given by

T (z0)≤
b

a(−κ)
∥z0∥−κ

d ,

• globally uniformly exponentially stable for κ = 0,
• globally nearly fixed-time stable for κ > 0.

Similarly, we get:
Proposition 6. [see [17,22,23] for an equivalent formu-
lation] Select κ0 < 0,κ∞ > 0 and r0 > −nκ0,r∞ > 0. Let
us define ri,0 = r0 + (i − 1)κ0,ri,∞ = r∞ + (i − 1)κ∞. Set
d0(s) = eGd0 s = diag(er1,0s, . . . ,ern,0s) and d∞(s) = eGd∞

s =
diag(er1,∞s, . . . ,ern,∞s). Let a0,b0,a∞,b∞ be chosen positive
reals. For the z−subsystem of the target system (9), let

F (z) =

{
∥z∥r0+nκ0

d0
k0d0

(
− ln∥z∥d0

)
z for ∥z∥< 1

∥z∥r∞+nκ∞

d∞
k∞d∞ (− ln∥z∥d∞

)z for ∥z∥ ≥ 1
(29)

where the gains k0 and k∞ are such that the LMIs

X0A⊤+AX0 + y⊤0 B⊤+By0 +a0X0 ≤ 0, (30)
X0 > 0, b0X0 ≥ Gd0X0 +XG⊤

d0
> 0, (31)

X∞A⊤+AX∞ + y⊤∞B⊤+By∞ +a∞X∞ ≤ 0, (32)
X∞ > 0, b∞X∞ ≥ Gd∞

X∞ +XG⊤
d∞

> 0, (33)

have solution X0 and X∞ in Rn×n, y0 and y∞ in R1×n (where
k0 = y0P0,P0 = X−1

0 ,k∞ = y∞P∞,P∞ = X−1
∞ ).

Then, the z−subsystem of (9) with w ≡ 0 is globally FxTS.

6 Simulations

In this section, we focus on (3) for n = 2, i.e.

ż1(t) = a11z1(t)+ z2(t −h1),

ż2(t) = a21z1(t)+a22z2(t)+U(t −h2),
(34)

where a11, a21 and a22 are real constants, h1 and h2 are
positive known delays.

By combining the state transformations (52)-(53) introduced
in [2] with the change of variables z̃1(t) = z1(t), z̃2(t) =
z2(t −h1), we recover the following transformations:

z̄1(t) = z1(t),
z̄2(t) = z2(t −h1)+a11z1(t).

(35)

Thus, (34) is transformed into

˙̄z1(t) = z̄2(t),
˙̄z2(t) =−a11a22z̄1(t)+(a11 +a22)z̄2(t)

+a21z̄1(t −h1)+U(t −h1 −h2),

(36)
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which is rewritten into

˙̄z1(t) = z̄2(t),
˙̄z2(t) =−a11a22z̄1(t)+(a11 +a22)z̄2(t)

+a21z̄1(t −h1)+u(t,0),
ut(t,x) = ux(t,x),

u(t,h1 +h2) =U(t),

(37)

with x ∈ [0,h1 +h2].

Remark that (36) is similar to (2) and clearly the approach
developed in this paper can be adapted to it to obtain the
following control

U(t) = F (ϕ1(t,h1 +h2),ϕ2(t,h1 +h2))−a21ϕ1(t,h2)

− (a11 +a22)ϕ2(t,h1 +h2)+a11a22ϕ1(t,h1 +h2),
(38)

where ϕ1 and ϕ2 are solutions of

ϕ1,x(t,x) = ϕ2(t,x),
ϕ2,x(t,x) =−a11a22ϕ1(t,x)+(a11 +a22)ϕ2(t,x)

+a21ϕ1(t,x−h1)+u(t,x).
(39)

with x ∈ [0,h1 +h2] and u(t,x) the solution of the PDE part
of (37).

Let us now give numerical simulations for the closed-loop
system (37) with predictor-based controller U(t) in (38).
First, using F given in (23) to attain FTS where we choose
the delays h1 = 0.75s, h2 = 1s, and the parameters as follows:
κ =−0.2, r = 3, k1 = 10 and k2 = 11. Then, using F given
in (24) to attain FxTS where we take the delays h1 = 0.5s,
h2 = 0.75s, and the parameters as follows: κ0 =−0.5, r0 = 2,
k1,0 = 10, k2,0 = 11, κ∞ = −0.2, r∞ = 3, k1,∞ = 11, k2,∞ =
10. Finally, we take the initial time t0 = 0, the coefficients
a11 = a21 = a22 = 1 and we give the simulations for three
different initial conditions: z0 = (5,3)⊤ , 10z0 and 100z0.

Figure 1 shows on the left the evolution of the states z1
and z2 of the ODE part of the closed-loop system (37) with
predictor-based controller U(t) in (38) (whose time evolu-
tion is described in Figure 3 alongside of the time evolution
of the norm of (37) for different values of the delays, using
the expression of F in (23) to get FTS. On the right hand we
can see the numerical solution u(t,x) of the PDE part of with
respect the initial conditions z(t0) = (5,3)⊤ and u(t0,x) = 0,
x∈ [0,h1+h2]. Finally, Figure 2 shows in a logarithmic scale
the evolution of the norm ∥z(t)∥2 of the closed-loop system
(34) with predictor-based controller U(t) in (38) on the left
using the expression of F in (23) and on the right using the
expression of F in (24). As it can be observed on the left,
the times of convergence depend on the initial conditions
(the larger the initial condition, the larger the settling time).
On the right-hand side, we can observe that the times of
the convergence do not depend on the initial conditions (the
settling time is upper bounded by a constant independent of
the initial conditions).

7 Conclusion

This paper deals with finite-time and fixed-time stabiliza-
tion of a chain of integrators with input delay. The chain
of integrators is rewritten into an ODE-PDE setting, where
the PDE part models the effect of the delay on the input.
The predictor-based controller is designed using a nonlinear
infinite-dimensional backstepping transformation that links
the ODE-PDE setting to the target system. The convergence
rate (finite time or fixed time) is ensured by the inverse trans-
formation and using G K L functions. Some characteriza-
tions of F of the target system are then given followed by
numerical simulations to illustrate the results. Future work
will extend this result to LTI systems with time-varying
input delay or distributed input delay (still under a PDE-
based backstepping approach). The problem of the ”robusti-
fication” of the predictor-based prescribed-time controllers
(e.g. [6]) will be also considered by mixing the time-varying
tools given in [6] with the results in the present paper, fol-
lowing the same lines of [14]. In addition, the problem of
Finite/Fixed-time stabilization of parabolic PDEs with de-
layed input (either boundary or distributed control) will be
studied.
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