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Abstract—The dependence on training data of the Gibbs al-
gorithm (GA) is analytically characterized. By adopting the
expected empirical risk as the performance metric, the sensitivity
of the GA is obtained in closed form. In this case, sensitivity
is the performance difference with respect to an arbitrary
alternative algorithm. This description enables the development
of explicit expressions involving the training errors and test
errors of GAs trained with different datasets. Using these tools,
dataset aggregation is studied and different figures of merit to
evaluate the generalization capabilities of GAs are introduced.
For particular sizes of such datasets and parameters of the GAs, a
connection between Jeffrey’s divergence, training and test errors
is established.

I. INTRODUCTION

The Gibbs algorithm (GA) randomly selects a model by
sampling the Gibbs probability measure, which is the unique
solution to the empirical risk minimization (ERM) problem
with relative entropy regularization (ERM-RER) [1]. The input
of the GA is twofold. It requires a number of labeled patterns
(datasets); and a prior on the set of models in the form
of a σ-measure, e.g., the Lebesgue measure, the counting
measure, or a probability measure. One of the main features
of the GA is that it does not require an assumption on the
statistical properties of the datasets [2]–[4]. Nonetheless, the
generalization capabilities of the Gibbs algorithm are often
characterized by the generalization error, for which statistical
assumptions on the datasets must be considered, e.g., training,
and unseen datasets are identically distributed. When the prior
on the set of models is a probability measure, a closed-
form expression for the generalization error is presented in
[5], while upper bounds have been derived in [6]–[27], and
references therein.

In a more general setting, when the prior on the set of models
is a σ-measure, the generalization capabilities of the GA have
been studied in [1], [28], and [29], using the sensitivity of
the empirical risk to deviations from the Gibbs probability
measure to another probability measure. This method does
not require any statistical assumptions on the datasets and is
chosen as the workhorse of the present analysis.
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and Decision Making (AEx IDEM) and in part by a grant from the C3.ai
Digital Transformation Institute.

The main motivation of this work is to break away from
the implicit assumption in existing literature that all train-
ing datasets are drawn from the same probability measure
and thus, can be aggregated to improve the generalization
capabilities of a given GA. In practical settings, training data
might be acquired from multiple sources that might be subject
to different impairments during data acquisition, data storage
and data transmission. For instance, consider a GA trained
upon a particular dataset and assume that a new dataset from
a different source is made available. Hence, the following
questions arise concerning the generalization capabilities of
such a GA: Would such a GA generalize over the new dataset?
Should the new dataset be aggregated to the previous dataset
to build a new GA in the aim of improving generalization?
How does the GA trained upon the existing dataset compare in
terms of generalization with respect to a new GA trained upon
the new dataset? The answers to such questions are far from
trivial. One of the main challenges to answer such questions
stems from the fact that the probability measures generating
each of those datasets are unknown and potentially different
due to a variety of impairments.

This paper introduces a closed-form expression for the differ-
ence of the expected empirical risk on a given dataset induced
by a GA trained upon this dataset and the one induced by
an alternative algorithm (another probability measure). This
quantity was coined sensitivity of the GA algorithm in [28] and
is shown to be central to tackling the questions above. This is
in part due to the fact that it allows studying the generalization
capabilities of GAs based on actual datasets, which disengages
from the assumption that both training and unseen data follow
the same probability distribution. More specifically, by study-
ing the sensitivity, closed-form expressions for the difference
between training error and test error can be obtained. These
expressions lead to a clearer understanding of the roles of the
size of datasets chosen for training and testing, as well as
the parameters of the GAs. As a byproduct, the difference
between the expected empirical risk on the aggregation of
two datasets induced by two GAs trained upon the constituent
datasets is characterized. Similarly, the difference between the
expected empirical risk on one of the constituent datasets
induced by two GAs trained upon the aggregated dataset and



the constituent dataset is also characterized. These explicit
expressions allow comparing two GAs trained upon different
datasets, which is relevant under learning paradigms such as
federated learning [30].

II. PROBLEM FORMULATION

LetM, X and Y , withM⊆ Rd and d ∈ N, be sets of models,
patterns, and labels, respectively. A pair (x, y) ∈ X × Y is
referred to as a labeled pattern or as a data point. Given n
data points, with n ∈ N, denoted by (x1, y1), (x2, y2),
. . ., (xn, yn), a dataset is represented by the tuple

(
(x1, y1),

(x2, y2), . . ., (xn, yn)
)
∈ (X × Y)

n.

Let the function f : M× X → Y be such that the label y
assigned to the pattern x according to the model θ ∈ M
is

y = f(θ, x). (1)

Let also the function

` : Y × Y → [0,+∞] (2)

be such that given a data point (x, y) ∈ X×Y , the risk induced
by a model θ ∈M is `(f(θ, x), y). In the following, the risk
function ` is assumed to be nonnegative and for all y ∈ Y ,
`(y, y) = 0.

Given a dataset

z =
(
(x1, y1), (x2, y2), . . . , (xn, yn)

)
∈ (X × Y)

n
, (3)

the empirical risk induced by the model θ, with respect to the
dataset z in (3), is determined by the function Lz : M →
[0,+∞], which satisfies

Lz(θ) =
1

n

n∑
i=1

`(f(θ, xi), yi). (4)

Using this notation, the ERM problem consists of the follow-
ing optimization problem:

min
θ∈M

Lz(θ). (5)

Let the set of solutions to the ERM problem in (5) be denoted
by T (z) , arg minθ∈M Lz(θ). Note that if the set M is
finite, the ERM problem in (5) always possesses a solution,
and thus, |T (z)| > 0. Nonetheless, in general, the ERM
problem might not necessarily possess a solution. Hence, for
some cases, it might be observed that |T (z)| = 0.

A. Notation

The relative entropy is defined below as the extension to σ-
finite measures of the relative entropy usually defined for
probability measures.

Definition 1 (Relative Entropy): Given two σ-finite measures P
and Q on the same measurable space, such that Q is absolutely
continuous with respect to P , the relative entropy of Q with
respect to P is

D(Q‖P) ,
∫

dQ

dP
(x) log

Å
dQ

dP
(x)

ã
dP (x), (6)

where the function dQ
dP is the Radon-Nikodym derivative of Q

with respect to P .

Given a measurable space (Ω,F ), the set of all σ-finite
measures on (Ω,F ) is denoted by 4(Ω,F ). Given a σ-
measure Q ∈ 4(Ω,F ), the subset of 4(Ω,F ) including
all σ-finite measures absolutely continuous with Q is denoted
by 4Q(Ω,F ). Given a subset A of Rd, the Borel σ-field
on A is denoted by B(A).

B. The ERM-RER Problem

The expected empirical risk is defined as follows.

Definition 2 (Expected Empirical Risk): Let P be a probability
measure in ∆(M,B(M)). The expected empirical risk with
respect to the dataset z in (3) induced by the measure P is

Rz(P ) =

∫
Lz(θ)dP (θ), (7)

where the function Lz is in (4).

The following lemma follows immediately from the properties
of the Lebesgue integral.

Lemma 1: Given a dataset z ∈ (X × Y)
n and two probability

measures P1 and P2 over the measurable space (M,B(M)),
for all α ∈ [0, 1], the function Rz in (7) satisfies

Rz(αP1 + (1− α)P2)=αRz(P1) + (1− α)Rz(P2). (8)

The ERM-RER problem is parametrized by a σ-finite measure
on (M,B(M)) and a positive real, which are referred to
as the reference measure and the regularization factor, re-
spectively. Let Q be a σ-finite measure on (M,B(M)) and
let λ > 0 be a positive real. The ERM-RER problem, with
parameters Q and λ, consists in the following optimization
problem:

min
P∈4Q(M,B(M))

Rz(P ) + λD(P‖Q), (9)

where the dataset z is in (3); and the function Rz is defined
in (7). For the ease of presentation, the parameters of the ERM-
RER problem in (9) are chosen such that

Q({θ ∈M : Lz(θ) = +∞}) = 0. (10)

The case in which the regularization is D(Q‖P) (instead of
D(P‖Q)) in (9) is left out of the scope of this work. The
interested reader is referred to [31].

C. The Solution to the ERM-RER Problem

The solution to the ERM-RER problem in (9) is presented by
the following lemma.

Lemma 2 (Theorem 2.1 in [28]): Given a σ-finite measure Q
and a dataset z ∈ (X × Y)

n, let the function KQ,z : R →
R ∪ {+∞} be such that for all t ∈ R,

KQ,z(t)=log

Å∫
exp(t Lz(θ))dQ(θ)

ã
, (11)



where the function Lz is defined in (4). Let also the set KQ,z ⊂
(0,+∞) be

KQ,z,
ß
s > 0 : KQ,z

Å
−1

s

ã
< +∞

™
. (12)

Then, for all λ ∈ KQ,z , the solution to the ERM-RER problem
in (9) is a unique measure on (M,B(M)), denoted by
P

(Q,λ)
Θ|Z=z , whose Radon-Nikodym derivative with respect to Q

satisfies that for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=exp

Å
−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz(θ)

ã
. (13)

Among the numerous properties of the solution to the ERM-
RER problem in (9), the following property is particularly
useful in the remainder of this work.

Lemma 3: Given a σ-finite measure Q over the measurable
space (M,B(M)), and given a dataset z ∈ (X × Y)

n, for
all λ ∈ KQ,z , with KQ,z in (12), the following holds:

Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
+ λD

Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
=−λKQ,z

Å
− 1

λ

ã
, (14)

where the function Rz is defined in (7); the function KQ,z is
defined in (11); and the probability measure P (Q,λ)

Θ|Z=z is the
solution to the ERM-RER problem in (9).

Proof: The proof is presented in [29].

III. SENSITIVITY OF THE ERM-RER SOLUTION

The sensitivity of the expected empirical risk Rz to deviations
from the probability measure P (Q,λ)

Θ|Z=z towards an alternative
probability measure P is defined as follows.

Definition 3 (Sensitivity [28]): Given a σ-finite measure Q
and a positive real λ > 0, let SQ,λ : (X × Y)

n ×
4Q(M,B(M))→ (−∞,+∞] be a function such that

SQ,λ(z, P ) =

®
Rz(P )− Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
if λ ∈ KQ,z

+∞ otherwise,
(15)

where the function Rz is defined in (7) and the mea-
sure P (Q,λ)

Θ|Z=z is the solution to the ERM-RER problem in (9).
The sensitivity of the expected empirical risk Rz when the
measure changes from P

(Q,λ)
Θ|Z=z to P is SQ,λ(z, P ).

The following theorem introduces an exact expression for the
sensitivity in Definition 3.

Theorem 1: Given a σ-finite measure Q over the measur-
able space (M,B(M)) and a probability measure P ∈
4Q(M,B(M)), it holds that for all datasets z ∈ (X × Y)

n

and for all λ ∈ KQ,z , with KQ,z in (12),

SQ,λ(z, P )=λ
(
D
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
+D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
−D(P‖Q)

)
,

where the probability measure P (Q,λ)
Θ|Z=z is the solution to the

ERM-RER problem in (9).

Proof: The proof uses the fact that, under the assumption
in (10), the probability measure P (Q,λ)

Θ|Z=z in (13) is mutually

absolutely continuous with respect to the σ-finite measure Q;
see for instance [1]. Hence, the probability measure P is ab-
solutely continuous with respect to P (Q,λ)

Θ|Z=z , as a consequence
of the assumption that P is absolutely continuous with respect
to Q.

The proof follows by noticing that for all θ ∈M,

log

Ñ
dP

dP
(Q,λ)
Θ|Z=z

(θ)

é
= log

Ñ
dQ

dP
(Q,λ)
Θ|Z=z

(θ)
dP

dQ
(θ)

é
(16)

=− log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(θ)

é
+ log

Å
dP

dQ
(θ)

ã
(17)

=KQ,z

Å
− 1

λ

ã
+

1

λ
Lz(θ) + log

Å
dP

dQ
(θ)

ã
, (18)

where the functions Lz and KQ,z are defined in (4) and in (11),
respectively; and the equality in (18) follows from Lemma 2.
Hence, the relative entropy D

Ä
P‖P (Q,λ)

Θ|Z=z

ä
satisfies

D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
=

∫
log

Ñ
dP

dP
(Q,λ)
Θ|Z=z

(θ)

é
dP (θ)

=KQ,z

Å
− 1

λ

ã
+

∫ Å
1

λ
Lz(θ) + log

Å
dP

dQ
(θ)

ãã
dP (θ) (19)

=KQ,z

Å
− 1

λ

ã
+

1

λ
Rz(P ) +D(P‖Q) (20)

=−D
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
+

1

λ

Ä
Rz(P )− Rz

Ä
P

(Q,λ)
Θ|Z=z

ää
+D(P‖Q), (21)

where the function Rz is defined in (7), the equality in (19)
follows from (18), and the equality in (21) follows from
Lemma 3. Finally, the proof is completed by re-arranging the
terms in (21).

IV. VALIDATION OF GIBBS ALGORITHMS

Consider the dataset z0 ∈ (X × Y)
n0 that aggregates

dataset z1 ∈ (X × Y)
n1 and dataset z2 ∈ (X × Y)

n2 as
constituents. That is, z0 = (z1, z2), with n0 = n1 + n2.
Datasets z1 and z2 are referred to as constituent datasets,
whereas, the dataset z0 is referred to as the aggregated dataset.
For all i ∈ {0, 1, 2}, the empirical risk function in (4) and the
expected empirical risk function in (7) over dataset zi are
denoted by Lzi

and Rzi
, respectively. Such functions exhibit

the following property.

Lemma 4: The empirical risk functions Lz0 , Lz1 , and Lz2 ,
defined in (4) satisfy for all θ ∈M,

Lz0
(θ)=

n1
n0

Lz1(θ) +
n2
n0

Lz2(θ). (22)

Moreover, the expected empirical risk functions Rz0 , Rz1 ,
and Rz2 , defined in (7), satisfy for all σ-finite measures P ∈
4(M,B(M)),

Rz0
(P )=

n1
n0

Rz1
(P ) +

n2
n0

Rz2
(P ). (23)



Proof: The proof is presented in [29].

For all i ∈ {0, 1, 2}, let Qi ∈ 4(M,B(M)) and λi ∈ KQi,zi
,

with KQi,zi
in (12), be the σ-finite measure acting as the ref-

erence measure and regularization factor for the learning task
with dataset i, respectively. Each dataset induces a different
ERM-RER problem formulation of the form

min
P∈4Qi

(M,B(M))
Rzi

(P ) + λiD(P‖Qi), (24)

where Rzi is the expected empirical risk defined in (7). For
all i ∈ {0, 1, 2}, the solution to the ERM-RER problem in (24)
is the probability measure denoted by P (Qi,λi)

Θ|Z=zi
. In particular,

from Lemma 2, it holds that the probability measure P (Qi,λi)
Θ|Z=zi

satisfies for all θ ∈ suppQi,

dP
(Qi,λi)
Θ|Z=zi

dQi
(θ)=exp

Å
−KQi,zi

Å
− 1

λi

ã
− 1

λi
Lzi(θ)

ã
.(25)

For all i ∈ {0, 1, 2}, the probability measure P (Qi,λi)
Θ|Z=zi

in (25)
represents a GA trained upon the dataset zi with parame-
ters (Qi, λi). In the following, such an algorithm is denoted
by GAi and the dataset zi is often referred to as the training
dataset of GAi. The dataset zj , with j ∈ {0, 1, 2}\{i}, which
might contain datapoints that are not in zi, is referred to as
the test dataset for GAi.

A. Gibbs Algorithms Trained on Constituent Datasets

The expected empirical risk induced by GAi on the training
dataset zi is the training expected empirical risk, which is
denoted by Rzi

Ä
P

(Qi,λi)
Θ|Z=zi

ä
and often referred to as the training

error [32]. Alternatively, the expected empirical risk induced
by GAi on the test dataset zj is the test expected empirical risk,
which is denoted by Rzj

Ä
P

(Qi,λi)
Θ|Z=zi

ä
and often referred to as

the test error [32]. The following theorem provides explicit
expressions involving the training and test errors of GA1

and GA2.

Theorem 2: Assume that the σ-finite measures Q1 and Q2

in (24) are mutually absolutely continuous. Then, for all i ∈
{1, 2} and j ∈ {1, 2} \ {i},

Rzi

Ä
P

(Qj ,λj)

Θ|Z=zj

ä
− Rzi

Ä
P

(Qi,λi)
Θ|Z=zi

ä
= λi

(
D
Ä
P

(Qi,λi)
Θ|Z=zi

‖Qi
ä

+D
Ä
P

(Qj ,λj)

Θ|Z=zj
‖P (Qi,λi)

Θ|Z=zi

ä
−D
Ä
P

(Qj ,λj)

Θ|Z=zj
‖Qi
ä)
, (26)

where the function Rzi
is defined in (7) and the mea-

sure P (Qi,λi)
Θ|Z=zi

satisfies (25).

Proof: The proof is immediate from Theorem 1 by noticing
that for all i ∈ {1, 2} and for all j ∈ {1, 2} \ {i}, the
differences Rzi

Ä
P

(Qj ,λj)

Θ|Z=zj

ä
− Rzi

Ä
P

(Qi,λi)
Θ|Z=zi

ä
can be written

in terms of the sensitivity SQi,λi

Ä
zi, P

(Qj ,λj)

Θ|Z=zj

ä
.

A reasonable figure of merit to compare two machine learning
algorithms trained upon two different training datasets is the
difference between the expected empirical risk they induce
upon the aggregation of their training datasets. The following

theorem provides an explicit expression for this figure of merit
for the case of the algorithms GA1 and GA2.

Theorem 3: Assume that the σ-finite measures Q1 and Q2

in (24) are mutually absolutely continuous. Then,

Rz0

Ä
P

(Q2,λ2)
Θ|Z=z2

ä
− Rz0

Ä
P

(Q1,λ1)
Θ|Z=z1

ä
=
n1
n0
λ1

Å
D
Ä
P

(Q1,λ1)
Θ|Z=z1

‖Q1

ä
+D
Ä
P

(Q2,λ2)
Θ|Z=z2

‖P (Q1,λ1)
Θ|Z=z1

ä
−D
Ä
P

(Q2,λ2)
Θ|Z=z2

‖Q1

äã
−n2
n0
λ2

Å
D
Ä
P

(Q2,λ2)
Θ|Z=z2

‖Q2

ä
+D
Ä
P

(Q1,λ1)
Θ|Z=z1

‖P (Q2,λ2)
Θ|Z=z2

ä
−D
Ä
P

(Q1,λ1)
Θ|Z=z1

‖Q2

äã
, (27)

where the function Rz0
is defined in (7) and, for all i ∈ {1, 2},

the measure P (Qi,λi)
Θ|Z=zi

satisfies (25).

Proof: The proof uses the following argument:

Rz0

Ä
P

(Q2,λ2)
Θ|Z=z2

ä
− Rz0

Ä
P

(Q1,λ1)
Θ|Z=z1

ä
=
n1
n0

Rz1

Ä
P

(Q2,λ2)
Θ|Z=z2

ä
+
n2
n0

Rz2

Ä
P

(Q2,λ2)
Θ|Z=z2

ä
−
Å
n1
n0

Rz1

Ä
P

(Q1,λ1)
Θ|Z=z1

ä
+
n2
n0

Rz2

Ä
P

(Q1,λ1)
Θ|Z=z1

äã
(28)

=
n1
n0

SQ1,λ1

Ä
z1, P

(Q2,λ2)
Θ|Z=z2

ä
− n2
n0

SQ2,λ2

Ä
z2, P

(Q1,λ1)
Θ|Z=z1

ä
, (29)

where the equality in (28) follows from Lemma 4; and the
equality in (29) follows from Definition 3. The proof is
completed by Theorem 1.

B. Averaging Gibbs Measures

In practical scenarios, building GAs on the aggregated dataset
might be difficult or impossible due to limited computational
power or due to the fact that dataset aggregation at one location
is not allowed due to privacy constraints. In these cases, a
common practice is to average the output of machine learn-
ing algorithms trained on constituent datasets, e.g., federated
learning [30]. In this case, a figure of merit to validate such an
approach is to study the difference of the expected empirical
risk induced on the aggregated dataset by GA0 and a convex
combination of GA1 and GA2. The following theorem provides
an explicit expression for this quantity.

Theorem 4: Assume that the σ-finite measures Q0, Q1 and Q2

in (24) are pair-wise mutually absolutely continuous. Then, for
all α ∈ [0, 1],

Rz0

Ä
αP

(Q1,λ1)
Θ|Z=z1

+ (1− α)P
(Q2,λ2)
Θ|Z=z2

ä
− Rz0

Ä
P

(Q0,λ0)
Θ|Z=z0

ä
=λ0

(
D
Ä
P

(Q0,λ0)
Θ|Z=z0

‖Q0

ä
+α
Ä
D
Ä
P

(Q1,λ1)
Θ|Z=z1

‖P (Q0,λ0)
Θ|Z=z0

ä
−D
Ä
P

(Q1,λ1)
Θ|Z=z1

‖Q0

ää
+(1−α)

Ä
D
Ä
P

(Q2,λ2)
Θ|Z=z2

‖P (Q0,λ0)
Θ|Z=z0

ä
−D
Ä
P

(Q2,λ2)
Θ|Z=z2

‖Q0

ää)
, (30)

where the function Rz0
is defined in (7) and, for all i ∈ {1, 2},

the measure P (Qi,λi)
Θ|Z=zi

satisfies (25).



Proof: The proof uses the following argument:

Rz0

Ä
αP

(Q1,λ1)
Θ|Z=z1

+ (1− α)P
(Q2,λ2)
Θ|Z=z2

ä
− Rz0

Ä
P

(Q0,λ0)
Θ|Z=z0

ä
=αRz0

Ä
P

(Q1,λ1)
Θ|Z=z1

ä
+ (1− α)Rz0

Ä
P

(Q2,λ2)
Θ|Z=z2

ä
−αRz0

Ä
P

(Q0,λ0)
Θ|Z=z0

ä
− (1− α)Rz0

Ä
P

(Q0,λ0)
Θ|Z=z0

ä
(31)

=α
Ä
Rz0

Ä
P

(Q1,λ1)
Θ|Z=z1

ä
− Rz0

Ä
P

(Q0,λ0)
Θ|Z=z0

ää
+(1− α)

Ä
Rz0

Ä
P

(Q2,λ2)
Θ|Z=z2

ä
− Rz0

Ä
P

(Q0,λ0)
Θ|Z=z0

ää
(32)

=αSQ0,λ0

Ä
z0, P

(Q1,λ1)
Θ|Z=z1

ä
+(1−α)SQ0,λ0

Ä
z0, P

(Q2,λ2)
Θ|Z=z2

ä
, (33)

where the equality in (31) follows from Lemma 1, and the
equality in (33) follows from Definition 3. The proof is
completed by Theorem 1.

The following corollary of Theorem 4 is obtained by subtract-
ing the equality in (30) with α = 1 from the equality in (30)
with α = 0.

Corollary 1: Assume that the σ-finite measures Q0, Q1 and Q2

in (24) are pair-wise mutually absolutely continuous. Then,
for all i ∈ {0, 1, 2}, the probability measure P (Qi,λi)

Θ|Z=zi
in (25)

satisfies

Rz0

Ä
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Θ|Z=z2

ä
− Rz0
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ä
=λ0

(
D
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(Q2,λ2)
Θ|Z=z2

‖P (Q0,λ0)
Θ|Z=z0

ä
−D
Ä
P

(Q2,λ2)
Θ|Z=z2

‖Q0

ä)
−λ0

(
D
Ä
P

(Q1,λ1)
Θ|Z=z1

‖P (Q0,λ0)
Θ|Z=z0

ä
−D
Ä
P

(Q1,λ1)
Θ|Z=z1

‖Q0

ä)
, (34)

where the function Rz0 is defined in (7).

Corollary 1 is an alternative to Theorem 3 involving the GA
trained upon the aggregated dataset, i.e., GA0.

C. Gibbs Algorithms Trained on Aggregated Datasets

Training a GA upon the aggregation of datasets does not nec-
essarily imply lower expected empirical risk on the constituent
datasets. As argued before, datasets might be obtained up to
different levels of fidelity. Hence, a validation method for GA0

is based on the expected empirical risk induced by GA0 on
a constituent dataset zi, with i ∈ {1, 2}, which is denoted
by Rzi

Ä
P

(Q0,λ0)
Θ|Z=z0

ä
. A pertinent figure of merit is the differ-

ence Rzi

Ä
P

(Q0,λ0)
Θ|Z=z0

ä
−Rzi

Ä
P

(Qi,λi)
Θ|Z=zi

ä
. The following theorem

provides an explicit expression for such quantity.

Theorem 5: Assume that the σ-finite measures Q0, Q1 and Q2

in (24) are pair-wise mutually absolutely continuous. Then, for
all i ∈ {0, 1, 2},

Rzi

Ä
P

(Q0,λ0)
Θ|Z=z0

ä
− Rzi

Ä
P

(Qi,λi)
Θ|Z=zi

ä
= λi

Å
D
Ä
P

(Qi,λi)
Θ|Z=zi

‖Qi
ä

+D
Ä
P

(Q0,λ0)
Θ|Z=z0

‖P (Qi,λi)
Θ|Z=zi

ä
−D
Ä
P

(Q0,λ0)
Θ|Z=z0

‖Qi
äã
, (35)

where, the function Rzi is defined in (7) and the mea-
sure P (Qi,λi)

Θ|Z=zi
satisfies (25).

Proof: The proof is immediate from Theorem 1 by noticing
that for all i ∈ {1, 2}, the differences Rzi

Ä
P

(Q0,λ0)
Θ|Z=z0

ä
−

Rzi

Ä
P

(Qi,λi)
Θ|Z=zi

ä
can be written in terms of the sensitiv-

ity SQi,λi

Ä
zi, P

(Q0,λ0)
Θ|Z=z0

ä
.

D. Special Cases

Consider a given σ-finite measure Q and assume that for
all i ∈ {0, 1, 2} and for all A ∈ B(M), Q(A) = Qi(A).
Assume also that the parameters λ0, λ1, and λ2 in (24)
satisfy λ1 = n0

n1
λ0 and λ2 = n0

n2
λ0. These assumptions are

referred to as the case of homogeneous priors with measure Q,
and the case of proportional regularization, respectively. The
term “proportional” stems from the fact that the regularization
factor decreases proportionally to the size of the data set in
the optimization problem in (24). Under these assumptions,
the following corollary of Theorem 2 unveils an interesting
connection with the Jeffrey’s divergence [33].

Corollary 2: Consider the case of homogeneous priors with
a σ-finite measure Q and proportional regularization with
parameter λ0. Then, for all i ∈ {1, 2}, the probability measure
P

(Q,λi)
Θ|Z=zi

in (25), satisfies(n1
n0
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(Q,λ2)
Θ|Z=z2

ä
− n2
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ä)
+
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ä
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ä
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. (36)

Note that D
Ä
P

(Q,λ1)
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‖P (Q,λ2)
Θ|Z=z2

ä
+D
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P

(Q,λ2)
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‖P (Q,λ1)
Θ|Z=z1

ä
is

the Jeffrey’s divergence between the measures P (Q,λ1)
Θ|Z=z1

and

P
(Q,λ2)
Θ|Z=z2

. For all i ∈ {1, 2} and j ∈ {1, 2}\{i}, the difference
nj

n0
Rzj
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(Q,λi)
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− ni

n0
Rzi
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(Q,λi)
Θ|Z=zi

ä
is reminiscent of a

validation [32, Section 11.2]. This follows from noticing
that Rzj

Ä
P

(Q,λi)
Θ|Z=zi

ä
is the testing error of GAi over the

test dataset zj , while Rzi

Ä
P

(Q,λi)
Θ|Z=zi

ä
is the training error

of GAi.

In (36), it holds that D
Ä
P

(Q,λ1)
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‖P (Q,λ2)
Θ|Z=z2

ä
and

D
Ä
P

(Q,λ2)
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‖P (Q,λ1)
Θ|Z=z1

ä
are both nonnegative, which leads to

the following corollary of Theorem 2.

Corollary 3: Consider the case of homogeneous priors with
a σ-finite measure Q and proportional regularization. Then,
for all i ∈ {1, 2}, the probability measure P (Q,λi)

Θ|Z=zi
in (25),

satisfies (n1
n0

Rz1

Ä
P

(Q,λ2)
Θ|Z=z2

ä
+
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Ä
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ä)
. (37)

Corollary 3 highlights that the weighted-sum of the test errors
induced by GA1 and GA2 is not smaller than the weighted
sum of their training errors when the weights are proportional
to the sizes of the datasets.
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