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Abstract

Invariance theorems in analytical mechanics, such as Noether’s theorem, can be adapted

to continuum mechanics. For this purpose, it is useful to give a functional representa-

tion of the motion and to interpret the groups of invariance with respect to the space of

reference associated with Lagrangian variables. A convenient method of calculus uses

the Lie derivative. For instance, Kelvin theorems can be obtained by such a method.
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1. Hamilton’s action of a fluid motion

The fluid motion is given by a differentiable and inversible fonction ϕt from a ref-

erence spaceD0 on a spaceDt which is occupied by the fluid a time t

x = ϕt(X), x ∈ Dt, X ∈ D0

or by a differentiable and reversible function

z = Φ(Z), z ∈ W, Z ∈ W0

z =

[

t

x

]

∈ W and Z =

[

t

X

]

∈ W0

whereW0 is the reference space andW is the space-time. Let Σt be the edge of Dt

and ∂W the edge ofW [1,2].

For any isentropic motion of a fluid, we can define the Hamilton action

a =

∫

W

ρ

(

1

2
v
⋆

v − α −Ω

)

dwz,
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where v is the velocity, subscript ⋆ denotes the transposition, the specific internal en-

ergy α is a function of the density ρ and specific entropy s, Ω is the potential of external

forces and dwz is the volume element of space-timeW. Hamilton action a is a func-

tional of the motion mappingΦ.

2. Variation of the Hamilton action

In order to express the Hamilton principle using the variation of Hamilton’s action,

we consider one-parameter family of virtual motions dependent on a parameter ε [1-5]

z = Ψ(Z, ε) with Ψ(Z, 0) = Φ(Z) (1)

The scalar ε ∈ R
⋆ is a small parameter defined in a real open set O containing 0 and

Ψ is a 4-D regular function inW0 × O. Then, for the one-parameter family of virtual

motions,

a = f (ε) and its variation δa is defined by δa = f ′(0) δε

where in case of variation, differential values are denoted δ in place of d.

Two possibilities can be considered to obtain the variation of action a. From

δz =
∂Ψ

∂Z
δZ +

∂Ψ

∂ε
δε with δε = 1 at ε = 0 (2)

we deduce

• A first variation:

δz = ζ̃ when δZ = 0

• A second variation:

δZ = ζ̂ when δz = 0

Symbols tilde and hat respectively denote the first variation and the second variation

associated with a virtual motions defined by Eq. (1).

Remark 1. The two variations are dependent. In fact (1) and (2) imply

∂Ψ(Z, 0)

∂ε
+
∂Ψ(Z, 0)

∂Z
ζ̂ = 0

which can be written

ζ̃ +
∂z

∂Z
ζ̂ = 0, (3)

where
∂z

∂Z
denotes the Jacobien of transformationΦ.
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2.1. Connexion between variations δ̃ and δ̂ [6]

A variation of a tensorial quantityσ defined onW can be writtenσ(z) = σ
(

Ψ(Z, ε)
)

;

it follows

δ̃σ =
∂σ

∂z

∂Ψ(Z, ε)

∂ε

and

δ̂σ =
∂σ

∂z

∂Ψ(Z, 0)

∂Z
ζ̂ +
∂σ

∂z

∂Ψ(Z, 0)

∂ε
=
∂σ

∂z

∂Ψ(Z, 0)

∂Z
ζ̂ + δ̂σ

From Eq. (3) we obtain,

δ̂σ = δ̃σ −
∂σ

∂z
ζ̃ (4)

For the special displacement field ζ̃ =

[

0

δ̃x

]

, we get

For the specific entropy of conservative motions, s = s0(X) and consequently

δ̃s = 0.

The potential of external forces verifies Ω = Ω(t, x), and consequently δ̃Ω =

(∂Ω/∂x) δ̃x.

The material derivative d/dt commutes with δ̃ and consequently the variation of the

velocity verifies δ̃v = d(δ̃x)/dt.

From ρ det F = ρ0(X), where F = ∂x/∂X is the jacobian of ϕt, we deduce

δ̃ρ (det F) = ρ (det F) Tr
(

F
−1δ̃F

)

= 0

and consequently,

δ̃ρ = − ρTr
(

∂δ̃x/∂x
)

= − ρ div δ̃x

where Tr denotes the trace operator. From Eq. (4), we obtain















































































δ̃s = 0

δ̃ρ = − ρ div δ̃x

δ̃v =
d(δ̃x)

dt

δ̃Ω =
∂Ω

∂x
δ̃x

=⇒















































































δ̂s = −
∂s

∂x
δ̃x

δ̂ρ = − div (ρ δ̃x)

δ̂v =
d(δ̃x)

dt
−
∂v

∂x
δ̃x

δ̂Ω = 0

(5)

Then, we obtain the variation δa as (1)

δa =

∫∫∫∫

W

{(

1

2
v
⋆

v − α − Ω

)

δ̂ρ + ρ δ̂

(

1

2
v
⋆

v − α −Ω

)}

dwz

1For vectors a and b, a⋆b is the scalar product (line vector a⋆ is multiplied by column vector b); for the

sake of simplicity, we also denote a⋆a = a2.

Tensor a b
⋆ (or a ⊗ b) is the product of column vector a by line vector b

⋆.

Tensor 1 is the identity, grad and div are the gradient and divergence operators.
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and by taking (5) into account we obtain

δa =

∫∫∫∫

W

{ (

−
1

2
v

2 + α + ρ
∂α

∂ρ
+ Ω

)

div (ρ δ̃x)

+ ρ

(

v
⋆ d(δ̃x)

dt
− v
⋆ ∂v

∂x
δ̃x +

∂α

∂s

∂s

∂x
δ̃x

) }

dwz

=

∫∫∫∫

W

{ (

−
1

2
v

2 + h + Ω

)

div (ρ δ̃x)

+
∂

∂t

(

ρ v
⋆δ̃x

)

−
∂

∂t

(

ρ v
⋆
)

δ̃x + Tr

(

ρvv
⋆ ∂δ̃x

∂x

)

+ ρ

(

T
∂s

∂x
− v
⋆ ∂v

∂x

)

δ̃x

}

dwz

=

∫∫∫∫

W

{

div

(

ρ

(

vv
⋆ +

(

h + Ω −
1

2
v

2

)

1

) )

δ̃x +
∂

∂t

(

ρ v
⋆δ̃x

)

+

(

−ρ grad⋆(h + Ω) + ρT grad⋆s −
∂(ρv⋆)

∂t
− div

(

ρ vv
⋆
)

)

δ̃x

}

dwz

δa =

[
∫∫∫

Dt

ρ v
⋆δ̃x dwx

]t2

t1

+

∫ t2

t1

{
∫∫

Σt

ρ n
⋆

(

vv
⋆ +

(

h + Ω −
1

2
v

2

)

1

)

δ̃x dσ

}

dt

+

∫∫∫∫

W

δ̃x⋆
{

−ρ grad (h + Ω) + ρT grad s −
∂(ρv⋆)

∂t
− div ρ vv

⋆

}

dwz (6)

where n is the unit normal vector external to Σt, h = α +
∂α

∂ρ
is the enthapy, T =

∂α

∂s
the Kelvin temperature, dwx the volume element of Dt, dσ the volume element of Σt,

and [ ]
t2
t1

denotes the difference of values between times t2 and t1.

2.2. Field δ̃x leaving the Hamiltonian invariant

For any motion, the vector field δ̃x such that δa = 0 must verify

δ̂ s = 0, δ̂ ρ = 0, δ̂ v = 0

or from Eqs (5), these connditions are equivalent to

∂s

∂x
δ̃x = 0, div (ρ δ̃x) = 0,

d(δ̃x)

dt
−
∂v

∂x
δ̃x = 0 (7)

Relation (7)3 means that δ̃x is a vector field of Dt with a zero Lie’s derivative with

respect to the velocity field v; then
∂s

∂x
δ̃x and div (ρ δ̃x) have a zero Lie’s derivative

with respect to the velocity field v (see [7] for properties), and theorem 15 in [7] allows

to write

ρ δ̃x = f (s, η) grad s × grad η with
dη

dt
= 0

When δ̃x is null on Σt the second integral of Eq. (6) is null. Due to the equation of

motion expressed in thermodynamic form, when we choose the real motion (corre-

sponding to ε = 0), the third integral of Eq. (6) is also null. Therefore, according to
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Hamilton’s principle which requires the nullity of the variation of Hamilton’s action

[1], we obtain
[∫∫∫

Dt

ρ v
⋆δ̃x dwx

]t2

t1

= 0 (8)

3. Case of perfect fluids

Consider an isentropic closed fluid curve (γ0) in reference spaceD0 determined by

the intersection of a surface σ(X) = σ0, where σ is a differentiable function and σ0 a

constant, and a surface s(X) = s0, where s0 is a constant.

The position of image (γt) of (γ0) inDt is determined by the intersection of s(ϕt(x)) =

s0 and σ(ϕt(x)) = σ0 and thus
dσ

dt
= 0.

The curve (γt) being closed, we can choose σ so that the four surfaces

σ = σ1, σ = σ2, s = s1, s = s2, where σ1 < σ0 < σ2 and s1 < s0 < s2

delineate a domain containing (γt).

Let us consider the domain ∆0, set of points (s, σ) such that

Figure 1: domain ∆0 and domain ∆ε

s1 ≤ s0 ≤ s2 and σ1 ≤ σ0 ≤ σ2

and domain ∆ε set of points (s, σ) such that

s1 + ε ≤ s ≤ s2 − ε and σ1 + ε ≤ σ ≤ σ2 − ε
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with

ε <
1

2
inf (σ2 − σ1, s2 − s1) (9)

For ε verifying (9), by using Tietze-Urysohn’s theorem, it is possible to obtain a posi-

tive application (s, σ) −→ g(s, σ) majored by 1, of value 1 inside the set ∆ε and being

null on the complementary of ∆0.

Let consider the domainsDt,1 image of ∆0 andDt,1,ε image of ∆ε by the application ϕt

at t value. The vector field

ρ δ̃x = k g(s, σ) grad s × gradσ

where k is a constant, leaves invariant the Hamilton action and is zero on S t,1. For

such a field we have relation (8). Then, ρ, v, δ̃x being continous fonctions of x andDt,1

being a compact set,

∀ η ∈ R⋆, ∃ ε ∈ R⋆ verifying (9)

such that,
∣

∣

∣

∣

∣

∣

∣

∫∫∫

Dti ,1

ρ v
⋆δ̃x dwx −

∫∫∫

Dti ,1,ε

ρ v
⋆δ̃x dwx

∣

∣

∣

∣

∣

∣

∣

< η

where i = 1, 2. Then, in this inequality, we use in (8) the vector field ρ δ̃x defined by

ρ δ̃x =
1

(s2 − s1) (σ2 − σ1)
grad s × gradσ (10)

and when ε goes to zero, we can replace ∆ε by ∆0.

We get as curvilinear coordinates σ, s, ℓ where dℓ is the element of length of curves

(γt,sc,σc
) intersections of surfaces s(x) = sc and σ(x) = σc, where sc and σc are two

constants.

Let us consider the unit vector field τ, tangent to (γt,sc,σc
) in the direction of grad s ×

gradσ, we deduce the volume element

dwx =
grad s × gradσ

(grad s × gradσ)2
τ dℓ ds dσ

and by using expression (10), we obtain

∀ i ∈ {1, 2},

∫∫∫

Dti ,1

ρ v
⋆δ̃xdwx =

∫∫

∆0















∫

γti ,s,σ

v
⋆τ dℓ















ds dσ

(s2 − s1) (σ2 − σ1)

After having multiplied by (s2 − s1) (σ2 − σ1), when s1 and s2 go to s0 and σ1 and σ2

go to σ0, we deduce from Eq. (8)
∫

γt1

v
⋆τ dℓ =

∫

γt2

v
⋆τ dℓ

Noting that t1 and t2 have no special role, we get

d

dt

(∫

Γt

v
⋆τ dℓ

)

= 0

Consequently, we obtain the two theorems:
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Theorem 1. Kelvin 1: For a perfect fluid, the circulation on a closed and isentropic

fluid curve moving with the flow is constant in the motion.

Theorem 2. Kelvin 2: A fluid being barotropic, for any fluid curve moving with the

flow, the velocity circulation is conserved in the motion.

We have on integral form, a first integral representing thermodynamic invariants. This

result comes from the choice of δ̃x.

Consequences :

The research of these first integrals has been made from the reference space W0

on which relations (7) are simply expressed. The family of considered virtual dis-

placements δ̃x corresponding to the vector field ζ̃ =

[

0

δ̃x

]

is indeed interpreted as

a permutation of the particles in the space of motions which have the same density,

the same specific entropy and the same velocity field, and which are localized by the

Lagrangian variables on the reference space. Such a permutation makes Hamilton’s

action invariant.

We did not consider the vector field

[

δ̃t

0

]

; it is easy to see that this field allows to

obtain the writing of the entropy equation.

These first integrals correspond to the most general motions of perfect fluids. Par-

ticular motions and particular thermodynamic laws can give less general first integrals

corresponding to fields from a family of virtual motions making the action always in-

variant.

4. Conclusion

Particles described in the Lagrangian variables with the same density, entropy and

velocity field can be interchanged in the Eulerian variables. Such a permutation of

particles does not modify the Hamilton action and the first integrals obtained are forms

of Kelvin’s theorem.
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[5] Casal, P.: Equations à potentiels en magnétodynamique des fluides. Comptes

Rendus Académie Sciences de Paris, 274, A, 806 –808 (1972).

[6] Bretherton, F.P.: A note on Hamilton’s principle for perfect fluids. Journal of

Fluid Mechanics, 44, 19–31 (1970).

[7] Gouin, H.: Remarks on the Lie derivative in fluid mechanics. International Jour-

nal of Non-Linear Mechanics, 150, 104347 (2023) (Additive reference).

8


