
HAL Id: hal-04095844
https://hal.science/hal-04095844v1

Submitted on 12 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

O/S level interrupt prediction for performance and
energy management on Android

Daniel Lezcano, Georges da Costa

To cite this version:
Daniel Lezcano, Georges da Costa. O/S level interrupt prediction for performance and en-
ergy management on Android. IEEE Transactions on Mobile Computing, 2023, pp.1-12.
�10.1109/TMC.2023.3253798�. �hal-04095844�

https://hal.science/hal-04095844v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1

O/S level interrupt prediction for performance
and energy management on Android

Daniel Lezcano, Georges Da Costa

Abstract—Billions smartphones and smart objects running on batteries use Android, i.e. on the Linux kernel. To save energy, the main
kernel leverage is to put processors in a low power state as soon as they are idle. It predicts the next event to estimate the sleep
duration and choose a sleep state accordingly. Several wake-up sources (interrupts, events...) impact this prediction which is usually
done considering them as a single source. The resulting signal is nearly random and difficult to predict. Over the years, CPUs
increasingly supported deeper idle states but the prediction paradigm was never put into question. We propose to predict the next
event by splitting the wake-up source signal into smaller and simpler event patterns. We describe a fast and efficient algorithm along
with a kernel-level performance evaluation. We compare our approach with multiple reference sleep state selection algorithms on
actual ARM and x86 boards using classical mobile workloads. Our proposal detects correctly (up to 20% improved correctness leading
to 5% reduced energy consumption) the time of next interrupt, and thus the right sleep level for the processor. We show and discuss
the energy impact of the tested prediction algorithm and we compare it with the different generations of sleep level managers in the
Linux kernel.

Index Terms—Operating System, Android, Energy Efficiency, Idle Selection, Deep Sleep.

✦

1 INTRODUCTION

ENERGY efficiency of mobile platforms has a direct link to
their autonomy. As Android platform runs on billions

of devices[23], its operating system powered by Linux is
of the utmost importance energy-wise. Linux also runs on
most servers (96% of web servers for example1) and most
supercomputers (100% of the Top500 of June 2022)

These embedded systems, like smartphones, chrome-
books or tablets, have an architecture close to a desktop
system: they are multi-cores; they run up to multi-GHz
frequency; and they have several GB of RAM. As they are
running on batteries, the power management for energy
efficiency is no longer an option but a critical aspect of the
hardware support.

Hardware provides several features to reduce the energy
consumption and the operating system (O/S) uses them
with different techniques to achieve the best trade-off be-
tween performance and energy savings. Even if hardware
can handle reactive energy savings, the O/S can better pre-
dict future actions of applications based on its fine-grained
knowledge. Thus it can help manage the hardware.

One of the power management techniques used to save
energy consists in putting the processor in low power mode
when idle. There are several low power modes, called idle
states, each of them with their own characteristics. These
idle states have an enter/exit energy cost[14]. Depending
on the depth of the sleep mode, the energy cost can be
significant, and the latency can slow down the system if the
idle state is not wisely chosen. The processor has to stay idle

• D. Lezcano is working for Linaro
E-mail: daniel.lezcano@linaro.org

• G. Da Costa is with Toulouse University, IRIT, France
E-mail: georges.da-costa@irit.fr

Manuscript received XXX; revised XXX.
1. Zdnet, published on Oct 2015, https://www.zdnet.com/

home-and-office/networking/can-the-internet-exist-without-linux/

long enough to reach the break even between the overhead
cost[11] to enter and exit the idle state and the total energy
saving. If the break even is not reached, the CPU ends up
consuming more energy with a latency penalty. On the other
hand, if a shallower (less profound) state is used with a
processor idle for a longer time, a deeper sleep mode would
be more adequate to save energy[28].

Classically, the Linux scheduler is performance focused,
thus most of the decisions are using a performance based
policy[6]. The standard way to take into account energy
efficiency in the Linux kernel is to race to idle[16, 1]. The
Linux scheduler2 implements some basic mechanisms to
estimate the idle duration. The estimation of this idle dura-
tion is obtained using a sliding average. However, this idle
duration does not imply the CPU will be idle during all the
time, as it might have to process some interrupt handlers.

There can be up to several hundreds of busy-idle tran-
sitions per second, and wrong idle state selections can
significantly impact the user experience and battery life.

To optimize the consumed energy during the idle dura-
tion, it is necessary to predict the length of the next idle
period. Using this period it becomes possible to choose
wisely the most efficient low power mode. Knowing the
next wake up time makes it possible to find this idle du-
ration. The main goal of our approach is thus to build an
efficient predictor of the next interrupt time.

In traditional methods, predictions are based on a recent
idle’s duration considering there is one single wake up
source. It is assumed we can statistically predict the next
event based on past events. This approach works if there
is a coherence between the interrupts. In reality[15], these
interrupts depend on multiple wake up sources. Processing

2. Idle duration computation when waking up a task:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/tree/kernel/sched/core.c

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3253798

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.zdnet.com/home-and-office/networking/can-the-internet-exist-without-linux/
https://www.zdnet.com/home-and-office/networking/can-the-internet-exist-without-linux/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/sched/core.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/sched/core.c


2

those interrupts as coming from a single source results in
trying to find what number follows after a series of random
numbers. For this reason, the idle state selection is usually
inaccurate. The proposed approach separates the multiple
wake up sources depending on their origin. It models and
proposes an efficient predictor for the main wake up source.
This model is more precise than using all sources as it
removes polluting interrupts.

Improving the idle duration prediction allows the op-
erating system to select the best idle mode. This improved
prediction lets the operating system optimize precisely the
power consumption and the performance of the system.
Using a shallower than possible idle state leads to over con-
sumption. Using a deeper than needed one leads to a higher
overhead to exit the state, thus reducing the performance.
So improving the idle duration prediction improves either
performance or energy efficiency depending on the type of
workload.

The main contributions presented in this article are the
following:

• New low overhead interrupt prediction algorithm
with high correctness (up to 20% improvement) and
energy improvement (up to 5%) on several work-
loads on ARM and x86 along with its implementation
in the Linux kernel;

• Experimental performance evaluation of idle state
selection (correctness and energy) on ARM and x86
boards;

• Comparison of multiple idle state selection algo-
rithms including the one included in the Android
O/S (menu governor) and one currently worked on
(TEO governor) on actual Android boards.

The next section will cover the state of the art. Sec-
tion 3 will describe the links between interrupt prediction
and processor idle modes present in modern processors.
Then section 4 will show our proposed interrupt prediction
approach. Section 5 will present the implementation and
validation of this approach and section 7 will conclude and
provide several perspectives.

2 STATE OF THE ART

Heterogeneous processor architectures like big.LITTLE[27]
or dynamIQ[17] running at very high frequencies received
all the attention to apply dynamic voltage and frequency
techniques driven by an energy aware scheduler. This keen
interest has put the idle path energy saving in the back-
ground, resulting in a paradigm that has never been ques-
tioned in more than a decade.

In 2007, the Linux kernel had the power management
framework enriched with a new framework dedicated to
handling CPU idle states[18]. The implementation has since
been split into different components including the governor.
This component is there to select the CPU idle state. It
includes all the prediction logic, based on idle - busy tran-
sitions and has been tuned over time with the x86 hardware
evolution.

These first implementations were naive, tended to ignore
some idle states and needed to have all the cores idle at the
same time to operate. In [13] authors propose an array of bits

reflecting the idle-busy activity of all the CPUs and sampled
at a very high frequency. The resulting past events array is
used for a dynamic Bayesian network in charge of the events
forecasting.

Prediction is a recurrent topic in power management
because the knowledge of the very near future enables one
to take decisions proactively instead of simply reacting to a
specific situation. For instance, instead of relying on the CPU
load, sampled at a low rate, user space can take control of
all actions based on a power model via a dedicated multi
purpose register mapped to user space. User space can then
handle a more complex computation and request a specific
performance state to achieve better performance with less
power penalty[5].

Carrying out the prediction logic from the kernel to the
user space was used to switch to an idle state selection
policy which depends on the running application, the idea
being that a generic prediction system can not exist as it is
impacted by the characteristics of the workload[19].

Recently, Neural Processor Units (NPU) are getting more
common on embedded systems and the power management
system tries to harness the capabilities of this new type of
hardware. In [4], authors use machine learning to build a
prediction model based on the system load.

For GPUs, using Idle time to put the GPU in low con-
sumption mode[26] uses an idle time estimation method.
Authors increase the deepness of the sleep mode over time
to reach the best balance between energy and performance.
Similarly as for NPU, GPU are simpler than CPU are they
are not running multiple user and operating system pro-
cesses and their number of wake up sources is lower. Also
for these types of accelerators, the operating system is still
able to monitor the activity when they are in sleep mode. For
CPUs, the operating system itself is suspended in idle mode,
making it difficult to reverse an inappropriate decision.

Machine learning has its limitations, especially when
tracking the system events from the kernel where the mem-
ory is limited and where patterns often change. In [22],
authors present an adaptive online algorithm based on the
sparse online learning algorithm. It leads to a significant
amount of energy savings under certain circumstances.

The system can run with a periodic timer preventing
any form of deep idle state because the tick timer stays on
even during the idle periods. A power efficient system must
power down the tick timer when there is nothing to do, so it
can go to deeper idle states. Such a tickless system has one
drawback: if the system selects the shallowest state because
the prediction estimates the next wake up to occur very soon
while it actually occurs way later (eg. tenth of seconds), the
CPU will busy loop, draining a lot of energy and overheat-
ing with the risk of a thermal emergency reboot. This effect
is not only a theoretical one, it has been observed[24] and
evaluated[3].

Another predictor called TEO governor[9] is based on
the observation that events are usually timer based. Hence
the prediction can ignore the other source of wake ups.
The results of such an approach allows a very significant
improvement in terms of energy saving and performance.
Another aspect is that the predictor tells the framework to
not switch off the tick if the next predicted idle period is
shorter than a tick. Thus, if the shallowest state is selected,

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3253798

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

the tick will force a re-computation of the next event with a
new idle state selection.

Observation of idle periods is complex as any traditional
monitoring tool might have an impact on the idle duration.
In [14], authors propose a low level monitoring tool to help
detect and characterize idle periods and the events related
to exiting these idle periods.

Compared to these approaches, we propose an inte-
grated approach at the kernel level. It allows us to have
more fine-grained control and low overhead. Also, as the
goal is to manage the processor itself, errors in prediction
cannot be corrected later on as the operating system itself
can be suspended. Also as the proposed approach is inte-
grated in the Linux kernel, its behavior is constrained by
the existing capabilities of this operating system.

3 INTERRUPT PREDICTION AND IDLE MODE

When a CPU has no more tasks to run, the scheduler will
switch to the special idle task. This task contains an infinite
loop entering and exiting the sleep mode after choosing the
most adequate processor idle state given its assumption of
the future events as shown on Figure 1. This place is very
particular, the kernel inserts all kinds of internal tasks before
going idle, like synchronizing shared structure. It also saves
the current context, deals with the cache coherency mode
and switches to a timer belonging to a different idle state’s
power domain. Investigating the power benefit of the idle
loop is very hard from a software point of view without
the help of a physical measurement with dedicated sensing
resistors or energy counter registers (such as RAPL on Intel
processors). Even with the latter, the firmware can take
control of the idle mode and overcome the kernel decision
by auto-promoting the idle state to the deepest one. So it is
not possible to directly measure the power consumption of
a particular idle state as there is no guarantee the firmware
will not change it during the measure.

In this article we will focus on improving one part of this
mechanism: the prediction of future events. We assume that
using a good prediction will improve the energy efficiency
by helping the scheduler in choosing the best idle state.

3.1 Break even

The terms shallow and deep idle states are used to describe
the depth of the CPU sleep: the deeper an idle state, the
lower the energy consumption and the longer the sleeping
and wake up period. All the operations to enter and exit
an idle state have a cost directly tied with the complexity
to enter such an idle state. This cost is the time (and thus
energy) needed to flush caches when entering the state and
refill them when exiting, CPUs synchronization, in addition
with some more operations which are platform dependent
for the most complex idle states. An example is shown on
Figure 2.

The energy saving during the idle time must absorb
this extra energy consumption and still save more energy
than the previous idle state. This point where an idle state
becomes more energy efficient than all the previous ones is
called the break even and the sleep duration to reach it is
called the target residency.

The constants needed to compute the target residen-
cies of each idle state are usually considered by processor
vendors as intellectual property, thus unavailable. Only the
already computed target residency time for each idle state
is available and is provided by the firmware.

The break even point is reached when the Energy con-
sumption of the idle states are crossing, thus the equality:

Eidle1(ResidencyT ime) = Eidle2(ResidencyT ime) (1)

The consumed energy for a specific idle state at a specific
OPP3 is the power drained during an amount of time, added
with the cost to enter/exit the idle state. To simplify, the
notation the enter and exit costs will be summed as the
wakeup cost (Wakeup).

Eidle(time) = Pidle × time+Wakeupidle (2)

So by using Eq. 1 and Eq. 2, we can obtain the Residency
Time:

ResidencyT ime =
Wakeupidle2 −Wakeupidle1

Pidle1 − Pidle2
(3)

3.2 The wake up sources
As we have seen, the choice of the best idle level is impor-
tant to optimize energy consumption. Predicting the next
waking event is needed to choose the best idle level.

The current prediction paradigm in the Linux kernel is
based on idle duration statistics. The idle duration is mea-
sured by computing the delta time between the enter and
the exit times. In order to reduce the exit latency as much
as possible, the statistics for the prediction are postponed to
the next idle entering sequence. The idle duration can give a
hint of the correctness of the state selection: if the duration is
greater than the idle state’s target residency but less than the
next one, then the idle state selection is correct. The Linux
kernel does this computation and exports the statistics to
user-space via the debug file system.

The idle duration computation is done regardless of the
origin of the wake up which can come from different places
with very different characteristics. There are basically three
main sources of wake up: timers, device interrupts and inter
processor interrupts as shown on Figure 3. They are man-
aged by an IRQ manager chip called the Generic Interrupt
Controller (GIC)4. They can be categorized as: deterministic,
predictable, and random. With a better knowledge of the
wake up sources, the next prediction can be characterized
in terms of accuracy.

3.2.1 Timers
By essence the next timer event is predictable. Its precision
has been considerably improved during the last decade with
the support of the high resolution timer providing up to
a microsecond resolution. In addition, the time framework
has adopted the nanosecond time unit. The trend in kernel
development is towards increasing the precision. The timer
framework deals with the timer wheel[8] but always sets
the next timer event in any case, so it is trivial to get this
information. This source of wake up is deterministic and
can be used as a base to sort out idle states.

3. Operating Performance Points. One of the specific combinations of
frequency and voltage which are available for the processor.

4. https://developer.arm.com/documentation/ddi0471/b/

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3253798

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://developer.arm.com/documentation/ddi0471/b/


4

Sleep durations Interruptions: 
timer, devices, 
rescheduling

Fig. 1. Timeline of the state of a core. Peaks represent the wake-up of the core. In some phases the core is woke-up by timers while having no work
to execute (such as in the middle).

P

T

Event

Entering
Idle Mode

Exiting
Idle Mode

Fig. 2. The red idle-level is faster to enter and exit but it does not
compensate for the increased power consumption during idle. The blue
one is more profound but is interrupted by an event leading to lateness
and overhead of the entering cost.

CPU0

CPU1

timer_listTimer

IPI reschedule

GIC

MMC

Network

Graphic

hrtimer

drivers

scheduler

Fig. 3. Wake up sources in a multi-core context. GIC is the Generic
Interrupt controller.

3.2.2 Device Interrupts
Devices usually have a dedicated task to achieve (send a
network packet, write or read on disk, render a frame...).
While the duration to accomplish a specific task may vary,
it is usually periodic, so those wake up sources can be
considered as predictable.

Some devices are much less predictable when depending
on external events, such as network incoming traffic, a
keystroke or a touch on the screen. However, the time scale
is so large compared to the microsecond based prediction,
that they can be considered as low density noise and ig-
nored.

3.2.3 Inter Processor Interrupt
The main goal of the Inter Processor Interrupt (IPI) is to give
the scheduler the ability to wake up another CPU when
there is something to do. Basically a task migration or a
bottom-half5 lead to an IPI. The latter could be mapped to
the corresponding interrupt event but the migrations are

5. Asynchronous handling of interruptions.

totally dependent on the scheduler and can be considered
as unpredictable. The scheduler takes the decision to do
IPI depending on a large number of factors with different
timescales: Load balancing between cores and clusters, ther-
mal pressure, kernel threads, real-time tasks and more.

4 METHODOLOGY

When a system is not fully loaded, it alternates between
busy and quiescent periods. The importance of the idle
routine comes from its usage during the latter. Idle usage
happens when the CPU is waiting for a device comple-
tion notification via an interrupt, when there are less tasks
running than the available processors computing power, or
if the tasks are blocking each other like a video / audio
pipeline rendering.

In the signal processing field, a complex periodic signal
usually results from the sum of simpler periodic signals.
Usually to go back to the simpler signals, a Fourier trans-
formation is needed. We make the hypothesis that splitting
the wake-up signal depending on the different sources is
sufficient: instead of measuring the idle duration, we mea-
sure the interrupt events by category before they are mixed
between predictable timer events and random rescheduling
events.

Our proposal will focus on improving the prediction of
the interrupt wake up source. The method for idle predic-
tion is to measure the idle duration period and anticipate the
next duration. However, we have basically three sources of
wake up: interrupts; timers; and inter processor interrupts.
By measuring only the idle duration period, we measure all
these sources as they were coming from the same place. In
other words, we try to find out a repeating pattern inside
mixed signals. However, timers are perfectly predictable
while inter-processes interrupts are mostly a random signal.
In between, the other interrupts show a repeating pattern.
This paper focuses on splitting all these sources of wake
up to predict the interrupt wake up sources individually in
order to improve the overall prediction.

Prediction only makes sense if the wake up source
has some regularity. We will show that on several mobile
platforms the wake up source indeed has regularity. Then
we will describe the algorithm to detect such a pattern.
Afterward, in order to check the correctness of the predic-
tion, we will disable all the idle states. It will guarantee the
timestamp measurement of events won’t be delayed by the
idle state’s exit latency. And finally, in order to measure the
improvement of the prediction without being impacted with
IPI noise, we will run the tests without the SMP (Symmetric
Multi Processor) support, limiting the usage to a single core.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3253798

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5

__handle_irq_event_percpu(desc)

⇒ record_irq_time(desc)

⇒ irq_timings_encode(irq, timestamp)

⇒ irq_timings_store()

timestampirq

0...15 16...63

U64

Per cpu circular 
buffer

Fig. 4. Captured interrupt timings are stored in a circular buffer using a
structure stored in 64bits.

4.1 Predicting the next interrupt
Strictly speaking, all the wake up sources described above
are actually interrupts. For the sake of clarity, the next
interrupt prediction will refer to the interrupts which do
not originate from a timer device or an IPI.

The goal of the prediction will be to find the period of a
repeating pattern.

4.1.1 Interrupt capture system
The Linux kernel now provides a single hook where it
delivers interrupts with their private data to the registered
handlers. We merged a change in the Linux kernel6 to
capture the interrupt timings. Using this handler, this entry
is added to a circular buffer array with 32 cells. The interrupt
events history is thus recorded in a circular buffer array (Fig-
ure 4). The circular buffer contains the interrupt number and
the timestamp information. This one is a 64bits size. With a
separate definition, that is a 32bits integer for the interrupt
number and a 64bits for the timestamp, at each interrupt
we trash several cache lines when browsing the circular
array. In order to optimize the size of the information and
reduce the impact on the cache, we store an encoded 64bits
value with the interrupt number on the first 16bits and the
time-stamp in nanosecond for the last 48bits. This approach
has been debated on the public Linux kernel development
mailing list7.

If a device is generating a large number of interrupts,
these will fill the circular buffer by overwriting the events
coming from other devices with a smaller number of oc-
currences. Our hypothesis is that this interrupt will have a
much greater probability of happening in the near future
than the other devices with fewer events in the same time
frame.

4.1.2 Intervals
At the start of an idle period, interrupts are disabled on the
local CPU, so the interrupt history is frozen while processed.
For each interrupt in the circular buffer array, we compute
the interval between the occurrences in microseconds and
store them in a dedicated circular buffer, one per CPU and

6. Interrupt timings capture: https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
b2d3d61adb7b73cfe5f82404f7a130a76fc64232

7. https://lore.kernel.org/all/alpine.DEB.2.20.1703232037560.3723@
nanos/

per interrupt. Any interval more than one second apart
is considered too old and will result in a drop of all the
previous values, thus preventing predictions for old events
being endlessly computed.

The range of intervals can greatly vary even with one
buffer per source event. It is still difficult to compute a
prediction based on the occurrences with high amplitude
when they are not regular. In order to adapt to the dif-
ferent timescales, we store the intervals into log2 ranges.
As we consider intervals longer than one second too old,
the maximum range will be between 500000 and 1000000
µs, so reduced to log2 it is 20. The set of values to predict
is then limited to [0,20]. The reasoning behind using the
log2 to reduce the interval numbers is the following: the
larger the interval is, the bigger the error can be which is
considered acceptable. There is a reduced number of idle
states and the maximum target residency is rarely greater
than 5ms. So for a large interval, there is a high probability
the value will be greater than the maximum target residency.
At the opposite end of spectrum, if the intervals are small, a
high precision is important to discriminate between nearby
target residencies. The log2 operation fits perfectly for this
purpose. The Linux kernel low resolution timers use the
same approach. The usage of log2 in the algorithm mimics
how timers are ordered in the timer wheel. The longer is the
duration, the lower is the precision. Also, all recent proces-
sors have a dedicated assembly log2 instruction. These data
will be stored in an array called classification with 20 cells,
each one counting the number of intervals between 2i and
2i+1µs.

The log2 reduction provides a classification of recent
intervals between recent events. To keep more ancient
knowledge of previous intervals, a third array (ema) is
introduced with the same 20 slots. This array will store the
moving average of the classification array, i.e. each cell will
store α classificationt+(1−α emat). Such an exponential
moving average is heavily used in signal filtering[2] or stock
tracking[20], its response to changes can be tuned[7] with
the α factor, thus giving an area of tweaking when tracking
the interrupt event signals.

The EMA is the exponential moving average also known
as an exponential weighted moving average. The main
usage of such a statistical formula is to give more weight
to recent values on a sliding average. By this way, old
values have less impact on the computed average than the
recent ones. The EMA helps to quickly react to the interrupt
behavior changes like a burst of activity or at the opposite a
return to a quiescent point. The α factor gives more or less
weight to the recent values, thus influencing how fast the
decay of the old values happens.

In addition, the computation of the average on the fly is
very simple and helps to reduce the impact of the overhead
in a path dedicated to saving energy. An example is shown
in Fig. 5.

4.1.3 Pattern detection
At this point, all the necessary information is present to put
in place the computation for the next interrupt event. The
predictability of an interrupt depends on the repetition of
a given suite of numbers. In our case, those numbers are
the history of the past events under their log2 form. This

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3253798

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b2d3d61adb7b73cfe5f82404f7a130a76fc64232
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b2d3d61adb7b73cfe5f82404f7a130a76fc64232
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b2d3d61adb7b73cfe5f82404f7a130a76fc64232
https://lore.kernel.org/all/alpine.DEB.2.20.1703232037560.3723@nanos/
https://lore.kernel.org/all/alpine.DEB.2.20.1703232037560.3723@nanos/


6

31 / 12345

31 / 12455

31 / 12650

67 / 12870

31 / 23380

32 / 23390

31 / 24502

67 / 25326

100 us

195 us

1122 us

log2

log2

log2

6

irq31

7

10

ema irq31

index=6

ema

History of the past events

Fig. 5. Architecture of pattern detection. On the left: the kernel interrupt
circular buffer. In the middle: the classification buffer. On the right: the
ema buffer obtained using an Exponential Moving Average..

Interval 4 5 112 4 6 4 110 4 4 5 112 4 7 4 110

log2 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7

p=5 2 2 7 2 2 2 2

p=4 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7

p=3 2 2 7 2 2 7

p=2 2 2 2

Fig. 6. Suite search method: Interval contains the raw data of time in
µs between the most recent events. Each period p from five to two is
tested with the log2 of the interval circular buffer (log2). In this particular
example, the comparison succeeds only with p = 4.

repetition has a period which is the length of the suite of
numbers, so wherever the pointer is in the repetition, the
suite is different but the period remains the same.

In order to detect the repetition, we will use a dedicated
data structure, the array suffix[21], to build the different
possible suites from the history of the past events and from
there move a cursor to find out which one of these suites
matches the most recent events. We merged a change in the
Linux kernel to provide the array suffix data structure8. The
length of the suite is the period of the events.

The array suffix is a data structure usually used for full
text index search, data compression algorithm, bibliometric,
combinatorics on words or bioinformatic. In order to build a
set of suites, we use a simplified array suffix data structure,
the suffixes are not sorted at the end because for our purpose
we obviously want to keep the same order. As an example,
let’s consider the word ’banana’, the derived suffixes will be
’anana’, ’nana’, ’ana’, ’na’ and ’a’. This applied to the log2
interrupt events history will build from the end of the his-
tory a list of suffixes. However, we can not build an infinite
number of suites of different periods. Our experiments show
that for devices generating repeating patterns, the period
of five numbers is usually the maximum observed before
having a non deterministic repetition.

Each computed suite with length from five to two, are
sequentially compared from a beginning index equal to
three times the maximum period, the first suite matching
three times is considered valid as shown in Figure 6.

When the period is found, the next number of the
suite can easily be found with a modulo operation on the

8. Array suffix data structure: https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
bbba0e7c5cdadb47a91edea1d5cd0caadbbb016f

Interval 4 5 112 4 6 4 110 4 4 5 112 4 7 4 110

log2 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7

p=4 2 2 7 2 2 2 7 2 2 2 7 2 2 2 7

Next event index = last pattern length % period
Next event index = 3 % 4 = 3

period
last pattern length

2 2 7 2suffix p=4

ema table

ema[2] = 4

Fig. 7. The scale of the duration before the next event is the next element
of the suite. An approximation of this value can be found in the ema
table.

remaining length of the suite (Figure 7). The number is the
index in the exponential moving average array which gives
the average of all these intervals from recent history.

5 EXPERIMENTATION

5.1 Description of experiments
The first metric used for evaluation is the correctness. The
kernel measures the idle duration taking into account the
exit delay and compares the results with the selected idle
state. If the idle duration is greater than the idle’s state
target residency but below the next idle’s state target res-
idency, then the selection is considered correct. Otherwise
the prediction is considered under or overestimated.

The second metric will be energy consumption: the final
goal of finding the right idle state is to save energy.

The first experiment will run different governors on
two different platforms: x86 64 and ARM64. The former
has a higher number of idle states, statistically the wrong
predictions will result in a significant increase of the wrong
idle state selections. The latter has a reduced number of idle
states, thus we can see the impact of wrong predictions on
the selection.

The ARM64 platform is based on a 96boards Hikey9609,
a Hisilicon evaluation board with a big.Little architecture.
It integrates 4xCortex-A73 and 4xCortex-A53 with 3GB
LPDDR4 SDRAM and 32GB of storage. The internal archi-
tecture of this board is shown on Figure 8.

This platform is instrumented by soldering a shunt resis-
tor on a dedicated probe place for the PMIC (Power Man-
agement Integrated Circuit) supplying the Vcore voltage of
the CPUs. The ARM energy probe10, a 10KHz sampling USB
measurement has three channels to read the voltage / cur-
rent allowing to compute the instantaneous power and thus
the accumulated energy. The picture of the experimental
board is shown on Figure 9.

The x86 64 platform is an i5 Intel processor based laptop
with 8GB of memory and 300GB of storage. The energy
measurement uses the Running Average Power Limit reg-
ister which can be used as an energy counter giving the
energy consumption of the group of cores. The interface to
measure the power consumption is supported by the Linux
kernel in the powercap framework11 which exports a set of

9. Hikey960 EVB: https://www.96boards.org/product/hikey960/
10. ARM energy probe: https://git.linaro.org/tools/arm-probe.git
11. Power capping: https://www.kernel.org/doc/html/latest/

power/powercap/powercap.html

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3253798

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bbba0e7c5cdadb47a91edea1d5cd0caadbbb016f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bbba0e7c5cdadb47a91edea1d5cd0caadbbb016f
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bbba0e7c5cdadb47a91edea1d5cd0caadbbb016f
https://www.96boards.org/product/hikey960/
https://git.linaro.org/tools/arm-probe.git
https://www.kernel.org/doc/html/latest/power/powercap/powercap.html
https://www.kernel.org/doc/html/latest/power/powercap/powercap.html


7

Fig. 8. Hikey960 is based on the hi3660 System on Chip (SoC). Figure
from the hi3660 datasheet.

Fig. 9. Hikey960 board with power probe.

files to read the accumulated energy consumption via the
filesystem.

5.1.1 Workloads
The set of workloads used for testing is based on typical
workloads soliciting different groups of hardware compo-
nents on the system. They are all part of Ubuntu 18.04 LTS.
We are not interested in having full performance bench-
marks but instead we want to see workloads where the
CPUs alternate quiescent point and burst of activities which
are switched by device interrupts.

glmark2: A benchmark running OpenGL with a set of
scenes where the 3D hardware acceleration is
enabled. The purpose of this benchmark in our
test is to have part of the hardware decoding and
rendering images and thus generating display
interrupts. Given the frames are synchronized
with the refresh rate of the display, the interrupts
will happen periodically. We expect the interrupt
prediction to detect such a pattern.

mp3 : A workload based on multiple decoding
pipelines spread across the CPUs while the DSP
generates interrupts.

Workload

re
pa

rti
tio

n

0%

25%

50%

75%

100%

glmark mp3 mp4 wget

panfrost-job

panfrost-gpu

IPI

viommu

iommap

i2c

ehci_hcd:usb1

dw-mci

arch_timer

glmark, mp3, mp4 and wget workload interrupts

Fig. 10. Distribution of the interrupt sources for different types of appli-
cations

workload glmark mp3 mp4 wget
arch timer 19828 37532 88441 6054
dw-mci 778 1590 1535 147
ehci hcd:usb1 414 42888 6595 79667
i2c 10059 3810 30 15
iommap 0 14583 0 0
viommu 2536 9390 13480 1033
IPI 2499 919 15 9
panfrost-gpu 30 321 3369 36
panfrost-job 10569 428 2984 48

TABLE 1
Distribution of the interrupt sources for different types of applications

mp4 : A more complex workload where the hardware
enables frame rendering and DSP decoding, pro-
viding multiple sources of interrupts where each
of them are periodic.

wget : A typical network workload limited by a
100MB/s bandwidth ensuring alternate bursts
of activity followed by idle duration. The pro-
gram downloads a 100MB file size from a local
server.

5.1.2 Workloads interrupt statistics
This section gives an overview of the interrupt occurrences
on the system while running the workload. It gives another
indication of the interrupt activities in order to interpret the
testing results.

Figure 10 (using the same data as Table 1) shows the
distribution of the interrupt events for several workloads.
The glmark2 workload has half of the interrupts coming
from the timer, a quarter from the GPU and another quarter
from the i2c interrupts. The mp3 workload has most of
the interrupts coming from the timers and from the USB.
Actually the mp3 file is read from the network and the
network card is a USB-ethernet adapter. The mp4 workload
has the vast majority of the interrupt coming from the
timers. Finally the wget workload is mostly characterized
by the USB interrupts coming from the network usage.

Figures 11, 12, 13 and 14 show the frequency of the
interrupt time intervals for each workload. The intervals
are defined in the log2 space similarly as the presented
algorithm. Each figure shows the peaks resulting from the
repeating occurrence of the same interval. The initial hy-

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3253798

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8

Time interval (log2)

O
cc

ur
en

ce
s

0

2500

5000

7500

10000

12500 arch_timer

dw-mci

ehci_hcd:usb1

ff3c0000.i2c

ff8f0000.vop

ff8f3f00.iommu

IPI

panfrost-gpu

panfrost-job

Fig. 11. Frequency of interrupt time interval for the glmark2 workload

Time interval (log2)

O
cc

ur
en

ce
s

0

5000

10000

15000

20000 arch_timer

dw-mci

ehci_hcd:usb1

ff3c0000.i2c

ff8f0000.vop

ff8f3f00.iommu

IPI

panfrost-gpu

panfrost-job

Fig. 12. Frequency of interrupt time interval for the mp3 workload

Time interval (log2)

O
cc

ur
en

ce
s

0

20000

40000

60000 arch_timer

dw-mci

ehci_hcd:usb1

ff3c0000.i2c

ff8f0000.vop

ff8f3f00.iommu

IPI

panfrost-gpu

panfrost-job

Fig. 13. Frequency of interrupt time interval for the mp4 workload

Time interval (log2)

O
cc

ur
en

ce
s

0

20000

40000

60000 arch_timer

dw-mci

ehci_hcd:usb1

ff3c0000.i2c

ff8f0000.vop

ff8f3f00.iommu

IPI

panfrost-gpu

panfrost-job

Fig. 14. Frequency of interrupt time interval for the wget workload

pothesis (per interrupt intervals are stable) is confirmed by
the shape of the different figures for each workload.

These figures show that most of the interruptions are
usually following a normal distribution. The others have
peaks showing their frequency are the sum of a small
number of normal distributions. So there is a deterministic
aspect of the interrupt timing. In some rare cases, a flat
figure indicates a random distribution. But actually that
must be correlated with the number of occurrences which
is usually small regarding the other interrupts. For instance,
on the mp3 workload, the panfrost-gpu interrupt has a flat
figure but there are 918 occurrences for a total of 120414, so
it represents 0.76% of the events.

Regarding activity bursts, several questions must be
addressed: What can happen if there are a lot of interrupts
on the system? If they are coming from different sources,
will they scramble the algorithm? Is there a risk of data
overrun?

In the case there are a lot of interrupts, the CPU is
constantly waking up or busy looping in the case of network
traffic[10]. In this situation, the path taken in the kernel goes
rarely in the idle path and the prediction is not needed.

When the system reaches a quiescent point, the CPU
goes idle. If the prediction is incorrect and the state selected
is the shallowest one for a very long idle duration, the
system may be consuming more energy than needed. In
order to prevent this situation the kernel does not shutdown
the tick timer when the idle state is the shallowest. So in any
case, the CPU exits the shallowest idle state and reevaluates
the next event.

5.2 Existing governors
In the kernel, the cpuidle framework is responsible for
selecting the right idle state. Several implementations exist
in the kernel to provide this service.

Currently, there are two governors in the Linux kernel.
The first one is called ladder and the second one is the menu
governor.

The ladder governor is used on a system configured
with periodic ticks, with small wake up latency constraint
and does not apply to our purpose because it is focused
on the server side where performance is more important
than energy savings. It escalates the idle state when the last
residency is greater than the idle state’s residency. Its main
limit is that the maximum sleep length is limited by the tick.
It has not been used for more than a decade.

The menu governor is used on tickless systems where
the periodic tick is disabled at idle time in order to allow
long idle period duration and to let the system enter deeper
idle states (see Section 2). Initially, the menu governor
was introduced in 2007 with an algorithm rewrite in 2009.
The new algorithm takes into account the idle duration of
the CPUs, that is when it enters and exits the idle state.
A small history of the previous events is stored and the
prediction uses it to estimate the next event. The result is
then processed using an empirical formula resulting from
fine tuning on x86 legacy hardware.

5.3 Reference governors
The menu governor is the default governor used for all
mobile nowadays and will be our reference governor for

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3253798

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

our study. All results in the following will be provided as
a ratio to this reference governor. The Teo governor is the
current state of the art Linux governor and is expected to
become the next generation default one.

We propose to add some simple and baseline governors
as reference and to help provide insight on the results: one
targeting maximum performance; another one aiming to
achieve a maximum power saving; and finally the last one
always choosing random idle states.

The governors used in the experimental section are:

shallowest: The selected idle state is always the shallow-
est one

deepest : The selected idle state is always the deepest one
random: The selected idle state is selected randomly
menu : The widely used governor in mobile systems
teo : A recently introduced timer oriented based

governor (see Section 2)
mobile : The governor using our proposed next inter-

rupt prediction system

These different static decision governors added with the
existing ones help to compare the result of a particular
decision regarding a workload. The precision of a prediction
does not guarantee we have the best energy saving or the
best trade off with the performance. The idle states charac-
teristics with the target residency and the exit latency can be
wrong or inaccurate. Also other hardware mechanisms can
be involved preventing a CPU to go to a specific idle state
like a cluster power down idle state where the last man
standing algorithm applies. For instance if a shallowest or
a deepest governor is the most efficient governor given a
specific workload, then the governor having a prediction
mechanism should have similar results for both cases. The
random governor is the most naive one and a comparison
with a prediction governor helps to understand its accuracy.

6 IMPLEMENTATION AND VALIDATION

The measurements shown in the different figures are all
scaled against the menu governor which is the reference
governors used for mobiles, desktops and servers.

6.1 ARM
The ARM architecture tests are divided into two sets: one
for mono-processor and the other for multiple processor
support (SMP). The reason for taking such an approach is
because on SMP, one CPU wakes up another CPU using an
inter-processor interrupt which is another source of wake
up. It results in a CPU exiting the idle state: it becomes
difficult to do the correlation with the correctness of the
prediction as IPI are not taken into account in the prediction
model. Otherwise it is an attempt to predict the scheduler
behavior.

The legitimate question is why the IPIs can not be part
of the prediction? IPIs are used by the scheduler only as a
’rescheduling interrupt’ (other IPIs can be ignored as their
occurrences are negligible) and result in a non periodic
signal. An application can sleep at any time and if at wake
up time the CPU is busy running something else, the process
will be migrated to another idle CPU. This migration results
in an IPI sent to the target CPU which in turns exits the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

glmark mp3 mp4 wget

R
a
ti

o
 r

e
la

ti
v
e
 t

o
 M

E
N

U

DEEPEST
MENU

MOBILE
RANDOM

SHALLOWEST
TEO

Fig. 15. Measure of the correctness (in number of correct predictions) of
the algorithms on ARM. Values are relative to MENU governor (higher
is better).

 0.9

 0.95

 1

 1.05

 1.1

 1.15

glmark mp3 mp4 wget

R
a
ti

o
 r

e
la

ti
v
e
 t

o
 M

E
N

U

DEEPEST
MENU

MOBILE
RANDOM

SHALLOWEST
TEO

Fig. 16. Measure of the Energy (measured in Joules) of the algorithms
on a single core to reduce impact of IPI on ARM. Values are relative to
MENU governor (lower is better).

idle state and executes the process put in the run queue by
the scheduler. It is not possible to predict the choice of the
scheduler to wake up this CPU instead of another idle one
because the idleness of the CPUs depends on the processes’
behavior running on the system. That is even more true
when the kernel threads are involved in this migration
because they add more randomness in the IPI signals.

Figure 15 shows the correctness of the prediction without
the IPI involved on ARM64. We can observe that the mobile
governor can challenge other governors in terms of predic-
tion even if it is not the best one. As a reminder the mobile
governor is very simple and does not integrate anything else
than the next interrupt and the next timer event prediction.
Other governors base their prediction on experimental ob-
servation and hard code some magic numbers to adjust the
next event 12

Figure 16 shows the menu governor beats the other
governors in terms of energy when there is one CPU on the
system. Given the history of the menu governor, the result
is not surprising. The governor was implemented when
single core processors were the standard. Unfortunately the

12. Menu governor performance multiplier https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/cpuidle/
governors/menu.c#n153

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3253798

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/cpuidle/governors/menu.c#n153
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/cpuidle/governors/menu.c#n153
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/cpuidle/governors/menu.c#n153


10

 0.9

 0.95

 1

 1.05

 1.1

 1.15

glmark mp3 mp4 wget

R
a
ti

o
 r

e
la

ti
v
e
 t

o
 M

E
N

U
DEEPEST

MENU
MOBILE

RANDOM
SHALLOWEST

TEO

Fig. 17. Measure of the Energy (measured in Joules) of the algorithms
on multiple cores on ARM. Values are relative to MENU governor (lower
is better).

paradigm of the menu governor has not been put in ques-
tion with the multi cores processors. It has been tweaked
for server platforms with the introduction of experimental
based heuristics. The strength of the menu governor is the
idle-busy pattern repetition detection. Without the IPI which
introduces a higher randomization of the events, the menu
governor performs very well.

Figure 17 shows the mobile governor performs well in
terms of energy consumption except for the multimedia
workloads where it is similar to the other governors. For
energy efficiency reasons, on the ARM platform, all the
interrupt affinities are set to the CPU0. This one is usually
a low profile processor with little power consumption. The
mobile governor uses the next timer and the next interrupt
to predict the duration of idle time. Hence on other pro-
cessors than CPU0, the probability to correctly find out the
next event is higher as only the timers are involved. On the
other hand, the multimedia workloads are using dedicated
threads as pipeline to decode and render the stream. The
threads are usually spread across the different cores and
their execution is serialized, the IPIs are more involved
in those scenarios and the next interrupt prediction is not
enough. The task serialization introduces a periodicity in the
events. Those, in turn, produce a periodic busy-idle pattern
easily detected by the menu governor.

6.2 X86

The x86 architecture aims at achieving the performance
needed for the server market. Until recently power man-
agement was not the highest priority and having the best
performance was an acceptable trade off for the extra power
consumption. Even if the mobile governor is designed and
tested for the ARM64 architecture, it is interesting to com-
pare it with the x86 architecture to see how it behaves.

This architecture has a specific idle state, called POLL
idle state13. In order to have the fastest response to a burst of
IO requests, a software idle state was created to be inserted
as the shallowest idle state. It does a busy loop on the idle
task need resched() condition when there are tasks blocked

13. POLL idle state: https://git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/tree/drivers/cpuidle/poll state.c

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

glmark mp3 mp4 wget

R
a
ti

o
 r

e
la

ti
v
e
 t

o
 M

E
N

U

DEEPEST
MENU

MOBILE
RANDOM

SHALLOWEST
TEO

Fig. 18. Measure of the correctness (in number of correct predictions) of
the algorithms on x86. Values are relative to MENU governor (higher is
better).

0.9

0.95

1

1.05

1.1

1.15

glmark mp3 mp4 wget

R
a
ti

o
 r

e
la

ti
v
e
 t

o
 M

E
N

U

DEEPEST
MENU

MOBILE
RANDOM

SHALLOWEST
TEO

1
.2

2
.5

6
.1

1
.3

1
.4

Fig. 19. Measure of the Energy (measured in Joules) of the algorithms
on a single core on x86. Values are relative to MENU governor (lower is
better).

on pending IOs. Obviously, there is no wake up latency but
at the cost of a full CPU power consumption and extra heat
production.

Figure 18 shows how accurate the predictions are on the
Intel platform. The shallowest idle state is the poll idle state,
consequently there is no prediction and we can ignore it
in the figure. The mobile governor never presents better
results than the menu governor. It under-performs in all the
cases. The hypothesis is the wake up path could be different
under some circumstances and may not be related to the
interrupts directly. Another aspect is how the interrupts
are configured on the system. The affinity is set on all the
CPUs and the interrupt controller can randomize / round
robin the interrupt delivery on any CPU. That breaks the
irq prediction model as this one is per CPU. Moreover
the x86 platform uses different mechanisms to wake up a
CPU and its firmware can overcome the governor decisions.
Unfortunately, it is difficult to investigate this observation
as the x86 firmware is a black box and does a lot of actions
on the back of the operating system.

Figure 19 shows the shallowest governor is consuming
much more energy than the other governors. This is not
surprising as, as aforementioned, it is a busy loop idle state.
Except for the random governor, other governors have simi-

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3253798

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/cpuidle/poll_state.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/cpuidle/poll_state.c


11

lar results. This observation tends to confirm the firmware is
acting after the governor decision. For better correctness in
the prediction, the energy consumption is almost the same.

The deepest governor chooses an idle state where there is
a higher number of components powered down. However,
on the x86 architecture, the tests run in the UP processor
context, so there are fewer actions done under the hood
making the idle state transitions faster, like running the last
man standing algorithm in the firmware. It results in a faster
full power efficient idle state with a lower latency.

7 CONCLUSION AND PERSPECTIVES

This article presents our proposal of a prediction based idle
mode selector. We compare this algorithm with existing
implementations in the Linux kernel along with several
naive algorithms.

The current paradigm for the idle state selection is to
predict the idle duration based on the past idle periods.
Unfortunately this approach can not differentiate the origin
of the wake up and it results in attempts to predict the entire
system behavior, including the scheduler. Under a medium
activity involving all the wake up actors, the current menu
governor does not perform better than a governor which
randomly chooses an idle state. The menu governor has an
acceptable number of correct predictions when the running
application performs cyclic tasks like a frame decoding or
packet receiving.

The approach consisting of identifying the source of
wake up and predicting each of them individually showed
good results for a very simple governor which only takes
the earliest next events from the three wake up source cate-
gories: device interrupt, timer interrupt and inter processor
interrupt. Unfortunately, the latter is out of scope for this
study and a biased heuristic was necessary to overcome the
lack of this support.

While this study happened, the timer oriented governor
was implemented with yet another paradigm. As explained
by the author of the TEO governor[25]:

“The concept behind TEO is that the most frequent
source of CPU wakeups on many systems is timer
events, not device interrupts. Wysocki notes that timer
events might be even two or more orders of magnitude
more frequent than other interrupts. So the time until
the next timer event alone provides a strong predictive
clue.”

TEO governor simply bases all the predictions on the de-
terministic timer next events. On top of it, it adds some
experience based heuristics. The results of this governor
clearly surpasses all the other governors including the next
interrupt prediction governor. The mobile governor could
have been investigated more with the inter-processor in-
terrupts and would have been a good candidate to replace
the menu governor. However, given the results of the timer
oriented governor, it was considered useless to go further
in the study as we are not able to provide the same level of
performance / energy without introducing biased heuristic
which is exactly what we want to prevent.

The third source of wake up originating from the inter-
processor interrupt is an area of investigation for even more
accuracy in the prediction. Trying to predict the IPIs is an

attempt to predict the scheduler behavior and it would be
much more interesting to have the scheduler rely on the
next interrupt prediction to choose wisely which CPU to
wake up. That implies a better collaboration between the
idle framework and the scheduler which is very limited
today14. The task migration is also a source of confusion
for the prediction. Even if the task is periodic, there is no
guarantee it will wake up on an expected CPU. As spotted
by the article [12], the kernel threads are responsible for the
task migrations. This could be an area of improvement to
reduce the randomness of the IPIs signal in order to add the
IPI prediction support in the mobile governor.

However, even if the next interrupt prediction support
is not used to select an idle state, there is potentially an
application in the real time area. The deadline scheduler
needs to know when the next interrupt will happen on a
CPU in order to estimate if the deadline constraint will be
fully filled or not.

ACKNOWLEDGMENT

We thank Linaro for funding this research. Thanks to Vin-
cent Guittot who took the time to review the technical
aspects of the document. A special thanks to Ebba Simpson
for reviewing the document.

REFERENCES

[1] Susanne Albers and Antonios Antoniadis. Race to
idle: new algorithms for speed scaling with a sleep
state. ACM Transactions on Algorithms (TALG), 10(2):1–
31, 2014.

[2] Belyaev Alexander, Tutov Ivan, and Butuzov Denis.
Analysis of noisy signal restoration quality with ex-
ponential moving average filter. In 2016 International
Siberian Conference on Control and Communications (SIB-
CON), pages 1–4. IEEE, 2016.

[3] Abdullah Aljuhni, C Edward Chow, Amer Aljaedi,
Shaji Yusuf, and Francisco Torres-Reyes. Towards un-
derstanding application performance and system be-
havior with the full dynticks feature. In 2018 IEEE
8th Annual Computing and Communication Workshop and
Conference (CCWC), pages 394–401. IEEE, 2018.

[4] Manish Arora, Srilatha Manne, Indrani Paul, Nuwan
Jayasena, and Dean M Tullsen. Understanding idle
behavior and power gating mechanisms in the context
of modern benchmarks on cpu-gpu integrated systems.
In 2015 IEEE 21st international symposium on high per-
formance computer architecture (HPCA), pages 366–377.
IEEE, 2015.

[5] William Lloyd Bircher and Lizy John. Predictive power
management for multi-core processors. In International
Symposium on Computer Architecture, pages 243–255.
Springer, 2010.

[6] Silas Boyd-Wickizer, Austin T Clements, Yandong Mao,
Aleksey Pesterev, M Frans Kaashoek, Robert Tappan
Morris, Nickolai Zeldovich, et al. An analysis of linux
scalability to many cores. In OSDI, pages 86–93, 2010.

14. Leverage the idle state info when choosing the ”idlest” cpu:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=83a0a96a5f26d974580fd7251043ff70c8f1823d

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3253798

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=83a0a96a5f26d974580fd7251043ff70c8f1823d
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=83a0a96a5f26d974580fd7251043ff70c8f1823d


12

[7] Chris Chatfield, Anne B Koehler, J Keith Ord, and
Ralph D Snyder. A new look at models for exponential
smoothing. Journal of the Royal Statistical Society: Series
D (The Statistician), 50(2):147–159, 2001.

[8] Jonathan Corbet. The kernel mechanism managing the
different timescale lists of planned events. https://lwn.
net/Articles/646950/, 2015. Accessed: 2022-01-27.

[9] Jonathan Corbet. The weighted teo cpuidle gover-
nor. https://lwn.net/Articles/820432/, 2020. Ac-
cessed: 2022-01-27.

[10] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-
Hartman. Linux device drivers. O’Reilly Media, Inc.,
2005. Chap. 17.

[11] Carlos Cortes, Hideharu Amano, and Nobuyuki Ya-
masaki. Break even time analysis using empirical
overhead parameters for embedded systems on sotb
technology. In 2017 32nd Conference on Design of Circuits
and Integrated Systems (DCIS), pages 1–6. IEEE, 2017.

[12] Gaurav Dhiman, Vasileios Kontorinis, Dean Tullsen,
Tajana Rosing, Eric Saxe, and Jonathan Chew. Dy-
namic workload characterization for power efficient
scheduling on cmp systems. In Proceedings of the 16th
ACM/IEEE international symposium on low power electron-
ics and design, pages 437–442, 2010.

[13] Qian Diao and Justin Song. Prediction of cpu idle-
busy activity pattern. In 2008 IEEE 14th International
Symposium on High Performance Computer Architecture,
pages 27–36. IEEE, 2008.

[14] Thomas Ilsche, Marcus Hähnel, Robert Schöne, Mario
Bielert, and Daniel Hackenberg. Powernightmares: The
challenge of efficiently using sleep states on multi-core
systems. In European Conference on Parallel Processing,
pages 623–635. Springer, 2017.

[15] Thomas Ilsche, Marcus Hähnel, Robert Schöne, Mario
Bielert, and Daniel Hackenberg. Powernightmares: The
challenge of efficiently using sleep states on multi-core
systems. In Euro-Par 2017: Parallel Processing Workshops:
Euro-Par 2017 International Workshops, Santiago de Com-
postela, Spain, August 28-29, 2017, Revised Selected Papers
23, pages 623–635. Springer, 2018.

[16] David HK Kim, Connor Imes, and Henry Hoffmann.
Racing and pacing to idle: Theoretical and empirical
analysis of energy optimization heuristics. In 2015 IEEE
3rd international conference on cyber-physical systems, net-
works, and applications, pages 78–85. IEEE, 2015.

[17] Agostino Mascitti, Tommaso Cucinotta, and Mauro
Marinoni. An adaptive, utilization-based approach to
schedule real-time tasks for arm big. little architectures.
ACM SIGBED Review, 17(1):18–23, 2020.

[18] Venkatesh Pallipadi, Shaohua Li, and Adam Belay.
cpuidle: Do nothing, efficiently. In Proceedings of the
Linux Symposium, volume 2, pages 119–125. Citeseer,
2007.

[19] Madhu Palmur, Zhichao Li, and Erez Zadok. Cpuidle
from user space. Technical report, Technical Report
FSL-13-05, Computer Science Department, Stony Brook
University, 2013.

[20] Puchong Praekhaow. Determination of trading points
using the moving average methods. Bangkok, Thailand,
2010.

[21] Simon J Puglisi, William F Smyth, and Andrew H

Turpin. A taxonomy of suffix array construction al-
gorithms. acm Computing Surveys (CSUR), 39(2):4, 2007.

[22] Tumaati Ramesh and Suresh R M. Energy efficient
utilization of computational resources by predicting
cpu idle time. International Journal of Innovative Technol-
ogy and Exploring Engineering (IJITEE), Volume-8(Issue-
6S3), 2019.

[23] Vijay Janapa Reddi, Hongil Yoon, and Allan Knies. Two
billion devices and counting. IEEE Micro, 38(1):6–21,
2018.

[24] Marta Rybczyńska. Improving idle behavior in tick-
less systems. https://lwn.net/Articles/775618/, 2018.
Accessed: 2022-01-27.

[25] Marta Rybczyńska. Improving idle behavior in tick-
less systems. https://lwn.net/Articles/775618/, 2018.
Accessed: 2022-01-27.

[26] Mohammad Sadrosadati, Seyed Borna Ehsani, Hajar
Falahati, Rachata Ausavarungnirun, Arash Tavakkol,
Mojtaba Abaee, Lois Orosa, Yaohua Wang, Hamid
Sarbazi-Azad, and Onur Mutlu. Itap: Idle-time-
aware power management for gpu execution units.
ACM Transactions on Architecture and Code Optimization
(TACO), 16(1):1–26, 2019.

[27] Ashley Stevens. Introduction to amba® 4 ace™ and
big. little™ processing technology. ARM White Paper,
CoreLink Intelligent System IP by ARM, 2011.

[28] Li-Chuan Weng, XiaoJun Wang, and Bin Liu. A survey
of dynamic power optimization techniques. In The 3rd
IEEE International Workshop on System-on-Chip for Real-
Time Applications, 2003. Proceedings., pages 48–52. IEEE,
2003.

Daniel Lezcano is Senior Engineer at Linaro Ltd
company as power management specialist. He
worked 1998 in the Space Industry and Air traf-
fic management for a distributed system project
in life safety constraints where he acquired a
system programming expertise. In 2004, he con-
tributed to the Linux Containers by implementing
the network virtualization and other bricks in the
system as well as the core container engine in
user space. In 2012, he joined Linaro to work in
the power management team. Deeply involved

in the Linux kernel development, he is a Linux maintainer of the timer
drivers, the CPUidle drivers, the thermal and the dynamic thermal power
management frameworks.

Georges Da Costa is Professor in Computer
Science at the University of Toulouse. He re-
ceived its PhD from LIG (Grenoble, France) in
2005. He is a member of the IRIT Laboratory.
His main interests are related to large-scale
distributed systems, algorithmics, performance
evaluation and energy-aware systems.

He serves on several PCs in the Energy aware
systems, Grid and Peer to Peer fields. He was
chair of the COST1305 working group 2 on ‘Pro-
gramming models and runtimes’. His research

currently focuses on energy aware distributed systems. His research
highlights are grid cluster & cloud computing, peer to peer, large scale
energy aware distributed systems, performance evaluation, and ambient
systems.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3253798

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://lwn.net/Articles/646950/
https://lwn.net/Articles/646950/
https://lwn.net/Articles/820432/
https://lwn.net/Articles/775618/
https://lwn.net/Articles/775618/

	Introduction
	State of the art
	Interrupt prediction and Idle mode
	Break even
	The wake up sources
	Timers
	Device Interrupts
	Inter Processor Interrupt


	Methodology
	Predicting the next interrupt
	Interrupt capture system
	Intervals
	Pattern detection


	Experimentation
	Description of experiments
	Workloads
	Workloads interrupt statistics

	Existing governors
	Reference governors

	Implementation and validation
	ARM
	X86

	Conclusion and perspectives
	Biographies
	Daniel Lezcano
	Georges Da Costa


