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ABSTRACT
In this paper we introduce a pruning of the medial axis called the

(𝜆, 𝛼)-medial axis (ax
𝛼
𝜆
).We prove that the (𝜆, 𝛼)-medial axis of a set

𝐾 is stable in a Gromov-Hausdorff sense under weak assumptions.

More formally we prove that if 𝐾 and 𝐾 ′
are close in the Hausdorff

(𝑑𝐻 ) sense then the (𝜆, 𝛼)-medial axes of 𝐾 and 𝐾 ′
are close as met-

ric spaces, that is the Gromov-Hausdorff distance (𝑑𝐺𝐻 ) between

the two is
1

4
-Hölder in the sense that 𝑑𝐺𝐻 (ax𝛼

𝜆
(𝐾), ax𝛼

𝜆
(𝐾 ′)) ≲

𝑑𝐻 (𝐾,𝐾 ′)1/4. The Hausdorff distance between the two medial axes

is also bounded, by 𝑑𝐻 (ax𝛼
𝜆
(𝐾), ax𝛼

𝜆
(𝐾 ′)) ≲ 𝑑𝐻 (𝐾,𝐾 ′)1/2. These

quantified stability results provide guarantees for practical compu-

tations of medial axes from approximations. Moreover, they provide

key ingredients for studying the computability of the medial axis

in the context of computable analysis.
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1 INTRODUCTION
Given a closed subset 𝐾 of Euclidean space R𝑛 , its medial axis,
denoted ax(𝐾), is the set of points in the complement 𝐾𝑐 of 𝐾 for

which there are at least two closest points in 𝐾 , or, equivalently,

on its boundary 𝜕𝐾 . Note that the definitions of the medial axis

used in preceding papers on the same topic [18, 36] considered

∗
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an open subset O ⊂ R𝑛 instead. Because the medial axis was

then defined as the set of points in O with at least two closest

points on the complement O𝑐 we see that the difference is only
cosmetic by setting 𝐾 = O𝑐 . The properties of the medial axis and

its computation have been intensively studied, both in theory and

in particular applications contexts, see [5] for an overview, or [41]
1

for an application oriented review of general notions of shapes

skeletons and computation methods.

One obvious motivation for studying the stability of the medial

axis is to be able to guarantee the (approximate) correctness of the

information that can be extracted from the medial ax(𝐾 ′) axis of
an approximated shape 𝐾 ′

of an exact, or ideal, shape 𝐾 . Here the

approximation error could be the unavoidable finite accuracy of

physical measurements or some small perturbations induced by

rounding or geometric data conversions.

Another, more formal, motivation for studying the stability is

related to its formal computation. Indeed, among the significant

amount of practical proposed algorithms for the map 𝐾 ↦→ ax(𝐾),
the model of computation is usually implicit, which we find prob-

lematic in the case of this particularly unstable object. We refer to

Section 4.1 for a more extensive discussion of this issue.

The idea of pruning, or filtering, the medial axis, in order to

improve its stability, has been, sometime implicitly, a key ingredient

in realistic algorithms. For example, in [24], the 𝜃 -simplified medial
axis of 𝐾 is defined as the set of points 𝑥 on the medial axis of 𝐾 for

which 𝑥 has at least 2 closest points 𝑝, 𝑞 ∈ 𝐾 such that the angle

∠𝑝𝑥𝑞 is greater than 𝜃 . Since the medial axis of a finite discrete set

𝑆 ⊂ R𝑑 is the (𝑑−1)-skeleton of the Voronoi diagram of 𝑆 , following

some pioneering works such as [3, 7], in [21], the Voronoi cells of a

point sample are pruned along some parametrized criterion, namely

a angle condition or a ratio condition on the circumradius of the set

of closest points and the distance between the point on the medial

axis and its closest projection.

This paper pursues the quest for provably stable filtrations of

the medial axis for general closed subset of Euclidean space, in the

spirit of [18]. Other prunings of the medial axis have been suggested

in e.g. [6, 10, 20, 25, 38, 40, 47, 48]. Each pruning method comes

with some drawbacks (as well as strong points). We refer to [16]

for a discussion of the particular deficiencies of a number of these

methods in more detail.

1
Unfortunately, [41] mixes up the 𝜃 -medial and 𝜆-medial axis in Figure 11 of that

paper.
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2 THE CRITICAL FUNCTION AND THE
𝜆-MEDIAL AXIS

In this section we review a number of results from [17, 18] on

the critical function of a compact set and some related notions.

These results are both key ingredients in our proofs and a source

of inspiration for some of the statements. The reach of a set 𝐾

is the minimal distance between a set and its medial axis. It was

introduced by Federer [23] in order to extend curvature measures

to more general sets. The reach is also the lowest upper bound over

the set of the local feature size [4, 23], that is the distance of a point

to the medial axis.
2
The critical function 𝜒𝐾 : (0,∞) → [0, 1] ([17]

and [11, Section 9]) of a compact set 𝐾 has been introduced in order

to quantify how the topology of a set can be determined from a

Hausdorff approximation of it, in particular when the reach is 0,

which is common for non-smooth sets.

For a point 𝑥 ∈ R𝑛 , we denote by 𝑅𝐾 (𝑥) its distance to 𝐾 and

by F𝐾 (𝑥) the radius of the smallest ball enclosing the points in 𝐾

closest to 𝑥 , see the full version of this paper [37, Section 8.2] for

details. The critical function 𝜒𝐾 of 𝐾 is then defined as:

𝜒𝐾 (𝑡) =
def.

inf

𝑅𝐾 (𝑥 )=𝑡

√︄
1 −

(
F𝐾 (𝑥)
𝑅𝐾 (𝑥)

)
2

. (1)

The medial axis ax(𝐾) can be defined as the set of points 𝑥 in R𝑛

such that F𝐾 (𝑥) > 0. It follows that, when 𝐾 has positive reach,

𝜒𝐾 (𝑡) = 1 for 𝑡 smaller than the reach.

We write

𝐾⊕𝑡 =
def.

{𝑥 ∈ R𝑛, 𝑑 (𝑥, 𝐾) ≤ 𝑡}

for the 𝑡-offset of 𝐾 . For 𝑡 > 0, the topology of this offset can only

change at critical values of the distance function, that is values

for which 𝜒𝐾 vanishes. For a given 𝜇 ∈ (0, 1], the 𝜇-Reach (𝑟𝜇 ) is

defined as

𝑟𝜇 (𝐾) =
def.

inf{𝑡 | 𝜒𝐾 (𝑡) < 𝜇}.

If 𝐾 has positive 𝜇-reach for some 𝜇 > 0, then 𝐾⊕𝑟𝜇
deforms retract

on 𝐾 , see [28, Theorem 12]. Notices that 𝑟1 (𝐾) is the reach of 𝐾 .

In [18] the 𝜆-medial axis of 𝐾 , denoted here ax𝜆 (𝐾), was intro-
duced. Where the medial axis is the set of points in R𝑛 such that

F𝐾 (𝑥) > 0, the 𝜆-medial axis of 𝐾 is a filtered version of it, de-

fined as the set of points in R𝑛 such that F𝐾 (𝑥) ≥ 𝜆. Since F𝐾 is

upper semi-continuous [36, Corollary 4.7], ax𝜆 (𝐾) is a closed set.

For a given value of the filtering (pruning) parameter 𝜆, ax𝜆 (𝐾)
enjoys some geometrical and topological stability, see [18] and the

overview in Section 5 for details.

The medial axis is the limit of 𝜆-medial axes in the sense that:

𝜆′ ≤ 𝜆 ⇒ ax𝜆′ (𝐾) ⊃ ax𝜆 (𝐾) and⋃
𝜆>0

ax𝜆 (𝐾) = ax(𝐾) . (2)

3 OVERVIEW OF RESULTS
In this paper (see also the full version [37]), we show that a simple

variant of the previous filtering 𝜆 ↦→ ax𝜆 (𝐾), enables significantly
stronger stability statements.

2
The nomenclature was introduced by Amenta et al. [4] in order to state conditions

under which the topology of a set can be determined from a sampling of it, however

the concept was known to Federer [23].

The (𝜆, 𝛼)-medial axis of a closed set 𝐾 ⊂ R𝑛 , denoted here

ax
𝛼
𝜆
(𝐾), is the 𝜆-medial axis of the 𝛼-offset3 of 𝐾 :

ax
𝛼
𝜆
(𝐾) =

def.

ax𝜆 (𝐾⊕𝛼 ) .

It is just another similar way of filtering the medial axis, where

(2) is replaced by ⋃
𝜆>0

⋃
0<𝛼<𝜆

ax
𝛼
𝜆
(𝐾) = ax(𝐾). (3)

The stability properties are then improved in two different ways:

First, for 𝜆, 𝛼 > 0, if 𝜒𝐾 does not vanish on some interval [𝑎, 𝑏]
such that 𝑎 < 𝛼 and 𝛼 + 𝜆 < 𝑏, then the map (𝜆, 𝛼, 𝐾) ↦→ ax

𝛼
𝜆
(𝐾) is

continuous for the (two-sided) Hausdorff distance on both the input

𝐾 and the output ax
𝛼
𝜆
(𝐾). Moreover, we give an explicit Hölder

exponent in terms of 𝜆, 𝛼 : For 𝐾 : (𝜆, 𝛼, 𝐾) ↦→ ax
𝛼
𝜆
(𝐾) the Hölder

exponent is 1 with respect to 𝜆 and 𝛼 , i.e. it is locally Lipschitz with

respect to 𝜆 and 𝛼 ([37, Lemma 9.4 and Lemma 9.5]). The map is

1

2
-Hölder with respect to 𝐾 ([37, Lemma 10.7]).

Secondly, we extend the stability results to theGromov-Hausdorff

distance, see [37, Section 8.4] for a formal definition. We show here

that connected (𝜆, 𝛼)-medial axes are compact subsets of Euclidean

space and have finite geodesic diameter ([37, Theorem 9.12]). There-

fore (𝜆, 𝛼)-medial axes equipped with intrinsic geodesic distances

on ax
𝛼
𝜆
(𝐾)) give meaningful metric spaces. We show that ax

𝛼
𝜆
(𝐾)

seen as metric spaces is Gromov-Hausdorff stable under Hausdorff

distance perturbation of 𝐾 , which can be expressed as the conti-

nuity of the map (𝜆, 𝛼, 𝐾) ↦→ ax
𝛼
𝜆
(𝐾) under the associated metrics.

Moreover we again establish bounds on the Hölder exponent in

this new metric context: this map is locally Lipschitz with respect

to 𝜆 and 𝛼 ([37, Lemmas 9.14 and 9.15]) and
1

4
-Hölder with respect

to 𝐾 ([37, Theorem 11.1]).

This Gromov-Hausdorff stability gives metric stability which

complements the homotopy type preservation and Hausdorff dis-

tance stability. It is the strongest form of stability we can hope for

because the stronger property of bounded Fréchet distance
4
is im-

possible to achieve because of topological instability. In particular

small smooth changes in a set can create changes in the topology

of the medial axis.

Figure 1 illustrates three situations where the two shapes, the

red and the blue, share the same homotopy type, as they all deform

retract to a circle, and are close to each other with respect to the

Hausdorff distance: any point in the red shape is near the blue

shape and the reverse holds as well. On the first example, both

distances, Fréchet (𝑑𝐹 ) and Gromov-Hausdorff (𝑑𝐺𝐻 ) are large, be-

cause the distances in the ‘tail’ differ significantly thanks to the

zigzag. Because of our bound on the Gromov-Hausdorff distance

([37, Theorem 11.1]), this situation cannot occur if the red and blue

sets are the medial axis of two sets with small Hausdorff distance

between them.

On the two next examples of Figure 1 the red and the blue shapes

do correspond to medial axes of two sets close to each other in

3
The 𝛼-offset is denoted by 𝐾⊕𝛼

, see [37, Section 8.4] for an explanation of the

notation.

4
Recall that the Fréchet distance between two subsets 𝑆1, 𝑆2 of a same metric space is

the infimumof sup𝑥 ∈𝑆
1

𝑑 (𝑥,ℎ (𝑥 ) ) among all possible homeomorphismsℎ : 𝑆1 → 𝑆2 .

It is therefore infinite when shapes are not homeomorphic. Note that we do not consider

the orientation of the sets 𝑆1 and 𝑆2 .

1769



Hausdorff and Gromov-Hausdorff Stable Subsets of the Medial Axis STOC ’23, June 20–23, 2023, Orlando, FL, USA

Hausdorff distance (in dotted lines). On the middle, the medial axes

are similar but not homeomorphic, so that the Frechet distance is

infinite. In the last case they are homeomorphic but the Fréchet

distance would still be large (you would need to rotate one of them

by 90
◦
for the homeomorphism). In contrast, as asserted by [37,

Theorem 11.1], the Gromov-Hausdorff distance between them is

small.

dF is large

dGH is large

dF is infinite

dGH is small

dF is large

dGH is small

Figure 1: Comparison between Frechet (𝑑𝐹 ) and Gromov-
Hausdorff (𝑑𝐺𝐻 ) stability. On the two examples below, the
shapes are (𝜆, 𝛼)-filtered medial axes of nearby sets (in dotted
lines), and as asserted by [37, Theorem 11.1], the Gromov-
Hausdorff distance between them is small.

Gromov-Hausdorff stability can be seen informally as a weaken-

ing of Frechet distance that ignores small scale features.

4 MOTIVATION
4.1 Medial Axis Computation Algorithms and

Models of Computation
The medial axis is known to be unstable in theory [5], and, as a

consequence, its computation is often problematic in practice. A

typical illustration of this instability is when 𝐾𝑐 is an open disk

in the plane: its medial axis is a point, but a 𝐶∞
perturbation, ar-

bitrary small, in the 𝐶0
sense of differential topology [27], of its

boundary, may produce an arbitrary large perturbation (measured

in the Hausdorff distance) of the resulting medial axis.

Computing the medial axis consists in, given as input some

representation of the closed set 𝐾 , to compute as output some

representation of ax(𝐾). Let us recall two possible computation

models under which what it means to “compute” 𝐾 ↦→ ax(𝐾).
In computational geometry, the implicit computation model

(sometimes called exact computation paradigm in order to dis-

tinguish it from the unrealistic “Real RAM” computation model)

assumes that both input and output can be exactly represented by

finite data in the computer. This implies that input and output have

to belong to countable sets,
5
such as, for example, integer, rational

5
As only countable sets can have each of its elements representable by a finite word.

or algebraic numbers, or polynomials built on top of them. Given

a set of rational or algebraic points, or given a polyhedron with

rational or algebraic vertices coordinates, for example, we now that

the medial axis is a finite algebraic complex and, as such, belongs to

a countable set, therefore exactly presentable on a computer. These

are situations where it makes sense to compute the medial axis in

this exact computation model, even if it may be difficult.

Computable analysis, pioneered with the notion of computable

real numbers introduced by Turing in his 1936 undecidability paper

[42, 43], is studied in the logic and theoretical computer science

literature [9, 13, 26, 31–35, 46], but its formalism is most often

ignored in applications.

However, it is actually implicit in many practical computations

involving real numbers and real functions, for example in numeri-

cal analysis, where a typical example would be the finite element

method. In this context, one considers that input and output can

belong to topological spaces with countable bases of neighbour-

hoods, typically metric spaces with dense countable subsets, called

separable metric spaces, who, as a consequence, have at most the

cardinality of real numbers. Examples of such metric spaces are:

• Real numbers with their natural topology (rational numbers

are dense).

• Continuous functions on a compact set with the sup norm

(polynomials with rational coefficients are dense, by the

Stone-Weierstrass Theorem).

• 𝐿𝑝 (classes of) functions with their associated 𝐿𝑝 norms

(rational step functions are dense).

• Compacts subsets of Euclidean spaces endowed with the

Hausdorff distance (finite points sets in Q𝑛 are dense).

In the context of these separable metric spaces, an algorithm, in

this model of computation, takes as input a sequence belonging to

the dense subset, so that each element of the sequence, belonging

to a countable space, admits a finite representation.
6
It then com-

putes, for each element of the input sequence, an element of the

output sequence in such a way that the output sequence converges

to the image of the limit of the input sequence. This mere defini-

tion assumes that the (theoretical) output of the limit of the input

sequence, is the limit of the sequence of (actual) outputs of items of

the input sequence. This is the reason why, in the context of com-

putable analysis, only continuous functions, that commute with

limits, can be computable
7
. For example, integer part function is

computable, in this model, only at non-integer numbers. In decimal

representation, if, after the dot, an infinite sequence of 9s appears,

the algorithm would read the input forever.

Recall that a continuous function𝜔 : R≥0 → R≥0, with𝜔 (0) = 0,

is a modulus of continuity of a map 𝑓 : 𝑋 → 𝑌 between metric

spaces if for all 𝑥1, 𝑥2 ∈ 𝑋 ,

𝑑𝑌 (𝑓 (𝑥1), 𝑓 (𝑥2)) ≤ 𝜔 (𝑑𝑋 (𝑥1, 𝑥2)).

If one wishes to control some form of theoretical algorithmic effi-

ciency in the context of computable analysis, a modulus of conti-

nuity of the operator, that associates to some uncertainty on the

6
The dense set has, formally, to be recursively enumerable.

7
In fact computability of the function requires moreover the modulus of continuity of

the map to be computable, in particular should not tend to 0 slower than any recursive

function.
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input an upper bound on the induced uncertainty on the output,

needs to be estimated.

We do not need to enter here in the technicalities of computable

analysis. Our contribution consists in stating some explicit modu-

lus of continuity, which, on the theoretical side, would be a crucial

ingredient in the proofs of computability and complexity in the

context of computable analysis, but is also, on the application side, a

way to guarantee some accuracy in practical computations. Indeed,

practical implementations of the computation of the medial axis

apply some kind of approximation during the computation process.

In a practical situation, this approximation process is already in-

herent to the data collection process, as any physical numerical

measure is meant at some, finite, accuracy. Second, the actual input

of an algorithm is often the output of a preceding algorithm which

cannot, reasonably, be assumed recursively to compute exact output

from exact inputs: recursion on algebraic numbers representations

are possible along a finite depth of computation only. When, along

the process, some form of rounding, pixelization, small features

collapses or filtering, is performed, being able to upper bound the

impact on the output seems sensible, and in fact necessary for

provably correct algorithms.

Since𝐾 ↦→ ax(𝐾) is not continuous in general when the topology
of both inputs and outputs are defined by the Hausdorff distance,

we see two ways of stating a continuity, or stability, property, for

the operator 𝐾 ↦→ ax(𝐾). One possibility is to consider a stronger

topology on the input, a form of Fréchet, or ambient diffeomor-

phism based, 𝐶𝑘 distance, which would apply to smooth objects

and representations.

Another possibility is to consider a weaker topology on the out-

put, by considering filtered medial axes. In this model, the input

sequence encodes 𝐾 in the form of approximations

(
�̃�𝑖
)
𝑖∈N that

converge to 𝐾 in Hausdorff distance. For the �̃�𝑖 one would typi-

cally choose finite point sets or (geometric) simplicial complexes

(meshes/triangulations). As 𝑖 would increase in one would not only

add more points or simplices to 𝐾𝑖 , but also make the coordinates

of the points/vertices more precise by adding digits to their coordi-

nates.

The output sequence encodes ax(𝐾), in the form of progressive

approximations of the map (𝜆, 𝜇) ↦→ ax
𝛼
𝜆
(𝐾), for decreasing values

of 𝜆, 𝛼 . These approximations (effectively) converge, where a basis

of neighbourhoods (in the space of functions) of (𝜆, 𝛼) ↦→ ax
𝛼
𝜆
(𝐾)

is given by the sets of maps (𝜆, 𝛼) ↦→ 𝑓 (𝜆, 𝛼) satisfying 𝜆, 𝛼 > 𝑡 ⇒
𝑑★(𝑓 (𝜆, 𝛼), ax𝛼𝜆 (𝐾)) < 𝜖 for some 𝜖, 𝑡 > 0.

This approach does not require any smoothness assumption

on 𝐾 . The present paper focuses on this filtered approach, where

the considered distance 𝑑★ between sets is either the Hausdorff

distance, either the Gromov-Hausdorff distance on geodesic metric

spaces.

Describing formally effective types and algorithms for the com-

putation of the medial axis is beyond the scope of this paper. How-

ever, let us make some suggestions for further work in this direction.

Probably the simplest model would consider the space of finite set

of points with rational coordinates as inputs. These inputs together

form a countable, and recursively enumerable set which is naturally

equipped with the Hausdorff distance. The topological completion

of the set of inputs gives all compact subsets of Euclidean space. The

corresponding output space would consist of the filtered Voronoi

Diagrams for which the coordinates of the Voronoi vertices are

rational numbers. The Hölder modulii of continuity proven in this

paper would allow to formally state the effectivity of the model.

The model could also be formalized in the context of Scott do-

mains [1, 22], [2, Chapter 1] and their associated information or-

ders.
8
In this context, our results answer the following question:

If the only information we have about some compact set 𝐾 is its

Hausdorff approximation 𝐾 ′
, what information can we infer about

its medial axis ax(𝐾)?

4.2 Motivation from Mathematics: The Stability
of the Cut Locus

The medial axis is closely related to the cut locus. We recall

Definition 4.1. LetM be a smooth (closed) Riemannian manifold

and let 𝑝 ∈ M. For every 𝑣 ∈ 𝑇𝑝M, with |𝑣 | = 1, we can consider

the geodesic 𝛾𝑣 (𝑡) = exp𝑝 (𝑡𝑣) emanating from 𝑝 in the direction 𝑣 .

Let 𝛾𝑣 (𝜏) be the first point along 𝛾𝑣 such that the geodesic {𝛾𝑣 (𝑡) |
𝑡 ∈ [0, 𝜋]} is no longer the unique minimizing geodesic to 𝑝 . The

cut locus of 𝑝 is the union of these points for all unit length 𝑣 in

𝑇𝑝M.

The cut locus is therefore more general in the sense that it is

defined for general Riemannian manifolds, while more restrictive

in the sense that it only considers a single point.
9

The stability and structure of the singularities of the cut locus

has been a studied intensely. Buchner [14] derived the following

result:

Theorem 4.2. Let𝐺 be the space of metrics on a smooth manifold,
endowed with the Whitney topology. Each metric 𝑔 ∈ 𝐺 and 𝑝 ∈ M
yield a cut locus 𝐶𝑝,𝑔 . The cut locus 𝐶𝑝,𝑔 is called stable if there is a
neighbourhood𝑊 ⊂ 𝐺 of 𝑔 such that for any 𝑔′ ∈ 𝑊 there exists
a diffeomorphism Φ : M → M such that Φ(𝐶𝑝,𝑔′ ) = 𝐶𝑝,𝑔 . If the
dimension ofM is low (≤ 6) then𝐶𝑝,𝑔 is stable for an open and dense
subset of 𝐺 .

Wall [45] extended this result to arbitrary dimensions at the

cost of weakening the diffeomorphism to a homeomorphism. The

structure of the singularities of the cut locus were also described

by Buchner in [15]. A similar description for the singularities of

medial axis of a smooth manifold can be found in [49], see also [39],

as well as [44].

This paper follows the tradition of these investigations of the

stability of cut locus and the medial axis. However, there are also

some significant differences. First and foremost we take a metric

viewpoint instead of analytical. This viewpoint does not require

us to make a distinction between low dimensional and high di-

mensional spaces. We made the constants explicit in view of the

applications in computer science, in particular computational ge-

ometry and topology, shape recognition, shape segmentation, and

manifold learning.

8
It is possible, following [22], to topologically embed our input and output metric

spaces asmaximal elements of some Scott domains. Our boundedmodulus of continuity

would then allow to provide effective structures for them.

9
The reach and medial axis can be defined for closed subsets of Riemannian manifolds

[8, 12, 29, 30].
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The authors are currently working on the stability of the cut

locus and medial axis of smooth sets, using the tools which we

develop in this paper.

5 OVERVIEW OF THE STABILITY OF THE
𝜆-MEDIAL AXIS

Under mild conditions, the 𝜆-medial axis enjoys some nice stability

properties, assuming that 𝐾𝑐 is bounded. Informally:

(1) When 𝜒𝐾 does not vanish on (0, 𝜆], the 𝜆-medial axis pre-

serves the homotopy type of the complement 𝐾𝑐 of 𝐾 [18,

Theorem 2],

(2) Taking the Hausdorff distance on the input 𝐾 and the one

sided Hausdorff distance on the output ax𝜆 (𝐾) we get a kind
of modulus of continuity. If 𝑑ℎ (𝐾,𝐾 ′) is small, the points in

ax𝜆 (𝐾) are “near”, in a quantified way, ax𝜆′ (𝐾 ′), for some

𝜆′ < 𝜆 close to 𝜆 [18, Theorem 3].

(3) For “regular values of 𝜆” the map 𝐾 ↦→ ax𝜆 (𝐾) is continuous
for the Hausfdorff distance [18, Theorem 5]. However, the

modulus of continuity can be arbitrarily large in general.

Property 1 gives some stability on the homotopy type with re-

spect to Hausdorff perturbation of𝐾 , since, under similar conditions

on the critical function of 𝐾 , when 𝑑ℎ (𝐾,𝐾 ′) is small, the offsets of

𝐾 ′
may share the homotopy type of 𝐾 [17, 19]. Properties 2 and 3

give precise, quantified, stability results, much stronger than the

mere half-continuity of the medial axis itself, see e.g. [5].

6 CONTRIBUTIONS: THE IMPROVED
STABILITY OF THE (𝜆, 𝛼)-MEDIAL AXIS

Before entering into the formal proofs, let us give some intuition

about the (𝜆, 𝛼)-medial axis stability.

This improved stability can be illustrated in the case of a finite

set 𝐾 . Figure 2 illustrates the (𝜆, 𝛼)-medial axis in the simplest non-

trivial case, where 𝐾 consists of two points in the plane. In this case

the 𝜆-medial axis would be empty as long as 𝜆 is strictly greater

than the half distance between the two points and it would become

the whole bisector line as soon as 𝜆 is smaller or equal to this value.

α
critical value of

distance function λ λλ
axα

λ axα
λ

axα
λ

Figure 2: Comparison between 𝜆-medial axis and (𝜆,𝛼)-
medial axis evolutions for increasing 𝜆, in the particular
case where 𝐾 contains two points in the plane. The 𝜆-medial
axis would be either the whole bisector line of the two points,
for 𝜆 smaller or equal to half the distance between the points,
either the empty set for larger value of 𝜆. By contrast, the
evolution, for increasing 𝜆, of the (𝜆, 𝛼)-medial axis, which is
also the 𝜆-medial axis of the union of two disks of radius 𝛼 ,
evolves continuously, in Hausdorff distance, as 𝜆 increases.

By contrast, the (𝜆, 𝛼)-medial axis, for a fixed value of 𝛼 > 0,

here the radius of the two disks of the 𝛼-offset of 𝐾 , is Hausdorff

continuous with respect to 𝜆. Indeed, as 𝜆 increases, when 𝛼 + 𝜆
equals the half distance between the two points, ax

𝛼
𝜆
(𝐾), which

until then is the whole bisector line, starts to be disconnected,

creating a hole. But, since the hole grows continuously, its birth

is not a discontinuity for the Hausdorff distance. However, in the

neighborhood of this event, the hole size grows quadratically with

𝜆: This does not contradict the claim that the map 𝜆 ↦→ ax
𝛼
𝜆
(𝐾) is

Lipschitz, as the precise conditions of the claim require us to avoid

situations where 𝛼 + 𝜆 is a zero of 𝜒𝐾 .

2λ

2λ 2λ

Figure 3: Comparison between 𝜆-medial axis and (𝜆,𝛼)-
medial axis evolutions for increasing 𝜆, in the particular
case where 𝐾 is a finite subset of the plane. In this case both
filtered medial axes are subsets of the union of the edges
of the Voronoi diagram. On the second row, the points have
been replaced by disks of radius 𝛼 , offset of the points. The
evolution of the (𝜆,𝛼)-medial axis is Hausdorff continuous
whenever 𝛼 + 𝜆 is not a critical value of the distance function.
On the other hand, as seen on first row, the 𝜆-medial axis
contains precisely the whole Voronoi edges or vertices whose
dual simplex lies in a ball of radius 𝜆. The 𝜆-medial axis is
therefore Hausdorff discontinuous for each value of 𝜆 which
is the radius of the smallest ball enclosing some Delaunay
simplex.

Figure 3 shows a situation where 𝐾 is made of four points in

the plane. The 𝜆-medial axis is made of these edges and vertices

whose dual Delaunay simplex has smallest enclosing radius greater

or equal to 𝜆. As a function of 𝜆, it is therefore Hausdorff distance

discontinuous for each value of 𝜆 that is equal to a such radius.

In contrast, the (𝜆, 𝛼)-medial axis, as a function of 𝜆 for fixed

𝛼 > 0, can be Hausdorff discontinuous only when 𝛼 + 𝜆 is a zero
of the critical function 𝜒𝐾 . We have depicted such a transition in

Figure 4: Here we increase 𝜆 further until 𝛼 + 𝜆 = 𝜌 , where 𝜌 is the

circumradius of the unique acute triangle in the Delaunay diagram,

and therefore the unique value of the distance to 𝐾 corresponding

to a local maximum. Until 𝛼 + 𝜆 = 𝜌 the (𝜆, 𝛼)-medial axis would

contain the Voronoi vertex dual to this acute triangle (for 𝛼 + 𝜆 = 𝜌

the Voronoi vertex would be an isolated point). Since this points

would disappear from the (𝜆, 𝛼)-medial axis for 𝛼 +𝜆 > 𝜌 , it results

a Hausdorff distance discontinuity of 𝜆 ↦→ ax
𝛼
𝜆
(𝐾).

In general, Hausdorff distance discontinuities of 𝜆 ↦→ ax𝜆 (𝐾)
may appear anywhere, at some “non regular values”, as mentioned

in item 3 of Section 5 and illustrated on top row of Figure 3 (where

𝜆 is a zero of 𝜒𝐾 ) and in Figure 5 (where 𝜆 is not a zero of 𝜒𝐾 ). By
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Figure 4: Further evolution of the (𝜆,𝛼)-medial axis, after the
steps of the bottom row of figure 3. For some small interval of
values of 𝜆, the Voronoi vertex is an isolated point on ax

𝛼
𝜆
(𝐾),

as illustrated on the middle, When 𝛼 + 𝜆 equals the Delaunay
triangle circumradius, this points disappears from ax

𝛼
𝜆
(𝐾),

which corresponds to a discontinuity of 𝜆 → ax
𝛼
𝜆
(𝐾) for the

Hausdorff distance.

contrast, the map 𝜆 ↦→ ax
𝛼
𝜆
(𝐾), for 𝛼 > 0, is continuous (locally

Lipschitz) when 𝜒𝐾 (𝛼 + 𝜆) does not vanish, in other words the

interval on which the homotopy type of ax
𝛼
𝜆
(𝐾) remains stable.

Figure 5: 𝜆 ↦→ ax𝜆 (𝐾) is not continuous, because 𝐾 is non-
smooth at the points 𝑎 and 𝑏.

6.1 The Case of a Set 𝐾 ⊂ R𝑛 with Positive
𝜇-Reach and Its Hausdorff
Approximation 𝐾 ′

In Part II of the full version of this paper [37] we consider the

general situation of sets whose 𝛼-offsets have positive 𝜇-reach. In

particular, [37, Lemma 10.7 and Theorem 11.1] use a symmetrical

formulations on the pair of sets𝐾 and𝐾 ′
in order to state a modulus

of continuity for the map 𝐾 ↦→ ax
𝛼
𝜆
(𝐾), where the metric on 𝐾 is

the Hausdorff distance and the metric on the medial axis can be

either the Hausdorff distance or the Gromov-Hausdorff distance.

In this section we consider the simpler setting, where we don’t

need to offset for 𝐾 to achieve positive 𝜇 reach, that is 𝑟𝜇 (𝐾) > 0

and we are given a set𝐾 ′
that is close to𝐾 in terms of the Hausdorff

distance. This allows a concise formal expression of our main results

in a simpler setting, while illustrating a typical application.

Overall this section, we make the following assumption:

Assumption 6.1 (Assumption for Section 6.1). We assume 𝐾,𝐾 ′
to

be closed sets such that, for some 𝜖 > 0, 𝑑𝐻 (𝐾 ′, 𝐾) < 𝜖 , 𝑟𝜇 (𝐾) > 0

and, the complements𝐾𝑐 and𝐾 ′𝑐
to be bounded: denotingB(0, 𝑅) ⊂

R𝑛 the ball of radius 𝑅 > 0, one has𝐾∪B(0, 𝑅) = 𝐾 ′∪B(0, 𝑅) = R𝑛 .
We assume moreover 0 < 𝛼 < 𝛼max and 0 < 𝜆 < 𝜆max, for

𝛼max + 𝜆max < 𝑟𝜇 (𝐾)/2 and we denote �̃� = min(𝜇,
√
3/2).

In particular, assuming 𝛼max + 𝜆max < 𝑟𝜇 (𝐾)/2 allows a simple

expression for �̃�.

6.1.1 Hausdorff Stability. As a consequence of [37, Lemma 9.4 and

Lemma 9.5] we have that:

Proposition 6.2. For any 𝜆min > 0, the map 𝜆 ↦→ ax
𝛼
𝜆
(𝐾) is(

𝑅2

𝛼𝜆min �̃�
2

)
-Lipschitz in the interval [𝜆min, 𝜆max] for Hausdorff dis-

tance.
Similarly, for 𝛼min > 0, the map 𝛼 ↦→ ax

𝛼
𝜆
(𝐾) is

(
𝑅2

𝛼min𝜆�̃�
2

)
-

Lipschitz in the interval [𝛼min, 𝛼max] for Hausdorff distance.

We will now combine this with a result from [17, Theorem 3.4].

Let 𝜇′ < 𝜇 and 𝛼 > 0. By definition of 𝑟𝜇 (𝐾), the critical function
of 𝐾 is above 𝜇 on the interval (0, 𝑟𝜇 (𝐾)). Theorem 3.4 of [17] now

says that if 𝐾 ′
is sufficiently close to 𝐾 in Hausdorff distance, then

the critical function of 𝐾 ′
will also be above 𝜇′ on the interval

(𝛼, 𝑟𝜇 (𝐾) − 𝛼), see Figure 6. In other words, there is 𝜖 > 0 such

that:

𝑑𝐻 (𝐾 ′, 𝐾) < 𝜖 ⇒ 𝑟𝛼𝜇′ (𝐾
′) > 𝑟𝜇 (𝐾) − 𝛼. (4)

Then, [37, Lemma 10.7] gives us that:

Proposition 6.3. Denoting �̃�′ = min(𝜇′,
√
3/2), there is 𝜖max > 0

depending only on 𝐾 , such that, for, 𝜖 < 𝜖max, one has:

𝑑𝐻

(
ax
𝛼
𝜆
(𝐾 ′), ax𝛼

𝜆
(𝐾)

)
<

22

3

𝑅2

𝛼
1

2 �̃�′
3

2 𝜆
𝜖

1

2 . (5)

Note that, thanks to [17], under the conditions of the proposition,

that is for sufficiently small 𝜖 , ax𝛼
𝜆
(𝐾 ′), ax(𝐾) and 𝐾𝑐 have same

homotopy type [37, Theorem 9.7].

6.1.2 Gromov-Hausdorff Stability. Lemma 9.11 and Theorem 9.12

of the full version [37] give an explicit upper bound in the geodesic

diameter of ax
𝛼
𝜆
(𝐾), assuming 𝐾𝑐 to be connected, as:

GeoDiameter(ax𝛼
𝜆
(𝐾)) ≤ 2

𝑅

�̃�2
+ 2𝛼

((
4𝑅

𝛼

)𝑛
+ 1 + 2

𝜇

)
𝑒

1

𝜇
+ 𝑅

𝛼�̃�2
(6)

Thanks to (4), a similar bound holds for GeoDiameter(ax𝛼
𝜆
(𝐾 ′)),

for sufficiently small 𝜖 .

This bound is exponential in
2𝑅
𝛼�̃�2

and therefore increases quickly

as 𝛼 → 0. We do not know if this bound is close to be tight.
10

Lemmas 9.14 and 9.15 of the full version [37] give:

10
But it is seems likely to be pessimistic in practical situations.
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Figure 6: (Adapted from [11])). On the top, the critical func-
tion 𝜒𝐾 of a square 𝐾 in R3 together with the corresponding
level sets 𝑅−1

𝐾
(𝑡) of the distance to𝐾 , on which the inf is taken

in equation (1). The topology of offsets changes only when
𝜒𝐾 (𝑡) = 0, that is when 𝑡 = 𝑡𝑐𝑟𝑖𝑡 . which is the half of the square
side. For 𝑡 ∈ (0, 𝑡𝑐𝑟𝑖𝑡 .), 𝜒𝐾 (𝑡) = 1/

√
2 since, for 0 < 𝑡 < 𝑡𝑐𝑟𝑖𝑡 .,

the inf in (1) is For 𝑡 ∈ (0, 𝑡𝑐𝑟𝑖𝑡 .) we have that 𝜒𝐾 (𝑡) = 1/
√
2.

This can be seen as follows: For 0 < 𝑡 < 𝑡𝑐𝑟𝑖𝑡 . the inf in (1) is
attained on the intersection of 𝑅−1

𝐾
(𝑡), the supporting plane

of the square, and the medial axis. This intersection equals
the diagonals of the square. It follows immediately from
Pythagoras that F𝐾 (𝑥) = 𝑅𝐾 (𝑥 )√

2

. This value is indeed strictly
smaller than 1 as the reach of the square is 0.
At the bottom, the critical function of a set 𝐾 ′ (here a finite
set), close, inHausdorff distance, to𝐾 . For large enough offset
𝑡 , 𝜒𝐾 ′ is close to 𝜒𝐾 . In particular, if 𝑑𝐻 (𝐾 ′, 𝐾) is small enough
with respect to 𝑡𝑐𝑟𝑖𝑡 ., Theorem [17, Theorem 4.2] provides
a lower bound on the critical function of 𝐾 ′, which is then
guaranteed to not vanish on some interval subset of (0, 𝑡𝑐𝑟𝑖𝑡 .).

Proposition 6.4. For any 𝜆min > 0, the map 𝜆 ↦→ ax
𝛼
𝜆
(𝐾) is(

𝑅2 (2𝛼min𝜆min+𝐷
𝛼2

min
�̃�2

)
-Lipschitz in the interval [𝜆min, 𝜆max] for Gromov-

Hausdorff distance, where

𝐷 = max

𝜆∈[𝜆min,𝜆max ]
GeoDiameter(ax𝛼

𝜆
(𝐾)) .

Similarly, for 𝛼min > 0, the map 𝛼 ↦→ ax
𝛼
𝜆
(𝐾) is

(
𝑅 (2𝛼min+𝐷
𝛼2

min
�̃�2

)
-

Lipschitz in the interval [𝛼min, 𝛼max] for Gromov-Hausdorff distance,
where 𝐷 = max𝜆∈[𝛼min,𝛼max ] GeoDiameter(ax𝛼

𝜆
(𝐾)).

Note that the geodesic diameter enters as a factor in the Lipschitz

constant. This is due to the fact that the Gromov-Hausdorff distance

is defined as a global upper bound on differences of lengths, while,

here, the metrics differ mainly by a multiplicative factor. In a sense,

the metric discrepancy would be more tightly bounded by a mix

of additive and multiplicative bounds, where Gromov-Hausdorff

distances consider additive discrepancy only. Replacing 𝐷 by its

universal upper bound (6) is likely, in general, to give an overesti-

mated Lipschitz constant with respect to the one using the actual

diameter 𝐷 = max𝜆∈[𝛼min,𝛼max ] GeoDiameter(ax𝛼
𝜆
(𝐾)).

Also, [37, Theorem 11.1] gives us:

Proposition 6.5. Denoting �̃�′ = min(𝜇′,
√
3/2), there is 𝜖max > 0

depending only on 𝐾 , such that, for, 𝜖 < 𝜖max, one has:

𝑑𝐺𝐻

(
ax
𝛼
𝜆
(𝐾 ′), ax𝛼

𝜆
(𝐾)

)
< 2

(
22

3

) 3

2 𝑅3 (2𝛼min + 𝐷)

𝛼
7

4

min
�̃�′

9

4 𝜆
3

2

𝜖
1

4 , (7)

where 𝐷 = max(GeoDiameter(ax𝛼
𝜆
(𝐾)),GeoDiameter(ax𝛼

𝜆
(𝐾 ′))).

Again, taking for 𝐷 the upper bound (6) allows a uniform bound

which is enough in theory.

For a more practical bound on 𝑑𝐺𝐻

(
ax
𝛼
𝜆
(𝐾 ′), ax𝛼

𝜆
(𝐾)

)
it would

be easier to calculate a bound on the geodesic diameter of ax
𝛼
𝜆
(𝐾 ′).

For example, if 𝐾 ′
is finite (in fact the union of the complement

of B◦ (0, 𝑅) with a finite set) one could determine a bound on the

geodesic diameter of the subset of the (𝑛 − 1)-skeleton of part of

the Voronoi diagram corresponding to ax
𝛼
𝜆
(𝐾 ′).

6.2 Method
All proofs in the paper are based on the flow of the (generalized)

gradient of the distance function from a point 𝑥 to𝐾 , see [37, Section

8.2] for a formal definition. The flow has been used before, among

others to establish the following results:

• The medial axis has the same homotopy type as the set [36].

• The topologically guaranteed reconstruction for non-smooth

sets [17].

The flow also plays a central role in the work on the 𝜆-medial axis

[18]. These tools were developed for non-smooth objects, and rely

on the weak regularity properties based on the 𝜇-reach and the

critical function ([37, Section 8.2]). Our stability results rely on the

stability of the flow and its gradient under Hausdorff perturbation

of 𝐾 , and by quantifying how quickly we enter the (𝜆, 𝛼)-medial

axis following the flow of the gradient, assuming that we start not

too far from the (𝜆, 𝛼)-medial axis.

7 FUTUREWORK
Beyond the stability properties presented in this paper, several ques-

tions remain open. We do not know if our moduli of continuity are

optimal, or if other filtrations could offer better Hölder exponents

for the stability. More precisely, because the dependence of the

(𝜆,𝛼)-medial axis on 𝜆 and 𝛼 is Lipschitz, it is only the Lipschitz

constant that can be improved. This contrasts with the Hölder ex-

ponents for the map𝐾 ↦→ ax
𝛼
𝜆
, namely

1

2
for the Hausdorff distance

and
1

4
the Gromov-Hausdorff distance, which may not be optimal.

Our stability property expressed in term of Gromov-Hausdorff

distance hides a stronger statement. Indeed the Gromov-Hausdorff

distance applies to two independent metric spaces, while our two

metric spaces are also subset of a same Euclidean space. While this

has not been made explicit in the statement of [37, Theorem 11.1],

when 𝑑𝐻 (𝐾,𝐾 ′) < 𝜖 , [37, equation (82)] gives a O(𝜖
1

2 ) bound on

the ambient Euclidean distance between points pairs in relation that

upper bounds the O(𝜖
1

4 ) Gromov-Hausdorff distance. For example,
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in Figure 1 on the right, a simple rotation could define a relation

giving a zero Gromov-Hausdorff distance (an isometry), while in

fact our construction defines another relation for which points in

relation are much closer in ambient space. In order to fully express

our stability properties induced by the flow,we should introduce in a

future work a sharpening of the Gromov-Hausdorff distance, where

the relation realizes not only a small geodesic metric distortion, but

also a small ambient displacement.
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