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ABSTRACT 

 Environmental magnetism techniques are increasingly used to map the deposition of 

particulate pollutants on any type of accumulative surfaces. The present study is part of a 

collective effort that begun in recent years to evaluate the efficiency of these techniques 

involving a large range of measurements to trace the source signals. Here we explore the 

possibilities provided by the very simple but robust k-near-neighbors algorithm (kNN) for 

classification in a source-to-sink approach. For this purpose, in a first phase, the magnetic 

properties of the traffic-related sources of particulate matter (tire, brake pads, exhaust pipes, 

etc.) are used to parameterize and train the model. Then, the magnetic parameters measured 

on accumulating surfaces exposed to a polluted air as urban plant leaves and passive filters 

are confronted to the model. The results are very encouraging.  The algorithm predicts the 

dominant traffic-related sources for different kinds of accumulative surfaces. The model 

predictions are generally consistent according to the sampling locations. Its resolution seems 

adequate since different dominant sources could be identified within one street. We 

demonstrate the possibility to trace traffic-derived pollutants from sources to sinks based only 

on magnetic properties, and to eventually quantify their contributions in the total magnetic 

signal measured. Because magnetic mapping has a high-resolution efficiency, these results 

open the opportunity to complement conventional methods used to measure air quality and to 

improve the numerical models of pollutant dispersion. 

1. INTRODUCTION 

Despite various actions set up by governments and a record number of more than 6,000 

cities in 117 countries that are now continuously monitoring air quality, nearly all the 

world’s population (99%) still breathe air that exceeds the limits prescribed by the World 

Health Organization (World Health Organization, 2022). Indeed, the increase of urban 



population (Department of Economic and Social Affairs, 2019) leads to an increase of 

human activities and consequently, an increase of various types of atmospheric pollutants 

emissions, including particulate matter (PM) and ultrafine particles (UFP <30 nm). Since 

the anthropogenic particulate matter often contains Fe-bearing nanoparticles (Gonet and 

Maher, 2019; Hofman et al., 2017; Hunt et al., 2013) magnetic monitoring of air pollution 

by measuring dust depositions on accumulative surfaces are more and more used over the 

past 20 years. As a matter of fact, this approach provides a high-resolution mapping of 

magnetic pollutants, including the UFPs (Hofman et al., 2017; Maher et al., 2008; Matzka 

and Maher, 1999) It can be very precise and consequently useful for citizens and policy 

makers if the survey is carried out at a micro-scale as was done for highway infrastructures 

(Letaïef et al., 2020) or canyon streets (Muxworthy et al., 2022)  in order to pinpoint the 

major sources of pollution. Thus, it could be perceived as an alternative but also as a 

complement to help conventional air-monitoring by state-approved agencies. Magnetic 

measurements could be performed on various types of exposed accumulative surfaces: 

passive filters (Cao et al., 2015), plant leaves (Hofman et al., 2014; Letaïef et al., 2020; 

Sagnotti et al., 2009), lichens (Winkler et al., 2022, 2020) or moist paper swabs taken from 

television/computer screens to evaluate outdoor or indoor PM pollution (Maher et al., 

2013). These accumulative surfaces are generally sampled after few months of polluted air 

exposure to collect enough dust to be measured. Therefore, this technique provides 

information on the chronic exposure, which is an important parameter in the public health 

issues. Environmental Scanning Electronic Microscopy images (Figure 1A) of plant leaves 

illustrate well the heterogeneity of dust deposition, in terms of nature and shape. This is in 

relation to the variety of PM sources (Figure 1B), which have been sorted based on the 

nesting emission stratification levels including long-range transport, regional and urban 

sources, right down to the street level (Kakosimos et al., 2010). Because many sources 



exist, Letaïef et al. (2020) proposed to isolate the main source of the study area by 

expressing magnetic measurements as the relative change between the measurements of 

the accumulative surfaces concerned and several other measurements from an area not 

impacted by the targeted pollutant source. In urban areas, the main source is undoubtedly 

vehicular traffic (Gonet and Maher, 2019; Hama et al., 2017) via exhaust (Liati et al., 

2012), wear products (Ingo et al., 2022; Kukutschová et al., 2011; Rahimi et al., 2021) 

from vehicle and pavement (Mathissen et al., 2011), or road dust resuspension (Vlasov et 

al., 2022; Yang et al., 2016) induced by moving vehicles. Because not all the pollutants are 

specifically magnetic, it is essential to understand what is responsible for creating the 

magnetic signal measured on the accumulative surfaces.  

 



Figure 1. Illustrations for (A) Natural and anthropogenic deposits accumulated on plant 

leaves and observed on SEM images at different scales from 1 mm to 2 m.  These images 

were taken at the microscopy department of the University of Montpellier with a Quanta 200 

Scanning Electron Microscope (SEM) (B) the stratification levels of PM sources in street 

canyon. The bottom left diagram is redrawn from (Kakosimos et al., 2010). 

 

One question that emerges from these results is whether environmental magnetism 

techniques can provide more refined knowledge about the nature and the source of 

pollutants. This is a critical information that is needed to design efficient mitigation 

policies to increase air quality in urban environments. For instance, for a given location, do 

traffic-related particulate emissions come from the braking system or from exhaust fumes? 

To this date, this level of analysis with only magnetic parameters has not been 

investigated. Therefore, this study aims to classify PM depositions on plant leaves or 

passive filters in one to the five PM traffic-related sources categories by using a machine 

learning algorithm only parameterized with magnetic parameters. This would provide an 

idea of the magnetic method robustness, when applied to air quality monitoring.  A similar 

work was done in a recent study (Colangeli et al., 2022), which classify PM emissions as 

anthropogenic or natural by means of deep-machine learning technique on PM grain size.  

In this study, we use a machine learning approach to generate an algorithm with 

labeled data (i.e., magnetic data from known pollutant sources) aiming to establish from a 

pattern recognition a set of rules that composes a model. Unlabeled data (i.e., magnetic 

data from unknown pollutant sources) are then passed into the model to infer the predicted 

source. In a first part, we will present the labeled and unlabeled samples used for the 

training and the prediction phases, respectively. Then, the magnetic parameters given to 

the algorithm are presented with details on how they were obtained from the reduction of 



the raw data. Finally, the machine learning algorithm is described and the results and 

predictions are discussed. 

2. MATERIALS  

2.1 Labeled samples for the model training phase. Recent studies highlight that PM 

emitted through combustion engines (exhaust emissions) is not the only source of the PM 

from vehicular origin, but the particles generated from abrasive and fatigue wear processes 

also play an important role and must be taken into account (Charron et al., 2019; Grange et 

al., 2021). For this purpose, a total of 16 samples related to traffic sources were collected and 

classified according to one of the five identified categories of source (brake pads, exhaust 

emissions, tire-fatigue wears, resuspension and mineral dust). The exhaust fumes category 

comprises three diesel, and one gasoline combustion residues, all collected by removing the 

powder inside the tailpipes with a plastic spatula. The wear source category comprises 

abrasive, and surface-fatigue wear products. The abrasive wear products include six worn-out 

brake pads obtained from a mechanic shop, two brake powder samples (BrD1 and BrD2) 

collected from two different cars by removing and scraping the brake powder around the 

wheel rim, brake disks and pads, and a fresh asphalt concrete sample recovered from a 

construction site in Montpellier, France. The surface-fatigue wear product is represented by 

one tire thread collected by removing the surface layer of a worn-out tire. Lastly, resuspension 

category comprises a mineral dust sample collected after a Sahara wet-deposition episode by 

wiping car windshields and garden tables, and one street dust sample collected with a portable 

vacuum cleaner in a street canyon located in the city center of Montpellier, France, where the 

traffic is 7000 vehicles/day.  

2.2 Unlabeled samples for the model prediction phase. To test the model after the 

training period of the machine learning algorithm, we used a variety of accumulative surface 



samples from different urban areas to estimate the main category source.  First, plant leaves 

from Cistus monspeliensis trees were collected in January 2020, around 1m-height on 

vegetated earth-berms along a dual 6-lanes motorway located in south-east of Montpellier, 

France (Letaïef et al., 2020). Then, five passive filters (B-010, B-013, B-015, B-027 and B-

028) were deployed on the first and second floor balconies in a busy street canyon (around 

7000 vehicles/day) during a period of 3 months (from December 2020 to March 2021). 

Lastly, we used two certified reference material dedicated to chemical analysis in isotopic, 

trace and major elements contents: BCR-723 (Institute for Reference Materials and 

Measurements; IRMM) is a certified and homogenized road dust material with a particle size 

of less than 90 m; ERM-CZ120 (IRMM) is a certified fine dust sample which was processed 

in a way to resemble PM10 as close as possible. 

3. METHODS AND BACKGROUND 

The choice of data type is the central issue that must be addressed in a well-thought-out 

manner for a machine learning approach. Basically, in the environmental magnetism approach 

applied to monitor air quality, we aim at quantifying Fe-bearing PM. To do this, we measure a 

set of magnetic parameters derived from environmental magnetism techniques in order to 

provide information about the magnetic concentration, nature, and size of the sample. In our 

study, these magnetic parameters, summarized in Table 1, were also complemented by 

concentrations of chemical elements (Table 1).  

  



Table 1: Summary of magnetic and chemical experiments performed to obtain the parameters 

which are included in the machine learning algorithm.  

Magnetic experiments Magnetic parameters 

 

Hysteresis loops  Mrs/Ms 

 Bcr/Bc 

 

First order reversal curves 

(FORCs) 

 Marginal distribution (cBc) 

 Coercive field (Bc,max) 

 Vertical distribution (u Bu) 

 Bias field (Bu,max) 

 

Unmixing of IRM acquisition 

curves 

 Number of components 

 Mean field (B1/2) of the two main components 

 Variance (DP) of the two main components 

 Contribution (height) of the two main 

components 

 

 

Temperature dependency of 

susceptibility (kT curves) 

 Amax 

 Am 

 Acr 

 Presence of the Verwey transition 

 Maximal Curie temperature (for samples which 

have more than one Curie temperatures) 

 
Chemical experiments Elemental concentrations 

 

XRF 
 [Zn] 

 [Fe] 

 [Ba] 

  

3.1 Magnetic parameters. 

3.1.1 Hysteresis parameters. Hysteresis loops were performed on samples tightly 

packed in gelatin capsules with a Vibrating Sample Magnetometer (VSM) from Princeton 

Measurements Corporation, which is part of the Mineral Magnetism Analysis Platform of 

Institut de Physique du Globe de Paris and Institut de Minéralogie, de Physique des Matériaux 

et de Cosmochimie. Magnetic hysteresis curves, i.e., the variation of the magnetization with 

an applied field, were measured in a maximum applied field up to 1.8 T (Figure 2). The data 

obtained from this technique are routinely reduced to four main parameters. The saturation 

magnetization Ms, the remanent magnetization Mrs, and the coercive field Bc are obtained 



directly from the main hysteresis loop. The coercivity of remanence Bcr is obtained with the 

backfield curve, which monitors the decrease of the remanent magnetization after saturation 

with an increasingly negative laboratory field. The values of the hysteresis parameters derived 

from the major hysteresis loop were linearly corrected from diamagnetism and 

paramagnetism effects. Finally, these parameters are commonly used as ratios: Mrs/Ms and 

Bcr/Bc, and plotted on a two-variable scatter (Day) plot (Day et al., 1977). Data trends on Day 

plot are often interpreted in terms of grain size or domain state variations (Dunlop, 2002). 

However, these ratios measure an average of the magnetic properties of all the particles, 

which is especially true for dust samples containing a complex mixture of magnetic minerals 

with different grain sizes (Heslop and Roberts, 2012a, 2012b; Roberts et al., 2014). 

Figure 2. Schematic example of a hysteresis cycle illustrating the magnetization stages of a 

random assembly of single domain magnetic grains and its resulting parameters (Ms, Mrs, Bc 

and Bcr). 

 



3.1.2 FORC diagrams. First Order Reversal Curves (FORC(Pike et al., 1999; Roberts 

et al., 2000) diagrams provide a map of the magnetic response of all particles in a sample with 

irreversible magnetizations. FORC diagrams have become a useful tool in the rock magnetism 

field because under some circumstances, they allow to estimate the coercivity field 

distribution and the magnetic interactions between particles within a sample. A FORC 

function (Bc, Bu) from a weakly interacting and nonthermally activated ensemble of particles 

has a finite vertical spreading u(Bu) and can be physically interpreted by its marginal 

distribution c(Bc) (Egli, 2006) defined by: 

                    

 

  

 

This equation describes the total magnetic contribution of all particles following a switching 

field Bc.(Winklhofer and Zimanyi, 2006) It also corresponds to the effective coercivity 

distribution of the particles. Therefore, we reduce the FORC distributions to their vertical and 

marginal distributions (Figure 3), all calculated with the same smoothing factor SF (vertical 

and central ridge SF = 10, horizontal and vertical SF = 15) with FORCinel software (Egli, 

2006) The vertical distribution ρu (Bu) is simply defined as the vertical profile of the FORC 

distribution that passes through the FORC peak.  



  

Figure 3. Visualization of marginal and vertical distributions calculated from a FORC 

diagrams of several source samples. The red and the blue stars illustrate points from 

coordinates: Bu,max; u Bu and Bc,max; c Bc, respectively, which were incorporated in the 

machine learning algorithm. 

 

3.1.3 Distribution of coercive fields. Another way of discriminating between 

different magnetic components within a sample is deconvoluting the cumulative Isothermal 

Remanent Magnetization (IRM) curves by means of unmixing techniques (Figure 4a; Egli, 

2004; Heslop et al., 2002; Kruiver et al., 2001; Robertson and France, 1994) Before IRM is 

acquired, all the samples were demagnetized with a 170 mT alternating field and then 

measured in zero field. This measurement was used to set the baseline. For brake pad 

samples, stepwise IRMs were manually imparted to the sample with an impulse magnetizer 

ASC Model IM-10-30 in 30 increments ranging from 1 up to 2800 mT.  The magnetization 

steps were specifically chosen to be approximately equidistant in a log-scale. After waiting 

for 24h to prevent any viscous effect, their magnetic moments were measured with an AGICO 



JR5A spinner magnetometer. For these samples, IRM acquisition and measurement were 

carried out at the Géosciences Montpellier laboratory. The IRM acquisition curves for the 

other samples were directly imparted and measured with the VSM at IPGP. Subsequently, 

unmixing analyses performed on IRM acquisition curves allow to describe the distribution of 

the coercive fields within a sample, by assuming that the distribution of the coercive fields for 

each magnetic component present in a mixture sample is a log-normal distribution. Here, the 

cumulative log-normal (CLN) functions are parameterized(Robertson and France, 1994) with: 

(1) the height of the CLN function corresponding to the saturation of the IRM (SIRM); (2) the 

mean of the applied field at which half the SIRM is acquired (B1/2), corresponding also to the 

average remanence coercivity (Bcr) and, (3) the standard deviation of the log-distribution, also 

named the dispersion parameter (DP). Finally, inference about the parameters for each 

component was performed by means of a Bayesian approach. The prior specifications in our 

modeling are the following: (i) the components of the coercivity distribution follow normal 

distributions on the means (k) after logarithmic transformation of the applied field, (ii) a 

Dirichlet distribution is assigned for the heights of the CLN, (iii) an inverse gamma function 

is assigned for the standard deviations, and (iv) a normal distribution is assigned for the 

conjugate prior (μk | k). Initial values such as the number of components, their means, 

proportions and variances are fixed arbitrarily before the modeling. We calculated the k 

normal distributions sum and their parameters (Figure 4b) by randomly selecting the log-

normal distribution values in 3 Monte-Carlo Markov chains (MCMC) by means of the Gibbs 

sampler. The confrontation of these a posteriori laws with the data allows a readjustment of 

initial parameters until the chains converge.  

 



 

Figure 4. Example of IRM curve unmixing performed on one source sample: [A] linear 

acquisition plot (LAP) illustrating the two components needed to explain the IRM acquisition 

curve; [B] posterior densities observed from the last 200 Gibbs iterations when MCMC 

algorithm has converged.  

 

3.1.4 Temperature dependency of initial susceptibility. The temperature variations of 

bulk magnetic susceptibility (k0-T curves) depend on the magnetic mineralogy, and it is 

therefore a useful characterization tool (Dunlop, 2014).  To perform the measurements, 

samples were crushed as powder and placed in a non-magnetic silicon glass measuring tube. 

This technique provides a continuous measurement of susceptibility, which is measured with 

the Agico KLY-3S Kappabridge, while the sample is heated from -194°C to 700°C and 

subsequently cooled down to room temperature. This measurement allows to identify specific 

Curie temperatures of magnetic minerals but also their possible alteration during heating and 

cooling processes. When a large set of specimens are processed and need to be compared, it is 

useful to characterize the alteration of the magnetic fraction with numerical indices calculated 

from the curves (Hrouda, 2003). In our case, five parameters derived from the k0-T curves 

(Figure 5) will be used for the machine learning: 

(1) The highest Curie temperature (TC), determined when the second derivative of k0-T 

curve is zero (Prévot et al., 1983). We arbitrarily chose to take the highest Curie 

temperature since not all the samples display several Curie temperatures. 



(2) The Verwey transition, a drastic increase of magnetic susceptibility found around               

-152°C that is distinctive of the magnetite presence. 

(3) The mean alteration index (Am; Hrouda, 2003) which quantifies the susceptibility 

differences between the heating and the cooling phases. This index is calculated for i 

temperatures as: 

   
   

      
        

 

   

 

Where K40°C is the susceptibility at 40°C during the heating, the ki and Ki pairs are 

obtained from susceptibilities measured in the cooling and the heating phases, 

respectively, at a regular step of 1°C by means of a linear interpolation of the cubic 

splines smoothing curves. N is the number of pairs considered. The positive index 

indicates higher cooling than heating susceptibilities while the negative index 

indicates the opposite.  

(4) The maximum alteration index (Amax; Hrouda, 2003) which corresponds to the 

maximum difference between the heating and the cooling curves referred to (k-K) max. 

Thus, Amax is calculated as:  

          
        

     
 

Where k and K are the susceptibilities measured at the same temperature during the 

cooling and the heating phases, respectively, and K40°C is the susceptibility at 40°C 

obtained from the heating curve. 

(5) The crossed index (Acr; Hrouda, 2003) was established to indicate when the heating 

and cooling curves cross each other:  



     
        

 
   

            
 
   

 

Where      and      are the absolute values of Ki and ki. Acr =1 when the heating and 

cooling curves do not cross each other,       < 1 when they cross each other while a 

prevailing part of the heating curve shows higher susceptibility than the cooling curve, 

and       >1 when the opposite is true. 

  
Figure 5. Illustration of alteration parameters (Hrouda, 2003) from a street dust sample. The 

green star represents a non-reached Curie Temperature above 700°C. The susceptibility is 

normalized with the value of the susceptibility measured at room temperature (K0,20°C). 

 

3.2 Elemental analysis. Chemical elemental analyses were performed with a Niton XL3t-

900 Goldd X-ray fluorescence (XRF) portable analyzer (Thermo Scientific®, Waltham, MA, 

USA) on ex-situ samples reduced to powder after drying. Before analysis, sample holders 



were measured empty to discard the ones that showed a strong signal. The interpretation of 

XRF spectra was processed in two steps: first, we assessed the presence of an element from a 

qualitative visual inspection of spectrum and then calculated its concentration with the 

NITON Data Transfer software provided by Thermo Electron CorporationTM, Waltham, 

MA, USA. Results were obtained in μg/g (ppm). For the purpose of this study, we used 

concentrations in zinc (Zn), iron (Fe), and barium (Ba), as these elements are known to 

discriminate of traffic-related PM sources. 

 

3.3 Supervised-Classification Machine Learning: the model algorithm, tuning and 

accuracy.  A machine learning algorithm is described as supervised when the user guides the 

learner. In our case, the aim is to classify data in several categories based on their similarities.  

We performed this classification by means of a k-nearest neighbor (kNN) algorithm included 

in the mlr R library.(Rhys, 2020) This is a two-phase process: (1) The training phase, during 

which the discriminating magnetic parameters for the different categories of sources are 

inserted. We first tell the algorithm which source belongs to which category (see section 2.1) 

and call them labeled data. Then, the model trains by progressively learning the data trends 

and rules. (2) The prediction phase, where the unlabeled data (the accumulative surface 

samples) are put into the algorithm. The algorithm will classify the unlabeled data between 

their nearest and their least similar neighbors by calculating Euclidian distances between the 

labeled and the new unlabeled data.  

To see how the model performs, we used the performance () function to compare the 

predicted classes by the model with the true ones and returns the performance metrics. The 

latter indicating how well the predicted and true classes match to each other. This function 

returns a list of arguments called measures composed mainly of (1) the mean 



misclassification error or the mmce and, (2) the acc, or accuracy, both a range comprises 

between 0 and 1. MMCE represents the proportion of samples which are misclassified in 

another class than their true class. On the contrary, accuracy is the proportion samples well 

classified. 

Because a model will perform better when tested with data from which it was already 

trained on, we performed k-fold cross validation to verify the accuracy of the model and avoid 

overfitting or underfitting.  During this process, the dataset is randomly split into 

approximately equal-sized sub datasets called folds. One of the folds is put aside as a test set 

and the remaining data are used as the training set. Then, we iteratively pass the test set 

through the model with different folds until all the folds have been used once as the test set 

and we make a record of the relevant performance metrics.  

4. RESULTS AND DISCUSSION 

4.1 Model optimization. In the kNN algorithm, k (or the number of near neighbors) is not 

considered as a parameter because it is not directly estimated from data by the algorithm 

itself.  However, k is known as a hyperparameter: it controls how the model will make 

predictions and it is up to the user to choose its best value. This can be done either manually 

or automatically by a procedure called hyperparameter tuning. During this process, the 

algorithm tries different values of k between 1 and 10 and finds the best-performing value of k 

(Figure 6). In our case, the best estimated value of k is always 1, which implies that the model 

will take the nearest neighbor category as the sample predicted category. Finally, after 

including the hyperparameter tuning in the cross-validation process, the model accuracy is 

estimated by 99.62 %, which basically represents the proportion of cases that were correctly 

classified by the model. 



 

Figure 6. Model accuracy estimated with different values of k-nearest neighbor. For this 

study, the best k value implying the best model performance is 1. 

4.2 Testing the model with unlabeled source data. Some source samples (one sample of 

gasoline, diesel, BrD1, BrD2 and, asphalt concrete) could not be measured with all techniques 

for various reasons such as the lack of sample amount availability, technical difficulties, or a 

magnetic signal that was too low. Therefore, we used them as “fake source samples” by 

mixing their complementary magnetic properties between two samples known to be part of 

the same source category. Five “fake” samples were made: Mix1 and Mix2 are composed of a 

mix between BrD1 and BrD2; Mix 3 and Mix 4 are made of a mixture with one diesel and 

one gasoline exhaust pipe sample; and Mix 5 is a mixture of street dust and asphalt concrete 

samples. Since we know the category of each mixture sample, this offers the opportunity to 

test the model on data that was unknown to it, even during the training phase. Results are 

presented on Figure 7. Ultimately, the model predicted categories that are the expected ones 
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for Mix 1, Mix2, Mix3 and Mix 4, which is very encouraging. However, the classification for 

Mix 5 came out as “mineral dust” instead of resuspension. 

Figure 7. Model testing performed on mixed samples that the model did not train with and for 

which the classifications are known. Classifications in green represent a good prediction 

while the one in orange illustrates an inaccurate prediction.  

 

4.3 Estimation of the main source on accumulative surface samples. In this application 

of the model, we used all the sources and the Mix samples, which were predicted before to 

train the model. We asked the model to predict two types of accumulative surfaces (plant 

leaves and passive filters) and the two certified standards (ERM-CZ120 and BCR-723) 

usually used for isotopic chemical analysis in urban PM pollution.  The tree leaf samples 

collected from the motorway are identified as having a magnetic signal with a mineral dust 

origin (Figure 8). This result is consistent, considering that the leaves were sampled along a 

motorway on a flat-top earth berm(Letaïef et al., 2020). Indeed, a magnetic mapping was 

performed in the study area and showed very low magnetic signals due to the high dispersion 

potential for traffic pollutants of these earth berms (Letaïef et al., 2020) 
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ERM-CZ120 and BCR-723 are identified as coming from the resuspension category. 

Giving the nature of these certified standards (PM10 and road dust) and the fact that the 

resuspension class is composed of street dust sample and a mixture between street dust and 

asphalt samples (Mix 4), the results from the model are also consistent.  

The results for the five passive filters deployed in the street canyon located in the city 

center of Montpellier show different source categories. B-010 and B-015 are predicted to 

come from to the exhaust class. This is consistent with the fact that these filters were both 

deployed at the beginning of Saint-Louis Street, which is 245 m long, and consists of one 

single traffic lane traveled by about 7,000 vehicles daily. Filters B-013 and B-028 are 

predicted to have a resuspension origin. This is consistent for sample B-013, which was 

placed in the street adjacent to Saint-Louis street. However, the prediction for filter B-028, 

which was deployed at the ground floor inside the street canyon, is more surprising. Finally, 

B-027 is the only filter which was predicted as a brake pad source. This is also consistent 

considering that the filter measure station was placed at the end of the street, which ends with 

a traffic light, and where vehicles are therefore likely to brake and stop.  



 

Figure 8. Model results for the main source predicted on accumulative surfaces and two 

certified chemical standards.   

 

4.4 Conclusion and Perspectives. Magnetic mapping has been widely used during the 

last decades to characterize air pollution (Hofman et al., 2017) and has proven to be very 

accurate at high resolution (Letaïef et al., 2020). This is an important improvement compared 

to numerical modeling of dispersion and prediction of pollutants usually performed with low 

resolution data coming from monitoring stations that are too few in comparison with the scale 

of the city. However, achieving a real representativeness in the source of magnetic signal in 

urban PM remains challenging since there are many types of traffic-related PM sources and 

since samples from the same kind of source might display a large heterogeneity. 
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This is why we chose the machine learning approach, which is an innovative approach, 

and had never been tested before in the environmental magnetism field. Thanks to a 

classification algorithm fully parameterized with magnetic data, we were able to characterize 

the different PM traffic-related sources and PM accumulative surfaces. 

The results turned out to be very promising and consistent given the locations of the 

samples for which the PM source is predicted by the model. The machine learning algorithm 

trained with the magnetic parameters was able to differentiate the origin of the magnetic 

signal of accumulative surfaces, as it was also the case for the passive filters deployed in the 

street canyon and can be used for a source-to-sink purpose. 

However, the magnetic parameters classification by using a kNN algorithm also shows 

some limitations. For further developments, it appears necessary to: 

 Extend the dataset since the samples are usually heterogenous. Indeed, it would be 

desirable to integrate more samples to obtain a better representativeness. In addition, 

the dataset seems not large enough to perform other classification algorithms as the 

logistic-regression one, which would be useful to compare both algorithms and to 

conclude on the best method to use. 

 Define more precisely the discriminant power of each of the magnetic parameters 

because the prediction accuracy is highly impacted by noisy data or outliers (Rhys, 

2020). 

Finally, it appears that we need to test more sophisticated algorithms which provide a way to 

include non-available values for some parameters (NA). For now, the model is not able to deal 

with missing data. This is unfortunate because it is sometimes not possible to perform all the 

desired magnetic measurements on a particular sample for various reasons. In these cases, the 



whole set of measurements on that sample must be removed from the data set. In addition, we 

need a possibility to predict more than one category per sample to quantify the contribution 

from each category and to refine the result. This would allow to not only predict the main 

source, but also estimate the contribution of all the defined sources involved in the measured 

magnetic signal. Finally, to truly evaluate the efficiency of machine learning technique, it 

would be very interesting to compare our machine learning classification based on magnetic 

properties with isotopic chemistry analysis or other machine learning algorithms.  

To conclude, our study demonstrates the great potential of artificial intelligence applied to 

the study of air quality and parameterized with magnetic properties. It helps to better 

understand the physical provenance of PM detected with magnetic methods, which will, in a 

first step, be used as a complement of the conventional measurements for the parametrization 

of the numerical models, but could also, on a longer term, be useful to public deciders 

involved in urban PM mitigation. 
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