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Abstract 19 

The growing number of electronic devices has led to a surge in e-waste, making efficient 20 
recycling essential to reduce environmental impact and recover valuable metals. However, 21 

traditional recycling methods struggle to extract them due to their low concentrations in e-22 
waste. Here, we developed a system to sort electronic components from printed circuit boards 23 

by elemental composition. It combines a convolutional neural network-based optical 24 
recognition with multi-energy X-ray transmission spectroscopy, demonstrating up to 96.9% 25 
accuracy in controlled conditions. Hence, with elemental enrichments by up to  10,000 for 26 

targeted elements, this method renders economically viable the recovery of previously 27 
unrecycled critical metals by enriching sorting bags in precious, semi-precious, refractory (Ta, 28 

Nb), transition (Co, Cr, Mn, Ni, Zn, Ga, Bi, etc.) or other (In, Sn, Sb) metals. These findings 29 
demonstrate the promising applications of this technology in mitigating the environmental 30 
impact of e-waste and promoting the sustainable recovery of valuable metals. 31 

 32 

1. INTRODUCTION 33 

The technological development and the 34 

automation of our modern society is 35 

supported by an exponential increase in 36 

our use of electronics, which leads to a 37 

similar increase in the amount of waste 38 

from electrical and electronic equipment 39 

(WEEE) (Forti et al. 2020). 40 

Manufacturing these devices requires a 41 

considerable volume of raw materials 42 

including valuable ones (gold, palladium, 43 

silver…), critical elements (rare earth 44 

elements (REEs) (Binnemans, 45 

McGuiness, and Jones 2021), tantalum, 46 

cobalt…) as well as hazardous products 47 

(lead, chromium, bromine…) (Wang and 48 

Xu 2015). Thus, making the electronic 49 

industry (considered from cradle to cradle) 50 

one of the most environmentally 51 

impacting (Shakil, Nawaz, and Sadef 52 

2023).  53 

A good way to reduce this industry’s 54 

footprint would be to increase the 55 

efficiency of its recycling processes. But 56 



 

for this to happen, the major issue of the 1 

elemental complexity of the WEEEs’ 2 

composition needs to be addressed. On 3 

that front, printed circuit boards (PCBs) 4 

(Gorewoda et al. 2020), hold the record 5 

with more than sixty chemical elements 6 

that can be found in them (Maurice et al. 7 

2021). Current methods of treating waste 8 

PCBs (WPCBs), which consist in first 9 

crushing and grinding them, produce a 10 

powder with a highly complex and 11 

heterogeneous chemical composition. This 12 

is then followed by physical separation of 13 

some particles (Kaya 2017) and the 14 

subsequent pyrometallurgical and 15 

hydrometallurgical process steps. With 16 

such an approach, although 60% of the 17 

value can be retrieved from the WPCBs, it 18 

only recycles one quarter of the chemical 19 

elements it contains, either the most 20 

concentrated or the most valuable (C, Cu, 21 

Ni, Fe, Al, Ti, Cr, Au, Pt, Ag, Pd, Pb, Sn) 22 

(Wu et al. 2017). Indeed, with such 23 

processing, most other elements of interest 24 

become too diluted in the overall waste 25 

(down to a few ppm levels) and are 26 

therefore impossible to extract in an 27 

economically viable way. These elements 28 

are therefore lost as ash and disposed of 29 

through landfilling (U.S. Environmental 30 

Protection Agency and Conservation 31 

2020). 32 

To more effectively access these spent 33 

chemical elements an alternative strategy 34 

is to dismantle WPCBs to recover the 35 

electronic components (ECs) and sort 36 

them according to their type and chemical 37 

composition (Maurice et al. 2021). Recent 38 

studies have therefore explored some 39 

possible electronic components sorting 40 

and subsequent refining processes, such as 41 

optical sorting based on machine vision 42 

coupled with artificial intelligence (for 43 

example, convolutional neural network - 44 

CNN). The latter has shown promising 45 

results for the classification of ECs 46 

(Lefkaditis and Tsirigotis 2010; Lu et al. 47 

2022). So far, these methods have been 48 

limited to only a few EC categories, 49 

giving access to only a few more chemical 50 

elements. Other processes have privileged 51 

a selective robotic disassembly (pick and 52 

choose approach), which requires high 53 

precision for removing the targeted ECs. 54 

However, with a speed of a few tenths of a 55 

second per component retrieved, it can 56 

only be applied to high value ECs to be 57 

economically viable (Sauer et al. 2019). 58 

However, despite the significant 59 

improvement that these recent innovations 60 

have brought, these EC sorting techniques 61 

all rely on optical recognition, which has 62 

its own limitations. Indeed, while it is 63 

effective when components looking alike 64 

have similar composition (Kopacek 2016), 65 

it does not allow for elemental separation 66 

when components look similar but have 67 

different chemical compositions. 68 

Moreover, the elemental composition of 69 

PCBs can vary significantly due to their 70 

diverse origins, as highlighted by previous 71 

studies (Smalcerz et al. 2023). For 72 

example, this is observed with capacitors, 73 

multilayer ceramic capacitors or resistors. 74 

To tackle this issue, various spectroscopic 75 

methods have been developed such as 76 

near infrared (NIR) hyperspectral image 77 

spectroscopy (HSI) (Rapolti et al. 2021) 78 

or laser-induced breakdown spectroscopy 79 

(LIBS) (Zeng et al. 2021) giving access to 80 

some elemental composition of the 81 

components’ surfaces. Using either 82 

spectra analysis or artificial intelligence 83 

these methods have shown high accuracy 84 

in the targeting of specific elements. Other 85 

recent studies have showed great 86 

progresses in the recognition of e-waste 87 

parts by combing optical imaging and HSI 88 

(Tan et al. 2022). However, all these 89 

approaches can only analyse the surface 90 

composition of ECs and do not capture all 91 

the internal chemical composition and 92 

elements.  For this reason, these are useful 93 



 

methods for the characterisation and 1 

sorting of homogeneous or monolithic 2 

materials such as plastics. To get access to 3 

some internal composition indication, few 4 

energies (one to five) X-ray transmission 5 

(XRT) spectroscopies have been used in a 6 

variety of fields such as mining (Veras et 7 

al. 2020; Yeyu et al. 2021), food industry, 8 

medical imaging (Mesina, de Jong, and 9 

Dalmijn 2007) or even plastic waste 10 

sorting (Hennebert and Filella 2018), but 11 

these approaches do not have enough 12 

energy resolution to allow for the 13 

elemental sorting of mixture as complex 14 

as wasted electronic components from 15 

WPCBs. Hence, this study where we 16 

present a novel sorting method for ECs 17 

using both optical and Multi-Energy XRT 18 

(MEXRT) sorting (up to 128 energy 19 

levels) in which ECs were sorted on a 20 

custom-made prototype using a CNN for 21 

image recognition followed by MEXRT 22 

hyperspectral image spectroscopy 23 

analysis. We will show that it allows for 24 

the accurate classification of ECs based on 25 

their type and elemental composition 26 

leading to such an enrichment in many 27 

targeted elements, so as to provide access 28 

to previously unrecoverable spent 29 

elements. 30 

2. MATERIALS AND METHODS 31 

2.1. Materials 32 

For this study, model ECs from various 33 

manufacturers, with known specifications, 34 

were purchased from the distributor RS 35 

Components Singapore. They were then 36 

mixed with other ECs retrieved from the 37 

disassembly of spent printed circuit 38 

boards of various origins to form the 39 

model samples for the study. These PCBs, 40 

were extracted from end-of-life electronic 41 

products, from various applications such 42 

as mobile phones, domestic appliances, 43 

computers, or industrial devices, by 44 

manually dismantling the appliances. 45 

These PCBs were then disassembled by 46 

heating them in a furnace at ~200 °C for 47 

10 minutes, to melt the solder, before 48 

being manually shaken or hammered to 49 

release and collect loose spent ECs. The 50 

latter were used to form the initial e-waste 51 

stream for the large-scale study. 52 

Nitric acid (AR, 70 %), hydrochloric acid 53 

(AR, 37 %), and hydrogen peroxide 54 

solution (3 %), were purchased from 55 

Sigma-Aldrich. Metal standard solutions 56 

for ICP were purchased from PerkinElmer. 57 

Ultra-pure water was obtained from a 58 

water purification system (WaterPro®, 59 

Labconco Co.) with a resistivity of 60 

18.2 MΩ·cm at 25 °C. All the chemicals 61 

were used as received. 62 

2.2. Sieving 63 

Once disassembled from the boards, ECs 64 

were segregated into 5 size categories by 65 

sieving. Using Retsch AS 300 shaker with 66 

screens of 40 mm, 10 mm, 5 mm, and 67 

1 mm and a vibration amplitude of 1 mm 68 

for 5 minutes.  69 

2.3. Feeding system 70 

Each fraction of ECs was then separately 71 

loaded into a custom conical bowl feeder 72 

(50 cm larger base diameter, 30 cm 73 

smaller base diameter, and 20 cm height). 74 

The vibration frequency was set up at the 75 

harmonic frequency of the bowl for the 76 

entire study (55.2 Hz). The amplitude of 77 

the vibration is controlled by the input 78 

voltage delivered by the controller 79 

(Variable Frequency Vibratory Feeder 80 

Controller SDVC31-M by Nanjing CUH 81 

Science and Technology Co., Ltd) and 82 

tuned for each EC size to optimise the 83 

feeding rate. The tension delivered was set 84 

at 110 V for components between 10 mm 85 

and 40 mm in size and 95 V for 86 

components with a size between 5 mm 87 

and 10 mm and 90 V for components with 88 

a size between 1 mm and 5 mm. These 89 



 

parameters where determined through an 1 

empirical investigation for consistent 2 

feeding of the ECs at a rate of 2 ECs/s. A 3 

home-made passive rotary feeder was 4 

installed at the exit of the bowl feeder to 5 

ensure that the ECs were dispensed one at 6 

a time onto the conveyor belt. 7 

2.4. Conveyor system 8 

The ECs were conveyed on a custom-9 

made 10 cm width and 2.5 m long belt 10 

mounted on a 90 cm high aluminium 11 

frame. The belt speed was controlled by 12 

adjusting the rotational speed of a DC 13 

motor. In this study, the rotational speed 14 

of the motor was set to 100 rpm for the 15 

optical sorting and 57 rpm for MEXRT 16 

sorting, which corresponds to a linear 17 

speed of 26.3 cm/s and 15 cm/s, 18 

respectively, for ECs placed on the belt 19 

(Figure 1). 20 

2.5. Vision system 21 

Images of ECs were acquired using a 22 

BU505MCF Telicam, Toshiba camera 23 

coupled with a white LED ring (V2DR-24 

i90A-W, Vital Vision Technology). 25 

Database of ECs pictures was built using 26 

manually sorted components from 27 

WPCBs only used for the training of the 28 

CNN. This database of 3720 images 29 

divided into 8 classes of ECs was then 30 

used to train the CNN used for the ECs’ 31 

images classification during the sorting 32 

process. Additionally, the dataset was 33 

augmented by applying random 34 

transformations such as rotation, flipping, 35 

and cropping to increase the size of the 36 

dataset and improve the generalization 37 

ability of the model. 70% of the database 38 

was used for the training of the model 39 

while 30% was used for the validation of 40 

the trained model. The CNN was coded in 41 

python (version 3.6.8) using the open-42 

source library TensorFlow and the keras 43 

module. The CNN used in this study was 44 

a custom implementation based on a 45 

sequential architecture with three 2D 46 

convolution blocks (with respectively 64, 47 

128, 256 output filters) each of them 48 

coupled with a max pool layer to reduce 49 

the output volume. 50 

2.6. Multi energy X-ray 51 

transmission sorting 52 

ECs placed on the conveyor belt were 53 

forced to pass in between the X-ray 54 

generator, (VJ X-RAY (NY) LLC 55 

MODEL: IXS160BP200P107 with 56 

tungsten anode, running at 100 kV and 57 

0.3 mA), and the MEXRT detector 58 

(ME100, Detection Technology). The 59 

latter was composed of a 128 pixels line 60 

each having an acquisition range from 61 

19.2 keV up to 160 keV with a 1.1 keV 62 

binning. Both source-sample and sample-63 

detector distances were 10 cm. For each 64 

sample, 50 lines of pixels were acquired 65 

on the fly (while the EC was passing 66 

above the detector thanks to the 67 

conveyor’s movement), with an 68 

acquisition time of 2 ms per line (which is 69 

maximum exposure time that would not 70 

cause the detector to become saturated 71 

while the generator was operating at its 72 

defined energy level), thus creating a 73 

hyperspectral 3D image of the EC. To get 74 

an image with as little distortion as 75 

possible, the conveyor speed was set to 76 

15 cm/s. It should be noted that to reduce 77 

the data collection size, the acquisition of 78 

the MEXRT detector was triggered by the 79 

detection of an EC by the upstream optical 80 

camera. 81 

2.7. Data treatment 82 

For each pixel of the hyperspectral image, 83 

the total number of photons was integrated, 84 

giving a 2D grey scale image representing 85 

the X-ray transmission of the ECs. The 86 

pixel with the lowest photon count was 87 

considered as being part of the EC and a 88 

3*3 square of pixels was extracted around 89 

it to conduct the elemental 90 



 

characterisation. The k
th

 component of the 1 

average spectrum        was 2 

calculated from the chosen pixels as 3 

follow: 4 

   
        

 
   

 
   

  
        

With            the k
th 

components of the 5 

          spectrum corresponding to the 6 

pixel      and   the number of pixels of 7 

the studied area (hence, with the region of 8 

interest of size 3*3 pixels used in this 9 

study, the sample size n is equal to 3).  10 

The average spectrum was then filtered 11 

using the Savitzky-Golay filter (Python 12 

SciPy library, window length = 11, 13 

polynomial order = 3) to reduce noise. In 14 

X-ray spectrometry, the k-edge energy is a 15 

crucial parameter, representing the energy 16 

required for an electron to transition from 17 

a core level to an empty state in the 18 

conduction band. This leads to a sharp 19 

increase in the photons absorption, 20 

resulting in a characteristic peak in the 21 

spectrum. By comparing this peak’s 22 

energy with known k-edge energies of 23 

different elements, we can identify their 24 

presence. Local maxima of the spectra 25 

were extracted and compared with the k-26 

edge values of the different elements 27 

studied with an error of ± 1.1 keV, to take 28 

into account the binning effect, which 29 

allows the differentiation of elements 30 

whose k-edges are separated by 1.1 keV. 31 

2.8. Pneumatic sorting system 32 

Once classified, ECs were ejected by 33 

pneumatic nozzles (KNS-R02-100-4 used 34 

with compressed azote - 6 bar) from the 35 

belt in different bins placed along the 36 

conveyor belt. Solenoid valves (VQ21A1-37 

5GZ-C6-F) were controlled using the 38 

nidaqmx python library.39 
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Figure 1: a) Photograph of the whole prototype, close view of the bowl feeder, c) close view of the camera and light and d) 
3D CAD view of the prototype 

 

2.9. Sample characterisation 1 

Sample preparation: Each type of sorted 2 

electronic component was shredded 3 

separately using a cutting mill (Retsch 4 

SM200) with a built-in screen with 2 mm 5 

square side holes. The shredded particles 6 

were then subjected to either a grinder 7 

(Retsch RS200) if they were grindable, or 8 

a sample divider (Retsch PT100+DR100) 9 

if they contained ductile materials to 10 

further increase the compositional 11 

homogeneity 12 

 13 

XRF analysis: To identify the different 14 

elements present in the sorted ECs, a first 15 

characterisation of the powder was done 16 

using X-ray fluorescence analysis (XRF). 17 

The powder prepared was then analysed 18 

using Vanta C series, Olympus XRF 19 

detector (soil method using 3 beams 20 

15 kV, 40 kV and 50 kV). 21 

ICP-OES analysis: Samples were 22 

analysed by Inductively Coupled Plasma-23 

Optical Emission Spectrometry (ICP-24 

OES). The samples were weighted 25 

(~0.20 g) and digested in a mixture of 26 

aqua regia (10 ml) and hydrogen peroxide 27 

(3 %, 2 ml) at 180 °C for 1 h using a 28 

microwave digestion system (ETHOS UP, 29 

MILESTONE). Metal contents in the 30 

digested solutions were measured with an 31 

ICP–OES spectrometer, (OP Optima 8000, 32 

PerkinElmer) after adequate dilution. 33 

Duplicate samples were prepared for each 34 

category and each sample was measured 35 

by ICP-OES in triplicate so that the mean 36 

values could be reported. Standard 37 

deviations were estimated by error 38 

propagation.  39 

3. Results and discussion 40 

The cornerstone of the shift in process 41 
paradigm is to start by a disassembly of 42 
the WPCBs, instead of their direct 43 
grinding to obtain free spent ECs. As there 44 
are many different disassembly processes 45 

available at the pre-industrial or even 46 
industrial level, which we recently 47 
reviewed (Maurice et al. 2021),we did not 48 
investigate this step further and emulated 49 

the “heating + shaking” method whenever 50 
necessary, following the method described 51 
in the part 2.1 52 

3.1. Sieving 53 

The first step in the sorting process was to 54 
separate the disassembled ECs into five 55 

size categories using sieves with apertures 56 
of 40 mm, 10 mm, 5 mm, and 1 mm. This 57 

enabled for a first physical classification 58 
of the components, hence reducing the 59 
diversity of the initial streams and 60 

facilitating the subsequent steps of the 61 

process. ECs larger than 40 mm were 62 
mainly connectors, while those smaller 63 
than 1 mm were typically tiny multilayer 64 

ceramic capacitors (MLCCs), resistors or 65 
broken parts or solder particles from the 66 

disassembly process. This smallest 67 
fraction represented less than 1 wt% of the 68 
total components (Figure 2). In addition, 69 
the MEXRT detector has a resolution of 70 

0.8 mm, making it difficult to detect and 71 
analyze such small components (<1 mm) 72 
with the current geometry. A possible 73 
solution to tackle this issue is to use 74 

magnification by using a fan-shaped X-ray 75 
beam and increasing the distance between 76 
the sample and the detector. After 77 

manually dismantling twelve different 78 
WPCBs and counting the different ECs, 79 
the average weight of a component was 80 
found to be 24.67 g, 9.12 g, 0.83 g, 0.12 g, 81 
0.006 g for the ECs with a size 82 

above 40 mm, 40 to 10 mm, 10 to 5 mm, 5 83 
to 1 mm and less than 1 mm respectively. 84 



 

Giving a global average weight of an EC 85 of 0.38 g.86 

 

 

Figure 2: Mass distribution of the components in different size sub-fractions and their corresponding pictures 

Given these limitations, the subsequent 1 
sorting steps performed in this study 2 
focused on the three fractions of ECs with 3 
sizes comprised between 1 and 40 mm. 4 

Overall, the results of the sieving step 5 
showed that the system was able to 6 
efficiently and accurately separate the ECs 7 
into these different size categories, with 8 

35 wt.% of the components falling within 9 
the target size range for further analysis. 10 
Fourteen different types of ECs with 11 

chemical compositions of interest were 12 
identified as the most common, of which, 13 
between five to nine of them could be 14 
found in the different size fractions, 15 
therefore already significantly reducing 16 

the heterogeneity of the ECs for the 17 
subsequent sorting steps. The distribution 18 
of the ECs by category can be 19 

approximated by the average weight of an 20 
EC for each category. In conclusion, the 21 
sieving step of our sorting process is an 22 
effective method and useful step for 23 

separating electronic components into 24 
different size categories. It allows for a 25 
more targeted and efficient subsequent 26 
sorting process, as the majority of the 27 

components fall within the size range that 28 
can be effectively classified. The quality 29 
of the sieving step is critical to the success 30 

of the subsequent sorting steps and to 31 
improve the overall performance of the 32 
sorting process. 33 



 

3.2. Process validation 34 

For the next sorting steps, we first 35 
evaluated the performance of a sorting 36 
approach consisting of an initial optical 37 

sorting followed by MEXRT imaging. In 38 
order to validate such a process and 39 
evaluate its performance, a model sample 40 
made of a controlled mixture of ECs was 41 
prepared for each size sub-fraction. 42 

Fourteen EC types were identified (Table 43 

SI 1) as the most common found in PCBs, 44 
which furthermore contained targeted 45 
rarely recycled critical elements such as 46 

Nd, Ta, Nb, Pd in capacitors, gold in 47 
CPUs/connectors or aluminum in 48 
electrolytic aluminum capacitors. IC chips 49 
and connectors were treated together due 50 
to their similar visual appearance and 51 

elemental composition in the optical 52 
classification step and sorted together. 53 
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Figure 3: a) Spectra extraction from hyperspectral images and b) elements k-edge recognition. 

The first sorting step based on optical 1 

sorting showed a global accuracy of 2 
97.4 % for a total of 8 categories (Table SI 3 
2, Table SI 3 and Table SI 4). The 4 
accuracy of the sorting process was 5 
evaluated by monitoring the number of 6 

ECs in the final bins, taking into account 7 
both the optical classification and the 8 
mechanical diversion of the different ECs 9 
into their respective sorting bins. With a 10 

minimum accuracy of 92.5 % for CPUs. 11 
This is to be compared to the current state 12 
of the art in optical sorting, which 13 
achieved a maximum of six EC categories 14 

with 98 % accuracy on their own training 15 
datasets, which could only give access to 16 
the most concentrated chemical 17 

elements(Lefkaditis and Tsirigotis 2010; 18 
Lu et al. 2022). By adding the MEXRT 19 
sorting step, which targets the k-edge of 20 

elements present in ECs (Figure 3), the 21 
system was able to separate optically 22 

similar components with different 23 

elemental compositions. The addition of 24 

the MEXRT step gave a total sorting 25 

accuracy of the process to 96.9 %. By 26 
sorting the components using MEXRT 27 
and extracting the k-edge of known 28 
elements from the HSI (Figure 3), 29 
different categories of ceramic capacitors 30 

can be separated based on their elemental 31 
composition. This is the case for single 32 
layer capacitors (SLCC), which can be 33 
divided into 4 categories: barium-based 34 

SLCC, non-barium-based SLCC, 35 
neodymium-rich barium-based SLCC and 36 
tantalum capacitors (Figure 4). The same 37 
applies to MLCCs, which can be divided 38 

into two main categories: barium-based 39 
MLCCs and non-barium-based MLCCs. 40 
By using the transmittance of the ECs, 41 

XRT spectroscopy can easily separate 42 
relays from metallized polymer capacitors 43 
(MPCs) with 100 % precision which could 44 

not be done based solely on the ECs’ 45 
features using optical sorting (Table SI 5, 46 

Table SI 6 and Table SI 7). 47 



 

 

Figure 4: Flowchart of the sorting process for ECs  

The optical sorting process can reach a 1 

speed of 0.014 s/EC using a camera at a 2 
speed of 75 frames per second. The 3 
MEXRT acquisition speed used was 2 ms 4 

per line acquired and 50 lines of 0.8 mm 5 
were acquired for a total acquisition of 40 6 

mm, resulting in a maximum sorting 7 
speed of 0.1 s/EC. Considering the data 8 
processing of the different images, with 9 
the PC configuration used in this study, 10 

the sorting speed for optical sorting was 11 
reduced to 0.017 s/EC and 0.15 s/EC for 12 
the MEXRT sorting (approximately 13 
59 ECs/s and 7 ECs/s respectively). The 14 

image pre-processing method efficiently 15 
defines the region of interest using only a 16 
minimum transmission finding, allowing 17 

accurate EC localization even for low-18 
density materials, the only issue being the 19 
detection of multiple ECs on the same 20 
image, which is outside the scope of this 21 
study. To ensure that consecutive 22 

components are not too close to each other 23 
during the MEXRT acquisition, a safety 24 
distance corresponding to at least one 25 

acquisition (100 ms) is left between the 26 

components. This resulted in a maximum 27 
speed of 0.25 s/EC for the MEXRT 28 
sorting process. The average weight of an 29 

EC was found to be 0.65 g, giving a 30 
maximum average sorting speed of 31 

9.36 kg/h. In real conditions, the sorting 32 
speed was lowered to 0.5 s/EC (2 ECs/s) 33 
to better control of the feeding system and 34 
avoid stacking of components during 35 

MEXRT sorting process. As a result, the 36 
MEXRT process being significantly 37 
slower than the optical sorting, it was 38 
reserved for only a sub-fraction of the 39 

total ECs for which an elemental based 40 
sorting was required. Although the overall 41 
accuracy may be slightly lower than the 42 

pure optical method, MEXRT provides 43 
the added advantage of being able to 44 
differentiate similar-looking ECs with 45 
different compositions without impacting 46 
the high accuracy if the optical sorting. 47 

In conclusion, our sorting process using 48 
both optical sorting and X-ray 49 



 

transmission techniques is a highly 50 

effective method for accurately classifying 51 
and separating electronic components. The 52 
system has a high sorting accuracy and 53 

speed, making it a valuable tool for 54 
electronic component recycling. 55 

3.3. Real samples sorting 56 

process/Scalability study 57 

The sorting process results were then 58 
scaled-up to a larger batch of waste by 59 
applying the same method to a mixture of 60 

9056.5 g of printed circuit boards from 61 
engine control units. After disassembly, 62 
5409.4 g of ECs were recovered and 63 

sieved for further sorting (Figure 5). Each 64 
sorted fraction was shredded into 65 
homogeneous powder and then analysed 66 
by XRF for a first qualitative analysis of 67 

the composition, followed by a 68 
quantitative analysis of the target elements 69 

by ICP-OES. The analysis of the sorted 70 

ECs in the final streams showed a clear 71 
enrichment of the target elements such as 72 
gold, Al, Pd, Mn and Cu. The enrichment 73 

of gold was found to be up to 0.14 wt.% in 74 
CPUs while it was below the detection 75 
limit in the reference mixture (below 76 
0.1 ppm). This represents an increase of 77 
four orders of magnitude in concentration. 78 

It was also found to be up to 53.95 wt.% 79 
for Al in electrolytic capacitors with a size 80 
between 40 and 10 mm. The segregation 81 
of the ECs does not only enrich the final 82 
streams in certain elements but also 83 

reduces the heterogeneity of some classes. 84 
This is the case of the inductors sorting 85 

bin (5-10 mm), which is composed of 86 
45.6 wt.% of iron, 38.5 wt.% of copper 87 
and 20.82 wt.% of tin with only traces 88 
amounts of other metallic elements (Ni, 89 

Zn, Al). 90 

 

 
Figure 5: Mass flow diagram for the up-scaled process 

 

 

From a global point of view of the overall 1 
process, a convenient way to represent the 2 
simplification that it allows for is to 3 
compare the entropies of all the sorting 4 
bins obtained, which can be estimated 5 
using the Boltzmann equation: 6 

 7 

Where    the Boltzmann constant and xi 8 
the mass ratio of the elements present in 9 
the ECs measured by ICP-OES. The 10 
results of this calculation are shown in 11 
Figure 6-a. In the latter, one can compare 12 

                
 
    (2)    



 

the entropy of each sorting bin with the 13 

entropy of the reference mixture of ECs 14 
plus the composition of a bare WPCB 15 
(Smalcerz et al. 2023). Any fraction with 16 

an entropy lower than the latter, can be 17 
said to have a simpler composition. This 18 
comparison shows that all fractions have a 19 
significantly lower entropy than the one of 20 
the ground WPCB. This reduction of the 21 

entropy of the phase is particularly visible 22 
for inductors and relays, which are mainly 23 
composed of iron and copper. In the cases 24 
with the highest entropy, such as the 25 
category labelled “5-1 mm other SLCC”, 26 

this level of entropy comes from the 27 
sorting induced enrichment in Mn, Zn and 28 

Bi, that are now no longer present in 29 
traces, and therefore significantly 30 
contribute to the entropy. Same goes for 31 
the MPCs sorting bin, which after sorting 32 

contained up to 47.04 wt.% of tin (Table 33 

SI 8).  34 

Overall, looking at Figure 6-b and 35 
comparing the number of major elements 36 

present either in the initial WPCB or in 37 
each of the sorting bins, it can be seen that 38 
all the sorted categories have much 39 
simpler composition, especially when 40 
only considering the number of major 41 

elements in their composition (all have 42 
less than six elements with concentration 43 
over 1 wt.%, to be compared to thirteen in 44 
the original WPCB). This demonstrates 45 
that the process is not only effective in 46 

separating and classifying electronic 47 
components, but it also easily and 48 

effectively concentrates valuable metals, 49 
thus facilitating subsequent chemical 50 
separation, a key requirement for making 51 
their recycling economically viable.52 



 

  

Figure 6: a) entropy of metals and b) number of elements in the different sorted categories. All chemical elements present in 
the major elements fraction (blue blocks) are listed in white. Significant elements that where either at trace level or below 
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the detection limits (at WPCB level) but could be enriched during the process to the level of “Minor elements”, are indicated 
in grey over the orange blocks. 

 

3.4. Throughput and process 

industrial implementation 

This sorting process presents a great 

opportunity for the development of 

economically viable processes. The 

viability of this process was previously 

reported by (Xia et al. 2022) in the study of 

neodymium from Nd-based SLCC. 

Although this study only considered the 

recovery of Nd-based SLCC, the process 

was already showing a payback time of 

less than 5 years. While other recycling 

processes targeting specific ECs have been 

developed (Chen et al. 2021; Niu and Xu 

2018; Wang and Xu 2017), they often 

lacked a mean of obtaining concentrated 

streams of the targeted ECs. This sorting 

process addresses this issue by effectively 

classifying and separating ECs, allowing 

for the recovery of valuable materials in a 

concentrated form. The ability to recover 

these materials in a concentrated form 

significantly improves the economic 

viability of the recycling process. This 

technology has the potential to 

revolutionise the field of electronic waste 

management and recycling by providing an 

efficient and cost-effective method of 

recovering valuable materials from 

discarded electronic components. 

However, the limitations of the process lie 

in the in-line treatment of the ECs, and the 

sorting speed will be improved in further 

development of the prototype by using a 

parallel sorting. We developed a 

demonstrator at a laboratory scale to 

validate the feasibility of advanced sorting 

and its compatibility with industrial plants 

by testing the sorting capability as a 

function of belt speed, although a larger, 

multi-lane industrial sorting tool would use 

similar conveyor speed. The cost of the 

prototype was broken down as follows: 

50,000 USD for the X-ray system 

(generator, detector, shielding), 2,500 USD 

for the control and data acquisition 

systems, and 12,500 USD for the 

mechanical structure, conveyor belt and 

sorting system. It is important to note that 

the costs of a laboratory-scale prototype 

may not be directly transferable to a larger, 

multi-lane industrial sorting tool. On a 1 

meter large conveyor belt, up to 50 ECs 

can be treated in parallel. Thus, the sorting 

speed of the prototype would be multiplied 

by fifty allowing the sorting of up to 

500 kg/h. Considering that a country such 

as Singapore produces an average of 60000 

tonnes of e-waste per year, resulting in 

approximately 1620 tonnes of ECs ( PCBs 

represent 6 wt.% of the global e-waste 

(Pinho, Ferreira, and Almeida 2018)), 3240 

machine hours would be required, 

equivalent to 125 days. Hence, this process 

shows promising results for 

industrialisation. 

4. Conclusion 

In conclusion, our instrumental 

developments and integration reported here 

presents a highly effective sorting process 

for electronic components (ECs) that 

combines physical, optical and MEXRT-

based tools and process steps. The overall 

process is capable of concentrating 

valuable chemical elements in the final 

streams with, for example, an enrichment 

of up to 10,000 times its initial content in 

the WPCBs in the case of gold, including 

metals that are currently wasted and not 

recovered in industrial recycling settings.  

Achieving such levels of enrichment, while 

combining high accuracy and low 

operating costs, opens up new 

opportunities in the recycling industry, 

especially regarding these elements that are 

lost in WEEE recycling processes. Indeed, 

such elementally enriched fractions can 

either be traded or purified by 

hydrometallurgy. In the latter case, one still 

has to face the issue of the variability of 

the composition of the sorting bags, which 

can be solved thanks to state of the art 



 

microfluidics based rapid process 

development tools (Maurice et al. 2022; 

Olivier et al. 2022, 2023). 
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