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Abstract

This article proposes two algorithms to compute the probability of failure using Support Vector

Machine (SVM) classifiers and Monte Carlo estimator in the context of structural mechanics. The

observations used to build the classifiers are obtained from calls to a finite element solver which

introduces discretization error. By exploiting guaranteed discretization error estimators, the

proposed methodology aim at computing an estimation of the probability of failure not polluted

by this discretization error. The first algorithm builds two classifiers in parallel to separate

the guaranteed fail population, the guaranteed safe population and the uncertain population.

It enables to compute an upper bound and a lower bound of the exact probability of failure.

The second algorithm only uses observations whose status (fail or safe) is guaranteed by the

error estimators. It results in multi-fidelity SVM-based meta-models as observations computed

on different mesh sizes can be used. Those two algorithms are illustrated on two-dimensional

mechanical examples for different Monte Carlo populations.

Keywords: Reliability, Probability of failure, Support Vector Machines, Finite Element

Method, Discretization Error

1. Introduction1

Many industrial structures are used in an uncertain environment. For example, structures2

may be subjected to wind loads or wave loads that are not deterministic but random. Moreover,3

as the perfect knowledge of the structure itself is impossible, its geometry or its material prop-4

erties can also be a source of uncertainty and are sometimes modeled as random variables. In5
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this context, the design of the structure requires taking into account those uncertainties, which6

is usually done by reliability analysis.7

Reliability analysis consists in studying the ability of a structure to accomplish its function8

throughout its lifetime. A failure scenario is modeled by a performance function G, also called9

limit state function, which is the difference between a resistance and a solicitation. A negative10

limit state function corresponds to failure and a strictly positive state function corresponds11

to safety. Generally, the uncertainties on the mechanical structure (load, geometry, material12

properties) are modeled as random variables following identified distributions. As a consequence,13

reliability analysis consists in computing sensitivity factors, reliability indexes or a probability14

of failure, which is the probability that the performance function is negative. In this article, we15

focus on the estimation of the probability of failure.16

Usually, for industrial structures, no explicit form of G with respect to the random variables17

is available. Therefore, even if the joint probability of the random variables is known, it is not18

possible to directly compute the probability of failure. However, a mechanical model of the19

structure is postulated and the arising equations can be solved, usually thanks to discretization20

techniques, such as the finite element method (FEM) [1]. FEM is nowadays largely used in21

commercial softwares and enables simulating and predicting the response of a structure. As a22

consequence, the probability of failure can be estimated using Monte Carlo estimators [2] in a23

non-intrusive way. In spite of their simplicity, these methods suffer a poor convergence rate: a24

precise estimation of the probability of failure (usually around 10´4) requires the computation of25

Gpxq, that is to say a call to the FEM code, for every point x of an extremely large Monte Carlo26

population. As a consequence, variance reduction techniques, such as importance sampling [3],27

subset sampling [4], Multi-Level Monte Carlo [5], adjusted control variates techniques [6] have28

been proposed. Another way to reduce computational costs consists in building a meta-model29

Ĝ that would be a satisfying cheap approximation of G. Kriging-based meta-models [7] are very30

popular in reliability analysis, but physical response surfaces [8], polynomial responses surfaces,31

radial basis functions or neuronal networks, see [9], can also be considered.32

As the definition of the probability of failure only relies on the sign of G, classifiers are33

interesting candidates to build a meta-model. Among them, support vector machines (SVM)34

[10] are widely used in the context of reliability analysis, see [11, 12, 13, 14, 15]. The classifier35

enables separating the Monte Carlo population into two sub-populations: the failure population36

and the safety population. A learning criterion is available to improve the quality of the classifier37

from calls to the FEM code. The resulting algorithms are competitive and require comparable38
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number of observations comparing to standard kriging methods.39

It is well-known that the result of FEM computations depends on the discretization [16].40

A too coarse mesh might lead to wrong displacements and therefore introduces an error, called41

discretization error, in the computations of all the mechanical outputs (average stress, ...) leading42

to a misclassification. It is crucial to take into account this discretization error in the reliability43

analysis [17, 18]. To this day, only few works address the question of the consequence of the44

discretization error on the estimation of the probability of failure. It was done with response45

surface methodology [19], with FORM in [20] or in the context of kirging with co-kriging [21].46

Discretization error estimators are available in the literature [16] and enable computing the error47

on a quantity of interest of the mechanical problem. Those estimators were exploited in the48

context of relibility within FORM [22] and kriging [23]. However, those approaches are limited49

to certain type of meta-models and do not include SVM.50

In this paper, we propose to exploit a posteriori error estimators to control the influence of51

the discretization error during the construction of an adaptive SVM-based classifier. We give two52

algorithms that compute the probability of failure. The first one builds two classifiers: the first53

classifier separates the guaranteed safe domain from its complementary and the second classifier54

separates the guaranteed fail domain from its complementary. Therefore, we can compute upper55

and lower bound of the probability of failure. The second algorithm only uses learning points56

for which the sign is not polluted by the discretization error and aims at using coarse meshes far57

from the limit state and fine meshes only close to the limit state. It results in a multi-fidelity58

meta-model because its construction relies on computations done on two different meshes. These59

two algorithms are illustrated on two mechanical examples with 2 random variables: a synthetic60

example for which the exact solution is known and a cracked plate for which the failure scenario is61

the propagation of the crack. In Section 2, we formulate the mechanical problem, define the limit62

state function, the probability of failure and derive bounds on values of the limit state function.63

In Section 3, we give the principles of SVM and briefly describe its use for the estimation of the64

probability of failure. The two new algorithms are presented in Section 4. Numerical simulations65

are done in Section 5. The last section concludes the paper.66

2. Description of the mechanical reliability problem67

In this section, we first define the continuous mechanical problem and its discretization. Then,68

we show how the use of a posteriori error estimator based on the constitutive relation enables to69

obtain discretization error bounds on the exact value of the limit state function Gexpxq. For the70
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sake of simplicity, these derivations are done in a deterministic framework. In the last subsection,71

we introduce uncertainties in the form of random variables and explicit the link between the limit72

state function and the probability of failure.73

2.1. Continuous problem74

Let us consider a body Ω occupying the physical space R3 that is subjected to a body force75

f
vol

, to an imposed displacement ud on BuΩ whose measure is not null and to external forces76

F on BFΩ. Note that BFΩ Y BuΩ “ BΩ and that measpBFΩ X BuΩq “ 0. We consider that this77

body undergoes small perturbations and that there is no inertia effect so that the evolution is78

quasi-static. We also assume that the material behaviour of this solid Ω is linear elastic so that79

it can be characterized by the Hooke tensor H. We note u the displacement of the body and σ80

the Cauchy stress tensor.81

Two affine subspaces and a positive form are introduced:82

• The affine subspace of kinematically admissible fields (KA-fields)83

CA “

!

u P
`

H1pΩq
˘d

, u “ ud on BuΩ
)

(1)

and we note CA0 the associated vectorial space.84

• Affine subspace of statically admissible fields (SA-fields)

SA “

#

τ P
`

L2pΩq
˘dˆd

sym ; @v P CA0,

ż

Ω

τ : ε pvq dΩ “

ż

Ω

f
vol

¨ vdΩ `

ż

BFΩ

F ¨ vdS

+

(2)

• Error in constitutive equation85

eCRΩpu, σq “ }σ ´ H : ε puq }H´1,Ω (3)

where }x}H´1,Ω “

d

ż

Ω

`

x : H´1 : x
˘

dΩ86

The continuous problems reads:87

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Find a displacement field u and a stress field σ such that

u “ ud on BuΩ and ε puq “
1

2
pgradpuq ` gradT puqq on Ω

divpσq ` f
vol

“ 0 on Ω and σn “ F on BFΩ

σ “ H : ε puq on Ω

(4)
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The following formulation is equivalent to the problem 4.88

Find
´

uex, σex

¯

P CA ˆ SA such that eCRΩpuex, σex
q “ 089

Under the hypothesis presented at the beginning of this section, the exact solution
´

uex, σex

¯

90

exists and is unique.91

In the context of reliability, one defines a limit state function or performance function G that92

is usually written as a difference between a resistance R and a solicitation S: G “ R´S. In this93

paper, we consider that the solicitation is a linear form of the displacement94

S “ rLpuq (5)

If G ď 0, the structure fails. If G ą 0, the structure is considered safe.95

Unfortunately, the analytical form of the solution uex is unavailable so Spuexq and Gex “ R´96

Spuexq are generally unknown. Therefore, this problem is usually solved thanks to discretization97

technique. In this paper, we consider that the finite element method (FEM) is used.98

2.2. Discrete problem99

Let define ΩH a tessellation of Ω. Continuous shape functions are associated to this tessel-100

lation. The FEM relies on the approximation of the subspace of kinematically admissible fields101

by a subspace of finite dimension:102

CAH “

!

u P
`

H1pΩHq
˘d

, u “ ud on BuΩH

)

(6)

We note CA0
H the associated vectorial space.103

Therefore, the discretized problem reads:104

Find a displacement field uH P CAH such that @vH P CA0
H

ż

ΩH

ε puHq : H : ε pvHq dΩ “

ż

ΩH

f
vol

¨ vHdΩ `

ż

BFΩH

F ¨ vHdS
(7)

Once uH is obtained, an approximated stress field can be computed thanks to the constitutive105

relation:106

σ
H

“ H : ε puHq (8)

However, the finite element solution uH almost never coincides with the exact solution uex, so107

R´Spuexq ‰ R´SpuHq which is the reason why the FEM introduces a discretization error that108

is propagated in the reliability analysis. Note that choosing a priori an optimal mesh for the109
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reliability study is impossible as the error on S may non linearly depend on the random variables110

and that the conception point is usually unknown [17], even more if the resistance R is random.111

In the next subsection, we define the discretization error and present a posteriori error esti-112

mators.113

2.3. Estimation of the discretization error114

2.3.1. Generalities115

One can introduce the displacement discretization error defined as ediscr “ uex ´ uH and its116

energetic norm ~ediscr~Ω :“ }ε puex ´ uHq }H´1,Ω . The Pragger-Synge theorem [24] reads:117

@pû, σ̂q P CApΩq ˆ SApΩq,

›

›ε puexq ´ ε pûq
›

›

2

H,Ω
`

›

›

›
σ
ex

´ σ̂
›

›

›

2

H´1,Ω
“ e2CRΩ

pû, σ̂q

(9)

This equality is the key ingredient of the discretization error estimator based on the consti-118

tutive relation. Indeed, as the finite element solution uH P CAH , one can choose û “ uH and119

then we can write:120

ediscr :“ ~ediscr~Ω ď eCRΩ
puH , σ̂q (10)

This inequality proves that eCRΩ
puH , σ̂q is a guaranteed a posteriori error estimator. To compute121

this estimator, it is required to build a statically admissible stress field σ̂. This task may be122

complex but several techniques are available in the litterature (see [25], [26], [27] and [28]).123

The energetic norm of the discretization error is often difficult to use in an industrial context.124

Indeed, engineers are often more interested in the error done for a specific quantity of interest125

such as a stress component in a region of the structure. The next paragraph shows how this126

error estimator can be used to obtain discretization error bounds on a quantity of interest that127

is the solicitation SH .128

2.3.2. Definition of the linear quantity of interest and the adjoint problem129

We propose to write G as:130

G “ R ´ rLpuq “ R ´

ż

Ω

pσ
Σ
: ε puq ` f

Σ
uqdΩ (11)

In this equation σ
Σ

and f
Σ

are called extractors and depend on the nature of the quantity131

of interest which is the solicitation S in a reliability analysis. For example, if the quantity of132
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interest is the displacement at the point P on the e1 direction, then the extractors are σ
Σ

“ 0133

and f
Σ

“ δpP qe1.134

A second mechanical problem, also called adjoint problem, is defined:135

Find
´

ruex, rσ
ex

¯

P CA0
pΩq ˆ ĂSApΩq such that eCRΩpruex, rσ

ex
q “ 0 (12)

where136

ĂSApΩq “

#

τ P
`

L2pΩq
˘dˆd

sym ; @v P CA0
pΩq,

ż

Ω

τ : ε pvq dΩ “ L̃pvq

+

(13)

The solution to this problem exists and is unique. Since the exact solution is not known, this137

problem can be solved with the finite element method. By introducing a tesselation rH, we then138

define the vectorial subspace :139

CA0
ĂH

“

!

u P
`

H1pΩ
ĂH

q
˘d

, u “ 0 on BuΩH

)

(14)

The discretized adjoint problem reads:140

Find a displacement field ru
ĂH

P CA0
ĂH

such that @v
ĂH

P CA0
ĂH

ż

Ω
ĂH

ε
`

ru
ĂH

˘

: H : ε
`

v
ĂH

˘

dΩ “ L̃pv
ĂH

q
(15)

One can observe that this problem is similar to the reference finite element problem. The only141

difference is that the linear form L̃ has replaced the mechanical forces f
vol

and F . Therefore, if142

one choses to use the same tessellation for the reference and the adjoint problems ( rH “ H) then143

both problems can be solved at the same time since they share the same stiffness matrix which144

enables multiple right-hand side solving. The use of the FEM for the adjoint problem introduces145

a discretization error that can be estimated in the same way as the reference mechanical problem:146

rediscr “ ~ruex ´ ru
ĂH

~Ω ď eCRΩpru
ĂH
, r̂σq (16)

where r̂σ is a statically admissible stress field for the adjoint problem.147

2.3.3. Error estimation on a quantity of interest148

In [29], the following inequality is demonstrated:149

|rLpuexq ´ rLpuHq ´ I
HĂH

| ď
1

2
eCRΩ

puH , σ̂
H

qeCRΩ
pru

ĂH
, r̂σ

ĂH
q (17)

where150

I
HĂH

“

ż

Ω

1

2
pr̂σ

ĂH
` H : ε

`

ru
ĂH

˘

q : H´1 : pσ̂
H

´ H : ε puHqqdΩ (18)
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and where r̂σ
ĂH

P ĂSA
ĂH

pΩq. Therefore, by defining151

Gm “ R ´ rLpuHq ` I
HĂH

(19)

we can derive bounds on the exact value of Gex “ R ´ rLpuexq152

G´ ď Gex ď G` (20)

where153

G´ :“ Gm ´
1

2
eCRΩ

puH , σ̂
H

qeCRΩ
pru

ĂH
, r̂σ

ĂH
q (21)

and154

G` :“ Gm `
1

2
eCRΩ

puH , σ̂
H

qeCRΩ
pru

ĂH
, r̂σ

ĂH
q (22)

Note that GH may be outside of rG´;G`s. As a consequence, Gm is usually a better esti-155

mation of Gex than R ´ rLpuHq.156

2.3.4. Probability of failure157

Let us consider that the uncertainties can be modeled by a vector random variable X : ζ P158

Z Ñ Xpζq “ x P Rp where Z is the set of possible outcomes and x P Rp a realization of this159

random variable. The random variables can be the imposed forces or imposed displacements, a160

parameter of the geometry, a material property, ... As a consequence, the displacement u and161

the quantity of interest rLpuq are also random variables.162

Let us note p the joint distribution of X. The exact probability of failure is:163

Pf,ex “

ż

Dex,f

ppxqdx (23)

where Dex,f “ tx P Rp|Gexpxq ď 0u is the exact failure domain. However, the exact limit164

state function Gex being usually unknown, the computation of the exact probability of failure is165

impossible and Gex is approximated by GH to compute the probability of failure166

Pf,H “

ż

DH,f

ppxqdx (24)

where DH,f “ tx P Rp|GHpxq ď 0u is the finite element failure domain. Of course, due to the167

discretization error, Gex ‰ GH so Dex,f ‰ DH,f and therefore Pf,H ‰ Pf,ex. Moreover, GH168

is not known explicitly but implicitly, which makes the analytical evaluation of the probability169

Pf,H impossible. Additionnaly, there is no warranty that Pf,H exceeds or not Pf,ex, so that170
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the approximation may be conservative or not. Finally, this sum is usually estimated using the171

Monte Carlo method. Even though the Monte Carlo estimation introduces an approximation172

error, it can be controlled by ensuring that the Monte Carlo population is large enough. The173

coefficient of variation (COV) of the probability is a widely used indicator of this approximation.174

Note that the computation of the integral does not require knowing the value of GH on175

Rp but only the sign of GH through the definition of the failure domain. This is the reason176

why classification methods are relevant tools to estimate the probability of failure. Once the177

classifier is built, the classification of the Monte Carlo population and then the computation of178

the probability of failure are cheap in terms of computational cost even if the population is large.179

In the next subsection, the support vector machine classification is briefly presented.180

3. Support Vector Machine (SVM) for classification181

In this section, we briefly describe the basics on both linear SVM and non linear SVM for182

the classification of a point px, yq P Rp ˆ t´1; 1u from n data points, also called observations183

pxi, yiqi“1..n. The objective of this method is to build a classifier D : Rp Ñ t´1; 1u. The184

interested reader can complete this short section on the basics of SVM classification with the185

following reference [10].186

3.1. Linear SVM187

If the data are linearly separable, the classifier D may be built from the linear function f188

defined as:189

fpxq “ vTx ` a where a P R and v P Rp (25)

where vTx is the scalar product between v and x. Therefore the classifier D reads:190

Dpxq “ signpfpxqq (26)

where191

signp2q “

$

&

%

1 if 2 ą 0

´1 otherwise
(27)

The hyperplane ∆ is defined as ∆ “ tx P Rp such that fpxq “ 0u and the margin m is the192

minimal distance between the data and the hyperplane ∆ :193

m “ min
i“1..n

ˆ

|vTxi ` a|

||v||

˙

(28)
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The parameters v and a of the function f are sought such that they maximize the margin m. To194

obtain a unique solution, this optimization problem is rewritten with new variables w “ v
m||v||

195

and b “ a
m||v||

and reads :196

Find w and b such that
1

2
||w||2 is minimum and yipw

Txi ` bq ě 1 @i “ 1. . n (29)

This problem is called the primal problem as the unknowns w “ v
m||v||

and b “ a
m||v||

can be197

directly connected to the function rf “ wTx ` b written with the new variables and defining the198

classifier D. Indeed, @x P Rp, signpfpxqq “ signp rfpxqq.199

It is possible to obtain a dual formulation of this problem by writing the Lagrangian L of200

problem (29). The Lagrangian reads:201

Lpw, b, αq “
1

2
||w||2 ´

n
ÿ

i“1

αi

`

yipw
Txi ` bq ´ 1

˘

(30)

with αi the Lagrange multipliers associated to the inequality constraint.The saddle point opti-202

mality conditions are:203
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

w ´

n
ÿ

i“1

αi pyixiq “ 0

n
ÿ

i“1

αiyi “ 0

@i P r1;ns, αi ě 0

@i P r1;ns,
`

yipw
Txi ` bq ´ 1

˘

ě 0

@i P r1;ns, αi

`

yipw
Txi ` bq ´ 1

˘

“ 0

(31)

Let A “ ti P r1;ns|
`

yipw
Txi ` bq ´ 1

˘

“ 0u denote the set of active constraints. Then, the204

stationarity of the Lagrangian reads:205

w “
ÿ

iPA
αiyixi (32)

The vector w is a linear combination of the observations associated to the active constraints:206

those observations are called support vectors. The other data do not affect the definition of the207

hyperplane. One can replace the primal variables b and w in the primal formulation (29) to208

obtain the dual formulation:209

Find αi for i P r1;ns such that
1

2

n
ÿ

i“1

n
ÿ

j“1

αiαjyiyjx
T
i xj ´

n
ÿ

i“1

αi is minimum and

n
ÿ

i“1

αiyi “ 0 and αi ě 0 @i “ 1. . n

(33)
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Both primal and dual problems can be solved with standard optimization solvers such as quadratic210

programming for instance.211

3.2. Non-linear SVM212

Unfortunately, in general cases, the optimal classifier is not linear. To overcome this difficulty,213

non-linear kernels may be introduced. The kernels are used to replace the scalar product xT
i xj214

by a measure of the influence of xi on xj . This influence is noted κpxi,xjq and can be interpreted215

as a correlation. Therefore, only positive kernels are allowed. One can cite polynomial kernel,216

Gaussian kernel, exponential kernel. In this article, we use the Gaussian kernel:217

κpxi,xjq “ exp

ˆ

||xi ´ xj ||2

2σ2

˙

(34)

where σ is an hyperparameter. In this paper, we do not study the influence of the choice of the218

kernel. However, methods to build an optimal kernel from the observations exist [30]. The choice219

of the hyperparameter σ is of prime importance. In this article, we perform cross-validation as220

available in Mathworks. The dual formulation of the non-linear SVM reads:221

Find αi for i P r1;ns such that
1

2

n
ÿ

i“1

n
ÿ

j“1

αiαjyiyjκpxT
i xjq ´

n
ÿ

i“1

αi is minimum and

n
ÿ

i“1

αiyi “ 0 and 0 ď αi ď C @i “ 1. . n

(35)

One can observe the introduction of the parameter C which is a penalty parameter. Choosing222

a finite value of C authorizes misclassification. In this paper, we choose to increase C to infinity223

which means that the values αi are not bounded and therefore that misclassification is not224

allowed. Once again, this optimization problem can be solved with standard solvers.225

3.3. SVM classification for estimation of the probability of failure226

Classification with SVM has already been used to estimate the probability of failure [31, 12, 13]227

in the context of reliability analysis. In [12], the authors build a SVM classifier to separate228

the failure points from the safety points in the Monte Carlo Population U of size nMC . From229

observations on a design of experiment DOE, a SVM classifier is built. Then, a learning criterion230

and two learning functions are proposed to improve the classifier adding new observations. Let ξ231

be the ratio between the number of points of U located inside the margin of the classifier over the232

size of U . Let k be the number of the learning iteration. In order to have a more stable criterion,233

the authors of [12] propose to fit the points of ξ using a exponential curve and then define234
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ξ̂pkq “ A exppBkq. If ξ ą η1 or ξ̂ ą η1 or
ˇ

ˇ

ˇ

dξ̂
dk

ˇ

ˇ

ˇ
ą η2 where η1 and η2 are two positive scalars235

defining the stopping criterion for the learning process, the learning criterion is not satisfied.236

Therefore, the enrichment of the meta-model is done by computing ynew “ Gpxnewq for a new237

point xnew. This xnew is chosen close to the separator and far from other observations so that238

its observation will bring valuable information. Therefore, it reads:239

xnew “ argmin
xPU

spxqmaxpdq

dpxqmaxpsq
(36)

where spxqis the distance between x and the separator. dpxq is the distance between x and the240

closest point in the DOE. Note that η1 and η2 are defined by the user. In this paper, we choose241

η1 “ 10´4 and η2 “ 10´5, that is to say the same order of magnitude as in [12].242

It results in the adaptive construction of the SVM classifier. Once the learning criterion is243

reached, the Monte Carlo estimator is used to compute the probability of failure by classifying244

the Monte Carlo population U . A second criterion on the COV of the probability is defined to245

ensure the quality of the Monte Carlo estimator. If the criterion is not fulfilled, the Monte Carlo246

population is enlarged to reduce the sampling error. Because of the poor convergence, a very247

large Monte Carlo population can be required. In order to reduce the computational burden,248

it is possible to use important sampling (used with Kriging in [32]), subset simulations [4] or249

directional sampling [33, 34].250

The resulting algorithm is called ASVM-MCS (Adaptive Support Vector Machine and Monte251

Carlo Simulation).252

4. Controlling the discretization error into SVM classifier meta-modeling253

As explained in subsection 2.3, the use of finite element simulations introduces a discretization254

error which can lead to a large error on the probability of failure. In this section, we propose255

two strategies to benefit from the discretization error bounds on Gex developped in subsection256

2.3.2 to improve the estimation of the probability of failure via SVM classification. Two new257

algorithms based on ASVM-MCS are detailed respectively in the next two subsections.258

4.1. Computation of bounds on the probability of failure259

In this subsection, we propose a methodology to compute error bounds on the probability260

of failure using a unique mesh size. Indeed, we suggest to build two SVM classifiers. The first261

classifier D` is built from the upper bounds observations y “ signpG`pxqq. Once this classifier262

D` is built, it can be used to separate the Monte Carlo population into two sub-populations:263
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the guaranteed failure population Dpop,gf “ tpxiqi“1..nMC
|D`pxiq “ ´1u and its complementary.264

Indeed, evaluating D`pxiq for i “ 1..nMC is cheap once the classifier D` is defined. The second265

classifier D´ is built from the lower bound observations y “ signpG´pxqq. Once this classifier266

D´ is built, it can be used to separate the Monte Carlo population into two sub-populations:267

the guaranteed safe population Dpop,gs “ tpxiqi“1..nMC
|D´pxiq “ `1u and its complementary.268

We propose to use these two classifiers to compute two probabilities P´ “
cardpDpop,gf q

nMC
and269

P` “ 1 ´
cardpDpop,gsq

nMC
as illustrated in Algorithm 1. The learning function ξ` is the ratio270

between the number of points of U located inside the margin of the classifier D` over the size of271

U . The learning function ξ´ is the ratio between the number of points of U located inside the272

margin of the classifier D´ over the size of U .273

Assuming that the two classifiers are correct, which means they are well-trained and do not274

misclassify points in the Monte Carlo population, we have :275

Dpop,gf Ă tx P U | signpGexpxqq “ ´1u Ă pU ´ Dpop,gsq (37)

Finally, by assuming that the Monte Carlo is large enough so that it does not introduce an276

approximation error, we can obtain bounds on the exact probability of failure:277

P´ ď Pf,ex ď P` (38)

The authors are aware that those bounds are not guaranteed because of the meta-modeling error278

(due to the construction of the SVM classifier) and of the approximation error (due to the finite279

size of the Monte Carlo population which is classified by the metamodel). However, those two280

errors are controlled : the learning criterion identifies new observations to update the meta-281

model and the coefficient of variation indicates if a larger Monte Carlo population is required.282

Directional sampling or important sampling may help to reduce the computational time if it is283

necessary. The bounds P` and P´ enables to know the influence of the discretization error on284

the probability of failure. Moreover, the two classifiers D` and D´ can be used to exhibit the285

population for which the mesh size is not fine enough to obtain a classification not polluted by286

the discretization error. Indeed, the set Dpop,uc “ txi P U |D´pxiq ă 0 and D`pxiq ą 0u, defined287

as the uncertain population, can be easily obtained from the two classifiers. If the bounding on288

the exact probability of failure is too large, the user can perform a classification only on Dpop,uc289

with a finer mesh.290
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4.2. Construction of multi-fidelity SVM-based meta-model291

In this subsection, we propose a methodology to train a SVM classifier from observations292

computed on different mesh sizes. Let us introduce a familiy of mesh sizes phjqj for j “ 0..M293

where h0 corresponds to the coarsest mesh and hM to the finest mesh. The key ingredient of294

this method is the following : only observations Gm (defined in Equation (19)) for which the295

sign is guaranteed by the bounds G` (defined in Equation (22)) and G´ (defined in Equation296

(21)) are used to train the classifier. Note that using Gm “ Gmpxq is a better choice than using297

the solution of the finite element problem GHpxq because GHpxq may not be in the interval298

rG´;G`s. Therefore, the classifiers is built only from observations that are not polluted by the299

discretization error. If an observation at the point x is such that G`G´ ă 0, then the simulation300

is done at the same point but with a finer mesh as long as the state of the point (fail or safe)301

is not guaranteed. The construction of the SVM classifier and the estimation of the probability302

of failure is unchanged. As a consequence, the SVM classifier is built from computations done303

on different mesh sizes. This is the reason why this approach builds a multi-fidelity SVM-based304

meta-model. The algorithm of this method is given in algorithm 2. Note that a finest mesh is305

defined so that the algorithm does not exhibit an infinite while loop. In that only case, it is306

allowed to use the sign of Gm computed on the finest mesh to enrich the meta-model even if307

G`G´ ă 0.308

Note that during the execution of this algorithm, the upper and lower bounds are computed.309

Therefore, it is possible, for the user, at the end of the algorithm, to build the SVM classifiers310

from the collection of upper bounds and the collection of lower bounds, in a similar way as it is311

done in the first subsection and therefore obtain bounds on the probability of failure.312

5. Numerical experiments313

In this section, we illustrate the two algorithms described in Section 4 on two numerical314

examples. Both examples are two-dimensional mechanical problem with 2 random variables.315

The first one is a square plate for wich the exact solution is known. Therefore, for this problem,316

the exact probability of failure is available. The second example is a cracked plate for which the317

failure occurs when crack grows, according to Griffith criterion. For both problem the criterion318

to stop the enrichment of the Monte Carlo population is η3 “ 0.02 and the criteria to stop the319

learning of the SVM meta-model are η1 “ 10´4 and η2 “ 10´5. The initial size of the DOE is320

set to nDOE “ 12. The computations were done on Dell mobile Precision 3530 CTO-Base with321

Intel Core i7 8750H (6C, 2.2 4.1 GHz, 9 Mo, 45W).322
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5.1. Square plate323

Let us consider a rectangular plate of dimension 3mm ˆ 3mm with the hypothesis of small324

perturbations and plane strain. All displacements are imposed to be null on the perimeter of the325

plate. The only external action is the force f defined such that the exact solution is:326

uex “ xpx ´ 3qypy ´ 3q
`

py ´ 3q2e1 ` ye2
˘

(39)

The solicitation S is the average of the component σxy of the stress on a square of size 0.5mm327

located on the top left-hand corner of the structure, as illustrated in Figure 1 left.328

Figure 1: Left figure: square plate, Right figure: joint probability distribution of E and ν

The loading of the adjoint problem is therefore defined through the following linear form:329

L̃puq “
1

mespωq

ż

ω

pe1 b e2q : ε puq dω (40)

E is the Young modulus and follows a log-normal law of parameters µ “ 1 and σ “ 0.01. ν330

is the Poisson ratio and follows a uniform law between νmin “ 0.2 and νmax “ 0.4. A map of331

density for the joint probability density function is plotted on Figure 1 right. Those two random332

variables are considered independent. The resistance R is deterministic and R “ 6.3MPa. Since333

the exact displacement field is available, the exact probability of failure can be computed from334

(23): we obtain Pf,ex “ 1.1118 10´4. Moreover, it is also possible to plot the exact limit335

state (Gex “ 0). Note that for this problem the exact limit state is linear. However, since the336

form of the limit state is usually unkown we used the kernel trick to build the SVM classifier337

which explains the form of the computed limit states. The finite element problem is solved with338

second-order elements composing the uniform mesh of size h.339
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5.1.1. Strategy 1 : Computation of bounds thanks to 2 classifiers340

The strategy described in Algorithm 1 is applied for this example on a first mesh of size341

h1 “ 0.25mm. In Table 1, we give the number of calls to the FE code as well as the bounds on342

the probability of failure obtained for 5 different Monte Carlo populations. We observe that Pf,ex343

lies between the computed bounds for all the Monte Carlo populations. For each simulation, the344

two classifiers enable to exhibit the uncertain population. We also observe that the number of345

calls is highly dependant on the Monte Carlo population. Then, a second mesh size h2 “ 0.1mm346

is defined and the algorithm is run again to classify the uncertain population into certain safe347

population and certain failure population. It results in additional calls to the finite element348

solver but also in an improvement of the bounds on the exact probability of failure that can349

be observed in Table 1. One can notice that for the first Monte Carlo population, the upper350

P` “ 1.1115 10´4 is smaller than Pf,ex “ 1.1118 10´4. This is probably due to the finite size351

of the Monte Carlo population as the requirement on the coefficient of variation is that it has352

to be smaller than 0.02. In Figure 2, we plot for each mesh size, the two classifiers as well as353

the certain failure domains and the certain safety domains for the first Monte Carlo population.354

The exact limit state Gex “ 0 is also plotted in blue line on these plot. In addition, the points of355

the Monte Carlo population that were selected for a finite element call to enrich the meta-model356

are specified. We observe that the calls on the fine mesh h2 are close to the exact limit state.357

This is not surprising as the second mesh was used to classify the uncertain population. We also358

notice in the right-hand side figure (zoom) that the exact limit state lies between the two limit359

classifiers for both h1 and h2.360

5.1.2. Strategy 2 : multi-fidelity classifier361

The strategy described in Algorithm 2 is applied on this example with a family of two meshes362

of size hmax “ h1 and hmin “ h2. In Table 2, we give the number of calls to the FE code as363

well as the probabilities of failure obtained for 5 different Monte Carlo populations. Note that364

these populations are the same as the ones used to illustrate the first strategy. We observe that365

the 5 probabilities of failure are very close to the exact probability of failure Pf,ex. In Figure366

3, we plot the limit state as well as the failure and safety domains for the first Monte Carlo367

population. The exact limit state Gex “ 0 is also plotted in blue line. In addition, the points of368

the Monte Carlo population that were selected for a finite element call to enrich the meta-model369

are specified. We observe that the calls on the fine mesh hmin are done close to the exact limit370

state. The computational cost is focused on the frontier between safe and failure domains which371
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Figure 2: Left: Classifiers obtained for the strategy 1 on the square plate problem; Right: zoom

enables to obtain a good estimation of the probability of failure.372

5.2. Cracked plate373

Let us consider a cracked plate of length L “ 16mm and width w “ 7mm. The length of374

the crack is denoted by a and is random. The material is linear elastic isotropic and the Poisson375

ratio is ν “ 0.3. The traction force ÝÑ
F of norm F “ 1MPa is applied on two sides of the plate376

with an angle θ, which is the second random variable of the problem. The solicitation S is the377

stress intensity factor on mode I, which we noted KI , that can be computed thanks to integrals378

on a crown around the crack tip, see [35], as illustrated on Figure 4 left. The outer radius of the379

crown is 1.5mm and the inner radius is 1mm. The failure is defined from the Griffith criterion,380

therefore:381

G “ Klim ´ KI (41)

where Klim “ 22MPa
?
mm is the deterministic resistance. KI is a linear quantity of interest382

with respect to the displacement. As a consequence, it is possible to define an adjoint problem,383

see [36], to obtain error bounds on Gex, as explained in Section 2.3. Both random variables follow384
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Figure 3: Limit state obtained for the strategy 2 on the square plate problem

the Beta distribution and are independant. The parameters given in Table 3 are the distribution385

of these two random variables which is illustrated in Figure 4 right.386

Figure 4: Left figure: cracked plate, Right figure: joint distribution distribution of a and θ.

For this problem, the exact value of the stress intensity factor for the first mode (crack387

opening) is not available for θ ‰ 0. A reference probability of failure Pref is computed on a388
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overkill uniform mesh of size hoverkill “ 0.02mm with the reference method ASVMMCS [12]389

using the first Monte Carlo population. We obtained Pref “ 5.9 10´3. This simulation required390

69 calls to the finite element solver that last 16 184 seconds. The overkill classifier obtained391

during this process is plotted in blue on Figures 5 and 6.392

5.2.1. Strategy 1393

We applied the Algorithm 1 first with the mesh size h1 “ 0.28mm and then with the mesh394

size h2 “ 0.1mm. In Table 4, we give the number of calls to the FE code as well as the bounds395

on the probability of failure obtained for 5 different Monte Carlo populations. The values of P`
396

and P´ are comparable for all the Monte Carlo populations. Similarly to the previous example,397

the number of calls highly depends on the Monte Carlo population. As for the first example, we398

observe that the bounds on the probability of failure are improved when the mesh size h2 is used.399

In Table 5, we give the CPU time spent for the FE solving and the error estimation for the two400

mesh size h1 and h2 for 5 different Monte Carlo populations. We observe that the discretization401

error estimation is very expensive. However, this procedure enables to obtain bounds on the402

probability of failure, which is more informative than a unique value. In Figure 5, we give the403

classifiers as well as the guaranteed fail and safe domains for the two meshes for the first Monte404

Carlo population. The calls carried out to enrich the SVM-meta-models are also depicted in405

black or white, depending on the mesh size. We observe that the overkill classifier lies between406

the two classifiers in the uncertain white zone. Calls on the fine mesh are done close to the limit407

state. This figure clearly illustrates that applying again the Algorithm on a finer mesh enables408

to reduce the size of the uncertain zone.409

5.2.2. Strategy 2410

We applied the second algorithm on the cracked plate case for two mesh sizes hmax “ 0.28mm411

and hmin “ 0.1mm. In Figure 6, we represent the limit state obtained during the algorithm that412

separates the failure domain from the safety domain for the first Monte Carlo population. In this413

figure, the initial design of experiment and the learning points are presented. Points for which414

the coarse mesh was precise enough are in black. Points for which the sign of the performance415

function was not guaranteed and that required an additional call on the fine mesh are in white.416

We observe that far from the classifier, the coarse mesh is satisfying. However, as expected, when417

precision is required close to the limit state, calls on the fine mesh are done. We also observe that418

the multifidelity classifier (in black) is close to the overkill classifier (in blue) which illustrates419

the precision of the meta-model.420
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Figure 5: Limit states obtained for the strategy 1 on the cracked plate

In Table 6, we give the number of calls on each mesh, as well as the CPU time and the421

probabilities of failure obtained for 5 Monte Carlo populations. We observe that for all the422

Monte Carlo populations, the computed probability of failure has the same order of magnitude423

as Pref . The probabilities of failure are always larger than Pref . This difference can be explained424

by the fact that the computations were done on different meshes since hmin ‰ hoverkill. Moreover,425

for this second strategy, Gm is used whereas for the overkill monofidelity strategy, the FE output426

GH is used. From this table, we can observe that the computational cost associated to error427

estimation is very large. This is due to the construction of the statically admissible stress field.428

For the first Monte Carlo population, we observe that the CPU time for FE solving and error429

estimation is equivalent to the CPU time for FE solving on the overkill mesh.430

On this example, the second strategy requires less FE calls and therefore less CPU time than431

the first strategy.432
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Figure 6: Left: limit state obtained for the strategy 2 on the cracked plate; Right: zoom

6. Conclusion433

In this paper, we propose to use discretization error estimators to build an improved SVM-434

based meta-model for the estimation of the probability of failure for quasi-static mechanical435

problems. This first method considers a defined mesh size and enables to compute upper and436

lower bounds of the exact probability of failure. Two classifiers are built during the execution of437

the algorithm. It allows to identify the points in the Monte Carlo population for which the status438

(fail or safe) is polluted by the finite element discretization error. If this subpopulation is too439

large, that is to say if the bounds on the probability of failure are not precise enough, the user can440

run again this algorithm on this subpopulation with a finer mesh. The second method consists in441

using observations to construct the SVM classifier only if the discretization error bounds on the442

performance function enable to guarantee its sign. The SVM meta-model is therefore built from443

observations on different meshes. It results in a multi-fidelity meta-model. Those two strategies444

were illustrated on two mechanical examples and both strategies exhibit their ability to precisely445

estimate the probability of failure. Both strategies lead to an additional cost as they rely on446

discretization error estimations which can be expensive. However, the first strategy enables to447

obtain bounds on the probability of failure which is a more valuable information than a unique448

value. Moreover, the second strategy usually gives better results than monofidelity approach with449
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no error estimation as Gm is usually closer to Gex than GH . Finally, using purely monofidelity450

meta-model would require to do a convergence study on the probability of failure with respect to451

the mesh size. Therefore, the computational cost of our proposed methods should be compared452

to the total cost of the whole convergence study. The two proposed approaches were illustrated453

on problems with two random variables but the algorithms can be used straightforwardly for454

problems with more random variables.455

Further work will consist in exploiting the error map provided by the discretization error456

estimators to build an optimal non uniform mesh. Another interesting topic would be to adapt457

the stopping criterion of learning process and the stopping criterion on the size of the Monte458

Carlo population to the discretization error. For example, in the first method, reaching a very459

small COV for the probability of failure may not be relevant if the discretization error is too large.460

This would require separating the different sources of error in the estimation of the probability461

of failure.462

7. Acknowledgment463

This work was carried out within the project MUSCAS (MUlti-SCAle Stochastic computation464

for MRE) granted by WEAMEC, West atlantic Marine Energy Community with the support of465

Région Pays de la Loire and in partnership with Chantiers de l’Atlantique.466

8. Bibliography467

References468

[1] P. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and469

its Applications, Elsevier Science, 1978.470

URL https://books.google.fr/books?id=TpHfoXnpKvAC471

[2] N. Metropolis, S. Ulam, The monte carlo method, Journal of the American statistical asso-472

ciation 44 (247) (1949) 335–341.473

[3] M. Lemaire, A. Chateauneuf, J.-C. Mitteau, Fiabilité des structures.474

[4] S.-K. Au, J. Beck, Estimation of small failure probabilities in high dimensions by subset475

simulation, Probabilistic engineering mechanics 16 (4) (2001) 263–277.476

22



[5] M. Giles, Multilevel monte carlo path simulation, Operations Research 56 (3) (2008) 607–477

617.478

[6] M. Rashki, A. Ghavidel, H. Arab, S. Mousavi, Low-cost finite element method-based relia-479

bility analysis using adjusted control variate technique, Structural Safety 75 (2018) 133–142.480

[7] J. N. Fuhg, A. Fau, U. Nackenhorst, State-of-the-art and comparative review of adaptive481

sampling methods for kriging, Archives of Computational Methods in Engineering 28 (4)482

(2021) 2689–2747.483

[8] F. Schoefs, Sensitivity approach for modelling the environmental loading of marine struc-484

tures through a matrix response surface, Reliability Engineering & System Safety 93 (7)485

(2008) 1004–1017.486

[9] R. Teixeira, M. Nogal, A. O’Connor, Adaptive approaches in metamodel-based reliability487

analysis: A review, Structural Safety 89 (2021) 102019.488

[10] V. Vapnik, The nature of statistical learning theory, Springer science & business media,489

2013.490

[11] T. Most, An adaptive response surface approach for structural reliability analyses based on491

support vector machines, in: Proceedings of the eleventh international conference on civil,492

structural and environmental engineering computing, BHV Topping, 2007.493

[12] Q. Pan, D. Dias, An efficient reliability method combining adaptive support vector machine494

and monte carlo simulation, Structural Safety 67 (2017) 85–95.495

[13] H. Song, K. Choi, I. Lee, L. Zhao, D. Lamb, Adaptive virtual support vector machine496

for reliability analysis of high-dimensional problems, Structural and Multidisciplinary Op-497

timization 47 (4) (2013) 479–491.498

[14] J.-M. Bourinet, F. Deheeger, M. Lemaire, Assessing small failure probabilities by combined499

subset simulation and support vector machines, Structural Safety 33 (6) (2011) 343–353.500

[15] A. Basudhar, S. Missoum, An improved adaptive sampling scheme for the construction of501

explicit boundaries, Structural and Multidisciplinary Optimization 42 (4) (2010) 517–529.502

[16] I. Babuvška, W. Rheinboldt, Error estimates for adaptive finite element computations, SIAM503

Journal on Numerical Analysis 15 (4) (1978) 736–754.504

23



[17] L. Mell, V. Rey, F. Schoefs, Multifidelity adaptive kriging metamodel based on discretiza-505

tion error bounds, International Journal for Numerical Methods in Engineering 121 (20)506

(2020) 4566–4583. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6451,507

doi:10.1002/nme.6451.508

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6451509

[18] A. Ghavidel, M. Rashki, H. Arab, M. Moghaddam, Reliability mesh convergence analysis by510

introducing expanded control variates, Frontiers of Structural and Civil Engineering 14 (4)511

(2020) 1012–1023.512

[19] K. Alvin, Method for treating discretization error in nondeterministic analysis, AIAA journal513

38 (5) (2000) 910–916.514

[20] L. Morse, Z. Khodaei, M. Aliabadi, A multi-fidelity boundary element method for struc-515

tural reliability analysis with higher-order sensitivities, Engineering Analysis with Boundary516

Elements 104 (2019) 183–196.517

[21] J. Yi, F. Wu, Q. Zhou, Y. Cheng, H. Ling, J. Liu, An active-learning method based on multi-518

fidelity kriging model for structural reliability analysis, Structural and Multidisciplinary519

Optimization (2020) 1–23.520

[22] L. Gallimard, Error bounds for the reliability index in finite element reliability analysis,521

International journal for numerical methods in engineering 87 (8) (2011) 781–794.522

[23] L. Mell, V. Rey, F. Schoefs, Two multifidelity kriging-based strategies to control discretiza-523

tion error in reliability analysis exploiting a priori and a posteriori error estimators, Com-524

puters & Structures (2022) 106897doi:https://doi.org/10.1016/j.compstruc.2022.106897.525

[24] W. Prager, J. Synge, Approximations in elasticity based on the concept of function space,526

Quarterly of Applied Mathematics 5 (3) (1947) 241–269.527

[25] P. Ladeveze, D. Leguillon, Error estimate procedure in the finite element method and ap-528

plications, SIAM Journal on Numerical Analysis 20 (3) (1983) 485–509.529

[26] N. Parés, P. Díez, A. Huerta, Subdomain-based flux-free a posteriori error estimators, Com-530

puter Methods in Applied Mechanics and Engineering 195 (4-6) (2006) 297–323.531

24



[27] F. Pled, L. Chamoin, P. Ladevèze, On the techniques for constructing admissible stress532

fields in model verification: Performances on engineering examples, International Journal533

for Numerical Methods in Engineering 88 (5) (2011) 409–441.534

[28] V. Rey, P. Gosselet, C. Rey, Study of the strong prolongation equation for the construction535

of statically admissible stress fields: implementation and optimization, Computer Methods536

in Applied Mechanics and Engineering 268 (2014) 82–104.537

[29] P. Ladevèze, Strict upper error bounds on computed outputs of interest in computational538

structural mechanics, Computational Mechanics 42 (2) (2008) 271–286.539

[30] L. Dioşan, A. Rogozan, J.-P. Pecuchet, Improving classification performance of support540

vector machine by genetically optimising kernel shape and hyper-parameters, Applied In-541

telligence 36 (2) (2012) 280–294.542

[31] S. Tong, D. Koller, Support vector machine active learning with applications to text classi-543

fication, Journal of machine learning research 2 (Nov) (2001) 45–66.544

[32] B. Echard, N. Gayton, M. Lemaire, N. Relun, A combined importance sampling and kriging545

reliability method for small failure probabilities with time-demanding numerical models,546

Reliability Engineering & System Safety 111 (2013) 232–240.547

[33] P. Bjerager, Probability integration by directional simulation, Journal of Engineering Me-548

chanics 114 (8) (1988) 1285–1302.549

[34] J. Nie, B. Ellingwood, Directional methods for structural reliability analysis, Structural550

Safety 22 (3) (2000) 233–249.551

[35] M. Stern, E. B. Becker, R. S. Dunham, A contour integral computation of mixed-mode552

stress intensity factors, International Journal of Fracture 12 (3) (1976) 359–368.553

[36] L. Gallimard, J. Panetier, Error estimation of stress intensity factors for mixed-mode cracks,554

International Journal for Numerical Methods in Engineering 68 (3) (2006) 299–316.555

25



Algorithm 1:
Generate the the Monte Carlo population U of size nMC ;

Generate the Design Of Experiment (DOE) of size nDOE ;

for i “ 1..nDOE do

Evaluate Gmpxiq, G`pxiq and G´pxiq;

Complete the training samples with yi “ signpG`pxiqq and zi “ signpG´pxiqq;

end

Train the SVM classifier D` from the training sample pyiqi“1..nDOE
;

Train the SVM classifier D´ from the training sample pziqi“1..nDOE
;

Classify the Monte Carlo population thanks to the SVM classifier D` into two populations: guaranteed failure population

Dpop,gf “ tpxiqi“1..nMC
|D`pxiq “ ´1u and its complementary;

Classify the Monte Carlo population thanks to the SVM classifier D´ into two populations: guaranteed safe population

Dpop,gs “ tpxiqi“1..nMC
|D´pxiq “ `1u and its complementary;

Estimate the probability P´ “
cardpDpop,gf q

nMC
;

Compute the coefficient of variation COV- “

d

1´P´

P´nMC
;

Compute the learning functions ξ´ and ξ̂´;

Estimate the probability P` “ 1 ´
cardpDpop,gsq

nMC
;

Compute the coefficient of variation COV` “

d

1´P`

P`nMC
;

Compute the learning functions ξ` and ξ̂`;

Initialize enrichment iteration number k=0;

while ξ` ą η1 or ξ̂` ą η1 or

ˇ

ˇ

ˇ

ˇ

ˇ

dξ̂`

dk

ˇ

ˇ

ˇ

ˇ

ˇ

ą η2 or ξ´ ą η1 or ξ̂´ ą η1 or

ˇ

ˇ

ˇ

ˇ

ˇ

dξ̂´

dk

ˇ

ˇ

ˇ

ˇ

ˇ

ą η2 or COV` ą η3 or COV- ą η3 do

if ξ` ą η1 or ξ̂` ą η1 or

ˇ

ˇ

ˇ

ˇ

ˇ

dξ̂`

dk

ˇ

ˇ

ˇ

ˇ

ˇ

ą η2 or ξ´ ą η1 or ξ̂´ ą η1 or

ˇ

ˇ

ˇ

ˇ

ˇ

dξ̂´

dk

ˇ

ˇ

ˇ

ˇ

ˇ

ą η2 then

if ξ` ą η1 or ξ̂` ą η1 or

ˇ

ˇ

ˇ

ˇ

ˇ

dξ̂`

dk

ˇ

ˇ

ˇ

ˇ

ˇ

ą η2 then

Set k=k+1 ;

Select the optimal next sample point xnew using equation (36) with classifier D`;

Evaluate Gmpxnewq, G`pxnewq and G´pxnewq at this point;

Complete the training sample with ynew “ signpG`pxnewqq;

Complete the training sample with znew “ signpG´pxnewqq;

end

if ξ´ ą η1 or ξ̂´ ą η1 or

ˇ

ˇ

ˇ

ˇ

ˇ

dξ̂´

dk

ˇ

ˇ

ˇ

ˇ

ˇ

ą η2 then

Set k=k+1 ;

Select the optimal next sample point xnew using equation (36) with classifier D´;

Evaluate Gmpxnewq, G`pxnewq and G´pxnewq at this point;

Complete the training sample with ynew “ signpG`pxnewqq;

Complete the training sample with znew “ signpG´pxnewqq;

end

Train the SVM classifier D` from the training sample pyiq;

Train the SVM classifier D´ from the training sample pziq;

Classify the Monte Carlo population thanks to the SVM classifier D` ;

Classify the Monte Carlo population thanks to the SVM classifier D´ ;

Estimate the probabilities P´ and P` ;

Compute the coefficients of variation COV- and COV`;

Compute the learning functions ξ´ , ξ̂´, ξ` and ξ̂`;

end

else

Enlarge the Monte Carlo population;

Classify the Monte Carlo population thanks to the SVM classifier D` ;

Classify the Monte Carlo population thanks to the SVM classifier D´ ;

Estimate the probabilities P´ and P` ;

Compute the coefficients of variation COV- and COV`;

Compute the learning functions ξ´ , ξ̂´, ξ` and ξ̂`;

end

end
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Algorithm 2:
Define a list of mesh sizes phjqj“0..N ;

Generate the the Monte Carlo population U of size nMC ;

Generate the Design Of Experiment (DOE) of size nDOE ;

Set j “ 0;

for i “ 1..nDOE do

Evaluate Gmpxiq, G`pxiq and G´pxiq with the mesh size hj ;

while G`pxiqG´pxiq ă 0 and j ă M do

j “ j ` 1;

Evaluate Gmpxiq, G`pxiq and G´pxiq with the mesh size hj ;

end

Complete the training sample with yi “ signpGmpxiqq;

end

Set j “ 0;

Train the SVM classifier D from the training sample;

Classify the Monte Carlo population thanks to the SVM classifier D into two populations: failure population

Dpop,f “ tpxiqi“1..nMC
|Dpxiq “ ´1u and safety population Dpop,s “ tpxiqi“1..nMC

|Dpxiq “ `1u;

Estimate the probability Pf “
cardpDpop,f q

nMC
;

Compute the coefficient of variation COV “

d

1´Pf
PfnMC

;

Compute the learning functions ξ and ξ̂;

while ξ ą η1 or ξ̂ ą η1 or
ˇ

ˇ

ˇ

ˇ

dξ̂
dk

ˇ

ˇ

ˇ

ˇ

ą η2 or COV ą η3 do

if ξ ą η1 or ξ̂ ą η1 or
ˇ

ˇ

ˇ

ˇ

dξ̂
dk

ˇ

ˇ

ˇ

ˇ

ą η2 then

Select the optimal next sample point xnew using equation (36);

Evaluate Gmpxnewq, G`pxnewq and G´pxnewq with the mesh size hj ;

while G`pxnewqG´pxnewq ă 0 and j ă M do

j “ j ` 1;

Evaluate Gmpxnewq, G`pxnewq and G´pxnewq with the mesh size hj ;

end

Complete the training sample with ynew “ signpGmpxnewqq;

end

Train the SVM from the training sample;

Classify the Monte Carlo population thanks to the SVM classifier D into two populations: failure domain Dpop,f and

safety domain Dpop,s;

Estimate the probability Pf “
cardpDpop,f q

nMC
;

Compute the coefficient of variation COV “

d

1´Pf
PfnMC

;

Compute the learning functions ξ and ξ̂;

else

Enlarge the Monte Carlo population;

Classify the Monte Carlo population thanks to the SVM ;

Estimate the probability Pf “
cardpDpop,f q

nMC
;

Compute the coefficient of variation COV “

d

1´Pf
PfnMC

;

Compute the learning functions ξ and ξ̂;

end

end

27



h1 “ 0.25mm h2 “ 0.1mm

Nb calls P´ pˆ10´4q P` pˆ10´4q Nb calls P´ pˆ10´4q P` pˆ10´4q

54 0.7031 1.6822 16 1.0602 1.1115

113 0.6771 1.7963 18 1.0659 1.1610

153 0.6756 1.7931 13 1.0524 1.12469

114 0.6620 1.8171 13 1.0812 1.1561

92 0.6925 1.8453 10 1.0162 1.3097

Table 1: Bounds of the probability of failure for the strategy 1 on the square plate problem

Pf pˆ10´4q Nb calls hmax Nb calls hmin

1.0979 74 45

1.1194 70 42

1.1109 75 41

1.0964 85 47

1.1121 74 44

Table 2: Estimated probabilities of failure with the strategy 2 on the square plate problem

random variable distribution lower bound upper bound first shape parameter second shape parameter

a Beta 2 5 2 2

θ Beta ´π
2

π
2 3 2

Table 3: Distribution of the random variables a and θ

h1 h2

Nb calls P´ pˆ10´3q P` pˆ10´3q Nb calls P´ pˆ10´3q P` pˆ10´3q

194 0.938 23.00 65 4.022 10.36

171 0.923 22.44 52 4.274 10.45

110 0.944 22.68 52 3.868 10.46

164 0.961 22.53 61 4.043 10.42

156 0.919 22.32 69 3.932 11.56

Table 4: Bounds of the probability of failure for the strategy 1 on the cracked plate
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h1 h2

tEF psq terr (s) tEF psq terr (s)

223 5293 202 11069

244 6499 188 11580

151 3938 206 13017

289 7553 277 19177

303 7878 519 27717

Table 5: Numerical cost for strategy 1 for 5 Monte Carlo populations

Pf pˆ10´3q Nb calls hmax “ 0.28 Nb calls hmin “ 0.2 tEF psq terr (s)

6.765 73 58 326 16253

6.849 71 56 389 20447

7.062 66 53 326 15190

6.640 90 74 414 17129

6.995 93 73 362 14922

Table 6: Strategy 2 on the cracked plate for 5 Monte Carlo populations
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