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Abstract

This article proposes two algorithms to compute the probability of failure using Support Vector
Machine (SVM) classifiers and Monte Carlo estimator in the context of structural mechanics. The
observations used to build the classifiers are obtained from calls to a finite element solver which
introduces discretization error. By exploiting guaranteed discretization error estimators, the
proposed methodology aim at computing an estimation of the probability of failure not polluted
by this discretization error. The first algorithm builds two classifiers in parallel to separate
the guaranteed fail population, the guaranteed safe population and the uncertain population.
It enables to compute an upper bound and a lower bound of the exact probability of failure.
The second algorithm only uses observations whose status (fail or safe) is guaranteed by the
error estimators. It results in multi-fidelity SVM-based meta-models as observations computed
on different mesh sizes can be used. Those two algorithms are illustrated on two-dimensional
mechanical examples for different Monte Carlo populations.

Keywords: Reliability, Probability of failure, Support Vector Machines, Finite Element

Method, Discretization Error

1. Introduction

Many industrial structures are used in an uncertain environment. For example, structures
may be subjected to wind loads or wave loads that are not deterministic but random. Moreover,
as the perfect knowledge of the structure itself is impossible, its geometry or its material prop-

erties can also be a source of uncertainty and are sometimes modeled as random variables. In
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this context, the design of the structure requires taking into account those uncertainties, which
is usually done by reliability analysis.

Reliability analysis consists in studying the ability of a structure to accomplish its function
throughout its lifetime. A failure scenario is modeled by a performance function G, also called
limit state function, which is the difference between a resistance and a solicitation. A negative
limit state function corresponds to failure and a strictly positive state function corresponds
to safety. Generally, the uncertainties on the mechanical structure (load, geometry, material
properties) are modeled as random variables following identified distributions. As a consequence,
reliability analysis consists in computing sensitivity factors, reliability indexes or a probability
of failure, which is the probability that the performance function is negative. In this article, we
focus on the estimation of the probability of failure.

Usually, for industrial structures, no explicit form of G with respect to the random variables
is available. Therefore, even if the joint probability of the random variables is known, it is not
possible to directly compute the probability of failure. However, a mechanical model of the
structure is postulated and the arising equations can be solved, usually thanks to discretization
techniques, such as the finite element method (FEM) [1]. FEM is nowadays largely used in
commercial softwares and enables simulating and predicting the response of a structure. As a
consequence, the probability of failure can be estimated using Monte Carlo estimators [2] in a
non-intrusive way. In spite of their simplicity, these methods suffer a poor convergence rate: a
precise estimation of the probability of failure (usually around 10~%) requires the computation of
G(zx), that is to say a call to the FEM code, for every point z of an extremely large Monte Carlo
population. As a consequence, variance reduction techniques, such as importance sampling [3],
subset sampling [4], Multi-Level Monte Carlo [5], adjusted control variates techniques [6] have
been proposed. Another way to reduce computational costs consists in building a meta-model
G that would be a satisfying cheap approximation of G. Kriging-based meta-models [7] are very
popular in reliability analysis, but physical response surfaces [8], polynomial responses surfaces,
radial basis functions or neuronal networks, see [9], can also be considered.

As the definition of the probability of failure only relies on the sign of G, classifiers are
interesting candidates to build a meta-model. Among them, support vector machines (SVM)
[10] are widely used in the context of reliability analysis, see [11, 12, 13, 14, 15]. The classifier
enables separating the Monte Carlo population into two sub-populations: the failure population
and the safety population. A learning criterion is available to improve the quality of the classifier

from calls to the FEM code. The resulting algorithms are competitive and require comparable
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number of observations comparing to standard kriging methods.

It is well-known that the result of FEM computations depends on the discretization [16].
A too coarse mesh might lead to wrong displacements and therefore introduces an error, called
discretization error, in the computations of all the mechanical outputs (average stress, ...) leading
to a misclassification. It is crucial to take into account this discretization error in the reliability
analysis [17, 18]. To this day, only few works address the question of the consequence of the
discretization error on the estimation of the probability of failure. It was done with response
surface methodology [19], with FORM in [20] or in the context of kirging with co-kriging [21].
Discretization error estimators are available in the literature [16] and enable computing the error
on a quantity of interest of the mechanical problem. Those estimators were exploited in the
context of relibility within FORM [22]| and kriging [23]. However, those approaches are limited
to certain type of meta-models and do not include SVM.

In this paper, we propose to exploit a posteriori error estimators to control the influence of
the discretization error during the construction of an adaptive SVM-based classifier. We give two
algorithms that compute the probability of failure. The first one builds two classifiers: the first
classifier separates the guaranteed safe domain from its complementary and the second classifier
separates the guaranteed fail domain from its complementary. Therefore, we can compute upper
and lower bound of the probability of failure. The second algorithm only uses learning points
for which the sign is not polluted by the discretization error and aims at using coarse meshes far
from the limit state and fine meshes only close to the limit state. It results in a multi-fidelity
meta-model because its construction relies on computations done on two different meshes. These
two algorithms are illustrated on two mechanical examples with 2 random variables: a synthetic
example for which the exact solution is known and a cracked plate for which the failure scenario is
the propagation of the crack. In Section 2, we formulate the mechanical problem, define the limit
state function, the probability of failure and derive bounds on values of the limit state function.
In Section 3, we give the principles of SVM and briefly describe its use for the estimation of the
probability of failure. The two new algorithms are presented in Section 4. Numerical simulations

are done in Section 5. The last section concludes the paper.

2. Description of the mechanical reliability problem

In this section, we first define the continuous mechanical problem and its discretization. Then,
we show how the use of a posteriori error estimator based on the constitutive relation enables to

obtain discretization error bounds on the exact value of the limit state function G.,(z). For the
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sake of simplicity, these derivations are done in a deterministic framework. In the last subsection,
we introduce uncertainties in the form of random variables and explicit the link between the limit

state function and the probability of failure.

2.1. Continuous problem

Let us consider a body Q occupying the physical space R? that is subjected to a body force
f

< wol’

F on 0pQ). Note that dpQ U 9,02 = 0Q and that meas(0pQ N 0,2) = 0. We consider that this

to an imposed displacement u,; on 0,) whose measure is not null and to external forces

body undergoes small perturbations and that there is no inertia effect so that the evolution is
quasi-static. We also assume that the material behaviour of this solid €2 is linear elastic so that
it can be characterized by the Hooke tensor H. We note u the displacement of the body and o
the Cauchy stress tensor.

Two affine subspaces and a positive form are introduced:
e The affine subspace of kinematically admissible fields (KA-fields)
1 d
CA = {ge (H'())", u = uy on auQ} (1)
and we note CAY the associated vectorial space.
o Affine subspace of statically admissible fields (SA-fields)

SA = {Te (L2() 0 vue CA®,

fzig(y)d9=fjm~yd9+ meds} (2)

Q Q orQ

e Error in constitutive equation

eCra (1, 0) = g —H: g (u) |u1,0 (3)

where |z|g-1.0 = \/J (z:H-!:z)dQ
z o & Z

The continuous problems reads:
Find a displacement field u and a stress field g such that

(grad(u) + MT(@)) on Q

N |

u = uy on 0, and ¢ (u) =

dﬂ(g)—ki@ol =0on Q and gn = F on 0pf2

g=H:g(u) on

=
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The following formulation is equivalent to the problem 4.

Find (u aem) € CA x SA such that ecr, (Up,,0 ) =0

—€T I =, =ex) Zen

Under the hypothesis presented at the beginning of this section, the exact solution (@ez’gez)
exists and is unique.

In the context of reliability, one defines a limit state function or performance function G that
is usually written as a difference between a resistance R and a solicitation S: G = R—S. In this

paper, we consider that the solicitation is a linear form of the displacement
S = L(u) (5)

If G <0, the structure fails. If G > 0, the structure is considered safe.
Unfortunately, the analytical form of the solution u,, is unavailable so S(u,,) and Ger = R—
S(u,,,) are generally unknown. Therefore, this problem is usually solved thanks to discretization

technique. In this paper, we consider that the finite element method (FEM) is used.

2.2. Discrete problem

Let define Qp a tessellation of 2. Continuous shape functions are associated to this tessel-
lation. The FEM relies on the approximation of the subspace of kinematically admissible fields

by a subspace of finite dimension:
1 d
CAg = {@e (H (QH)) , U =1u,; on 6UQH} (6)

We note CAY; the associated vectorial space.

Therefore, the discretized problem reads:
Find a displacement field uy € CAj such that Vv, € CAY,

J g(gH):H:g(gH)dﬁzf L)Ol.deQJrJ F-vdS
QH QH 0

FQH

(7)

Once uy is obtained, an approximated stress field can be computed thanks to the constitutive
relation:

o, =H:e(uy) (8)

However, the finite element solution uy almost never coincides with the exact solution u,,, so

ex’

R—S(u,,) # R— S(uy) which is the reason why the FEM introduces a discretization error that

is propagated in the reliability analysis. Note that choosing a priori an optimal mesh for the
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reliability study is impossible as the error on S may non linearly depend on the random variables
and that the conception point is usually unknown [17], even more if the resistance R is random.
In the next subsection, we define the discretization error and present a posteriori error esti-

mators.

2.3. Estimation of the discretization error

2.8.1. Generalities

One can introduce the displacement discretization error defined as ey, = U, — Uy and its

energetic norm ||eg;oe, llo := |€ (e, — upy) lu-1,o - The Pragger-Synge theorem [24] reads:

V(@, &) € CA(Q) x SA(Q),
9)

o — 6”
—ex =lu-1,0

+ ‘ = eQCRQ (@7 g)

le () — £ @5

This equality is the key ingredient of the discretization error estimator based on the consti-
tutive relation. Indeed, as the finite element solution u; € CAp, one can choose & = uy and

then we can write:

ediser = ||€giser llo < €crg (Up, 0) (10)

This inequality proves that ecr,, (ug, ) is a guaranteed a posteriori error estimator. To compute
this estimator, it is required to build a statically admissible stress field 5. This task may be
complex but several techniques are available in the litterature (see [25], [26], [27] and [28]).

The energetic norm of the discretization error is often difficult to use in an industrial context.
Indeed, engineers are often more interested in the error done for a specific quantity of interest
such as a stress component in a region of the structure. The next paragraph shows how this
error estimator can be used to obtain discretization error bounds on a quantity of interest that

is the solicitation Sg.

2.3.2. Definition of the linear quantity of interest and the adjoint problem

We propose to write G as:

G = R=Iw) = A= | (g, £w) + [y (11)

In this equation g, and 12 are called extractors and depend on the nature of the quantity

of interest which is the solicitation S in a reliability analysis. For example, if the quantity of
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interest is the displacement at the point P on the e; direction, then the extractors are gy = 0
and fo = 0(P)e;.
A second mechanical problem, also called adjoint problem, is defined:
Find (@x gm) € CA%(Q) x SA(Q) such that ec g Uy, 3, ) = 0 (12)
where
SAQ) = { € (L) s Voe CA@), [z:e()dn - i<v>} (13)

Q
The solution to this problem exists and is unique. Since the exact solution is not known, this

problem can be solved with the finite element method. By introducing a tesselation H , we then

define the vectorial subspace :

CA?LI = {ge (Hl(Qﬁ))d, u =0 on 8UQH} (14)
The discretized adjoint problem reads:

Find a displacement field uz € CAQ}Y such that Vug € CA%
- (15)
| @) mie ) i - Lo
QI?I - -

One can observe that this problem is similar to the reference finite element problem. The only
difference is that the linear form L has replaced the mechanical forces L}Ol and F. Therefore, if
one choses to use the same tessellation for the reference and the adjoint problems (ﬁ = H) then
both problems can be solved at the same time since they share the same stiffness matrix which
enables multiple right-hand side solving. The use of the FEM for the adjoint problem introduces

a discretization error that can be estimated in the same way as the reference mechanical problem:
Cdiser = |[Uer — Ugllo < ecrq (Ug. 9) (16)

where é is a statically admissible stress field for the adjoint problem.

2.83.3. Error estimation on a quantity of interest

In [29], the following inequality is demonstrated:

~ ~ 1 . ~ &
‘L(ﬂem) - L(HH) - IHﬁ‘ < 56039 (ﬂHﬂgH)eCRQ(HH7§f) (17)
where
1,2 ~ _ N
IHﬁzfi(g{v—i-H:g(gﬁ)):H 1:(gH—H:§(gH))dQ (18)
Q
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and where éﬁ € éTA;{«(Q) Therefore, by defining

G™ =R~ Lluy) + I3 (19)

we can derive bounds on the exact value of Gop = R — L(u,,)

G <Ger <GV (20)
where
G :=G" - %eCRQ (w8 y)ecra @ﬁ’%) 21
and
Gt :=G™+ %ecRn (QHaQH)ecmz @H’iﬁ) (22)

Note that Gy may be outside of [G™; GT]. As a consequence, G™ is usually a better esti-

mation of G, than R — E(QH)

2.8.4. Probability of failure

Let us consider that the uncertainties can be modeled by a vector random variable X : ( €
Z — X(¢) = z € R? where Z is the set of possible outcomes and x € R? a realization of this
random variable. The random variables can be the imposed forces or imposed displacements, a
parameter of the geometry, a material property, ... As a consequence, the displacement u and
the quantity of interest z(g) are also random variables.

Let us note p the joint distribution of X. The exact probability of failure is:

Pfea = J p(z)dx (23)
Dew,f
where D¢y, = {z € RP|Gey(z) < 0} is the exact failure domain. However, the exact limit

state function G, being usually unknown, the computation of the exact probability of failure is

impossible and G, is approximated by Gy to compute the probability of failure

P = f p(z)dx (24)

Du.s
where Dy s = {z € R?|Gg(z) < 0} is the finite element failure domain. Of course, due to the
discretization error, Gey # GH 50 Dey.y # Dp,; and therefore Prpy # Py en. Moreover, Gy
is not known explicitly but implicitly, which makes the analytical evaluation of the probability

P; g impossible. Additionnaly, there is no warranty that P g exceeds or not Py .., so that
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the approximation may be conservative or not. Finally, this sum is usually estimated using the
Monte Carlo method. Even though the Monte Carlo estimation introduces an approximation
error, it can be controlled by ensuring that the Monte Carlo population is large enough. The
coefficient of variation (COV) of the probability is a widely used indicator of this approximation.

Note that the computation of the integral does not require knowing the value of Gy on
RP but only the sign of Gy through the definition of the failure domain. This is the reason
why classification methods are relevant tools to estimate the probability of failure. Once the
classifier is built, the classification of the Monte Carlo population and then the computation of
the probability of failure are cheap in terms of computational cost even if the population is large.

In the next subsection, the support vector machine classification is briefly presented.

3. Support Vector Machine (SVM) for classification

In this section, we briefly describe the basics on both linear SVM and non linear SVM for
the classification of a point (x,y) € RP x {—1;1} from n data points, also called observations
(Xi,Yi)i=1..n- The objective of this method is to build a classifier D : R? — {—1;1}. The
interested reader can complete this short section on the basics of SVM classification with the

following reference [10].

8.1. Linear SVM

If the data are linearly separable, the classifier D may be built from the linear function f
defined as:
f(x) = vI'x 4+ a where a € R and v € R? (25)

T

where v* x is the scalar product between v and x. Therefore the classifier D reads:

D(x) = sign(f(x)) (26)

where

1ifo>0
sign(O) = (27)
—1 otherwise

The hyperplane A is defined as A = {x € RP such that f(x) = 0} and the margin m is the

minimal distance between the data and the hyperplane A :

Ty .
min ('V X + a') (28)
1=1..n ||V||
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The parameters v and a of the function f are sought such that they maximize the margin m. To

obtain a unique solution, this optimization problem is rewritten with new variables w = ml‘\,\'l\
and b = mﬁvl\ and reads :
1
Find w and b such that §||w||2 is minimum and y;(w'x; +b) > 1Vi=1..n (29)
This problem is called the primal problem as the unknowns w = #\v\l and b = "LHUH can be

directly connected to the function ]? = wlx + b written with the new variables and defining the
classifier D. Indeed, Yx € R?, sign(f(x)) = sign(f(x)).

It is possible to obtain a dual formulation of this problem by writing the Lagrangian £ of
problem (29). The Lagrangian reads:

L(w,b,a) = %HW||2 - 2 o; (yi(wx; +b) — 1) (30)
i=1

with «; the Lagrange multipliers associated to the inequality constraint.The saddle point opti-

mality conditions are:

n

Z yle =
Z a;y; =0
i=1

Vie[l;n], a; =0

(31)

Vie[Lin], (yi(wh'x;+b)—1) >0

Vi e [1;n], o (yi(WTxi +b) — 1) =0
Let A = {i € [1;n]| (ys(w'x; +b) — 1) = 0} denote the set of active constraints. Then, the
stationarity of the Lagrangian reads:
w = Z QiYiXi (32)
€A
The vector w is a linear combination of the observations associated to the active constraints:
those observations are called support vectors. The other data do not affect the definition of the
hyperplane. One can replace the primal variables b and w in the primal formulation (29) to

obtain the dual formulation:

1 n n n
Find «; for i € [1;n] such that 3 Z Z a]yly]x X; — Z o; is minimum and
i1=1j=1 i=1

n
Zaiyi:Oandai>0Vi:1..n

i=1

10
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Both primal and dual problems can be solved with standard optimization solvers such as quadratic

programming for instance.

3.2. Non-linear SVM

Unfortunately, in general cases, the optimal classifier is not linear. To overcome this difficulty,
non-linear kernels may be introduced. The kernels are used to replace the scalar product XlTXj
by a measure of the influence of x; on x;. This influence is noted x(x;,x;) and can be interpreted
as a correlation. Therefore, only positive kernels are allowed. One can cite polynomial kernel,

Gaussian kernel, exponential kernel. In this article, we use the Gaussian kernel:

[Ixi — x;1[2
K(X;,Xj) =exp | —————— 34
(i) = exp (143 (39)
where o is an hyperparameter. In this paper, we do not study the influence of the choice of the
kernel. However, methods to build an optimal kernel from the observations exist [30]. The choice

of the hyperparameter o is of prime importance. In this article, we perform cross-validation as

available in Mathworks. The dual formulation of the non-linear SVM reads:

1 n n n
Find «; for i € [1;n] such that 3 Z 2 QoYY (X] X)) — 2 o is minimum and
i=1j=1 i=1

(35)

Zaiyi=0and0<ai<CVi=1..n
i=1

One can observe the introduction of the parameter C' which is a penalty parameter. Choosing
a finite value of C authorizes misclassification. In this paper, we choose to increase C' to infinity
which means that the values «; are not bounded and therefore that misclassification is not

allowed. Once again, this optimization problem can be solved with standard solvers.

3.8. SVM classification for estimation of the probability of failure

Classification with SVM has already been used to estimate the probability of failure [31, 12, 13]
in the context of reliability analysis. In [12], the authors build a SVM classifier to separate
the failure points from the safety points in the Monte Carlo Population U of size na;¢. From
observations on a design of experiment DOFE, a SVM classifier is built. Then, a learning criterion
and two learning functions are proposed to improve the classifier adding new observations. Let &
be the ratio between the number of points of U located inside the margin of the classifier over the
size of U. Let k be the number of the learning iteration. In order to have a more stable criterion,

the authors of [12] propose to fit the points of £ using a exponential curve and then define

11
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E(k) = Aexp(Bk). If € > ny or € > 1y or ’%’ > 19 where 1; and 72 are two positive scalars
defining the stopping criterion for the learning process, the learning criterion is not satisfied.
Therefore, the enrichment of the meta-model is done by computing ynew = G(Xnew) for a new
point Xpew. This Xpew is chosen close to the separator and far from other observations so that

its observation will bring valuable information. Therefore, it reads:
(36)

where s(x)is the distance between x and the separator. d(x) is the distance between x and the
closest point in the DOE. Note that 7; and 72 are defined by the user. In this paper, we choose
n1 = 107% and 1, = 107>, that is to say the same order of magnitude as in [12].

It results in the adaptive construction of the SVM classifier. Once the learning criterion is
reached, the Monte Carlo estimator is used to compute the probability of failure by classifying
the Monte Carlo population U. A second criterion on the COV of the probability is defined to
ensure the quality of the Monte Carlo estimator. If the criterion is not fulfilled, the Monte Carlo
population is enlarged to reduce the sampling error. Because of the poor convergence, a very
large Monte Carlo population can be required. In order to reduce the computational burden,
it is possible to use important sampling (used with Kriging in [32]), subset simulations [4] or
directional sampling [33, 34].

The resulting algorithm is called ASVM-MCS (Adaptive Support Vector Machine and Monte

Carlo Simulation).

4. Controlling the discretization error into SVM classifier meta-modeling

As explained in subsection 2.3, the use of finite element simulations introduces a discretization
error which can lead to a large error on the probability of failure. In this section, we propose
two strategies to benefit from the discretization error bounds on G, developped in subsection
2.3.2 to improve the estimation of the probability of failure via SVM classification. Two new

algorithms based on ASVM-MCS are detailed respectively in the next two subsections.

4.1. Computation of bounds on the probability of failure

In this subsection, we propose a methodology to compute error bounds on the probability
of failure using a unique mesh size. Indeed, we suggest to build two SVM classifiers. The first
classifier D7 is built from the upper bounds observations y = sign(G*(x)). Once this classifier

DT is built, it can be used to separate the Monte Carlo population into two sub-populations:

12
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the guaranteed failure population Dpep g5 = {(Xi)iz1..npe | DT (x;) = —1} and its complementary.
Indeed, evaluating D% (x;) for ¢ = 1..nps¢ is cheap once the classifier D is defined. The second
classifier D~ is built from the lower bound observations y = sign(G~(x)). Once this classifier
D™ is built, it can be used to separate the Monte Carlo population into two sub-populations:

the guaranteed safe population Dpop gs = {(Xi)i=1..nre|D7(%x;) = +1} and its complementary.

We propose to use these two classifiers to compute two probabilities P~ = W and
Pt =1- %ﬁ;‘“’s) as illustrated in Algorithm 1. The learning function £V is the ratio

between the number of points of U located inside the margin of the classifier D over the size of
U. The learning function £~ is the ratio between the number of points of U located inside the
margin of the classifier D™ over the size of U.

Assuming that the two classifiers are correct, which means they are well-trained and do not

misclassify points in the Monte Carlo population, we have :
Dpop,gr = {x € Ulsign(Ges(x)) = =1} = (U — Dpop,gs) (37)

Finally, by assuming that the Monte Carlo is large enough so that it does not introduce an

approximation error, we can obtain bounds on the exact probability of failure:
Pigpf,em<P+ (38)

The authors are aware that those bounds are not guaranteed because of the meta-modeling error
(due to the construction of the SVM classifier) and of the approximation error (due to the finite
size of the Monte Carlo population which is classified by the metamodel). However, those two
errors are controlled : the learning criterion identifies new observations to update the meta-
model and the coefficient of variation indicates if a larger Monte Carlo population is required.
Directional sampling or important sampling may help to reduce the computational time if it is
necessary. The bounds P+ and P~ enables to know the influence of the discretization error on
the probability of failure. Moreover, the two classifiers DT and D~ can be used to exhibit the
population for which the mesh size is not fine enough to obtain a classification not polluted by
the discretization error. Indeed, the set Dyop ue = {x; € U|D™(x;) < 0 and D*(x;) > 0}, defined
as the uncertain population, can be easily obtained from the two classifiers. If the bounding on
the exact probability of failure is too large, the user can perform a classification only on Dyop ue

with a finer mesh.
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4.2. Construction of multi-fidelity SVM-based meta-model

In this subsection, we propose a methodology to train a SVM classifier from observations
computed on different mesh sizes. Let us introduce a familiy of mesh sizes (h;); for j = 0.M
where hy corresponds to the coarsest mesh and hjs to the finest mesh. The key ingredient of
this method is the following : only observations G™ (defined in Equation (19)) for which the
sign is guaranteed by the bounds G* (defined in Equation (22)) and G~ (defined in Equation
(21)) are used to train the classifier. Note that using G™ = G™(x) is a better choice than using
the solution of the finite element problem Gp(x) because Gy (x) may not be in the interval
[G™; GT]. Therefore, the classifiers is built only from observations that are not polluted by the
discretization error. If an observation at the point x is such that GTG~ < 0, then the simulation
is done at the same point but with a finer mesh as long as the state of the point (fail or safe)
is not guaranteed. The construction of the SVM classifier and the estimation of the probability
of failure is unchanged. As a consequence, the SVM classifier is built from computations done
on different mesh sizes. This is the reason why this approach builds a multi-fidelity SVM-based
meta-model. The algorithm of this method is given in algorithm 2. Note that a finest mesh is
defined so that the algorithm does not exhibit an infinite while loop. In that only case, it is
allowed to use the sign of G™ computed on the finest mesh to enrich the meta-model even if
GtG~ <0.

Note that during the execution of this algorithm, the upper and lower bounds are computed.
Therefore, it is possible, for the user, at the end of the algorithm, to build the SVM classifiers
from the collection of upper bounds and the collection of lower bounds, in a similar way as it is

done in the first subsection and therefore obtain bounds on the probability of failure.

5. Numerical experiments

In this section, we illustrate the two algorithms described in Section 4 on two numerical
examples. Both examples are two-dimensional mechanical problem with 2 random variables.
The first one is a square plate for wich the exact solution is known. Therefore, for this problem,
the exact probability of failure is available. The second example is a cracked plate for which the
failure occurs when crack grows, according to Griffith criterion. For both problem the criterion
to stop the enrichment of the Monte Carlo population is 173 = 0.02 and the criteria to stop the
learning of the SVM meta-model are n; = 10~% and 7, = 10~°. The initial size of the DOE is
set to npog = 12. The computations were done on Dell mobile Precision 3530 CTO-Base with

Intel Core i7 8750H (6C, 2.2 4.1 GHz, 9 Mo, 45W).

14



323

324

325

326

327

328

329

330

331

337

338

339

5.1. Square plate

Let us consider a rectangular plate of dimension 3mm x 3mm with the hypothesis of small
perturbations and plane strain. All displacements are imposed to be null on the perimeter of the

plate. The only external action is the force f defined such that the exact solution is:

e, = x(x —3)y(y — 3) ((y — 3)%e; + yey) (39)

The solicitation S is the average of the component o, of the stress on a square of size 0.5mm

located on the top left-hand corner of the structure, as illustrated in Figure 1 left.

0.2

0.22} ] 18

0.24F ] 16

0.26} ] 14

0.8} ] 12

x 03} 10

Q 0.32} ] 8
0.34F ] 6

0.36} ] 4

0.38} ] 2

0.4 s 0

uqg =0 on Of2 ' ’ E(.\ng) !

Figure 1: Left figure: square plate, Right figure: joint probability distribution of E and v

The loading of the adjoint problem is therefore defined through the following linear form:

L(u) = #J (e, ®ey) : € (u) dw (40)

mes(w)

FE' is the Young modulus and follows a log-normal law of parameters 4 = 1 and o = 0.01. v
is the Poisson ratio and follows a uniform law between v,,;,, = 0.2 and V4, = 0.4. A map of
density for the joint probability density function is plotted on Figure 1 right. Those two random
variables are considered independent. The resistance R is deterministic and R = 6.3MPa. Since
the exact displacement field is available, the exact probability of failure can be computed from
(23): we obtain Pf., = 1.1118 10~*. Moreover, it is also possible to plot the exact limit
state (Ger = 0). Note that for this problem the exact limit state is linear. However, since the
form of the limit state is usually unkown we used the kernel trick to build the SVM classifier
which explains the form of the computed limit states. The finite element problem is solved with

second-order elements composing the uniform mesh of size h.
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5.1.1. Strategy 1 : Computation of bounds thanks to 2 classifiers

The strategy described in Algorithm 1 is applied for this example on a first mesh of size
hy = 0.25mm. In Table 1, we give the number of calls to the FE code as well as the bounds on
the probability of failure obtained for 5 different Monte Carlo populations. We observe that Py ¢,
lies between the computed bounds for all the Monte Carlo populations. For each simulation, the
two classifiers enable to exhibit the uncertain population. We also observe that the number of
calls is highly dependant on the Monte Carlo population. Then, a second mesh size hy = 0.1mm
is defined and the algorithm is run again to classify the uncertain population into certain safe
population and certain failure population. It results in additional calls to the finite element
solver but also in an improvement of the bounds on the exact probability of failure that can
be observed in Table 1. One can notice that for the first Monte Carlo population, the upper
P, = 1.1115 10~* is smaller than Pfep = 11118 10~%. This is probably due to the finite size
of the Monte Carlo population as the requirement on the coefficient of variation is that it has
to be smaller than 0.02. In Figure 2, we plot for each mesh size, the two classifiers as well as
the certain failure domains and the certain safety domains for the first Monte Carlo population.
The exact limit state G, = 0 is also plotted in blue line on these plot. In addition, the points of
the Monte Carlo population that were selected for a finite element call to enrich the meta-model
are specified. We observe that the calls on the fine mesh hs are close to the exact limit state.
This is not surprising as the second mesh was used to classify the uncertain population. We also
notice in the right-hand side figure (zoom) that the exact limit state lies between the two limit

classifiers for both h; and hs.

5.1.2. Strategy 2 : multi-fidelity classifier

The strategy described in Algorithm 2 is applied on this example with a family of two meshes
of size hyar = h1 and hppin = ho. In Table 2, we give the number of calls to the FE code as
well as the probabilities of failure obtained for 5 different Monte Carlo populations. Note that
these populations are the same as the ones used to illustrate the first strategy. We observe that
the 5 probabilities of failure are very close to the exact probability of failure Pf ... In Figure
3, we plot the limit state as well as the failure and safety domains for the first Monte Carlo
population. The exact limit state G, = 0 is also plotted in blue line. In addition, the points of
the Monte Carlo population that were selected for a finite element call to enrich the meta-model
are specified. We observe that the calls on the fine mesh h,,;, are done close to the exact limit

state. The computational cost is focused on the frontier between safe and failure domains which
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Figure 2: Left: Classifiers obtained for the strategy 1 on the square plate problem; Right: zoom

enables to obtain a good estimation of the probability of failure.

5.2. Cracked plate

Let us consider a cracked plate of length L = 16mm and width w = 7mm. The length of
the crack is denoted by a and is random. The material is linear elastic isotropic and the Poisson
ratio is ¥ = 0.3. The traction force F of norm F = 1M Pa is applied on two sides of the plate
with an angle 0, which is the second random variable of the problem. The solicitation S is the
stress intensity factor on mode I, which we noted K, that can be computed thanks to integrals
on a crown around the crack tip, see [35], as illustrated on Figure 4 left. The outer radius of the
crown is 1.5mm and the inner radius is 1mm. The failure is defined from the Griffith criterion,

therefore:

G = Kiim — K; (41)

where Kj;p = 22M Pay/mm is the deterministic resistance. Kj is a linear quantity of interest
with respect to the displacement. As a consequence, it is possible to define an adjoint problem,

see [36], to obtain error bounds on G, as explained in Section 2.3. Both random variables follow
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Figure 3: Limit state obtained for the strategy 2 on the square plate problem

sss  the Beta distribution and are independant. The parameters given in Table 3 are the distribution

sss  Of these two random variables which is illustrated in Figure 4 right.
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Figure 4: Left figure: cracked plate, Right figure: joint distribution distribution of a and 6.

387 For this problem, the exact value of the stress intensity factor for the first mode (crack

sse  Opening) is not available for # # 0. A reference probability of failure P..; is computed on a
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overkill uniform mesh of size hoyerrin = 0.02mm with the reference method ASVMMCS [12]
using the first Monte Carlo population. We obtained P,.; = 5.9 1073, This simulation required
69 calls to the finite element solver that last 16 184 seconds. The overkill classifier obtained

during this process is plotted in blue on Figures 5 and 6.

5.2.1. Strategy 1

We applied the Algorithm 1 first with the mesh size h; = 0.28mm and then with the mesh
size ho = 0.1mm. In Table 4, we give the number of calls to the FE code as well as the bounds
on the probability of failure obtained for 5 different Monte Carlo populations. The values of P
and P~ are comparable for all the Monte Carlo populations. Similarly to the previous example,
the number of calls highly depends on the Monte Carlo population. As for the first example, we
observe that the bounds on the probability of failure are improved when the mesh size hs is used.
In Table 5, we give the CPU time spent for the FE solving and the error estimation for the two
mesh size h; and hs for 5 different Monte Carlo populations. We observe that the discretization
error estimation is very expensive. However, this procedure enables to obtain bounds on the
probability of failure, which is more informative than a unique value. In Figure 5, we give the
classifiers as well as the guaranteed fail and safe domains for the two meshes for the first Monte
Carlo population. The calls carried out to enrich the SVM-meta-models are also depicted in
black or white, depending on the mesh size. We observe that the overkill classifier lies between
the two classifiers in the uncertain white zone. Calls on the fine mesh are done close to the limit
state. This figure clearly illustrates that applying again the Algorithm on a finer mesh enables

to reduce the size of the uncertain zone.

5.2.2. Strategy 2

We applied the second algorithm on the cracked plate case for two mesh sizes h,,q, = 0.28mm
and hy,in = 0.1mm. In Figure 6, we represent the limit state obtained during the algorithm that
separates the failure domain from the safety domain for the first Monte Carlo population. In this
figure, the initial design of experiment and the learning points are presented. Points for which
the coarse mesh was precise enough are in black. Points for which the sign of the performance
function was not guaranteed and that required an additional call on the fine mesh are in white.
We observe that far from the classifier, the coarse mesh is satisfying. However, as expected, when
precision is required close to the limit state, calls on the fine mesh are done. We also observe that
the multifidelity classifier (in black) is close to the overkill classifier (in blue) which illustrates

the precision of the meta-model.
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Figure 5: Limit states obtained for the strategy 1 on the cracked plate

421 In Table 6, we give the number of calls on each mesh, as well as the CPU time and the
422 probabilities of failure obtained for 5 Monte Carlo populations. We observe that for all the
423 Monte Carlo populations, the computed probability of failure has the same order of magnitude
a2a  as Pr.y. The probabilities of failure are always larger than P,... This difference can be explained
a2s by the fact that the computations were done on different meshes since h.,in # hoverki- Moreover,
a26 for this second strategy, G™ is used whereas for the overkill monofidelity strategy, the FE output
a2z Gp is used. From this table, we can observe that the computational cost associated to error
428 estimation is very large. This is due to the construction of the statically admissible stress field.
420 For the first Monte Carlo population, we observe that the CPU time for FE solving and error
430 estimation is equivalent to the CPU time for FE solving on the overkill mesh.

431 On this example, the second strategy requires less FE calls and therefore less CPU time than

432 the first strategy.
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Figure 6: Left: limit state obtained for the strategy 2 on the cracked plate; Right: zoom

6. Conclusion

In this paper, we propose to use discretization error estimators to build an improved SVM-
based meta-model for the estimation of the probability of failure for quasi-static mechanical
problems. This first method considers a defined mesh size and enables to compute upper and
lower bounds of the exact probability of failure. Two classifiers are built during the execution of
the algorithm. It allows to identify the points in the Monte Carlo population for which the status
(fail or safe) is polluted by the finite element discretization error. If this subpopulation is too
large, that is to say if the bounds on the probability of failure are not precise enough, the user can
run again this algorithm on this subpopulation with a finer mesh. The second method consists in
using observations to construct the SVM classifier only if the discretization error bounds on the
performance function enable to guarantee its sign. The SVM meta-model is therefore built from
observations on different meshes. It results in a multi-fidelity meta-model. Those two strategies
were illustrated on two mechanical examples and both strategies exhibit their ability to precisely
estimate the probability of failure. Both strategies lead to an additional cost as they rely on
discretization error estimations which can be expensive. However, the first strategy enables to
obtain bounds on the probability of failure which is a more valuable information than a unique

value. Moreover, the second strategy usually gives better results than monofidelity approach with
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no error estimation as G™ is usually closer to G, than Gg. Finally, using purely monofidelity
meta-model would require to do a convergence study on the probability of failure with respect to
the mesh size. Therefore, the computational cost of our proposed methods should be compared
to the total cost of the whole convergence study. The two proposed approaches were illustrated
on problems with two random variables but the algorithms can be used straightforwardly for
problems with more random variables.

Further work will consist in exploiting the error map provided by the discretization error
estimators to build an optimal non uniform mesh. Another interesting topic would be to adapt
the stopping criterion of learning process and the stopping criterion on the size of the Monte
Carlo population to the discretization error. For example, in the first method, reaching a very
small COV for the probability of failure may not be relevant if the discretization error is too large.
This would require separating the different sources of error in the estimation of the probability

of failure.
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Algorithm 1:

Generate the the Monte Carlo population U of size npro
Generate the Design Of Experiment (DOE) of size npog;
for i = l.npopg do
Evaluate G™ (x;), G (x;) and G (x;);
Complete the training samples with y; = sign(G+(xi)) and z; = sign(G™ (x;));
end

Train the SVM classifier DT from the training sample (yi')izl--"DOE.’

Train the SVM classifier D™ from the training sample (zi)izl__nDOE;
Classify the Monte Carlo population thanks to the SVM classifier DT into two populations: guaranteed failure population
Dpop,gf = {(*iiz1..n3,0 IDt (x;) = —1} and its complementary;
Classify the Monte Carlo population thanks to the SVM classifier D™ into two populations: guaranteed safe population
Dpop,gs = {(xi)izl""Ll\lC |[D7 (x;) = +1} and its complementary;
card(D
Estimate the probability P~ = card(Ppop.gf) ;
nMC
1—-P—

Compute the coefficient of variation COV™ =, ——— ;
P npro

Compute the learning functions £~ and 5’7;

d(D .
Estimate the probability P+ = 1 — 2 4(Ppop.gs)
nMC

1—pP+

Compute the coefficient of variation covt = [ 1=PT
\ Ptnpyce

Compute the learning functions §+ and é+;

Initialize enrichment iteration number k=0;

. i+ N g
while £+ > 0y or €T > ny or |90 > 0y or £ > my or €7 >y or || > ny or COVT > 3 or COV™ > 3 do
if§+>n1 oré+>nlo'r%k—>1]207‘87>'r/107‘57>1]1 oridgk—>r,2then

if§+>n1 oré+>n1 or

%‘ > ng then

Set k=k+1 ;

Select the optimal next sample point xpnew using equation (36) with classifier D+;
Evaluate G™ (xnew); GT (xnew) and G~ (xnew) at this point;

Complete the training sample with ypew = sign(G+ (Xnew));

Complete the training sample with zpew = sign(G™ (Xnew)):

end

o oo s dé—
£ €7 >y or €7 >y or |95 > s then

Set k=k+1 ;
Select the optimal next sample point xpnew using equation (36) with classifier D™ ;
BEvaluate G™ (xnew): GT (xnew) and G~ (xnew) at this point;

Complete the training sample with ypew = sign(GT (xnew));

Complete the training sample with zpew = sign(G™ (Xnew)):
end

Train the SVM classifier DT from the training sample (y;);

Train the SVM classifier D™ from the training sample (z;);

Classify the Monte Carlo population thanks to the SVM classifier DT ;
Classify the Monte Carlo population thanks to the SVM classifier D™
Estimate the probabilities P~ and Pt

Compute the coefficients of variation COV™ and COVT;

Compute the learning functions £~ , é_, §+ and é+;

else

Enlarge the Monte Carlo population;

Classify the Monte Carlo population thanks to the SVM classifier DT ;
Classify the Monte Carlo population thanks to the SVM classifier D™ ;
Estimate the probabilities P~ and Pt

Compute the coefficients of variation COV™ and COVT;

Compute the learning functions £~ , é_, £+ and é+;
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Algorithm 2:

Define a list of mesh sizes (h;);_g.. N3
Generate the the Monte Carlo population U of size npro
Generate the Design Of Experiment (DOE) of size npog;
Set j = 0;
for i = l.npog do
Evaluate G" (x;), G+(xi) and G (x;) with the mesh size h;
while G1 (x;)G 7 (x;) <0 and j < M do
=i+
Evaluate G™ (x;), GT (x;) and G (x;) with the mesh size h;
end
Complete the training sample with y; = sign(G"™ (x;));
end
Set j = 0;
Train the SVM classifier D from the training sample;
Classify the Monte Carlo population thanks to the SVM classifier D into two populations: failure population
Dyop,f = {(xi)i=1..nMch(xi) = —1} and safety population Dpop,s = {(xi)11=1..nMc|D(xi) = +1};
card(Dyop f) ;

Estimate the probability Py = are
1—Py

Compute the coefficient of variation COV = B~
fm"MmMc

Compute the learning functions & and &;

while §€ > 11 or £ > ny or

d
d—ﬂ> ng or COV > 13 do

if £ > np oré>n1 or

%‘ > no then
Select the optimal next sample point Xpew using equation (36);
Evaluate G™ (xnew); GT (xnew) and G~ (Xxnew) with the mesh size hjs
while GT (xpew )G~ (Xnew) < 0 and j < M do
J=3J+1
BEvaluate G™ (xnew); GT (xnew) and G (Xxnew) with the mesh size hjs
end
Complete the training sample with ypew = sign(Gm (Xxnew));
end
Train the SVM from the training sample;

Classify the Monte Carlo population thanks to the SVM classifier D into two populations: failure domain D s and

pop,
safety domain Dpop,s;

card(D )
Estimate the probability Py = pop, f
nMC
i—P;
Compute the coefficient of variation COV = \ Prvic

Compute the learning functions £ and é;
else
Enlarge the Monte Carlo population;
Classify the Monte Carlo population thanks to the SVM ;
card(Dpop,f) ;

Estimate the probability Py = MO

i—P
Comprte the coefficient of variation COV = 7 £

| Prnmc

Compute the learning functions & and £;
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hi1 = 0.25mm ho = 0.1lmm
Nb calls | P_ (x107%) | P, (x107%) || Nbcalls | P_ (x107%) | Py (x107%)
54 0.7031 1.6822 16 1.0602 1.1115
113 0.6771 1.7963 18 1.0659 1.1610
153 0.6756 1.7931 13 1.0524 1.12469
114 0.6620 1.8171 13 1.0812 1.1561
92 0.6925 1.8453 10 1.0162 1.3097

Table 1: Bounds of the probability of failure for the strategy 1 on the square plate problem

P (x 10~%) | Nb calls hyaz | Nb calls hpin
1.0979 74 45
1.1194 70 42
1.1109 75 41
1.0964 85 47
1.1121 74 44

Table 2: Estimated probabilities of failure with the strategy 2 on the square plate problem

random variable | distribution | lower bound | upper bound | first shape parameter | second shape parameter
a Beta 2 ) 2 2
0 Beta -5 5 3 2
Table 3: Distribution of the random variables a and 6
hi ha

Nb calls | P_ (x1073) | Py (x1073) || Nbcalls | P_ (x1073) | Py (x1073)

194 0.938 23.00 65 4.022 10.36

171 0.923 22.44 52 4.274 10.45

110 0.944 22.68 52 3.868 10.46

164 0.961 22.53 61 4.043 10.42

156 0.919 22.32 69 3.932 11.56

Table 4: Bounds of the probability of failure for the strategy 1 on the cracked plate
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hy ha
ter(s) | terr (8) | tEF(S) | terr ()
223 5293 202 | 11069
244 6499 188 | 11580
151 3938 206 | 13017
289 7553 277 | 19177
303 7878 519 | 27717

Table 5: Numerical cost for strategy 1 for 5 Monte Carlo populations

P (x1073) | Nb calls Ayap = 0.28 | Nb calls Apip, = 0.2 | tgr(s) | terr (S)
6.765 73 58 326 16253
6.849 71 56 389 20447
7.062 66 53 326 15190
6.640 90 74 414 17129
6.995 93 73 362 14922

Table 6: Strategy 2 on the cracked plate for 5 Monte Carlo populations
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