
HAL Id: hal-04095419
https://hal.science/hal-04095419v1

Submitted on 12 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast VM Replication on Heterogeneous Hypervisors for
Robust Fault Tolerance

Jean-Baptiste Decourcelle, Tu Dinh Ngoc, Boris Teabe, Daniel Hagimont

To cite this version:
Jean-Baptiste Decourcelle, Tu Dinh Ngoc, Boris Teabe, Daniel Hagimont. Fast VM Replication on
Heterogeneous Hypervisors for Robust Fault Tolerance. Middleware ’23: 24th International Middle-
ware Conference, Dec 2023, Bologna Italy, France. 14 p., �10.1145/3590140.3592849�. �hal-04095419�

https://hal.science/hal-04095419v1
https://hal.archives-ouvertes.fr

Fast VM Replication on Heterogeneous Hypervisors for Robust
Fault Tolerance

Jean-Baptiste Decourcelle
IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3

Toulouse, France

Tu Dinh Ngoc
IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3

Toulouse, France

Boris Teabe
IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3

Toulouse, France

Daniel Hagimont
IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3

Toulouse, France

ABSTRACT
The reliability of virtualization infrastructures in the face of avail-
ability issues is a long-standing problem. Current fault tolerance
approaches such as live VM replication are effective at addressing
external, accidental issues (e.g. hardware failures, power cuts, envi-
ronmental disasters); however, against an active attacker exploiting
zero-day denial-of-service (DoS) vulnerabilities in the hypervisor
itself, these approaches do not address the root cause of said vulner-
abilities, and therefore cannot protect against these issues. This is
made more relevant by the prevalence of DoS vulnerabilities among
many widely used hypervisors.

We introduce heterogeneous replication, a new solution that en-
hances live VM replication so that VMs can be replicated across
different hypervisors. We show that heterogeneous replication not
only mitigates accidental failures from the external operational en-
vironment, but also mitigates DoS attacks arising from hypervisor
vulnerabilities. We further show that heterogeneous replication
can be used to increase the security of virtualized infrastructures
without sacrificing availability.

We build HERE, our implementation of the heterogeneous repli-
cation concept for replicating a protected VM across hypervisor
boundaries. We describe the implementation of HERE, including
details on the necessary VM state replications, as well as a dy-
namic checkpoint interval adjustment scheme that maximizes VM
protection based on load levels. We evaluate HERE using various
benchmarks to show that HERE meets the goal of protecting VMs
from availability issues while adapting to the VM’s computing load.

CCS CONCEPTS
• Security and privacy→ Virtualization and security; • Com-
puter systems organization→ Cloud computing.

KEYWORDS
heterogeneous hypervisors, VM asynchronous state replication,
zero-day DoS vulnerabilities, virtualized infrastructures security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Middleware ’23, December 11–15, 2023, Bologna, Italy
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0177-1/23/12. . . $15.00
https://doi.org/10.1145/3590140.3592849

ACM Reference Format:
Jean-Baptiste Decourcelle, Tu Dinh Ngoc, Boris Teabe, and Daniel Hagimont.
2023. Fast VM Replication on Heterogeneous Hypervisors for Robust Fault
Tolerance. In 24th International Middleware Conference (Middleware ’23),
December 11–15, 2023, Bologna, Italy. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3590140.3592849

1 INTRODUCTION
As a core component of the modern cloud, hypervisors offer cru-
cial isolation between multiple tenants, allowing various hardware
resources to be securely shared and protected. They therefore need
to guarantee the confidentiality, integrity and availability of client
VMs (also known as the CIA triad). Unfortunately, like any other
software, hypervisors can suffer from failures from various sources:
internal failures stemming from implementation bugs and design
issues [10, 22, 24]; or external failures originating from the opera-
tion environment, like hardware vulnerabilities [10, 23], hardware
failures, or environmental disasters.

Regardless of the source of failure, cloud providers must propose
a strategy to handle these issues. These strategies can generally be
categorized into three groups:

a. Active mitigation of vulnerabilities. These strategies generally
take either one of two forms: by applying live updates to a
running system, therefore ensuring protection from a newly-
discovered vulnerability as quickly as possible [54]; or by
using multiple software implementations to impede exploita-
tion, e.g. by dynamically switching between the two [24, 52];

b. Fast reboot and restoration. These strategies either aim to
reinitialize a small contained component of the system, or
optimize the reboot process such that they can be performed
as fast as possible within the maintenance timeframe [7,
16, 32, 55]. They can be used either proactively (i.e. after a
system update) or reactively (after a system failure).

c. Proactive state replication. These strategies advocate repli-
cating the system’s state, allowing the continuing of system
operation on a replica in case of external failures [9, 53].

Nevertheless, these approaches all share a common property: they
cannot address internal failures caused by an unknown (“zero-day”)
DoS vulnerability. In particular, mitigation-based approaches (a. and
b.) require knowledge of the vulnerability-to-be-mitigated, while
replication-based approaches (c.) can only recover from accidental
failures, and not intentional exploits.

To clarify, let us focus on live VM replication as commonly sup-
plied by hypervisor vendors. Live VM replication, known under
various commercial name like vSphere Fault Tolerance (VMWare),

https://orcid.org/0009-0003-9713-7192
https://orcid.org/0000-0001-8642-8742
https://orcid.org/0000-0001-6528-8904
https://orcid.org/0000-0002-0978-2155
https://doi.org/10.1145/3590140.3592849
https://doi.org/10.1145/3590140.3592849

Middleware ’23, December 11–15, 2023, Bologna, Italy Jean-Baptiste Decourcelle, Tu Dinh Ngoc, Boris Teabe, and Daniel Hagimont

Remus (Xen), or COLO (KVM/Xen), provides a practical manner
of addressing availability issues by ensuring continuity of service
in the event of a system failure. These solutions generally work by
periodically checkpointing the running state of a VM (including its
CPU registers, memory, hardware states, etc.) and sending these
data over the network to a secondary physical host to be recon-
structed as a replica VM. In the event of a failure, the replica VM is
quickly activated so as to take over service operation.

It is worth noting that current VM replication solutions require
both the primary and secondary hosts to run the same hypervisor.
As stated above, this setup is only capable of dealing with external
failures, such as a hardware failure causing the primary host to
stop working. However, in the case of a targeted attack on the
hypervisor, for example by means of a DoS exploit, this approach
alone is insufficient for protecting the system. In fact, if the primary
host was brought down by a DoS vulnerability, activating the replica
does nothing to address the problem; the same vulnerability remains
and can be exploited again on the secondary host.

Figure 1: Coverage of various availability issue mitigation
strategies.

To address this gap, we propose an extension to live VM repli-
cation to handle more than external failures. We introduce the
concept of heterogeneous replication, which involves replicating
VMs in real-time between different hypervisor implementations,
combining the fault-tolerant properties of VM replication with the
principle of software diversity [33] to account for both internal and
external failures. Figure 1 provides a comparison of our solution
to other failure mitigation strategies: unlike most existing strate-
gies, heterogeneous replication proposes a defense against both
hardware failures and intentional DoS exploits, including zero-day
exploits for which a patch is not yet available.

To validate our concept, we implemented HERE, a platform for
replicating VMs across different hypervisors by implementing an
asynchronous state replication model [4], where the VM execution
state on the primary host is buffered to the replica, and its activity
is released following a checkpointing period. Based on previous
studies on heterogeneous migration on hypervisors [21, 24], HERE
extracts the necessary machine states from the running VM and
translates it across heterogeneous hypervisors. Nonetheless, repli-
cation requires continuous VM state tracking and transfer, unlike
migration. HERE further proposes two optimizations on the VM
replication process:

Dynamic control of checkpointing period. Live replication often
induces significant overhead on applications running in the repli-
cated VMs, a reason why it is mostly used for critical workloads that
cannot support a long downtime in the event of a failure. In other
words, availability is more important than performance for such

workloads. In current implementations of asynchronous state repli-
cation, VM execution state is released following a checkpointing
period defined at the start of the VM. As such, this value effec-
tively serves as an “average-case” recovery point objective which
cannot be changed during the lifetime of the VM, and therefore
cannot adapt to changing workloads that demand different check-
point frequencies. Such a heuristic is not necessarily desirable for
mission-critical applications, where as stated above, the goal is
often to minimize data loss rather than to maximize application
performance. HERE proposes a VM replication approach where the
checkpointing period is dynamically adapted to the VM’s activity
based on two configurable parameters: 1) the desired replication
overhead 𝐷 ; and 2) the maximum tolerable downtime in case of
failure 𝑇𝑚𝑎𝑥 . We show that our solution is capable of maximizing
the replicated VM’s protection while staying within the predefined
constraints, regardless of the characteristics of the workload.

Optimized multithreaded replication. Current replication imple-
mentations mostly use a single thread to track and send dirty VM
pages to perform replication of an entire VM. Such implementations
are not capable of efficiently utilizing the full speed of modern net-
work adapters, which can offer hundreds of gigabits of throughput
per port. HERE proposes a multithreading scheme adapted to each
phase of the replication process to reduce its overhead.

In short, we propose the following contributions in our paper:
• We analyze heterogeneous replication in relation to recent
hypervisor vulnerabilities, and show how it can be used to
harden virtualization infrastructure from exploits;
• We build HERE, our implementation of heterogeneous repli-
cation on top of two open-source hypervisors, Xen and KVM;
• We show that HERE is capable of breaking unknown exploits
without causing system interruption by integrating exploit
prevention techniques;
• We evaluate HERE at a machine scale to investigate its over-
head when running typical network, computing and data-
base benchmark workloads.

The rest of our article is organized as follows. Section 2 presents
our observations andmotivations for the creation ofHERE. Section 3
presents the necessary background to understand our contribution.
Section 4 presents the general overview of HERE. Sections 5 to 7
present the design and implementation of HERE. Section 8 presents
the evaluation results. Section 9 discusses the related works. Sec-
tion 10 concludes our paper.

2 MOTIVATION
The prevalence of denial-of-service vulnerabilities. We investi-

gated vulnerabilities in five commonly-used virtualization products
(Xen, Linux KVM, QEMU, VMware ESXi and Microsoft Hyper-V)
published in an eight-year period from 2013 to 2020 on the NIST
National Vulnerability Database [3]. For each product, we counted
the total number of CVEs in the given period, the number of CVEs
having an impact on availability (CVSS 2.0 Availability impact of
Partial or higher), as well as the number of DoS-only CVEs (CVSS
2.0 Confidentiality and Integrity impact equals None).1 We show

1Note that some projects, e.g. Linux, do not normally assign CVEs for security bugs [47];
as a result, this is not an exhaustive listing of all vulnerabilities. Nevertheless, we

Fast VM Replication on Heterogeneous Hypervisors for Robust Fault Tolerance Middleware ’23, December 11–15, 2023, Bologna, Italy

our findings in Table 1. We observe that 1) among all hypervi-
sors, most vulnerabilities have an impact on availability; and 2)
DoS-specific vulnerabilities make up a substantial proportion of hy-
pervisor vulnerabilities, especially with the open-source products
we investigated (Xen, Linux KVM and QEMU). Our claim is corrob-
orated by other works studying hypervisor vulnerabilities [29, 38].

Table 1: DoS vulnerability stats by hypervisor, 2013-2020.
“Avail” signifies vulnerabilities with an availability impact.
“DoS” signifies vulnerabilities that only impact availability
(“DoS exploits”).

Product CVEs Avail Avail% DoS DoS%
Xen 312 282 90.4% 152 48.7%
KVM 74 68 91.9% 38 51.4%
QEMU 308 290 94.2% 192 62.3%
ESXi 70 55 78.6% 16 22.9%
Hyper-V 116 95 81.9% 44 37.9%

Little overlap between vulnerabilities of different hypervisors. As
shown in other works [24], while individual hypervisors encounter
multiple vulnerabilities of different severities every year, different
hypervisors tend to share very few vulnerabilities overall (one
critical and two medium-severity in a period of seven years). This
means a software vulnerability on a hypervisor is unlikely to affect
a different hypervisor, a property we utilize in our solution.

The difficulty of mitigating availability issues. Various techniques
exist to address unintentional availability issues, e.g. hardware
failures or environmental disasters. For example, live VM replica-
tion [9, 53] proposes recovery from hardware errors by replicating
a VM’s execution state onto a remote host, as we presented in
Section 1. Nevertheless, live replication alone is not sufficient to
address intentional exploit attempts, including DoS exploits, as fail-
ing over from the primary to the replica does little to address the
actual underlying vulnerability.

Denial-of-service vulnerabilities can originate frommultiple root
causes: memory bugs (use-after-free/null dereference/buffer over-
flow/etc.) causing crashes upon handling untrusted input; resource
exhaustion attacks (e.g. Slowloris, fork bombs); or algorithmic com-
plexity attacks, a subclass of resource exhaustion attacks that focus
on algorithmic behaviors (e.g. evil regexes, hash table flooding). DoS
issues resulting from this class of attacks are especially difficult to
find and fix [30]. The wide spectrum of possible DoS causes makes
identifying and stopping them a complex task that requires the use
of many different classes of mitigations. Defenses against DoS can
take the form of sanitizers (e.g. AddressSanitizer [37] for memory
bugs; SlowFuzz [30] and PerfFuzz [19] for algorithmic complexity
issues), or active patching techniques to respond to newly-known
DoS exploits [32, 54]. While commonly used, patching has the dis-
advantage of requiring the existence of an update or workaround
before the problem could be corrected; the system could have been
brought down well before a patch is widely available.

believe that the enumerated CVEs are a representative selection of vulnerabilities in
each product.

Exploit mitigation: or how to downgrade exploits to DoS. Cur-
rent operating systems and applications employ numerous exploit
mitigation techniques such as NX bits, address space layout ran-
domization, control-flow integrity [1], checked pointers [11, 20, 51],
syscall filters [6, 46], and so on. While an effective barrier against
attacks that aim to take control over the target, exploit mitigations
do not address the root cause of the vulnerability; upon detecting
an active exploitation, the mitigation process cannot easily revert
the resulting state corruption, and therefore the most secure re-
sponse is to force a system crash. This approach essentially turns
an exploitable vulnerability into a denial-of-service attack onto the
concerned system.

3 BACKGROUND
In this section, we present the general principles of live VM repli-
cation-based fault tolerance, as well as its implementation in the
Xen hypervisor.

3.1 Live VM Replication
VM replication provides a system-level fault tolerance for critical
workloads. It does not require any changes to applications running
inside the protected VM. Moreover, as the whole system state is
replicated, hardware failures remain fully transparent to users. Nev-
ertheless, the frequent state synchronization between the primary
and secondary hosts imposes a significant performance penalty. In
general, hypervisors provide two main models of state replication:
1) asynchronous state replication [4] (ASR for short), where the VM
execution state on the primary host is buffered to the replica, and
its activity released via static periodic checkpoints; or 2) VM lock-
stepping [9] (LSR for short), where both the primary and replica
execute at the same time in order to lower the replication overhead,
with their divergence closely controlled via a replication controller.
While LSR reduces the overhead on the replicated VM compared to
ASR, it necessitates a replication controller that implies significant
similarities between the device model implementations of the pri-
mary and replica VM to minimize the resulting divergence. As a
result, we make use of the ASR replication model, so as to enable
more diversity between different implementations.

3.2 Remus: Live VM Replication on Xen
Xen is a type-1 hypervisor that consists of a hypervisor core that
ensures isolation between different VMs, a privileged VM (“domain-
0”) responsible for managing the creation and destruction of other
VMs (“domains”), and driver domains that manage and partition
device resources. Each virtual device in a Xen domain can run in one
of several modes: emulated, where the virtual device approximates
a real hardware device; paravirtualized (PV), where the virtual
device is exposed through an optimized API shared between the
hypervisor and the VM; and passthrough, where the VM is given
direct access to real hardware under the isolation of an IOMMU.

Xen provides an ASR-based VM replication solution called Re-
mus [4]. Figure 2 presents the general architecture of Remus. In
summary, Remus consists of a state replication engine that sends
the VM states to a remote host, which is then responsible for loading
this state into the replica VM.

Middleware ’23, December 11–15, 2023, Bologna, Italy Jean-Baptiste Decourcelle, Tu Dinh Ngoc, Boris Teabe, and Daniel Hagimont

Xen

Protected
VM Memory &

Device States

IO Buffer

Replication
Engine

Dom0

Xen

Replica
VM
(not

running)

Memory &
Device States

Replication
Engine

Dom0

External
Network

External
Network

Figure 2: Architecture of Remus VM replication.

Figure 3 illustrates the two main steps of setting up VM replica-
tion in Remus. The running VM is first seeded over to the second
host using live migration ❷, where the unreplicated memory pages
(cf. dirty pages) are copied iteratively until the number of dirty
pages goes below a certain threshold, or the maximum iteration
count has been reached (5 iterations in the case of Xen). The page
copying process uses the same dirty tracking and iteration thresh-
olding algorithm as normal live migration, making use of shadow
paging [2] or hardware-assisted dirty page logging (e.g. PML) when-
ever available. At the end of the seeding step ❸, Xen pauses the
VM and transfers over any remaining dirty pages, as well as the
vCPU and virtual device states over to the secondary host.

Once the initial state of the VM has been copied, it enters a
continuous replication phase where the VM’s state is synchronized
with its replica using checkpoints at regular intervals noted 𝑇 . Re-
mus implements this continuous replication via repeated live VM
migrations ❹, where in each iteration (1) the VM is paused; (2-3) the
dirty memory and device states are copied to the secondary host; (4)
the backup host acknowledges the reception of the checkpoint; and
finally (5) the primary VM is resumed. We call 𝑡 the period between
the steps (1-5) where the primary VM is paused. To ensure consis-
tency of any network operations between the protected VM and
external clients in case of failure of the primary host, all outgoing
I/O traffic of the primary VM is buffered during the entire execution
period𝑇 , and only released once the corresponding checkpoint has
completed (step 6). Upon failure of the primary host, the VM’s state
reverts back to that of the previous checkpoint, and VM activity
resumes on the secondary physical host.

Time
Migration Checkpointing

VM

Memory copy

1. Dirty memory copied
VM not paused

1. VM paused
2. Dirtied Memory
copied
3. vCPU and device
states sent
4. VM resumed

Final Mig. iteration

1. VM paused
2. Dirty Memory copied
3. vCPUs and devices states sent
4. Acknowledgement from backup
5. VM resumed
6. Buffered network packets
are sent to the clients

Checkpoints

Replication starts

running
paused

T

4

1

2 3

T

Figure 3: Live VM replication workflow with Remus.

4 HERE: HETEROGENEOUS REPLICATION
FOR ROBUST FAULT TOLERANCE

In Section 2, we observe that replication/failover techniques are
effective against unintentional failures, and patching techniques
are effective against known DoS exploits for whom patches and/or
workarounds are available. However, neither of these techniques
are capable of tackling both types of availability issues at the same
time, nor are they capable of addressing unknown DoS exploits
(which can be discovered ahead-of-time by adversaries using the
static analyzers mentioned above).

With HERE, we make the key observation that replication tech-
niques can be combined with the principle of software diversity to
cover all three aforementioned issue categories. Software diversity
has been the target of previous research [17, 33] as a method for
increasing the resiliency of a software system to attacks.

4.1 Threat Model
As stated above, the goal of HERE is to provide a virtualized infras-
tructure that is protected from accidental failures of the underlying
software/hardware, and is resistant to active exploitation of DoS
vulnerabilities. We assume that besides accidental system failures,
a malicious user can use a hypervisor vulnerability to launch DoS
attacks against the hypervisor host, or against other protected VMs
running on the same host. These attacks can originate from a guest
VM controlled by the guest attacker, or any external services with a
connection to the hypervisor hosts. Figure 1 and Table 2 summarize
the general coverage of our solution.

Table 2: HERE’s coverage of DoS issues from various sources.

Source Guest failure Host failure
Accidents; HW/SW errors Yes Yes
Guest user No Yes
Guest kernel No Yes
Other guests Yes Yes
Other services Yes Yes

4.2 Overview of Heterogeneous Replication
The main idea of HERE is to extend live VM replication so that
protected VMs can be replicated from one hypervisor to a different
hypervisor. We present below how HERE can enhance the robust-
ness of a virtualized system:

HERE against accidental failures. Being based on live VM replica-
tion, HERE provides protection against unintentional failure of the
primary virtualization host. In case of a hardware failure, power
loss or a similar incident, the replica VM automatically activates,
restoring access to any service running inside the protected VM.

HERE against DoS exploits. Once the primary host is brought
down by a DoS exploit on its hypervisor 𝐻𝐴 , whether originat-
ing from the guest or an external source, the replica VM is then
activated on a secondary host running a completely different hy-
pervisor 𝐻𝐵 . As stated in Section 2, two hypervisors with differing

Fast VM Replication on Heterogeneous Hypervisors for Robust Fault Tolerance Middleware ’23, December 11–15, 2023, Bologna, Italy

implementations are not likely to be affected by the same soft-
ware vulnerability. Therefore, the secondary host is not likely to be
vulnerable to the same issue, rendering said DoS exploit unusable.

5 ARCHITECTURE OF HERE
Figure 4 shows the general architecture of the platform in a simple
VM replication scenario. HERE is installed as a user-mode compo-
nent of both hypervisors to replicate selected VMs.HERE consists of
the following core components: a state manager that manages VM
execution and extracts VM execution states to be replicated; a device
manager that handles virtual device-specific states; a state translator
that supports replication between heterogeneous hypervisors; and
finally, a dynamic checkpoint period manager.

Hypervisor I

Protected
VM

Memory & device
States

IO Buffer

Replication
Engine

Replica
VM

(not running)

Memory & device
states

Replication
Engine

External
Network

External
Network

Device Manager

Dynamic
Period Mana.

Hypervisor II

Parallel
Transfer

...

State translator

Figure 4: Architecture of HERE.

5.1 State Manager
This component is responsible for controlling the VM’s execution
throughout the replication process, and for replicating the VM’s
virtual CPU andmemory states. Following the VM replication work-
flow presented in Section 3.2, the state manager makes use of the
source hypervisor’s memory tracking facilities throughout the ini-
tial migration and subsequent periodic checkpoints. To optimize
the replication process, the state manager uses a multithreaded
implementation adapted to each individual phase of the VM repli-
cation process. We present further details on the implementation
of the state manager in Section 7.

5.2 Device Manager
This component handles I/O-level replication of networking states,
by buffering outgoing traffic and releasing buffered packets when
each checkpoint is acknowledged by the remote replica. We opted
for a heterogeneous device model strategy, i.e. the primary and sec-
ondary hypervisors provide different device models to the protected
VMs. The secondary hypervisor’s device manager is responsible
for switching the VM from the primary hypervisor’s device model
to the secondary’s. Such a design avoids sharing the same vulnera-
bilities when using the same device models between the primary
and secondary VMs.

5.3 State Translator
A prerequisite of heterogeneous replication is the ability to trans-
late VM states from one hypervisor to another. The state translator
component is responsible for translating the virtual CPU, memory

and device states of the VM into a format that can be loaded onto
the replica VM. Following previous studies on live migration be-
tween heterogeneous hypervisors [21, 24], the state translation is
done by copying the contents of vCPU registers into a common
format, then restoring the corresponding data into the secondary
hypervisor’s format. To make sure that the protected VM can be
safely resumed on the secondary hypervisor, HERE ensures vir-
tualization compatibility between both hypervisors by adjusting
platform features as necessary.

5.4 Dynamic Checkpoint Period Manager
In Section 3.2, we established that Remus’s fixed-frequency check-
pointing necessarily creates a delay between the primary and replica
VM. Lockstepping approaches like COLO significantly reduce the
delay by simultaneously executing the primary and replica, how-
ever they require substantial similarities between the primary and
secondary hypervisor implementations to keep replica divergence
under control. As a result, these approaches are not appropriate in
a heterogeneous environment using multiple hypervisors.

In checkpointed replication solutions like Remus, all outgoing
traffic must be buffered during the entire duration of the checkpoint.
The amount of incoming traffic lost in case of a failover event is
therefore proportional to the checkpoint interval. However, Remus
uses a fixed checkpoint interval that cannot adapt to the workload
being protected.

We define the performance degradation caused by a checkpoint
for a given period 𝑇 in Equation 1, with 𝑡 being how long the VM
is paused during that checkpoint (see Figure 3). We will see that 𝑡
depends on 𝑇 . We chose the real checkpoint duration rather than
the replication traffic’s packet count to account for variations in
the replication network interface’s performance, for example due
to network congestion.

𝐷𝑇 =
𝑡

𝑡 +𝑇 (1)

As stated in Section 1, we focus our attention on critical work-
loads where availability is preferable over performance. We there-
fore aim not to keep the same checkpointing interval 𝑇 , but to
reduce the checkpointing interval (i.e. checkpointing more fre-
quently) so as to reduce the amount of potential computation loss
in the event of a host failure. To this end, the dynamic checkpointing
manager controls the checkpointing interval under the constraints
of two parameters: the desired performance degradation denoted
𝐷 (which is a soft limit that can be exceeded at high loads), and
the maximum tolerated checkpointing interval 𝑇𝑚𝑎𝑥 (which is a
hard limit that must be followed in all cases). The main task of this
component can therefore be modeled in Equation 2.

Find 𝑇 such that

{
𝐷𝑇 ≈ 𝐷 (soft)
𝑇 ≤ 𝑇𝑚𝑎𝑥 (hard)

(2)

Analogous to previous work like Adaptive Remus [5], HERE
allows the checkpoint period to vary, but the comparison stops
there. Contrary to HERE, Adaptive Remus targets IO applications
in particular and provides only two period settings: a default setting,
and a lower checkpointing period setting enabled when IO activity
is detected in the VM. The key idea is that reducing the checkpoint

Middleware ’23, December 11–15, 2023, Bologna, Italy Jean-Baptiste Decourcelle, Tu Dinh Ngoc, Boris Teabe, and Daniel Hagimont

period decreases the buffering time of outgoing traffic, which speeds
up communication and thus service delivery.

𝑇 varies over time depending on the activity of the workload.
In other words, the dynamic checkpoint interval calculation is
done depending on the VM’s memory activity. As presented in
Section 3, each checkpoint’s pause period involves copying any
dirtied memory pages to the replica, followed by transfer of vCPU
states before the primary VM is resumed. The pause/resume and
state transfer steps take a constant amount of time regardless of VM
activity; however, the memory copying step might take a variable
amount of time based on how many pages need to be copied. In
other words, the pause duration 𝑡 is a combination of the variable
cost 𝑓 (𝑁) for copying 𝑁 memory pages divided by the parallelism
factor 𝑃 plus an amortized constant cost 𝐶 (Equation 3):

𝑡 =
𝑓 (𝑁)
𝑃
+𝐶 (3)

We use a step-based approach to find an interval containing
the target value 𝑇 , i.e. for every checkpoint, we adjust 𝑇 by fixed
increments 𝜎 of the period length. Algorithm 1 shows the recal-
culation of the period 𝑇 after every checkpoint. At the beginning
of the continuous replication process, we set 𝑇 = 𝑇𝑚𝑎𝑥 to avoid
exceeding the replication interval constraint. For every subsequent
checkpoint, we measure the known pause duration 𝑡𝑐𝑢𝑟𝑟 and calcu-
late the associated performance degradation 𝐷𝑐𝑢𝑟𝑟 . In case we have
a degradation budget (i.e. 𝐷𝑐𝑢𝑟𝑟 ≤ 𝐷), we adjust the interval by one
step 𝜎 , preserving the last-known good interval as 𝑇𝑝𝑟𝑒𝑣 (lines 7
and 8). If we exceeded the degradation budget (i.e. 𝐷𝑐𝑢𝑟𝑟 > 𝐷), we
walk back the interval to the previously-known good value (line 10).
If restoring the interval 𝑇𝑝𝑟𝑒𝑣 is not effective, we directly adjust 𝑇
to the midpoint between the current 𝑇 and 𝑇𝑚𝑎𝑥 (line 13).

Algorithm 1 Checkpoint interval adjustment algorithm.
1: 𝑇 ← 𝑇𝑚𝑎𝑥

2: 𝐷𝑝𝑟𝑒𝑣 ← 𝐷

3: while perform checkpoint do
4: 𝑡𝑐𝑢𝑟𝑟 ← measured pause duration
5: 𝐷𝑐𝑢𝑟𝑟 ← 𝑡𝑐𝑢𝑟𝑟

𝑡𝑐𝑢𝑟𝑟+𝑇
6: if 𝐷𝑐𝑢𝑟𝑟 ≤ 𝐷 then
7: 𝑇𝑝𝑟𝑒𝑣 ← 𝑇

8: 𝑇 ← 𝑇 − 𝜎
9: else if 𝐷𝑝𝑟𝑒𝑣 ≤ 𝐷 then
10: 𝑇 ← 𝑇𝑝𝑟𝑒𝑣
11: else
12: 𝑇𝑝𝑟𝑒𝑣 ← 𝑇

13: 𝑇 ← 𝑟𝑜𝑢𝑛𝑑 (𝑇+𝑇𝑚𝑎𝑥

2 , 𝜎)
14: end if
15: 𝐷𝑝𝑟𝑒𝑣 ← 𝐷𝑐𝑢𝑟𝑟

16: end while

The last question that remains in our algorithm is the computa-
tion of the pause duration 𝑡 at each checkpoint. There is a linear
relationship between the transfer duration and the number of pages,
as illustrated in Figure 5. In fact, as we demonstrate later in our
evaluations, the higher the number of pages to be transferred, the
longer the page transmission time. We therefore model 𝑡 as the
linear Equation 4.

20 40 60 80 100
Nb Dirty Pages (Kilo)

0

1

2

3

4

5

T
im

e
(s

ec
)

Figure 5: The linear relationship between number of dirty
pages and page sending time 𝑓 (𝑁) = 𝛼𝑁 .

𝑡 =
𝛼𝑁

𝑃
+𝐶 (4)

6 SECURITY PROPERTIES OF HERE
Effectiveness of HERE against DoS exploits. One can argue that

once the replica VM has switched onto the secondary hypervisor
𝐻𝐵 , the system remains vulnerable to another DoS attack. How-
ever, in such cases, HERE effectively doubles the effort needed to
completely bring down the protected infrastructure. Rather than
only having to craft one DoS exploit, the attacker now needs to use
two different exploits at the same time, as failure to bring down
both systems means any remaining system can continue running
the protected services.

Increasing security with exploit mitigation without sacrificing
availability. Another benefit of HERE is that it can be combined
with exploit mitigation technologies to maintain system availability
while increasing security at the same time. As stated above, an ex-
ploit mitigated by one of these technologies might end up crashing
the system. However, the live VM replication of HERE helps ensure
that even in case of such a crash, the protected VM keeps operating
thanks to the secondary hypervisor.

7 IMPLEMENTATION
We organize this section as follows: Section 7.1 describes our experi-
mental environment; the latter sections present the implementation
of HERE in detail.

7.1 Environment
We implemented HERE on two exemplary hypervisors: Xen 4.12
and KVM (using kvmtool as the userspace component) in order to
replicate a running VM from Xen to KVM. This implementation
choice is motivated by Xen and KVM being commonly-used, open-
source hypervisors with different architectures.

7.2 State Manager
We modified Xen’s built-in migration code in two ways. Firstly,
we extended Xen’s dirty page tracking code to allow independent
tracking of dirty pages for each vCPU. To this end, we implemented
a mechanism in the Xen kernel that gathers dirty page information

Fast VM Replication on Heterogeneous Hypervisors for Robust Fault Tolerance Middleware ’23, December 11–15, 2023, Bologna, Italy

from each vCPU using Intel PML2 into a ringbuffer that could be
read independently for that vCPUwithout having to interrupt other
vCPUs. Secondly, we implemented support for multithreaded mi-
gration to speed up the live VM replication process. Multithreading
in HERE is done in two different ways:

(1) For the seeding phase of VM replication (see Section 3.2), we
set up individual migrator threads for each vCPU of the VM.
Each migrator thread then sends its own dirty pages to the
second host following Xen’s migration iteration algorithm.
As the VM stays running during the entire first migration
phase, the same memory page could be modified by multiple
vCPUs, leading to consistency problems on that memory
page. To account for this issue, the migration process keeps
track of “problematic” pages that are potentially impacted
by consistency problems, and resends these pages during
the final stop-and-copy step. A page is considered “prob-
lematic” if it has been transferred several times by different
threads, meaning that it was modified by different vCPUs.
This method is appropriate when the VM’s utilization level
is low (e.g. when VM replication is being initialized after
booting and before the VM goes into service).

(2) During the continuous replication phase, we again start mul-
tiple migrator threads, where each thread is responsible for
sending chunks of the VM’s memory. Specifically, we split
the VM’s memory ranges into disjoint regions of uniform
size (2 MB in our implementation). These regions are then
assigned to the migrator threads in a round-robin fashion.
During each checkpoint operation, each thread reads the
shared dirty bitmap, finds pages it needs to migrate using
the above assignment, then copies it to the remote host.

7.3 Device Manager
As we opted for a heterogeneous device model strategy, this com-
ponent implements the configuration of devices on the replica
VM. Contrasting with heterogeneous migration [21, 24] where the
failover is triggered by the administrator, failover can happen any-
time in a replication system. Therefore, HERE cannot prepare for it
using the same strategy as for example unplugging devices on the
primary VM and replugging them on the secondary VM. Instead,
we use the following approach. Recall that I/O operations on the
replica VM are only performed when it is activated following a
failure on the primary host; upon a failure event, we instruct the
guest VM to safely unplug its old I/O devices, followed by installing
new devices that are compatible with the secondary hypervisor.
Replication does not work on passthrough devices because back-
tracking is usually necessary and only provided by para-virtualized
devices. As a consequence, HERE only handles PV devices.

7.4 State Translator
This component is inspired by previous work on migration on
heterogeneous hypervisors [21, 24]. We implemented the necessary
translation of VM migration states from Xen to KVM, including
CPU registers, memory pages, timers, interrupt controllers, and any
other emulated features. Additionally, we adjusted CPU features of

2Intel PageModification Logging is a hardware feature that allows for trackingmodified
memory pages of VMs per vCPU.

the protected VM exposed by the CPUID instruction on both Xen
and KVM to make sure that the protected VM can safely resume
on the secondary hypervisor.

7.5 Dynamic Checkpoint Period Manager
This component is responsible for controlling the VM checkpointing
period as described in Section 5. We again modified Xen’s migration
algorithm to measure the last checkpoint duration and calculate the
resulting checkpoint frequency to be applied in the next iteration.
As stated previously, we used checkpoint duration as our main
metric rather than relying on the number of sent packets because
the resulting degradation can vary depending on existing traffic on
the network adapter.

7.6 Implementation Size
We implemented HERE in approximately 9000 lines of code, of
which 800 lines of code belong to the Xen kernel, and 8000 lines
belong to Xen and KVM’s userspace components (xl, libxl, libxc
and kvmtool). We additionally inserted a minimal Linux kernel
module of 150 lines of code into the guest in order to receive mi-
gration events from the device manager. No changes were made to
the host’s Linux kernel (Dom0). From the minimal changes needed
to the host’s OS kernel (Xen), HERE should have minimal impact
on the host hypervisor’s security properties.

7.7 Integrating HERE in Data Centers
HERE forces the usage of multiple hypervisors in a data center. As
previous work has demonstrated [24], some data centers already
manage multiple hypervisors. Thus, the heterogeneity of virtual-
ization systems in data centers is a concept already popular. HERE
advocates to use this heterogeneity for a robust replication. In ad-
dition, virtualization systems are very often administered by tools
such as Openstack which is based on standard libraries such as
libvirt which interfaces with all hypervisors.

8 EVALUATION
In this section, we present our evaluation results of HERE. With
these evaluations, we plan to answer the following questions:
• How does HERE ensure continuation of service when con-
fronted with a denial of service only attack on the primary
hypervisor?
• How does HERE’s migration phase perform compared to the
default VM migration?
• How does HERE’s checkpointing phase perform compared
to Remus?
• How accurate is HERE’s dynamic period manager at detect-
ing workload variations and defining an appropriate check-
pointing period?
• What is the overhead of HERE on protected VMs, and how
does that impact application performance?

8.1 Experimental Setup
Hardware. We evaluated HERE on two servers with their charac-

teristics described in Table 3. HERE does not implement migration
and replication on heterogeneous hardware yet. This limitation is

Middleware ’23, December 11–15, 2023, Bologna, Italy Jean-Baptiste Decourcelle, Tu Dinh Ngoc, Boris Teabe, and Daniel Hagimont

the subject of future work. We reserved 10 GB of memory for the
privileged domain Dom0 in Xen. For all of our evaluations, we used
the Ethernet adapter exclusively for VM communications, while the
Omni-Path interconnect is reserved for migration and replication.

Table 3: Hardware configurations.

Component Characteristics
CPU 2x Intel Xeon Gold 6130
Memory 192 GB (96 GB per node)
Ethernet Intel X710 10GbE (NUMA node 0)
Interconnect Intel Omni-Path HFI 100 (NUMA node 0)
Storage 1.0 TB HDD
OS Debian 10

Applications. We evaluated HERE using several types of appli-
cations, including CPU-, memory- and I/O-intensive applications.
Table 4 provides a list of benchmarks used in our experiments.

8.2 Analyzing HERE’s Security Properties
In this section, we analyze HERE’s ability to protect guest OSes
from DoS attacks.

The benefits of heterogeneity. As stated in section 4.2, it is
unlikely for two different hypervisors to be subject to the same
software vulnerability unless they share a substantial part of their
source code. For example, since both Xen and QEMU-KVM hyper-
visors use QEMU to emulate their device models, implementing
HERE on them would not have protected the guest from QEMU
vulnerabilities (e.g. CVE-2015-3456). We avoided this scenario by
implementing our solution on top of Xen and Linux KVM/kvmtool.

Vulnerability analysis. Table 1 shows that 80% to 95% of hy-
pervisor vulnerabilities documented between 2013–2020 have an
effect on availability. Among these vulnerabilities, approximately
half solely impact availability without affecting the integrity of the
hypervisor or its VMs; we therefore consider these to be DoS-only
vulnerabilities. For instance, 49% of Xen’s vulnerabilities fall into
this category; 41% of vulnerabilities affect both availability and
integrity; and only 10% do not affect Xen’s availability.

To explore the impact of HERE in the event of an attack, we
further studied the 49% DoS-only attacks on Xen following the
same approach used by Diego et al. [29]. In other words, we inves-
tigated each vulnerability’s root cause, attack vectors, application
targets, the post-attack outcome of the hypervisor and running
VMs, and finally the applicability of HERE to these vulnerabilities.
We ignored vulnerabilities that also affect integrity because unless
some mitigation technique can downgrade them into availability

Table 4: Description of benchmarks.

Benchmark (metric) Description
Memory benchmark Write-intensive benchmark using a

defined memory percentage
YCSB RocksDB (ops/sec) Database benchmark suite
SPEC CPU 2006 (ops/sec) CPU/memory intensive programs
Sockperf (latency) Network-intensive benchmark

only vulnerabilities, replication is useless against them. Table 5
summarizes our findings.

Regarding the attack vectors of these vulnerabilities, we ob-
served the following partition: 25% originate from virtual device
management (whether emulated, paravirtualized or passthrough);
20% originate from hypercall processing; 12% originate from vCPU
management; 7% originate from shadow paging; 2% originate from
VM exit handling; and the remaining 34% originate from other Xen
components. Finally, regarding the target components of each vul-
nerability, we find that 84.5% target the Xen hypervisor core, Dom0
and tools; 12.5% target the guest OS; and the remaining 3% target
other Xen software (e.g. Xenstore). Finally, our findings show that
more than half of DoS-only vulnerabilities are launched from a
guest user-space process; the remaining half require ring-0 kernel
privileges to be executed.

While investigating the post-attack outcome of each vulnerabil-
ity, we defined three possibilities: (1) where the targeted component
crashes and is completely shut down; (2) where the target hangs
(i.e. stops responding to all requests); and (3) where the target mal-
functions so as to cause starvation of certain resources. We observe
that a large majority of DoS-only vulnerabilities (79%) caused its
target to crash; 13% caused a hang; and only 8% caused a resource
starvation. Nevertheless, we note that regardless of a vulnerability’s
outcome, HERE remains applicable as a countermeasure when an
attack is detected.

In the current implementation of HERE, we rely on a periodic
heartbeat between the primary and replica hosts to ensure that the
hypervisors are functioning normally. Furthermore, it is possible
to couple HERE with works such as [25, 31] that focus on detecting
attacks on hypervisors. Once an attack is detected, the affected
hypervisor can safely crash; control of the VM is then handed over
to the second hypervisor, and the VM continues to function.

Table 5: Distribution of DoS-only vulnerabilities by target,
post-attack outcomes, and applicability of HERE.

Target Outcome HERE

84.5% Xen, Dom0, Tools
66.0% Crash Applicable
13.0% Hang Applicable
5.5% Starvation Applicable

12.5% Guest OS 10.0% Crash Applicable
2.5% Starvation Applicable

3.0% Other software 3.0% Crash Applicable

8.3 Evaluating VM Migration Optimizations
In this section, we evaluate the effectiveness of the optimizations
to the VM migration process implemented in HERE.

We compared a VM migration implementation with the opti-
mizations proposed in HERE to Xen’s default implementation using
two different scenarios: (1) migrating an idle VM; and (2) migrating
a VM running our memory microbenchmark described above.

Migrating idle VMs. We evaluated the migration time of an idle
VM equipped with 4 vCPUs and various memory sizes ranging from
1 to 20 GB using both HERE and Xen. The resulting migration times
are shown on the left side of Figure 6. We note that despite our

Fast VM Replication on Heterogeneous Hypervisors for Robust Fault Tolerance Middleware ’23, December 11–15, 2023, Bologna, Italy

migration being slightly slower for small VM sizes (1-2 GB RAM),
we gain increasing migration performance of up to 25% for larger
VMs (8-20 GB RAM). This is explained by the VM migration time
being dependent on memory size: the more memory the VM has,
the more time it takes to copy it to the remote host, and therefore
the bigger the impact of HERE. According to [24], for any number of
vCPUs ormemory size, migration time is the same for bothHyperTP
and Xen’s default implementation.We conclude that HERE provides
the same gain of performance compared to HyperTP.

Migrating VMs under memory load. We implemented a bench-
mark that performs random memory operations to artificially load
the migration process. We ran the benchmark on a VM with 4
vCPUs and 20 GB of RAM, while varying the amount of memory
allocated to the benchmark between 10% and 80% of total memory
(i.e. 2 GB to 16 GB). The right side of Figure 6 shows the migration
times under each condition. We observe that migration speed was
significantly impacted even at 10% memory consumption; however,
the optimizations of HERE improved migration time by nearly 49%
compared to Xen live migration (and thus HyperTP).

8.4 Evaluating VM Replication Optimizations
In this section, we aim to show the performance improvements
brought by our VM replication optimizations. To this end, we con-
figured both HERE and Remus with a fixed replication period of 8
seconds, then compared the memory transfer time per checkpoint
of each solution under various VM memory sizes using a 30% mem-
ory load for our benchmark. We also measured the time needed to
resume the protected VM, which corresponds with the period from
when the secondary host is aware of a primary failure to when the
replica VM resumes operation.

Checkpoint memory transfer time comparisons. In this evaluation,
we focus on the memory transfer time for each checkpoint in order
to calculate the performance degradation following Equation 1. Fig-
ures 8a and 8b show respectively the checkpoint transfer times for
the idle VM and memory microbenchmark VM; Figures 8c and 8d
present the calculated degradations. First of all, we note that the
memory microbenchmark causes a significant increase in check-
point transfer time, as is expected from a memory write-intensive
benchmark. Nevertheless, we observe that HERE’s optimizations
provide a checkpoint transfer time up to 70% lower than that of Re-
mus on idle VMs and 49% lower on loaded VMs. This points to our
multithreaded checkpoint transferring algorithm being more per-
formant than that of Xen’s. Concerning the calculated performance
degradation, we observe that our solution brings little improvement
on idle VMs (considering that the total calculated degradation of
Remus is less than 1%); however on loaded VMs our solution shows
a clear improvement over Remus, since the checkpoint transfer
time starts becoming more significant at higher memory loads.

Replica VM resumption time. We also evaluated the time required
to resume the replica VM with HERE in the event of a failure. Using
the same configuration as the previous experiments, we stopped the
primary VM and counted the time from the beginning of the failover
process to when the replica restarts its operation. Figure 7 presents
the obtained results. We observe that the VM resumption time on
HERE is in the order of 10 milliseconds. The short length of this

1 2 4 8 16 20
Memory size (GBytes)

0

10

20

30

Ti
m

e
(s

ec
)

10 20 40 60 80
Load (%)

Xen HERE

Figure 6:Migration times of idle VM (left) andmemory bench-
mark VM (right).

1 2 4 8 16 20
Memory size (GBytes)

0

2

4

6

Ti
m

e
(M

ill
i s

ec
)

1 2 4 8 16 20
Memory Size (GBytes)

0
1
2
3
4

Ti
m

e
(M

ill
i s

ec
)

Figure 7: Replica resumption times for idle VM (left) and
microbenchmark VM (right).

1 2 4 8 16 20
0

10

20

30

40

Ti
m

e
(M

ill
is

ec
)

a)

1 2 4 8 16 20
0

1

2

3

4

Ti
m

e
(s

ec
) b)

1 2 4 8 16 20
Memory size (GBytes)

0.0

0.2

0.4

0.6

D
eg

 (%
)

c)

1 2 4 8 16 20
Memory Size (GBytes)

0

10

20

30

40
D

eg
 (%

)

d)

Remus (Xen) HERE

Figure 8: Checkpoint transfer times of idle (a) and loaded
VMs (b); Perf. degradations of idle (c) and loaded VMs (d).

duration is mostly due to the more efficient userspace component
kvmtool. We also note that this resumption time does not increase
with the VM’s memory size or load level. Note that the total time
until the VM continues its operation is also dependent on other
factors (checkpoint frequency, heartbeat frequency, etc.)

8.5 Evaluating the Dynamic Checkpoint Period
Manager

In this section, we evaluate HERE’s dynamic checkpoint period
manager, responsible for adapting the checkpoint period to the

Middleware ’23, December 11–15, 2023, Bologna, Italy Jean-Baptiste Decourcelle, Tu Dinh Ngoc, Boris Teabe, and Daniel Hagimont

workload. In a VM with 4 vCPUs and 8 GB of memory, we con-
figured our memory microbenchmark to execute a workload that
varies with time; the benchmark is configured to use 20% of the
memory at first, increasing to 80% afterwards and falling back to 5%
at the end. We configured HERE with a desired degradation 𝐷 = 0.3
(i.e. 30%) and𝑇𝑚𝑎𝑥 = 25 seconds. We monitored the selected check-
point period 𝑇 and the instantaneous calculated degradations 𝐷𝑇

over the lifetime of the benchmark. The obtained results are pre-
sented in Figure 9, in which the benchmark’s load level is denoted
by the green line named Load.

We observe that following an increase in workload from 20% to
80% around the 20th second, HERE automatically adapts to this load
and increases the checkpoint period at the 40th second (as shown by
the blue line named Period). Correspondingly, when the load level
falls back down to 5% at the 125th second, the checkpoint period
is also automatically adjusted shortly after. The bottom graph of
Figure 9 shows how HERE adapts the checkpointing parameters
following the user’s given constraints. Except for a short adjustment
period after each change in load levels, the resulting performance
overhead (shown by the black line denoted Overhead) follows the
preset overhead value of 30% (denoted by the red line named Set
Overhead). We conclude that HERE’s dynamic checkpoint period
manager respects the user’s provided VM replication parameters.

To validate this conclusion, we carried out the same evaluation
with the Workload A from YCSB benchmark suite (more details on
the benchmark configuration is provided in the next section). The
obtained results are presented in Fig 10. The top figure shows the pe-
riod variation, while the bottom presents the calculated degradation.
We note that during the execution of the benchmark,HERE enforces
a degradation close to the set value of 30%. This is also observable
on the application performance; the workload on HERE shows a
performance of 28406 ops/sec, a slowdown of approximately 33.6%
compared to the baseline performance of 42779 ops/sec.

8.6 Database, CPU-Intensive and I/O
Benchmarks

In this section, we test the performance and adaptability ofHERE on
three different benchmark suites: YCSB, SPEC CPU 2006 and Sock-
perf. Each benchmark was evaluated under 3 conditions with HERE:
(1) an execution using HERE with a defined T𝑚𝑎𝑥 and degradation
set to 0% to enforce T = T𝑚𝑎𝑥 ; (2) HERE with a given degrada-
tion and no T𝑚𝑎𝑥 (T𝑚𝑎𝑥 =∞); and finally (3) HERE with a defined
degradation and T𝑚𝑎𝑥 . Table 6 presents a summary of these config-
urations. On all figures in this section, the numbers above the bars
represent the performance degradation in percentage.

Evaluations with YCSB.. We executed YCSB benchmark suite
running on a single VM using the 6 included workloads A to F, each
with 1 million records and 4million operations. The results obtained
for all scenarios are presented in Figs 11 12 13. More precisely, Fig 11
presents the results of HERE with a fixed T = T𝑚𝑎𝑥 . The figure also
contains results with Remus configured with the same periods. We
can observe that HERE’s optimizations provide a replication with
less overhead than Remus. For instance, with Workload A, Remus
provides a 52% and 45% respectively with periods of 3 and 5 seconds,
while HERE induces 32% and 28% for the same periods.

0 25 50 75 100 125 150 175
0

4

8

12

16

Pe
rio

d
(s

ec
)

Load

Period

0 25 50 75 100 125 150 175
Time (Sec)

0

30

60

90

120

D
eg

 (%
) Set Overhead

Load Overhead

0

30

60

90

120

Lo
ad

 (%
)

0

30

60

90

120

Lo
ad

 (%
)

Figure 9: Dynamic checkpoint period versus load level (top);
overhead versus load level (bottom).

0 25 50 75 100 125 150 175
0
5

10
15
20
25

Pe
rio

d
(s

ec
)

0 25 50 75 100 125 150 175
Time (Sec)

0
30
60
90

120

D
eg

 (%
)

Figure 10: Dynamic checkpoint period for YCSB workload A.

Fig 12 presents the results of HERE with a set value for degra-
dation. We note that for smaller degradations (20 and 30%), HERE
successfully respects the defined value. However, this is more dif-
ficult for a higher degradation value of 40%. This is simply due to
the software and hardware cost of the stop-and-go replication pro-
cess. Indeed, with a high degradation value, checkpoints are more
frequent, therefore hardware overheads such as cache misses, TLB
misses and software overheads for scheduling the VM are increased.
All of this impacts the application’s observed degradation level.

Finally, Fig 13 presents the results of HERE with defined degra-
dation and T𝑚𝑎𝑥 values. We note that the observed degradation
numbers stay near the defined values, ranging from 48-53% for
𝐻𝐸𝑅𝐸 (3𝑆𝑒𝑐,40%) and 33-38% with 𝐻𝐸𝑅𝐸 (5𝑆𝑒𝑐,30%) . This is explained
by the fact that HERE forces the protected VM to follow the de-
sired degradation. This conclusion is confirmed on Fig 11 because
we can note that with periods of 3 and 5 seconds, the observed
degradations on YCSB are below 40% and 30% respectively.

Fast VM Replication on Heterogeneous Hypervisors for Robust Fault Tolerance Middleware ’23, December 11–15, 2023, Bologna, Italy

Workload a Workload b Workload c Workload d Workload e Workload f
0

20

40

60

80

100

120

T
h

ro
u

g
hp

u
t

(K
il

o
 o

p
s/

se
c)

0

0
0

0

0

0
32

22
18

24

24

3228

17
14

19

21

27
52

36 34
43

45
5245

27 28
36

33

45

Xen HERE HERE Remus Remus

Figure 11: Evaluations of Remus and HERE using YCSB with
the same checkpoint period.

Workload a Workload b Workload c Workload d Workload e Workload f
0

20

40

60

80

100

120

T
hr

ou
g

hp
ut

(K

il
o

op
s/

se
c)

0

0
0

0

0

021

22 26

21

24

2234
38 38

33

38

3652
49 50

51

54
53

Xen HERE HERE HERE

Figure 12: Evaluations of HERE using YCSB with defined
degradation.

Workload a Workload b Workload c Workload d Workload e Workload f
0

20

40

60

80

100

120

T
hr

ou
gh

pu
t

(K
il

o
op

s/
se

c)

0

0
0

0

0

0

52
49 50

51

50

52
34

38 38

33

37

38

Xen HERE HERE

Figure 13: Evaluations of HERE using YCSB with defined
degradation and T𝑚𝑎𝑥 .

Table 6: YCSB and Sockperf evaluation configurations.

Acronym Configuration
Xen Xen without replication
𝐻𝐸𝑅𝐸 (3𝑆𝑒𝑐,0%) HERE with 𝐷 = 0% and T𝑚𝑎𝑥 = 3 seconds
𝐻𝐸𝑅𝐸 (5𝑆𝑒𝑐,0%) HERE with 𝐷 = 0% and T𝑚𝑎𝑥 = 5 seconds
𝐻𝐸𝑅𝐸 (∞,20%) HERE with 𝐷 = 20% and T𝑚𝑎𝑥 = ∞
𝐻𝐸𝑅𝐸 (∞,30%) HERE with 𝐷 = 30% and T𝑚𝑎𝑥 = ∞
𝐻𝐸𝑅𝐸 (∞,40%) HERE with 𝐷 = 40% and T𝑚𝑎𝑥 = ∞
𝐻𝐸𝑅𝐸 (5𝑠𝑒𝑐,30%) HERE with 𝐷 = 30% and T𝑚𝑎𝑥 = 5 seconds
𝐻𝐸𝑅𝐸 (3𝑠𝑒𝑐,40%) HERE with 𝐷 = 40% and T𝑚𝑎𝑥 = 3 seconds
𝑅𝑒𝑚𝑢𝑠3𝑆𝑒𝑐 Remus with T = 3 seconds
𝑅𝑒𝑚𝑢𝑠5𝑆𝑒𝑐 Remus with T = 5 seconds

Evaluations with SPEC CPU 2006. We selected 4 benchmarks from
SPEC CPU 2006: gcc, cactuBSSN, namd and lbm. We then executed
these benchmarks with the configurations presented in Table 6.
Figs 14 15 16 highlight the obtained results. The observations are
similar to those of YCSB: on Fig 14, we can observe that HERE
leads to a smaller replication overhead than Remus for the same
checkpointing period. Regarding fixed-degradation replication, we
can note on Fig 15 that HERE manages to respect lower desired
degradations better than higher ones, again due to VM scheduling
effects. Finally, Fig 16 presents the evaluation with a defined degra-
dation and T𝑚𝑎𝑥 . As with YCSB, we can notice that the desired
degradation prevails over T𝑚𝑎𝑥 because with 3 and 5 seconds as

period, the degradation is lower than 40 and 30% respectively. This
is why the degradation is around 30-38% with 𝐻𝐸𝑅𝐸 (5𝑆𝑒𝑐,30%) and
43 to 51% with 𝐻𝐸𝑅𝐸 (3𝑆𝑒𝑐,40%) for all benchmarks.

Evaluations with Sockperf. We also evaluated networking latency
caused by VM replication using the Sockperf benchmark. We set up
Sockperf in “under-load” mode, where the VM replies to a percent-
age of incoming packets from a remote server. We used 3 different
configurations of Sockperf: using 64-byte packets (“load a”), using
1400-byte packets (“load b”), and using 8900-byte packets (“load c”)

Fig 17 presents the obtained latency with each workload (pre-
sented in log scale). On baseline Xen, we observe the expected
behavior, where latency mostly scales with packet size. With VM
replication, latency increases massively independent of packet size,
with 𝑅𝑒𝑚𝑢𝑠3𝑆𝑒𝑐 and 𝑅𝑒𝑚𝑢𝑠5𝑆𝑒𝑐 taking 845 msec and 1332 msec
per packet on average. This is caused by ASR approaches needing
to buffer each packet onto the replica before it’s released to the
outside world, leading to network latency being mostly dependent
on checkpoint frequency. HERE, thanks to its dynamic checkpoint
control, manages to limit the network latency to lower numbers
than that of Remus, at an average of 129 msec and 148 msec for
𝐻𝐸𝑅𝐸 (3𝑆𝑒𝑐,40%) and 𝐻𝐸𝑅𝐸 (5𝑆𝑒𝑐,30%) respectively.

gcc cactuBSSN namd lbm
0

1

2

3

4

5

6

7

R
at

e
(O

ps
/S

ec
)

0
0

0

0

16

24

12

16

14
18

7

6

24

35

21

20

21

31

16

11

Xen HERE HERE Remus Remus

Figure 14: Evaluations of Remus and HERE using SPEC CPU
2006.

gcc cactuBSSN namd lbm
0

1

2

3

4

5

6

7

R
at

e
(O

ps
/S

ec
)

0
0

0

0
24

20
23

20
38

36
30

33
48

51
43

47

Xen HERE HERE HERE

Figure 15: Evaluations of HERE using SPEC CPU 2006 with
defined degradation.

gcc cactuBSSN namd lbm
0

1

2

3

4

5

6

7

R
at

e
(O

ps
/S

ec
)

0
0

0

049
50

42

46

38
39

32

30

Xen HERE HERE

Figure 16: Evaluations of HERE using SPEC CPU 2006 with
defined degradation and T𝑚𝑎𝑥 .

8.7 Overhead of HERE
As we mentioned in Section 5.1, VM replication is multithreaded
depending on the number of vCPUs. As these threads consume

Middleware ’23, December 11–15, 2023, Bologna, Italy Jean-Baptiste Decourcelle, Tu Dinh Ngoc, Boris Teabe, and Daniel Hagimont

extra resources, in this evaluation, we aim to evaluate the amount
of CPU and memory resources consumed by HERE.

Load a Load b Load c

103

105

L
at

en
cy

 (
uS

ec
)

Xen HERE(3Sec, 40%) HERE(5Sec, 30%) Remus3Sec Remus5Sec

Figure 17: Evaluations of network latencies of Remus and
HERE using Sockperf (log scale).

Note that this overhead mostly depends on the number of repli-
cation threads and not the checkpoint period, i.e. HERE’s overhead
with a period of 1 second will be the same as with a period of
5 seconds. We measured the CPU and memory consumption of
HERE when replicating a VM having 4 vCPUs and 16 GB of mem-
ory while running our microbenchmark, with a fixed replication
period of 1 second. We observe that despite the multithreaded im-
plementation, HERE only uses 62% CPU (with 100% CPU usage
being one fully-loaded CPU core) and a memory consumption of
314 MB (counted as resident set size), which is comparable to that
of existing solutions like Remus.

9 RELATEDWORK
Automated analysis of hypervisors. Like other types of software,

automated analysis tools [18, 39] are commonly used on hyper-
visors to detect and remedy potential security issues. VCC [18]
uses the Z3 theorem prover to analyze the safety of hypervisor
code using embedded annotations. Microkernels like seL4 [15],
NOVA [40] and Phidias/Schism [26] use formal methods to prove
their various security properties. The Linux kernel comes with
numerous compile-time and runtime tools for detecting kernel
bugs [42–45, 48]. Note that runtime analysis solutions can be com-
bined with HERE as described in Section 6 to enhance the security
of the hypervisor without inadvertently introducing DoS issues.

Fuzzing. Numerous works propose fuzzing of API surfaces to
detect software vulnerabilities [13, 28, 41]. HYPER-CUBE [34] im-
plements a custom guest OS for high-throughput hypervisor and
virtual device fuzzing. Nyx [35] uses coverage-guided fuzzing on
nested VMs to improve vulnerability detection. SlowFuzz and Perf-
Fuzz [19, 30] focus on the particular class of algorithmic complexity
vulnerabilities. Fuzzing can be combined with compile-time or run-
time analysis for enhanced coverage [14, 27].

Hypervisor live updating. HyperFresh [8] uses nested virtualiza-
tion to upgrade a running hypervisor without disrupting running
VMs. Orthus [54] proposes a thin KVM API wrapper for quickly re-
placing the KVM hypervisor module. VM-PHU and Hy-FiX [32, 36]
use fast soft-reboot techniques to replace a running hypervisor
with minimal downtime. While these solutions support moving
between different versions of the same hypervisor, they do not
support moving between different hypervisors. In addition, fast

reboot-based methods interrupt the VM by a non-negligible time
period of several seconds while the hypervisor is rebooted.

Heterogeneous hypervisor support. These solutions propose sup-
porting running VMs on multiple different hypervisors, and there-
fore are the most closely related to HERE. HyperTP [24] combines
fast soft-reboot and heterogeneous VM migration into a solution
called hypervisor transplant to allow switching between different
hypervisors; however, it does not propose a fault-tolerant replica-
tion solution and therefore can only be used once a vulnerability is
already known. The techniques used by HyperTP are similar to that
of Vagrant [21], which implements a solution that bridges different
hypervisors together in one VM migration framework, but does
not explicitly address security problems.

Live VM replication. Remus [4] proposes a checkpointing and I/O-
buffering algorithm for asynchronous VM replication. COLO [9]
executes the active and passive replicas in lockstep, comparing their
I/O outcomes to maintain consistency between the different repli-
cas. Adaptive Remus [5] modifies Remus to adapt the checkpointing
frequency based on network activity. rRVM [12] and Gannet [50]
make use of secondary-side I/O buffering to reduce replication over-
head. PLOVER [49] uses a paravirtualized approach for applying
state machine replication techniques to VM replication. To our best
knowledge, HERE is the first solution that proposes VM replication
across multiple different hypervisors.

10 CONCLUSION
In this article, we introduced HERE, a solution for enhancing the
security and availability of hypervisor infrastructure. We intro-
duced the unique protective strategy of heterogeneous replication
to protect a VM from multiple classes of failures, and showed its
applicability in light of our investigation on hypervisor vulnerabili-
ties. We proposed optimizations of the replication process to reduce
replication overhead; furthermore, we implemented additional logic
to control the performance impact of VM replication on running
applications. We discussed various concerns related to securely
implementing HERE in virtualized systems, including showing how
HERE combined with exploit mitigation can safeguard the system
against multiple classes of vulnerabilities without sacrificing avail-
ability or increasing its attack surface. Finally, we evaluated the
performance and adaptability of HERE under multiple different sce-
narios, and showed how HERE could adapt its performance profile
following the user’s predetermined constraints.

ACKNOWLEDGEMENTS
This work was supported by the French Agence nationale de la
recherche under the projects ANR WalkIn (ANR-20-CE25-0005),
ANR PicNic (ANR-20-CE25-0013) and LabEx CIMI (11-LABX-0040).
Experiments presented in this paper were carried out using the
Grid’5000 testbed, supported by a scientific interest group hosted
by Inria and including CNRS, RENATER and several Universities as
well as other organizations (see https://www.grid5000.fr). Wewould
like to thank our shepherd Redha Gouicem and the anonymous
reviewers for their helpful feedbacks.

https://anr.fr/Projet-ANR-20-CE25-0005
https://anr.fr/Projet-ANR-20-CE25-0013
https://anr.fr/ProjetIA-11-LABX-0040
https://www.grid5000.fr

Fast VM Replication on Heterogeneous Hypervisors for Robust Fault Tolerance Middleware ’23, December 11–15, 2023, Bologna, Italy

REFERENCES
[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009. Control-flow

integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC) 13, 1 (2009), 1–40.

[2] Jeongseob Ahn, Seongwook Jin, and Jaehyuk Huh. 2012. Revisiting hardware-
assisted page walks for virtualized systems. In 2012 39th Annual International
Symposium on Computer Architecture (ISCA). 476–487. https://doi.org/10.1109/
ISCA.2012.6237041

[3] Harold Booth, Doug Rike, Gregory A Witte, et al. 2013. The national vulnera-
bility database (nvd): Overview. ITL Bulletin, National Institute of Standards and
Technology, Gaithersburg, MD (2013).

[4] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson,
and Andrew Warfield. 2008. Remus: High availability via asynchronous virtual
machine replication. In Proceedings of the 5th USENIX symposium on networked
systems design and implementation. San Francisco, 161–174.

[5] Marcelo Pereira Da Silva, Rafael Rodrigues Obelheiro, and Guilherme Piegas
Koslovski. 2017. Adaptive Remus: adaptive checkpointing for Xen-based virtual
machine replication. International Journal of Parallel, Emergent and Distributed
Systems 32, 4 (2017), 348–367.

[6] Theo de Raadt. 2015. pledge() - a new mitigation mechanism. https://www.
openbsd.org/papers/hackfest2015-pledge/mgp00001.html.

[7] Alex Depoutovitch and Michael Stumm. 2010. Otherworld: Giving Applications
a Chance to Survive OS Kernel Crashes. In Proceedings of the 5th European
Conference on Computer Systems (Paris, France) (EuroSys ’10). Association for
Computing Machinery, New York, NY, USA, 181–194. https://doi.org/10.1145/
1755913.1755933

[8] Spoorti Doddamani, Piush Sinha, Hui Lu, Tsu-Hsiang K Cheng, Hardik H Bagdi,
and Kartik Gopalan. 2019. Fast and live hypervisor replacement. In Proceedings
of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments. 45–58.

[9] YaoZu Dong, Wei Ye, YunHong Jiang, Ian Pratt, ShiQing Ma, Jian Li, and HaiBing
Guan. 2013. Colo: Coarse-grained lock-stepping virtual machines for non-stop
service. In Proceedings of the 4th annual Symposium on Cloud Computing. 1–16.

[10] A. Gkortzis, S. Rizou, and D. Spinellis. 2016. An Empirical Analysis of Vulnera-
bilities in Virtualization Technologies. In 2016 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom). 533–538.

[11] Google Inc. [n. d.]. MiraclePtr<T> One Pager. https://docs.google.com/
document/d/1pnnOAIz_DMWDI4oIOFoMAqLnf_MZ2GsrJNb_dbQ3ZBg/edit?
usp=sharing.

[12] Muyang He, Shaoning Pang, Denis Lavrov, Ding Lu, Yuan Zhang, and Abdol-
hossein Sarrafzadeh. 2016. Reverse replication of virtual machines (rrvm) for
low latency and high availability services. In 2016 IEEE/ACM 9th International
Conference on Utility and Cloud Computing (UCC). IEEE, 118–127.

[13] Andrew Henderson, Heng Yin, Guang Jin, Hao Han, and Hongmei Deng. 2017.
Vdf: Targeted evolutionary fuzz testing of virtual devices. In International Sym-
posium on Research in Attacks, Intrusions, and Defenses. Springer, 3–25.

[14] Yuseok Jeon, WookHyun Han, Nathan Burow, and Mathias Payer. 2020. FuZ-
Zan: Efficient sanitizer metadata design for fuzzing. In 2020 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 20). 249–263.

[15] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, et al. 2009. seL4: Formal verification of an OS kernel. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. 207–220.

[16] K. Kourai and S. Chiba. 2011. Fast Software Rejuvenation of Virtual Machine
Monitors. IEEE Transactions on Dependable and Secure Computing 8, 6 (2011),
839–851.

[17] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK:
Automated software diversity. In 2014 IEEE Symposium on Security and Privacy.
IEEE, 276–291.

[18] Dirk Leinenbach and Thomas Santen. 2009. Verifying the Microsoft Hyper-V
Hypervisor with VCC. In FM 2009: Formal Methods, Ana Cavalcanti and Dennis R.
Dams (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 806–809.

[19] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. Perffuzz:
Automatically generating pathological inputs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 254–265.

[20] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-Erik Ek-
berg, and N Asokan. 2019. {PAC} it up: Towards Pointer Integrity using {ARM}
Pointer Authentication. In 28th {USENIX} Security Symposium ({USENIX} Secu-
rity 19). 177–194.

[21] Pengcheng Liu, Ziye Yang, Xiang Song, Yixun Zhou, Haibo Chen, and Binyu
Zang. 2008. Heterogeneous live migration of virtual machines. In In International
Workshop on Virtualization Technology (IWVT’08).

[22] Zeyu Mi, Dingji Li, Haibo Chen, Binyu Zang, and Haibing Guan. 2020. (Mostly)
Exitless VMProtection fromUntrustedHypervisor throughDisaggregatedNested
Virtualization. In 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, 1695–1712. https://www.usenix.org/conference/usenixsecurity20/
presentation/mi

[23] Onur Mutlu and Jeremie S. Kim. 2020. RowHammer: A Retrospective. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 8
(2020), 1555–1571. https://doi.org/10.1109/TCAD.2019.2915318

[24] Tu Dinh Ngoc, Boris Teabe, Alain Tchana, Gilles Muller, and Daniel Hagimont.
2021. Mitigating Vulnerability Windows with Hypervisor Transplant. In Proceed-
ings of the Sixteenth European Conference on Computer Systems (Online Event,
United Kingdom) (EuroSys ’21). Association for Computing Machinery, New York,
NY, USA, 162–177. https://doi.org/10.1145/3447786.3456235

[25] Jason Nikolai and Yong Wang. 2014. Hypervisor-based cloud intrusion detec-
tion system. In 2014 International Conference on Computing, Networking and
Communications (ICNC). 989–993. https://doi.org/10.1109/ICCNC.2014.6785472

[26] Jan Nordholz. 2017. Design and provability of a statically configurable hypervisor.
Technische Universität Berlin (2017).

[27] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2020.
Parmesan: Sanitizer-guided greybox fuzzing. In 29th {USENIX} Security Sympo-
sium ({USENIX} Security 20). 2289–2306.

[28] Gaoning Pan, Xingwei Lin, Xuhong Zhang, Yongkang Jia, Shouling Ji, Chunming
Wu, Xinlei Ying, Jiashui Wang, and Yanjun Wu. 2021. V-Shuttle: Scalable and
Semantics-Aware Hypervisor Virtual Device Fuzzing. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security.

[29] Diego Perez-Botero, Jakub Szefer, and Ruby B Lee. 2013. Characterizing hy-
pervisor vulnerabilities in cloud computing servers. In Proceedings of the 2013
international workshop on Security in cloud computing. 3–10.

[30] Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana. 2017.
Slowfuzz: Automated domain-independent detection of algorithmic complexity
vulnerabilities. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. 2155–2168.

[31] Sundaresan Rajasekaran, Harpreet Singh Chawla, Zhen Ni, Neel Shah, Emery
Berger, and Timothy Wood. 2018. CRIMES: Using Evidence to Secure the Cloud.
In Proceedings of the 19th International Middleware Conference (Rennes, France)
(Middleware ’18). Association for Computing Machinery, New York, NY, USA,
40–52. https://doi.org/10.1145/3274808.3274812

[32] Mark Russinovich, Naga Govindaraju, Melur Raghuraman, David Hepkin, Jamie
Schwartz, and Arun Kishan. 2021. Virtual Machine Preserving Host Updates
for Zero Day Patching in Public Cloud. In Proceedings of the Sixteenth European
Conference on Computer Systems (Online Event, United Kingdom) (EuroSys ’21).
Association for Computing Machinery, New York, NY, USA, 114–129. https:
//doi.org/10.1145/3447786.3456232

[33] Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo Bettini, David Benavides, Goetz
Botterweck, Animesh Pathak, Salvador Trujillo, and Karina Villela. 2012. Software
diversity: state of the art and perspectives. STTT 14, 5 (2012), 477–495. https:
//doi.org/10.1007/s10009-012-0253-y

[34] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, SimonWörner, and Thorsten
Holz. 2020. HYPER-CUBE: High-Dimensional Hypervisor Fuzzing.. In NDSS.

[35] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, SimonWörner, and Thorsten
Holz. 2021. Nyx: Greybox hypervisor fuzzing using fast snapshots and affine
types. In 30th {USENIX} Security Symposium ({USENIX} Security 21).

[36] Andrea Segalini, Dino Lopez-Pacheco, Guillaume Urvoy-Keller, Fabien Herme-
nier, and Quentin Jaquemart. 2021. Hy-FiX: Fast In-place Upgrades of KVM
Hypervisors. IEEE Transactions on Cloud Computing (2021).

[37] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. Addresssanitizer: A fast address sanity checker. In 2012 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 12). 309–318.

[38] Le Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn, Haibo Chen, Binyu Zang,
and Jinming Li. 2017. Deconstructing Xen. In 24th Annual Network and Distributed
System Security Symposium, NDSS 2017, San Diego, California, USA, February 26 -
March 1, 2017. The Internet Society. https://www.ndss-symposium.org/ndss2017/
ndss-2017-programme/deconstructing-xen/

[39] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert,
Per Larsen, and Michael Franz. 2019. SoK: sanitizing for security. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 1275–1295.

[40] Udo Steinberg and Bernhard Kauer. 2010. NOVA: A microhypervisor-based
secure virtualization architecture. In Proceedings of the 5th European conference
on Computer systems. 209–222.

[41] syzkaller authors. [n. d.]. syzkaller - kernel fuzzer. https://github.com/google/
syzkaller.

[42] The kernel development community. [n. d.]. The Kernel Address Sanitizer
(KASAN). https://www.kernel.org/doc/html/latest/dev-tools/kasan.html.

[43] The kernel development community. [n. d.]. The Kernel Concurrency Sanitizer
(KCSAN). https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html.

[44] The kernel development community. [n. d.]. Kernel Electric-Fence (KFENCE).
https://www.kernel.org/doc/html/latest/dev-tools/kfence.html.

[45] The kernel development community. [n. d.]. Kernel Memory Leak Detector.
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html.

[46] The kernel development community. [n. d.]. Seccomp BPF (SECure COMPuting
with filters). https://www.kernel.org/doc/html/latest/userspace-api/seccomp_
filter.html.

https://doi.org/10.1109/ISCA.2012.6237041
https://doi.org/10.1109/ISCA.2012.6237041
https://www.openbsd.org/papers/hackfest2015-pledge/mgp00001.html
https://www.openbsd.org/papers/hackfest2015-pledge/mgp00001.html
https://doi.org/10.1145/1755913.1755933
https://doi.org/10.1145/1755913.1755933
https://docs.google.com/document/d/1pnnOAIz_DMWDI4oIOFoMAqLnf_MZ2GsrJNb_dbQ3ZBg/edit?usp=sharing
https://docs.google.com/document/d/1pnnOAIz_DMWDI4oIOFoMAqLnf_MZ2GsrJNb_dbQ3ZBg/edit?usp=sharing
https://docs.google.com/document/d/1pnnOAIz_DMWDI4oIOFoMAqLnf_MZ2GsrJNb_dbQ3ZBg/edit?usp=sharing
https://www.usenix.org/conference/usenixsecurity20/presentation/mi
https://www.usenix.org/conference/usenixsecurity20/presentation/mi
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1145/3447786.3456235
https://doi.org/10.1109/ICCNC.2014.6785472
https://doi.org/10.1145/3274808.3274812
https://doi.org/10.1145/3447786.3456232
https://doi.org/10.1145/3447786.3456232
https://doi.org/10.1007/s10009-012-0253-y
https://doi.org/10.1007/s10009-012-0253-y
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/deconstructing-xen/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/deconstructing-xen/
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.kernel.org/doc/html/latest/dev-tools/kfence.html
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html

Middleware ’23, December 11–15, 2023, Bologna, Italy Jean-Baptiste Decourcelle, Tu Dinh Ngoc, Boris Teabe, and Daniel Hagimont

[47] The kernel development community. [n. d.]. Security bugs - The Linux Kernel
documentation. https://www.kernel.org/doc/html/latest/admin-guide/security-
bugs.html.

[48] The kernel development community. [n. d.]. The Undefined Behavior Sanitizer -
UBSAN. https://www.kernel.org/doc/html/latest/dev-tools/ubsan.html.

[49] Cheng Wang, Xusheng Chen, Weiwei Jia, Boxuan Li, Haoran Qiu, Shixiong Zhao,
and Heming Cui. 2018. {PLOVER}: Fast, Multi-core Scalable Virtual Machine
Fault-tolerance. In 15th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 18). 483–489.

[50] Cheng Wang, Xusheng Chen, Zixu Wang, Youwei Zhu, and Heming Cui. 2017. A
fast, general storage replication protocol for active-active virtual machine fault
tolerance. In 2017 IEEE 23rd International Conference on Parallel and Distributed
Systems (ICPADS). IEEE, 151–160.

[51] Robert NM Watson, Jonathan Woodruff, Peter G Neumann, Simon W Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, et al. 2015. Cheri: A hybrid capability-system architecture for scalable

software compartmentalization. In 2015 IEEE Symposium on Security and Privacy.
IEEE, 20–37.

[52] Idris Winarno, Takeshi Okamoto, Yoshikazu Hata, and Yoshiteru Ishida. 2016.
Increasing the Diversity of Resilient Server Using Multiple Virtualization Engines.
Procedia Computer Science 96 (2016), 1701–1709.

[53] Xin Xu and H. Howie Huang. 2015. DualVisor: Redundant Hypervisor Execution
for Achieving Hardware Error Resilience in Datacenters. In 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. 485–494. https:
//doi.org/10.1109/CCGrid.2015.30

[54] Xiantao Zhang, Xiao Zheng, Zhi Wang, Qi Li, Junkang Fu, Yang Zhang, and Yibin
Shen. 2019. Fast and scalable VMM live upgrade in large cloud infrastructure. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. 93–105.

[55] Diyu Zhou and Yuval Tamir. 2018. Fast hypervisor recovery without reboot. In
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 115–126.

https://www.kernel.org/doc/html/latest/admin-guide/security-bugs.html
https://www.kernel.org/doc/html/latest/admin-guide/security-bugs.html
https://www.kernel.org/doc/html/latest/dev-tools/ubsan.html
https://doi.org/10.1109/CCGrid.2015.30
https://doi.org/10.1109/CCGrid.2015.30

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	3.1 Live VM Replication
	3.2 Remus: Live VM Replication on Xen

	4 HERE: Heterogeneous Replication for Robust Fault Tolerance
	4.1 Threat Model
	4.2 Overview of Heterogeneous Replication

	5 Architecture of HERE
	5.1 State Manager
	5.2 Device Manager
	5.3 State Translator
	5.4 Dynamic Checkpoint Period Manager

	6 Security properties of HERE
	7 Implementation
	7.1 Environment
	7.2 State Manager
	7.3 Device Manager
	7.4 State Translator
	7.5 Dynamic Checkpoint Period Manager
	7.6 Implementation Size
	7.7 Integrating HERE in Data Centers

	8 Evaluation
	8.1 Experimental Setup
	8.2 Analyzing HERE's Security Properties
	8.3 Evaluating VM Migration Optimizations
	8.4 Evaluating VM Replication Optimizations
	8.5 Evaluating the Dynamic Checkpoint Period Manager
	8.6 Database, CPU-Intensive and I/O Benchmarks
	8.7 Overhead of HERE

	9 Related work
	10 Conclusion
	References

